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ABSTRACT 

Collaborative construction robots have emerged as a promising alternative to relieve 
construction workers from both physically and cognitively demanding tasks, contributing to 
a safer and more productive construction industry. However, communicating with robots is 
not a trivial task as human workers and robots speak different languages. From the human-
centered perspective, allowing human workers to communicate with robots using natural 
language is desirable because it minimizes additional cognitive load to human workers. 
Existing studies, however, have been focusing on converting language instructions into 
sequential actions, leading to a rigid task plan and inability to handle complex situations and 
unstructured working environments. To address this critical limitation, this paper explores 
the use of behavior tree (BT), an alternative architecture for describing and controlling 
complex tasks like excavation. A behavior tree is a hierarchical tree structure that specifies 
the switching between the agent’s actions (i.e., execution nodes) via control flow nodes. Its 
modular nature allows the BT of excavation to be generated through linking reusable actions 
based on the human task descriptions. The resulting BT structure enables the robot to alter 
its behavior by selecting different tree branches in response to changing working conditions, 
thus improving its adaptability to dynamic construction environment and its capability of 
error-handling. In addition, the BT eases the human understanding of robot behavior for 
debugging and correcting robot behavior. A corresponding framework is proposed for 
enabling humans to guide a robotic excavator using goal-oriented language instructions. 
The framework consists of four modules: interpretation and reasoning, knowledge 
management, structural analysis and parsing, and BT generation. The interpretation and 
reasoning module decomposes instructions into structured executable intents. The 
knowledge management module organizes the knowledge for instruction reasoning, 
including the robot capable skills and its current working environment. Structure analysis 
and parsing module further grounds the intents and extracts associated parameters, while 
BT generation module maps the extracted elements with predefined BT nodes, building and 
refining the BTs of desired tasks.  A case illustration is performed to demonstrate the viability 
of the proposed framework with executable demos. The findings are expected to facilitate 
efficient and transparent human-robot cooperation in earthmoving construction from a 
human friendly perspective. 
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INTRODUCTION 

Collaborative construction robots, such as robotic excavators (Jin et al., 2021), 
offer a promising alternative to relieve construction workers from both physically 
and cognitively demanding tasks. For safe and productive co-excavation, 
effective communication between humans and robots is essential to align task 
goals of the team. Human operators traditionally communicate their task intents 
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through complex joystick control (Jin et al., 2021). The process demands high 
multi-tasking skills in sensing, planning, and operation, which may cause 
excessive human workload and safety issues (Lee et al., 2022). In contrast, 
natural language is an intuitive way for humans to express task intents. 
Instructing robots through natural language has been widely explored in 
industrial manufacturing, autonomous driving, and household service (Tellex et 
al., 2020). 

However, robots may struggle to interpret human instructions and generate a 
reliable execution plan, particularly high-level goal-oriented instructions. Unlike 
formal robot languages, human languages are inherently abstract and ambiguous. 
For instance, people prefer issuing high-level goal-oriented instructions such as 
“Dig a trench over there,” rather than step-by-step commands such as “Move 
forward 1 meter and” and “Low down the bucket 0.5 meter” to specify every 
action in detail. Many existing studies focused on extracting goals from simple 
instructions and using classical planners to generate task plans for fulfilling the 
goals (Pramanick et al., 2020; Tran et al., 2023). They cannot effectively handle 
high-level instructions that describe long-horizon tasks. Besides, the generated 
execution plan lacks the flexibility to suit dynamic and unstructured construction 
environments. 

Compared to the rigid task plan, behavior tree (BT) is a control architecture 
that can adapt to dynamic environments while enabling the translation of human 
instructions into executable task plans. BTs have been widely employed in many 
robotic applications such as object manipulation and ground/aerial navigation 
(Iovino et al., 2022). They provide a fallback mechanism for conditional checks, 
allowing robots to react dynamically to failures through alternatives 
(Colledanchise and Ögren, 2018). Besides, the tree-like structure of BT mirrors 
the hierarchical nature of tasks and associated task instructions. Its modularity 
and extendibility ease the translation of human language instructions into BT 
structures. 

This paper presents a framework for enabling humans to guide a robotic 
excavator using both goal-oriented and action-oriented instructions. The 
framework translates high-level human instructions to low-level robot actions to 
accomplish specified tasks. The remainder of this paper is organized as follows. 
The next section introduces the background and related work. The third section 
outlines the proposed framework with its four modules. The fourth section 
presents a case illustration to prove the framework’s feasibility, and the last 
section concludes the study with key findings. 

BACKGROUND AND RELATED WORK 
Using language instructions to guide robotic tasks requires converting language 
to something readily for robots to grasp and accordingly generating execution 
plans. Traditional studies modeled robot behaviors using action sequences. The 
approaches resulted in rigid task plans that are poorly suited to dynamic 
environments. In contrast, this paper focuses on BT due to their modularity, 
reusability, flexibility, and adaptability, which make BT well-suited for modeling 
complex robotic tasks in unstructured construction environments. 
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Robot Understanding of Human Task Instructions 
Humans guide robot tasks using either action-oriented instructions (AOIs) or goal-
oriented instructions (GOIs), aligning with the principles of hierarchical task 
planning. Humans typically model a task in a hierarchical break-down structure, 
as shown in Figure 1. A task can be either a composite task/subtask that is executed 
in a sequence of primitive actions, or just one single primitive action. Primitive 
actions are the atomic elements in the task hierarchy and can be directly executed 
by robots by running the corresponding low-level routine. Each performed action 
may impose effects on the world and change the world states such as robot pose 
and object position. In this way, humans can issue AOIs by specifying detailed 
actions (e.g., “Go forward 2 meters” and “Pick up the cup”) or GOIs by expressing 
desired outcomes (e.g., “Bring me the cup”). 

Figure 1: Task hierarchical break-down structure. 

To execute instructions effectively, robots need to extract intents—either goals 
or actions—and generate corresponding task plans. To interpret AOIs, traditional 
research applied various language parsing techniques, such as CCG parsing 
(Suddrey et al., 2017) and deep-learning parsing (Sarkar et al., 2023), for 
extracting actions, binding arguments, and action orders. The extracted actions 
are matched with the predefined templates in an action library and organized as 
an action sequence, linking the abstract intent semantics with robot control 
functions (Lu and Chen, 2017). Differently, understanding GOIs requires parsing 
embedded goals into logic-based representations that serve as inputs for classical 
task planners (e.g., PDDL planners (Pramanick et al., 2020; Tran et al., 2023)) to 
generate task plans. However, existing methods struggle with processing GOIs 
for long-horizon tasks (e.g. excavation) in two aspects: 1) data limitations: 
parsing approaches require extensive training data and often fail to handle 
complex or novel instructions., and 2) computational constraints: classical 
planners suffer from exponential growth in search space as the number of actions 
and states increases, leading to long computation times.  

Recent studies leveraged LLMs to simultaneously interpret GOIs and plan the 
interpreted tasks. SayCan framework ranked the admissible atomic behaviors 
(i.e., action-object pairs) for completing the given home service instruction and 
grounded the actions to the current scene based on the coupled affordance 
functions (Ahn et al., 2022). ProgPrompt utilized LLM’s strength in code 
understanding to generate executable plans as programs (Singh et al., 2023). 
However, the generated plans are all limited to deterministic action sequences, 
which lack error tolerance and are ill-suited for dynamic environments. Complex 
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tasks managed through long action sequences also require frequent cumbersome 
replanning when task conditions change. 

Behavior Trees for Robot Behavior Modeling 
A behavior tree (BT) is a directed rooted tree structure that describes and controls 
the execution flow of the robot’s behaviors (Colledanchise and Ögren, 2018). 
Within a BT, internal nodes are known as control flow nodes to specify the 
control-flow logic of behaviors, while leaf nodes are execution nodes defining the 
robot’s executable behaviors. Nodes are connected by arrows from parent to 
child. The root is the node without parents while leaf nodes do not have children. 
Internal nodes have at least one child that could either be a leaf node or internal 
node itself.  

BTs operate by propagating signals called "ticks" from the root node down to 
its children at regular intervals. If a leaf node receives a tick, it executes and 
immediately returns a status (success, failure, or running) back up to the root. 
The tree control flow is determined by this feedback, guiding the robot to proceed 
to the next leaf node, wait for the current running node, or terminate the tree 
execution. Table 1 summarizes the types of nodes and their corresponding 
symbols. Leaf nodes are specified into Action and Condition, while internal 
nodes include Sequence, Fallback, Parallel, and Decorator types, depending on 
how they manage child execution.  

Table 1. Node types of behavior tree 
Node Type Definition Symbol 

Action 
A leaf node that controls the robot to perform actions and 
returns success, failure, or running based on the execution 
results. 

 

Condition 
A leaf node that checks the world state against the 
specified condition and returns success or failure based on 
the evaluation. 

 

Sequence 
An internal node that executes its child nodes in order until 
one child returns failure or all children return success. 

 

Fallback An internal node that executes its child nodes in order until 
one child returns success or all children return failure. 

 

Parallel 
An internal node that executes its child nodes in ‘parallel’ 
until a certain amount of child nodes return success or all 
children return failure. 

 

Decorator 

An internal node that modifies a single child through user-
defined policy. For example, a repeat decorator can 
execute its child node until the child node returns a 
specified times of success or one time failure. 

 

 
Figure 2 illustrates an example of BT for a trenching task. demonstrating how 

a robot excavates multiple zones to a specified depth through a work zone loop. 
This loop includes moving to appropriate positions and executing a digging 
cycle, which includes sequential actions such as MoveToDig, Dig, MoveToDump, 
and Dump to shape the terrain. During execution, the BT is ticked in a top-down 
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and left-right order until it reaches a terminal state. The figure shows a snapshot 
of the BT ticking in which the tree is waiting for the running MoveToDump node 
to complete. If the node succeeds, the next action Dump executes; if it fails, the 
tree terminates the task. This example highlights the advantages of BTs over 
traditional action sequences in modelling robot behaviors: 

• Modularity and reusability: BTs can be generated and extended with 
reusable nodes and subtrees. Their modular nature enhances the 
readability and manageability of complex tasks. 

• Flexibility and adaptability: BTs provide the fallback mechanism for 
conditional checks, allowing robots to react dynamically to failures 
through alternatives. 

Figure 2: Behavior tree graph of trenching task performed by excavators. 

Early research work translated AOIs into BTs using CCG parsing and 
analytical mapping the parsing elements to BT nodes (Suddrey et al., 2022). But 
the methods could only deal with a limited set of simple instructions. Some 
recent studies employed LLMs to generate BTs in an end-to-end manner from 
human instructions (Izzo et al., 2024). They prepared a large synthetic dataset of 
instruction-tree pairs and fine-tuned lightweight LLMs for learning the BT 
generation. However, the generated BTs were not grounded with robot skills or 
environments, limiting their real-world applicability. Other studies proposed 
multi-step pipelines for converting GOIs to executable BTs (Chen et al., 2024; 
Zhou et al., 2024), leveraging LLMs to decompose high-level goals into subgoals 
and generate BTs through analytical expansion or optimal expansion. The 
pipelines have showed promising results in terms of understanding accuracy and 
success rates of task execution. 

FRAMEWORK OF HUMAN LANGUAGE-INSTRUCTED ROBOTIC 
EXCAVATION 
This paper presents a framework to enable humans to guide a robotic excavator 
using both goal-oriented and action-oriented instructions, as shown in Figure 3. 
The objective of the framework is to translate goal-oriented/action-oriented 
instructions into BTs as reliable execution plans. The proposed framework 
consists of four modules: Interpretation and reasoning, knowledge management, 
structure analysis and parsing, and BT generation. Each module’s functionality 
and enabling approaches are described below. 
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Figure 3: Framework of human language-instructed robotic excavation. 

Interpretation and Reasoning. This module aims at breaking down human-
issued GOIs/AOIs into smaller intents as high-level language plans. To ensure 
that these decomposed intents are viable for execution, the knowledge of robot 
capable skills and current working environment is given as input for the 
decomposition. LLM serves as the reasoning engine for the decomposing 
process, utilizing its versatility in natural language understanding, commonsense 
reasoning, and text generation. Prompt-based learning techniques are adopted to 
guide the generation of relevant outputs while maintaining a structured format for 
better downstream processing.  

Knowledge Management. This module organizes and maintains critical 
information about the environment and the robot’s skills for LLM-based 
reasoning. The environmental information may include 1) elevation maps of 
target trench and current terrain, 2) mask maps of dig and dump sites, and 3) 
occupancy maps of obstacles (Terenzi and Hutter, 2023). Semantic maps are used 
to deliver map information for high-level task planning while a database stores 
the map grid values for low-level planning and control. Besides, the robot’s skills 
are documented within a node library that defines the robot’s executable actions 
and conditions. Relevant information includes action names, action arguments, 
preconditions and postconditions of the action, and action descriptions.  

Structure Analysis and Parsing. This module processes descriptive intents to 
extract grounded intents and relevant task specifications. The structure analysis is 
first conducted to identify task loops and their positions within the high-level 
plan. Then the parsing algorithm extracts grounded intents along with associated 
parameters. A deep learning parser such as BERT-based parser can be developed 
to accurately extract the intents.   

BT Generation. This module creates an executable BT based on the extracted 
intents and specifications. An initial tree is constructed by mapping the intents to 
the predefined action/post-condition node from the node library and sequencing 
the nodes according to the task logic. Then the tree is iteratively pre-executed for 
finding failed condition nodes. The failed nodes are replaced or updated with 
corresponding enabled action nodes to ensure smooth execution. BT updating 
algorithms such as back-chaining can be used in this process. 
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CASE ILLUSTRATION 
This section presents a case for illustrating the feasibility of the proposed 
framework. In this case, human workers issue both goal-oriented instructions 
(GOIs) and action-oriented instructions (AOIs) to guide a robotic trenching task. 
The human worker and the robot are assumed to share all the necessary task 
information. To initialize the task, the human worker may issue a GOI such as 
“Can you dig the Trench 1 at the Area 1?” If any task failure clues are detected 
during supervising, the human worker can proactively intervene by giving an 
AOI to correct robot actions, such as “Move the base forward 1 meter and put 
down the bucket on the ground”. The following paragraphs present how these 
two instruction examples are translated into BTs. 

Interpretation and Reasoning Using Context Knowledge. Figure 4 
demonstrates the conversion of the GOI and AOI to descriptive intents. The GOI 
is interpreted into a high-level language plan with a loop structure to reflect work 
zone loop, while the AOI is broken down into a simple list of human-specified 
actions. To improve the effectiveness of the LLM-based generation, the prompts 
provided to the LLM include both generation requirements and few-shot 
demonstrations. For instance, “Please generate the descriptive intents based on 
the robot actions predefined in the node library” is a requirement instructing the 
LLM to align the outputs to the robot capabilities.  

Figure 4: Illustration of converting GOI and AOI to decomposed descriptive intents based 
on given knowledge. 

Extraction of Grounded Intents and Associated Specifications. Figure 5 
shows the extraction of grounded intents and associated specifications from 
descriptive intents. The GOI is analyzed with its structure to identify the loop and 
its position. The remaining non-loop descriptions undergo text parsing to obtain 
grounded intents and specifications. To facilitate training and matching with 
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robot skills, the extracted grounded intents are annotated using the action and 
condition node names from the predefined node library. 

Figure 5: Illustration of extracting grounded intents and associated specifications. 

Generation of BTs through Tree Expanding. Figure 6 illustrates the process 
of BT generation given the grounded intents, specifications, and line numbers. 
The grounded intents can be mapped with predefined action nodes and condition 
nodes through keyword matching. Specifications are used to populate the 
arguments of node functions. Line numbers help determine the layouts and 
sequencing of nodes in the BT structure. The left part of Figure 6 demonstrates 
coding examples of initial BT trees using the py_trees library. Once the initial BT 
of GOI is built and executed, failed post-condition nodes are updated with 
enabled action nodes to achieve the post-conditions. The right part of Figure 6 
shows the updating example. The failed condition node AtLoc is replaced by a 
subtree, which contains the action node MoveBase and its pre-condition node 
HasRoute. The example also highlights cases where invalid node arguments 
(marked in red) are identified and corrected with valid ones, ensuring the 
correctness of the updated BT. Figure 7 demonstrates the final resulting BTs of 
the two instructions after updating. It is worth noting that an action node is not 
limited to representing a primitive action but can also be a subtree that addresses 
a complex goal, leveraging the reusability of BTs. For instance, the post-
condition ZoneDigged is addressed by a loop subtree of sequential actions in the 
GOI case.  



Human Language-Instructed Robotic Excavation based on Behavior Trees 9 

Figure 6: Illustration of generating BTs through tree expanding. 

Figure 7: Resulting BTs of two instructions. 

CONCLUSION 
This paper proposed a framework for enabling humans to guide a robotic 
excavator using both goal-oriented and action-oriented instructions. The 
proposed framework is demonstrated through a case illustration of human 
workers instructing a trenching task using the two instruction types. The case 
highlights the expressiveness of BTs in representing long-horizon complex tasks 
like excavation in a human-readable format. It also demonstrates the potential of 
BTs in facilitating the translation of human language instructions into reliable 
adaptive task plans. Future studies are needed to address the following key 
challenges: 1) optimizing prompt design for efficient and accurate instruction 
decomposition, 2) effective detecting and updating invalid node arguments 
during BT generation, and 3) automating the pipeline for real-world robot task 
applications.  
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