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Abstract —

Every year, accidental damage during excavation
leads to numerous disruptions in utility services.
These incidents cause not only financial losses but also
injuries and fatalities. A major contributing factor to
these incidents is the lack of accurate location data for
utilities. The current practice involves a time-
consuming coordination process of obtaining utility
maps from owners and field surveys, which is often
hindered by delays and incomplete records. In
response to these challenges, this paper proposes a
novel method to predict underground utility lines in
situations where records are unavailable or delayed.
Our approach leverages visible utility anchor points,
such as manholes, and the spatial context provided by
nearby ground features like roads. The methodology
involves three primary steps: constructing a
relational data model of the utility network,
transforming this data into graphs, and employing a
graph neural network for prediction. This innovative
approach demonstrates good performance, achieving
a ROC AUC score of 95.24% in predicting sewer line
connections between manholes. This method
automates the inference of utility lines, providing
utility owners and excavation contractors a solution
for identifying unknown connections and reducing
risks from inaccurate information.
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1 Introduction

The ongoing issue of inaccurate and incomplete
information of buried utilities poses a significant
challenge across the United States. Annually, numerous
utility disruptions are caused by accidental excavation
damage. These incidents impact communities and
businesses, leading to injuries and tragically resulting in

loss of life. According to Common Ground Alliance
Damage Information Reporting Tool [1], 87.84% of
these incidents occur due to missing or inaccurate
location information. Current practice to mitigate these
risks involves coordinating with utility owners to access
utility maps and employ utility surveyors. The utility map
serves as a crucial starting point, providing approximate
line locations for further utility surveys. However,
obtaining utility records faces prolonged delays in the
coordination process, and some records may be entirely
absent. Therefore, there's an urgent need to propose a
method for inferring utility line locations when utility
records are delayed or unavailable.

When records are inaccessible, inferring some utility
lines is possible by examining visible utility anchor
points like manholes and nearby ground facilities such as
roads and buildings. These visible features imply the
presence and general locations of utilities. Acquiring
information about these visible features is feasible
through field surveys or high-resolution satellite imagery.
However, this inference relies on scarce professional
judgment and expertise, which can be time-consuming,
error-prone, and may further complicate the process.

This paper introduces a novel approach for
automatically  completing underground pipeline
networks. It focuses on predicting utility line segments
by using visible utility anchor points and ground facilities
as spatial contextual cues. The objective is to aid users in
inferring the existence and approximate locations of
utility lines when utility records are not accessible.

2 Literature Review

2.1 Utility Parameters, Spatial Contexts, and
Design Practices for Predicting Ultilities

Existing studies [2-6] address the design and
completion of utility networks by predicting the presence
of pipelines based on their endpoints, such as manholes,
and assessing the extent to which the network conforms
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to design criteria and practices. For instance, Afshar [2]
suggested minimizing the cost function related to pipe
diameters and excavation depths while adhering to
certain constraints to reflect design criteria. He compiled
a list of sewer design practices as constraints, such as the
minimum flow velocity required to prevent sediment
buildup and the minimum pipe slope necessary to avoid
adverse slopes due to inaccurate construction. Similarly,
Izquierdo [3] formulated the problem for hydraulic
systems, akin to Afshar's approach, but also incorporated
the continuity and energy equations of hydraulics into the
model. These studies concentrate on using the parameters
of the pipeline and pipe endpoints to aid in the design of
the pipeline network.

Furthermore, some research extends beyond the
parameters of pipes and their endpoints. It also examines
the relationship of these endpoints to visible ground
elements and the surrounding environment, such as
catchments, roads, and buildings near the pipes. For
example, Bailly et al. [4] predicted the presence of
pipelines based on the cumulative length of pipelines in

relation to the catchment extent and network connectivity.

Chahinian et al. [7] used manhole locations and
elevations to predict the presence of pipelines and
minimize instances of lines intersecting buildings and
roads. Their top result achieved a precision and recall of
0.92 each, alongside a critical success index of 0.85.
These studies underscore the importance of spatial
contexts in enhancing pipeline network predictions.

2.2 Challenges and Limitations in Existing
Studies

Existing studies carefully consider the information
crucial for completing or designing pipeline networks.
However, they face challenges in both mathematically
modeling and solving the problem as follows:

1. One primary difficulty is the unknown correlation
among pipe endpoint parameters, their connection
parameters, spatial contexts, and pipeline presence.
Existing studies simplify the problem by
assumptions, leading to a lack of justification.

2. Another challenge is capturing the interdependency
of variables within a network solely through human
knowledge. This limits current methods to focusing
only on parameters directly connected to the
pipelines or nearby ground facilities, overlooking
broader interdependencies.

3. Additionally, even when correlations and
relationships are simplified and mathematically
formulated, solving the model becomes
computational expensive. These problems are often
approached as combinatorial optimization, aiming
to minimize costs while considering various
constraints. The complexity of these problems is

compounded by non-linear functions and
constraints, resulting in a solution space filled with
numerous local minima and discontinuities.
Consequently, studies have resort to computational
expensive optimization methods such as heuristic
algorithms, particle swarm, ant colony optimization,
and others, in pursuit of the global optimal solution.

In summary, current research mainly utilizes rule-
based approaches to predict pipeline connections
between two endpoints, considering both their
parameters and spatial contexts. This body of research
highlights the complexities involved in formulating and
solving these problems, especially the challenges in
converting industry practices into effective cost functions.
It indicates that explicitly modeling this problem relying
solely on human knowledge presents significant
challenges. Additionally, the complexities hinder further
exploration of factors, such as the detailed spatial
relationships between manholes and their surrounding
environment, related to pipeline prediction.

2.3 Advantages of GNNs in Pipeline Network
Completion

In the context of pattern recognition, learning-based
methods can overcome the limitations of previous studies
that struggled with explicitly modeling cost functions.
With sufficient data, machine learning can quickly adapt
to data from diverse practices.

Among the learning-based approaches, Deep Neural
Networks (DNNs) [8,9] distinguish themselves from
traditional machine learning methods by simultaneously
learning features and objective functions. The advantages
of using it for this problem lie in three aspects:

1. Alignment with Graphical Data Structures: Pipeline
networks are inherently structured in a graphical
format, with manholes serving as nodes and
pipelines as edges. This naturally aligns with the
architecture of Graph Neural Networks (GNNs),
facilitating the integration of information into a
unified network for discerning data correlations.
Additionally, this problem can be formulated as
linkage prediction in GNN studies [10], a well-
established research area that is supported by a solid
mathematical and statistical foundation.

2. Feature Extraction from Subgraphs: GNNs
specialize in handling graph-structured data,
enabling the extraction of comprehensive features
from subgraphs [11]. These methods, known as
graph embeddings, allow for the representation of
pipeline networks by aggregating information not
just from direct connections but also from the
broader network context.

3. Discriminative Feature Learning: The concurrent
learning of features and objective functions lead to



learn discriminative implicit representations [§]. In
contrast to traditional methods that linearly model
relationships between handcrafted features, DNNs
excel in learning implicit feature representations
that encode complex relationships within the data.
These features are specifically optimized for the
downstream task, enhancing the accuracy and
effectiveness of pipeline network predictions [12].

4. Recent advances in using GNN models in
Geospatial Artificial Intelligence (GeoAl): GNN
models are particularly adept at handling geospatial
challenges that involve analyzing points of interest,
their spatial relationships, and non-grid topologies.
GNNs have shown notable effectiveness in
applications such as traffic flow [13] and PM2.5
level forecasting [14], where training and testing
occur on the same nodes, referring to transductive
learning. A significant challenge in GeoAl,
however, is the application of models trained on one
set of location data to completely new, unseen
locations, known as inductive learning. To address
this, significant advancements have been made in
geospatial location encoding techniques [15]. These
techniques transform location data, whether two- or
three-dimensional, into a high-dimensional feature
vector. This approach preserves relative distances
and, optionally, directional relationships between
locations, enhancing the model's ability to adapt to
new locations not seen in the training phase.

Therefore, there is a need to explore the potential to
overcome the limitations of current utility network
completion methods using data-driven approaches. This
study mainly introduces the framework of utility line
prediction, addressing the following two challenges: (1)
identifying which spatial and semantic contexts to
include along with their encoding techniques; and (2)
designing GNN models capable of efficiently
propagating information across a heterogeneous graph—
such as nodes representing manholes and roads—and
learn features for network topology prediction.

3 Methodology

The overall framework is illustrated in Figure 1. The
process begins with building a relational data model to
organize information on utility anchor points, lines, and
ground facilities and their spatial relationships. Second,
all the records in the relational data model are represented
as graphs, with anchor points and facilities as nodes, and
utility lines and their relationships as edges. Finally, a
GNN model is developed to predict utility lines, which
are the links between anchor point nodes.
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Figure 1. Overall Framework

3.1 Relational Data Model Construction

Geospatial relational data modeling is a crucial step
to present the properties and the relationships among
different entities. It not only facilitates data extraction
from existing databases but also aids in building the
graph representations of the utility anchor points, lines
and ground facilities. Figure 2 depicts the Entity-
Relationship (ER) diagram.
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Figure 2. Entity-Relationship Diagram
In this diagram, three entities are used:

1. Utility Anchor Point: These are visible utility line
junctions, such as manholes and ground pumps,
indicating the locations of underground lines.
Attributes include ID, type, and geometry.

2. Road: Roads, as a typical ground facility, provide
spatial contextual cues for utility line prediction.
The alignment of utility lines along roads makes
this data a potential indicator. Additionally, roads
are accessible from satellite imagery and digital



road maps, which are widely available. Roads are
characterized by their ID, length, and geometry.

3.  Utility Line. These are typically buried utility lines
that are the focus of prediction in this research. Data
on these lines are used for model training and for
validation and testing in the evaluation stage. As
this study focuses on predicting the existence of

lines, only ID and geometry information are utilized.

Three relationships are established based on spatial
relationship analysis:

1. Utility Line-Anchor Point Connection: The
connection between utility lines and anchor points
is determined by merging two tables through point-
line intersection analysis.

2. Anchor Point-Road Proximity: Anchor point-road
proximity is identified by locating the nearest line
to the anchor point, considering only those within a
100-meters radius as "close." Additionally, three
attributes are extracted: the position of the nearest
point on the road, the distance from the anchor point
to this nearest road point, and the side of the road
on which the anchor point is located. These
attributes aid in predicting utility line placement, as
most lines run parallel to, rather than across, roads.
For instance, two connected manholes are likely to
be on the same side of the road and in proximity.

3. Road-Road Intersection: The road-road relationship
is built by merging road tables through line-line
intersection analysis.

3.2 Graph Representation

Building the graph representation of the utility
network and its surroundings, based on the geospatial
data model, involves three main steps: (1) establishing
relationships between anchor points through their
connections with utility lines; (2) converting the
relational data model into a graph data model; (3)
encoding the data with numerical values.

3.2.1  Anchor Point to Anchor Point Relationship

Establishment

This step transforms the utility line entity into
relationships between anchor points. It is designed to
align with the objective of predicting utility lines, which
will be modeled as the edges between anchor point nodes
in the graph network. Typically, in the graph data model,
edges represent relationships in the relational data model.

The implementation process is straightforward. A list
of anchor-point ID pairs is generated if they intersect
with the same utility line segments. This action removes
the utility line entity in the relational data model and
establishes a many-to-many relationship between the
anchor points themselves.

3.2.2  Relational Data Model to Graph Data Model

Conversion

This step follows the typical process of transforming
the relational database to graph database, including the
following steps: (1) table to node label; (2) row to node;
(2) column to node property; (3) foreign key to edge; (4)
relationship attributes to edge properties.

ASSCTID  SUBTYPECD gewelry

105060 MHI9B£30 22201MAINT POINT (15234858 27.44756) MH_indexl MH_inder lime_index

104560 MH190231 22201MAINT  POINT (15204026 -27.44747) 1 105060.0. 104560.0 s
road_indexl Foad_index?
index_ME index_Road NEAR_POS STOF  dist_bins
17467 21457 5791
128685 104540 20457 0443777 14 4 = B
63160 21457 21266
125558 105060 21457 0385533 10 4 2 o
BA063 ass M3

ROUTC TYPL Shape Leng Reonelry rip
21457 Remhbowhood ! locsl  170.465653  LINESTRING (424339 784 COGTI03 630, 54850.033_. 26753
ST Keighbuurhood ¢ el

2064 heaighbaurhaod ¢ local

43.595375  LINESTRING {434339.784 £965303.639, 454673.085 7351
ABANETIE  LINFSTRING (404760400 EORID6A T46, 404725647 . 26001

21361 Keghbowhood / locyl  188.486334  LINESTRNG (4347600403 COC3966.746, 454731.928 264614

(a) Relational Data

NV

/

\/

N\

(b) Graph Data

Anchor Point
#104560

Road #21457

e,
Road

#21066 T\ N Anchor Point
#105060
[ ] ]
L ]
X— 1=
» ®
- * Y
- —0 T
' = LT Road #5791
T S pp 1)
® b
SN
Road #21361

(c) Graphical Representations in ArcGIS map
Figure 3. Utility Anchor Points and Roads, along
with their Relationships



Figure 3 presents an example illustrating utility
anchor points and roads, along with their relationships, in
three different formats: as relational data model
representation, as graph data model representation, and
as visualized data on an ArcGIS map.

3.2.3 Data Encoding

Data encoding is a step to transform the data in
different formats into the numerical features fed into the
neural networks to predict the links between anchor point
nodes. Table 1 summarizes the features used in this
research, along with data encoding methods.

Table 1. Data Encoding Methods for Attributes

Node / Edge  Attribute Name  Encoding Methods
Erilclﬁg]r Location Location Encoding
Point Type One-Hot Encoding
Centrgld Location Encoding
Location
Type One-Hot Encoding
Equal-Frequency
Road Length Binning and One-
Hot Encoding
Equal-Width
Orientation Binning and One-
Hot Encoding
Relative
Position of None
Utility Nearest Point
Anchor on Road
Point-Road Equal Frequency
Relationship Distance Binning and One-
Hot Encoding
Side None
3.3 Utility Line Prediction wusing Graph
Neural Networks

This research develops a GNN model that consists of
two main components: convolutional layers, and a
classifier. Initially, it adopts a multi-scale location
encoder [14] that applies sinusoidal functions of varying
frequencies to transform location data. The convolutional
layers include the GAT (Graph Attention Network [16])
and GraphSAGE (SAmple and aggreGatE [17]) as basic
building blocks. GAT incorporates an attention
mechanism, assigning importance  weights to
neighboring nodes that are learnable within the network.
It processes node features, edge indices (indicating node
connections), and edge attributes as inputs and generates
updated node features and attention weights as outputs.
GraphSAGE is a method of sampling neighboring nodes
with specific weights and aggregating these neighboring
node features into the weighted target node. Both layers

focus on feature aggregation at the graph nodes. The final
component of the network is a binary classifier, designed
to predict connections between node pairs through the
multiplication of their feature vectors. The loss function
used is cross-entropy loss function, commonly applied in
binary classification tasks. Figure 4 presents a detailed
visualization of the GNN model, including its inputs,
outputs, and overall architecture.
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Figure 4. Architecture of the GNN model and
corresponding Inputs and Outputs

3.3.1 Architecture Variants

Since there are no existing GNNs for this application,
several architectural variants are discussed, as illustrated
in Figure 5. ReLU layers are not drawn for simplification.
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Figure 5. Architecture Variants

The base model utilizes two GAT layers, which
include dropout rates to prevent overfitting. The outputs
from these GAT layers, which are the updated features of
the nodes, along with the indices of the edges, are fed into
two GraphSAGE layers. The first variant consists solely
of four GraphSAGE layers. Unlike GAT layers,
GraphSAGE layers do not process edge attributes,



meaning that this model variant does not include
information on road-anchor point spatial relationships
beyond connectivity. The second variant examines the
impact of alternating positions of GAT and SAGE layers.
The third variant investigates the effective integration of
edge attributes by introducing skip connections, with FC
referring to fully connected layers.

4 Experimentation

4.1 Data Description and Preprocessing

This research utilizes two data sources: (1) The sewer
network map provided by Urban Utilities, accessible at
https://services3.arcgis.com/ocUCNI2h4moKOpKX/arc
gis/rest/services/UU_Sewer OpenData/FeatureServer.
In the ArcGIS sewer network map, the manhole and
pump feature layers are utilized to represent utility
anchor points, and the gravity sewer main lines are used
as the utility lines. (2) The road network from the
Brisbane City Council, which is available at
https://services2.arcgis.com/dEKgZETqwmDAh 1rP/arc
gis/rest/services/Roads_hierarchy overlay Road hierar
chy/FeatureServer. The road feature layer is employed as
an example of ground facilities.

The raw data about manholes, pumps, gravity sewer
main lines, and road networks were exported from
ArcGIS Pro software as individual shapefiles.
Subsequently, these files were processed using Python
geospatial data analysis and network analysis packages.
The proximity analysis between manholes and roads was
conducted using the QueryPointAndDistance function in
ArcGIS Pro Python API. This function identifies the
nearest point on a polyline to a given point and calculates
the distance between them. Additionally, it provides
details about which side of the line the point is located on
and the distance along the line, expressed as a percentage.
The data was preprocessed in two steps. First, the data
was cleaned by removing utility lines that lack
connections with any manhole or pump points or are
linked to only one point. This is because the method
assumes that each utility line connects to a minimum of
two anchor points. Second, roads located more than 100
meters from the manholes were filtered out, as roads not
classified as "close" to the manholes do not contribute to
link prediction. The statistics are summarized in Table 2.

Table 2. Data statistics before and after pre-processing

Name Count Count
(Before) (After)
Utility Line 243,773 203,203
Utility Anchor Point 206,187 206,187
Road 41,753 32,080

4.2
4.2.1

Experiment Design
Training, Validation, and Testing Data Split

The data was divided into training, validation, and
testing sets in three steps: (1) within the utility anchor
point networks (excluding roads), connected components
were identified, leading to a collection of subgraphs, each
representing a distinct component; (2) the training,
validation, and testing datasets were then randomly
distributed in a 6:2:2 ratio from these subgraphs. (3)
nodes representing roads were included in various
datasets, determined by their connectivity to utility
anchor points. Some road nodes might appear in multiple
datasets if they are connected to anchor points belonging
to different sets. This separation ensures that utility line
edges and utility anchor point nodes from the training set
do not appear in the validation or testing sets, and those
from the validation set are excluded from the testing set.

This approach of using connected components for
dataset division was chosen because the distribution of
unknown utility lines typically concentrates in specific
areas rather than being evenly spread throughout a city.
Figure 6 illustrates the distribution.
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Figure 6. Training, Validation and Testing Sets

4.2.2 Evaluation Metrics

The model outputs are numerical values representing
classes assigned to each edge that connects two manhole
nodes: “ ” 1 indicates the presence of a pipeline,
«“ ” signifies its absence. A common threshold
of 0.5 is used to separate these two classes. These studies
adopt the following evaluation metrics for experiments:
(1) Precision. Precision is the proportion of true positive
predictions, correctly predicted pipeline presence, out of
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all positive predictions made. (2) Recall. Recall is the
proportion of true positives, correctly predicted pipeline
presence, out of all actual pipeline presences. (3) AUC
(Area Under the Curve) ROC (Receiver Operating
Characteristics) score. The ROC curve is a plot of the
TPR (True Positive Rate or Recall) against the FPR
(False Positive Rate) at various threshold settings. It is
the measure of separability of two classes. (4) F1-Score.
F1-Score is the harmonic mean of precision and recall. (5)
Accuracy. Accuracy is the total number of correct
predictions among all the cases. (6) MCC (Matthews
Correlation Coefficient). MCC is a correlation
coefficient between the observed and predicted
classifications for imbalanced dataset. It returns a value
between -1 and 1, where 1 indicates a perfect prediction,
0 means random prediction, and -1 indicates total
disagreement between prediction and observations.

4.2.3 Hyperparameter Tuning

For model training, the number of epochs is
determined using an early stopping approach. The
maximum size of the epochs is 100, but once the
validation loss does not decrease or decreases by less
than 0.001 for five consecutive epochs, the training
process will be stopped to prevent overfitting. Regarding
optimization techniques, the Adam optimizer is used with
a learning rate set at 0.001.

The model fine-tuning focuses on two
hyperparameters: the size of the hidden layers and the
dropout rates. This approach is chosen due to an
overfitting problem observed during the experimentation
process. The options for the hidden layer size are set at
four specific values: 32, 64, 128, and 256. The dropout
rates range from 0 to 0.6, with increments of 0.2. The
hyperparameter tuning process is guided by various
evaluation metrics on the validation set, and the testing
data is used only for evaluating the optimal model. Due
to space constraints, the detailed evaluation metrics
corresponding to each model variant and hyperparameter
combination are stored in the GitHub repository.

4.3 Experiment Results

The hyperparameter tuning of the model is driven by
its performance on various evaluation metrics using
validation data. The best-performing models on the
validation set for each metric are summarized in Table 2.

For more detail, Variant 3a represents a model
configuration with a hidden layer size of 32 and a dropout
rate of 0; Variant 3b is configured with a hidden layer
size of 128 and a dropout rate of 0; and Variant 3c
features a hidden layer size of 32 with a dropout rate of
0.4. Variant 1a, on the other hand, corresponds to a model
with a hidden layer size of 64, utilizing only SAGE layers.

The fine-tuned models, each selected for achieving
the highest score for each evaluation metrics, are further

evaluated using the testing data. The outcomes from
these tests are compiled and presented in Table 3.

Overall, Variants 1 and 3 demonstrate the most robust
performance. Variant 3 excels in ROC AUC scores,
accuracy, and MCC metrics, indicating its superior
capability in differentiating the presence and absence of
pipeline connections. On the other hand, Variant 1, which
focuses solely on node attributes and connectivity and
overlooks edge attributes such as the manhole's location
relative to the road, achieves the highest recall and F1
score. This outcome is reasonable since ignoring road-
crossing pipelines leads to more conservative predictions.
This conservative approach is particularly advantageous
in utility line detection scenarios, where the priority is to
minimize the risk of missing lines.

Table 3. Optimal Model Architectures and
Hyperparameter Combinations on Validation Set

Model Var.3a Var.3b Var.3c Var. la
ROC AUC 0.9619 0.9616 0.9608 0.9572
F1 0.8987 0.8980 0.8959 0.9001
Precision  0.9137 0.9215 0.9265 0.8992
Recall 0.8842 0.8756 0.8672 0.9010
Accuracy  0.9004 0.9005 0.8992 0.9000
MCC 0.8011 0.8020 0.8001 0.8000

Table 4. Testing Results on the Tunned Models

Model Var.3a Var.3b Var.3c Var la
ROC AUC 0.9520 0.9524 0.9488 0.9479
F1 0.8855 0.8849 0.8790 0.8868
Precision 0-8783 0.8884 0.8890 0.8687
Recall 0.8927 0.8815 0.8692 0.9057
Accuracy 0.8845 0.8854  0.8803 0.8844
MCC 0.7692 0.7708 0.7608 0.7695

5 Conclusion and Discussion

This research presents an effective method for
completing utility networks. The approach includes three
steps: (1) build a relational data model to arrange the data
regarding utility anchor points, lines, ground facilities,
and their spatial relationships; (2) convert all records in
the relational data model to graphs, with anchor points
and facilities as nodes, and utility lines and their
relationships as edges. (3) develop a GNN model to
predict utility lines. The experimental results
demonstrate good performance, achieving a 95.2% ROC
AUC score in inferring sewer lines between manholes.



This novel approach offers advantages for utility owners
and excavation contractors, providing a framework to
deduce missing connections within utility networks.
However, a limitation of the model is its lack of
explainability, which impacts user trust. Furthermore,
applying the model directly to varied datasets presents
challenges due to the necessity for: (1) aligning context
features with standardized utility network criteria, and (2)
considering diverse practices that vary by time and
geography. Ensuring model adaptability to different
utility networks requires accurate, complete, and region-
specific utility network training data. Future research will
focus on assessing the impact of data quality on model
performance. Additionally, expanding the model to
include more spatial contexts, such as buildings and legal
boundaries, could further improve its utility and accuracy
in real-world applications. Lastly, considering potential
consequences of false alerts and missed detections in
utility strike prevention and flexibilities in pipeline
network design, presenting the likelihood with
uncertainty could further improve decision making.

6 Data and Code Availability

The code, data, and supplemental materials are
available in the GitHub repository:
https://github.com/Yuxi0048/PipeNetworkCompletion.
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