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Abstract – 

Every year, accidental damage during excavation 
leads to numerous disruptions in utility services. 
These incidents cause not only financial losses but also 
injuries and fatalities. A major contributing factor to 
these incidents is the lack of accurate location data for 
utilities. The current practice involves a time-
consuming coordination process of obtaining utility 
maps from owners and field surveys, which is often 
hindered by delays and incomplete records. In 
response to these challenges, this paper proposes a 
novel method to predict underground utility lines in 
situations where records are unavailable or delayed. 
Our approach leverages visible utility anchor points, 
such as manholes, and the spatial context provided by 
nearby ground features like roads. The methodology 
involves three primary steps: constructing a 
relational data model of the utility network, 
transforming this data into graphs, and employing a 
graph neural network for prediction. This innovative 
approach demonstrates good performance, achieving 
a ROC AUC score of 95.24% in predicting sewer line 
connections between manholes. This method 
automates the inference of utility lines, providing 
utility owners and excavation contractors a solution 
for identifying unknown connections and reducing 
risks from inaccurate information. 
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1 Introduction 
The ongoing issue of inaccurate and incomplete 

information of buried utilities poses a significant 
challenge across the United States. Annually, numerous 
utility disruptions are caused by accidental excavation 
damage. These incidents impact communities and 
businesses, leading to injuries and tragically resulting in 

loss of life. According to Common Ground Alliance 
Damage Information Reporting Tool [1], 87.84% of 
these incidents occur due to missing or inaccurate 
location information. Current practice to mitigate these 
risks involves coordinating with utility owners to access 
utility maps and employ utility surveyors. The utility map 
serves as a crucial starting point, providing approximate 
line locations for further utility surveys. However, 
obtaining utility records faces prolonged delays in the 
coordination process, and some records may be entirely 
absent. Therefore, there's an urgent need to propose a 
method for inferring utility line locations when utility 
records are delayed or unavailable. 

When records are inaccessible, inferring some utility 
lines is possible by examining visible utility anchor 
points like manholes and nearby ground facilities such as 
roads and buildings. These visible features imply the 
presence and general locations of utilities. Acquiring 
information about these visible features is feasible 
through field surveys or high-resolution satellite imagery. 
However, this inference relies on scarce professional 
judgment and expertise, which can be time-consuming, 
error-prone, and may further complicate the process. 

This paper introduces a novel approach for 
automatically completing underground pipeline 
networks. It focuses on predicting utility line segments 
by using visible utility anchor points and ground facilities 
as spatial contextual cues. The objective is to aid users in 
inferring the existence and approximate locations of 
utility lines when utility records are not accessible. 

2 Literature Review 

2.1 Utility Parameters, Spatial Contexts, and 
Design Practices for Predicting Utilities 

Existing studies [2–6] address the design and 
completion of utility networks by predicting the presence 
of pipelines based on their endpoints, such as manholes, 
and assessing the extent to which the network conforms 
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to design criteria and practices. For instance, Afshar [2] 
suggested minimizing the cost function related to pipe 
diameters and excavation depths while adhering to 
certain constraints to reflect design criteria. He compiled 
a list of sewer design practices as constraints, such as the 
minimum flow velocity required to prevent sediment 
buildup and the minimum pipe slope necessary to avoid 
adverse slopes due to inaccurate construction. Similarly, 
Izquierdo [3] formulated the problem for hydraulic 
systems, akin to Afshar's approach, but also incorporated 
the continuity and energy equations of hydraulics into the 
model. These studies concentrate on using the parameters 
of the pipeline and pipe endpoints to aid in the design of 
the pipeline network. 

Furthermore, some research extends beyond the 
parameters of pipes and their endpoints. It also examines 
the relationship of these endpoints to visible ground 
elements and the surrounding environment, such as 
catchments, roads, and buildings near the pipes. For 
example, Bailly et al. [4] predicted the presence of 
pipelines based on the cumulative length of pipelines in 
relation to the catchment extent and network connectivity. 
Chahinian et al. [7] used manhole locations and 
elevations to predict the presence of pipelines and 
minimize instances of lines intersecting buildings and 
roads. Their top result achieved a precision and recall of 
0.92 each, alongside a critical success index of 0.85. 
These studies underscore the importance of spatial 
contexts in enhancing pipeline network predictions. 

2.2 Challenges and Limitations in Existing 
Studies 

Existing studies carefully consider the information 
crucial for completing or designing pipeline networks. 
However, they face challenges in both mathematically 
modeling and solving the problem as follows: 

1. One primary difficulty is the unknown correlation 
among pipe endpoint parameters, their connection 
parameters, spatial contexts, and pipeline presence. 
Existing studies simplify the problem by 
assumptions, leading to a lack of justification. 

2. Another challenge is capturing the interdependency 
of variables within a network solely through human 
knowledge. This limits current methods to focusing 
only on parameters directly connected to the 
pipelines or nearby ground facilities, overlooking 
broader interdependencies.  

3. Additionally, even when correlations and 
relationships are simplified and mathematically 
formulated, solving the model becomes 
computational expensive. These problems are often 
approached as combinatorial optimization, aiming 
to minimize costs while considering various 
constraints. The complexity of these problems is 

compounded by non-linear functions and 
constraints, resulting in a solution space filled with 
numerous local minima and discontinuities. 
Consequently, studies have resort to computational 
expensive optimization methods such as heuristic 
algorithms, particle swarm, ant colony optimization, 
and others, in pursuit of the global optimal solution. 

In summary, current research mainly utilizes rule-
based approaches to predict pipeline connections 
between two endpoints, considering both their 
parameters and spatial contexts. This body of research 
highlights the complexities involved in formulating and 
solving these problems, especially the challenges in 
converting industry practices into effective cost functions. 
It indicates that explicitly modeling this problem relying 
solely on human knowledge presents significant 
challenges. Additionally, the complexities hinder further 
exploration of factors, such as the detailed spatial 
relationships between manholes and their surrounding 
environment, related to pipeline prediction. 

2.3 Advantages of GNNs in Pipeline Network 
Completion 

In the context of pattern recognition, learning-based 
methods can overcome the limitations of previous studies 
that struggled with explicitly modeling cost functions. 
With sufficient data, machine learning can quickly adapt 
to data from diverse practices. 

Among the learning-based approaches, Deep Neural 
Networks (DNNs) [8,9] distinguish themselves from 
traditional machine learning methods by simultaneously 
learning features and objective functions. The advantages 
of using it for this problem lie in three aspects:  

1. Alignment with Graphical Data Structures: Pipeline 
networks are inherently structured in a graphical 
format, with manholes serving as nodes and 
pipelines as edges. This naturally aligns with the 
architecture of Graph Neural Networks (GNNs), 
facilitating the integration of information into a 
unified network for discerning data correlations. 
Additionally, this problem can be formulated as 
linkage prediction in GNN studies [10], a well-
established research area that is supported by a solid 
mathematical and statistical foundation. 

2. Feature Extraction from Subgraphs: GNNs 
specialize in handling graph-structured data, 
enabling the extraction of comprehensive features 
from subgraphs [11]. These methods, known as 
graph embeddings, allow for the representation of 
pipeline networks by aggregating information not 
just from direct connections but also from the 
broader network context.  

3. Discriminative Feature Learning: The concurrent 
learning of features and objective functions  lead to 



learn discriminative implicit representations [8]. In 
contrast to traditional methods that linearly model 
relationships between handcrafted features, DNNs 
excel in learning implicit feature representations 
that encode complex relationships within the data. 
These features are specifically optimized for the 
downstream task, enhancing the accuracy and 
effectiveness of pipeline network predictions [12]. 

4. Recent advances in using GNN models in 
Geospatial Artificial Intelligence (GeoAI): GNN 
models are particularly adept at handling geospatial 
challenges that involve analyzing points of interest, 
their spatial relationships, and non-grid topologies. 
GNNs have shown notable effectiveness in 
applications such as traffic flow [13] and PM2.5 
level forecasting [14], where training and testing 
occur on the same nodes, referring to transductive 
learning. A significant challenge in GeoAI, 
however, is the application of models trained on one 
set of location data to completely new, unseen 
locations, known as inductive learning. To address 
this, significant advancements have been made in 
geospatial location encoding techniques [15]. These 
techniques transform location data, whether two- or 
three-dimensional, into a high-dimensional feature 
vector. This approach preserves relative distances 
and, optionally, directional relationships between 
locations, enhancing the model's ability to adapt to 
new locations not seen in the training phase.  

Therefore, there is a need to explore the potential to 
overcome the limitations of current utility network 
completion methods using data-driven approaches. This 
study mainly introduces the framework of utility line 
prediction, addressing the following two challenges: (1) 
identifying which spatial and semantic contexts to 
include along with their encoding techniques; and (2) 
designing GNN models capable of efficiently 
propagating information across a heterogeneous graph—
such as nodes representing manholes and roads—and 
learn features for network topology prediction.  

3 Methodology 
The overall framework is illustrated in Figure 1. The 

process begins with building a relational data model to 
organize information on utility anchor points, lines, and 
ground facilities and their spatial relationships. Second, 
all the records in the relational data model are represented 
as graphs, with anchor points and facilities as nodes, and 
utility lines and their relationships as edges. Finally, a 
GNN model is developed to predict utility lines, which 
are the links between anchor point nodes. 

 
Figure 1. Overall Framework 

3.1 Relational Data Model Construction 
Geospatial relational data modeling is a crucial step 

to present the properties and the relationships among 
different entities. It not only facilitates data extraction 
from existing databases but also aids in building the 
graph representations of the utility anchor points, lines 
and ground facilities. Figure 2 depicts the Entity-
Relationship (ER) diagram. 

 
Figure 2. Entity-Relationship Diagram 

In this diagram, three entities are used: 

1. Utility Anchor Point: These are visible utility line 
junctions, such as manholes and ground pumps, 
indicating the locations of underground lines. 
Attributes include ID, type, and geometry. 

2. Road: Roads, as a typical ground facility, provide 
spatial contextual cues for utility line prediction. 
The alignment of utility lines along roads makes 
this data a potential indicator. Additionally, roads 
are accessible from satellite imagery and digital 

        
            

    

           

         
    

           
    

    

        

  

  

      

        

        

              
        

    

            
  

        



road maps, which are widely available. Roads are 
characterized by their ID, length, and geometry. 

3. Utility Line. These are typically buried utility lines 
that are the focus of prediction in this research. Data 
on these lines are used for model training and for 
validation and testing in the evaluation stage. As 
this study focuses on predicting the existence of 
lines, only ID and geometry information are utilized. 

Three relationships are established based on spatial 
relationship analysis: 

1. Utility Line-Anchor Point Connection: The 
connection between utility lines and anchor points 
is determined by merging two tables through point-
line intersection analysis.  

2. Anchor Point-Road Proximity: Anchor point-road 
proximity is identified by locating the nearest line 
to the anchor point, considering only those within a 
100-meters radius as "close." Additionally, three 
attributes are extracted: the position of the nearest 
point on the road, the distance from the anchor point 
to this nearest road point, and the side of the road 
on which the anchor point is located. These 
attributes aid in predicting utility line placement, as 
most lines run parallel to, rather than across, roads. 
For instance, two connected manholes are likely to 
be on the same side of the road and in proximity.  

3. Road-Road Intersection: The road-road relationship 
is built by merging road tables through line-line 
intersection analysis.  

3.2 Graph Representation 
Building the graph representation of the utility 

network and its surroundings, based on the geospatial 
data model, involves three main steps: (1) establishing 
relationships between anchor points through their 
connections with utility lines; (2) converting the 
relational data model into a graph data model; (3) 
encoding the data with numerical values. 

3.2.1 Anchor Point to Anchor Point Relationship 
Establishment 

This step transforms the utility line entity into 
relationships between anchor points. It is designed to 
align with the objective of predicting utility lines, which 
will be modeled as the edges between anchor point nodes 
in the graph network. Typically, in the graph data model, 
edges represent relationships in the relational data model. 

The implementation process is straightforward. A list 
of anchor-point ID pairs is generated if they intersect 
with the same utility line segments. This action removes 
the utility line entity in the relational data model and 
establishes a many-to-many relationship between the 
anchor points themselves. 

3.2.2 Relational Data Model to Graph Data Model 
Conversion 

This step follows the typical process of transforming 
the relational database to graph database, including the 
following steps: (1) table to node label; (2) row to node; 
(2) column to node property; (3) foreign key to edge; (4) 
relationship attributes to edge properties. 

 
(a) Relational Data 

 
(b) Graph Data 

 
(c) Graphical Representations in ArcGIS map 
Figure 3. Utility Anchor Points and Roads, along 
with their Relationships 

                           
              

                        

                                                          

                

             
           

           
                   
         

                    
                    

              

               

                     
                             
               

               



Figure 3 presents an example illustrating utility 
anchor points and roads, along with their relationships, in 
three different formats: as relational data model 
representation, as graph data model representation, and 
as visualized data on an ArcGIS map. 

3.2.3 Data Encoding 

Data encoding is a step to transform the data in 
different formats into the numerical features fed into the 
neural networks to predict the links between anchor point 
nodes. Table 1 summarizes the features used in this 
research, along with data encoding methods.  

Table 1. Data Encoding Methods for Attributes 

Node / Edge Attribute Name Encoding Methods 
Utility 
Anchor 
Point 

Location Location Encoding 

Type One-Hot Encoding 

Road 

Centroid 
Location Location Encoding 

Type One-Hot Encoding 

Length 
Equal-Frequency 
Binning and One-

Hot Encoding 

Orientation 
Equal-Width 

Binning and One-
Hot Encoding 

Utility 
Anchor 

Point-Road 
Relationship 

Relative 
Position of 

Nearest Point 
on Road 

None 

Distance 
Equal Frequency 
Binning and One-

Hot Encoding 
Side None 

3.3 Utility Line Prediction using Graph 
Neural Networks 

This research develops a GNN model that consists of 
two main components: convolutional layers, and a 
classifier. Initially, it adopts a multi-scale location 
encoder [14] that applies sinusoidal functions of varying 
frequencies to transform location data. The convolutional 
layers include the GAT (Graph Attention Network [16]) 
and GraphSAGE (SAmple and aggreGatE [17]) as basic 
building blocks. GAT incorporates an attention 
mechanism, assigning importance weights to 
neighboring nodes that are learnable within the network. 
It processes node features, edge indices (indicating node 
connections), and edge attributes as inputs and generates 
updated node features and attention weights as outputs. 
GraphSAGE is a method of sampling neighboring nodes 
with specific weights and aggregating these neighboring 
node features into the weighted target node. Both layers 

focus on feature aggregation at the graph nodes. The final 
component of the network is a binary classifier, designed 
to predict connections between node pairs through the 
multiplication of their feature vectors. The loss function 
used is cross-entropy loss function, commonly applied in 
binary classification tasks. Figure 4 presents a detailed 
visualization of the GNN model, including its inputs, 
outputs, and overall architecture. 

 
Figure 4. Architecture of the GNN model and 
corresponding Inputs and Outputs 

3.3.1 Architecture Variants 

Since there are no existing GNNs for this application, 
several architectural variants are discussed, as illustrated 
in Figure 5. ReLU layers are not drawn for simplification. 

 
Figure 5. Architecture Variants 

The base model utilizes two GAT layers, which 
include dropout rates to prevent overfitting. The outputs 
from these GAT layers, which are the updated features of 
the nodes, along with the indices of the edges, are fed into 
two GraphSAGE layers. The first variant consists solely 
of four GraphSAGE layers. Unlike GAT layers, 
GraphSAGE layers do not process edge attributes, 

  
 

  
  

  
 

  
  

  
  

  
  

  
  

 

 

 

                 
             

                    

                     

               
             

              
                



meaning that this model variant does not include 
information on road-anchor point spatial relationships 
beyond connectivity. The second variant examines the 
impact of alternating positions of GAT and SAGE layers. 
The third variant investigates the effective integration of 
edge attributes by introducing skip connections, with FC 
referring to fully connected layers. 

4 Experimentation 

4.1 Data Description and Preprocessing 
This research utilizes two data sources: (1) The sewer 

network map provided by Urban Utilities, accessible at 
https://services3.arcgis.com/ocUCNI2h4moKOpKX/arc
gis/rest/services/UU_Sewer_OpenData/FeatureServer. 
In the ArcGIS sewer network map, the manhole and 
pump feature layers are utilized to represent utility 
anchor points, and the gravity sewer main lines are used 
as the utility lines. (2) The road network from the 
Brisbane City Council, which is available at 
https://services2.arcgis.com/dEKgZETqwmDAh1rP/arc 
gis/rest/services/Roads_hierarchy_overlay_Road_hierar
chy/FeatureServer. The road feature layer is employed as 
an example of ground facilities.  

The raw data about manholes, pumps, gravity sewer 
main lines, and road networks were exported from 
ArcGIS Pro software as individual shapefiles. 
Subsequently, these files were processed using Python 
geospatial data analysis and network analysis packages. 
The proximity analysis between manholes and roads was 
conducted using the QueryPointAndDistance function in 
ArcGIS Pro Python API. This function identifies the 
nearest point on a polyline to a given point and calculates 
the distance between them. Additionally, it provides 
details about which side of the line the point is located on 
and the distance along the line, expressed as a percentage. 
The data was preprocessed in two steps. First, the data 
was cleaned by removing utility lines that lack 
connections with any manhole or pump points or are 
linked to only one point. This is because the method 
assumes that each utility line connects to a minimum of 
two anchor points. Second, roads located more than 100 
meters from the manholes were filtered out, as roads not 
classified as "close" to the manholes do not contribute to 
link prediction. The statistics are summarized in Table 2. 

Table 2. Data statistics before and after pre-processing 

Name Count 
(Before) 

Count 
(After) 

Utility Line 243,773 203,203 
Utility Anchor Point 206,187 206,187 

Road 41,753 32,080 

4.2 Experiment Design 
4.2.1 Training, Validation, and Testing Data Split 

The data was divided into training, validation, and 
testing sets in three steps: (1) within the utility anchor 
point networks (excluding roads), connected components 
were identified, leading to a collection of subgraphs, each 
representing a distinct component; (2) the training, 
validation, and testing datasets were then randomly 
distributed in a 6:2:2 ratio from these subgraphs. (3) 
nodes representing roads were included in various 
datasets, determined by their connectivity to utility 
anchor points. Some road nodes might appear in multiple 
datasets if they are connected to anchor points belonging 
to different sets. This separation ensures that utility line 
edges and utility anchor point nodes from the training set 
do not appear in the validation or testing sets, and those 
from the validation set are excluded from the testing set. 

This approach of using connected components for 
dataset division was chosen because the distribution of 
unknown utility lines typically concentrates in specific 
areas rather than being evenly spread throughout a city. 
Figure 6 illustrates the distribution. 

 
Figure 6. Training, Validation and Testing Sets 

4.2.2 Evaluation Metrics 

The model outputs are numerical values representing 
classes assigned to each edge that connects two manhole 
nodes: “      ”    1 indicates the presence of a pipeline, 
“      ”      signifies its absence. A common threshold 
of 0.5 is used to separate these two classes. These studies 
adopt the following evaluation metrics for experiments: 
(1) Precision. Precision is the proportion of true positive 
predictions, correctly predicted pipeline presence, out of 

https://services3.arcgis.com/ocUCNI2h4moKOpKX/arcgis/rest/services/UU_Sewer_OpenData/FeatureServer
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all positive predictions made. (2) Recall. Recall is the 
proportion of true positives, correctly predicted pipeline 
presence, out of all actual pipeline presences. (3) AUC 
(Area Under the Curve) ROC (Receiver Operating 
Characteristics) score. The ROC curve is a plot of the 
TPR (True Positive Rate or Recall) against the FPR 
(False Positive Rate) at various threshold settings. It is 
the measure of separability of two classes. (4) F1-Score. 
F1-Score is the harmonic mean of precision and recall. (5) 
Accuracy. Accuracy is the total number of correct 
predictions among all the cases. (6) MCC (Matthews 
Correlation Coefficient). MCC is a correlation 
coefficient between the observed and predicted 
classifications for imbalanced dataset. It returns a value 
between -1 and 1, where 1 indicates a perfect prediction, 
0 means random prediction, and -1 indicates total 
disagreement between prediction and observations. 

4.2.3 Hyperparameter Tuning 

For model training, the number of epochs is 
determined using an early stopping approach. The 
maximum size of the epochs is 100, but once the 
validation loss does not decrease or decreases by less 
than 0.001 for five consecutive epochs, the training 
process will be stopped to prevent overfitting. Regarding 
optimization techniques, the Adam optimizer is used with 
a learning rate set at 0.001. 

The model fine-tuning focuses on two 
hyperparameters: the size of the hidden layers and the 
dropout rates. This approach is chosen due to an 
overfitting problem observed during the experimentation 
process. The options for the hidden layer size are set at 
four specific values: 32, 64, 128, and 256. The dropout 
rates range from 0 to 0.6, with increments of 0.2. The 
hyperparameter tuning process is guided by various 
evaluation metrics on the validation set, and the testing 
data is used only for evaluating the optimal model. Due 
to space constraints, the detailed evaluation metrics 
corresponding to each model variant and hyperparameter 
combination are stored in the GitHub repository. 

4.3 Experiment Results 
The hyperparameter tuning of the model is driven by 

its performance on various evaluation metrics using 
validation data. The best-performing models on the 
validation set for each metric are summarized in Table 2.  

For more detail, Variant 3a represents a model 
configuration with a hidden layer size of 32 and a dropout 
rate of 0; Variant 3b is configured with a hidden layer 
size of 128 and a dropout rate of 0; and Variant 3c 
features a hidden layer size of 32 with a dropout rate of 
0.4. Variant 1a, on the other hand, corresponds to a model 
with a hidden layer size of 64, utilizing only SAGE layers. 

The fine-tuned models, each selected for achieving 
the highest score for each evaluation metrics, are further 

evaluated using the testing data. The outcomes from 
these tests are compiled and presented in Table 3. 

Overall, Variants 1 and 3 demonstrate the most robust 
performance. Variant 3 excels in ROC AUC scores, 
accuracy, and MCC metrics, indicating its superior 
capability in differentiating the presence and absence of 
pipeline connections. On the other hand, Variant 1, which 
focuses solely on node attributes and connectivity and 
overlooks edge attributes such as the manhole's location 
relative to the road, achieves the highest recall and F1 
score. This outcome is reasonable since ignoring road-
crossing pipelines leads to more conservative predictions. 
This conservative approach is particularly advantageous 
in utility line detection scenarios, where the priority is to 
minimize the risk of missing lines. 

Table 3. Optimal Model Architectures and 
Hyperparameter Combinations on Validation Set  

Model Var.3a Var. 3b Var. 3c Var. 1a  

ROC AUC 0.9619 0.9616 0.9608 0.9572  

F1 0.8987 0.8980 0.8959 0.9001  

Precision  0.9137 0.9215 0.9265 0.8992  

Recall 0.8842 0.8756 0.8672 0.9010  

Accuracy 0.9004 0.9005 0.8992 0.9000  

MCC 0.8011 0.8020 0.8001 0.8000  

Table 4. Testing Results on the Tunned Models 

Model Var.3a Var. 3b Var. 3c Var. 1a  

ROC AUC 0.9520 0.9524 0.9488 0.9479  

F1 0.8855 0.8849 0.8790 0.8868  

Precision  0.8783 0.8884 0.8890 0.8687  

Recall 0.8927 0.8815 0.8692 0.9057  

Accuracy 0.8845 0.8854 0.8803 0.8844  

MCC 0.7692 0.7708 0.7608 0.7695  

5 Conclusion and Discussion 
This research presents an effective method for 

completing utility networks. The approach includes three 
steps: (1) build a relational data model to arrange the data 
regarding utility anchor points, lines, ground facilities, 
and their spatial relationships; (2) convert all records in 
the relational data model to graphs, with anchor points 
and facilities as nodes, and utility lines and their 
relationships as edges. (3) develop a GNN model to 
predict utility lines. The experimental results 
demonstrate good performance, achieving a 95.2% ROC 
AUC score in inferring sewer lines between manholes. 



This novel approach offers advantages for utility owners 
and excavation contractors, providing a framework to 
deduce missing connections within utility networks. 

However, a limitation of the model is its lack of 
explainability, which impacts user trust. Furthermore, 
applying the model directly to varied datasets presents 
challenges due to the necessity for: (1) aligning context 
features with standardized utility network criteria, and (2) 
considering diverse practices that vary by time and 
geography. Ensuring model adaptability to different 
utility networks requires accurate, complete, and region-
specific utility network training data. Future research will 
focus on assessing the impact of data quality on model 
performance. Additionally, expanding the model to 
include more spatial contexts, such as buildings and legal 
boundaries, could further improve its utility and accuracy 
in real-world applications. Lastly, considering potential 
consequences of false alerts and missed detections in 
utility strike prevention and flexibilities in pipeline 
network design, presenting the likelihood with 
uncertainty could further improve decision making.  

6 Data and Code Availability 
The code, data, and supplemental materials are 

available in the GitHub repository: 
https://github.com/Yuxi0048/PipeNetworkCompletion.  
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