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Abstract. Assistive robots are robots that are designed to help people with disa-
bilities in their daily lives. These robots often are either too simple, and thus can-
not meet the needs of the user, or are too complex, and thus become overly ex-
pensive or unreliable. To mitigate this problem, we propose a system of multi-
robot coordination that allows several heterogeneous robots to work coopera-
tively to assist an individual. We design care task workflows that cater to the
needs of a specific patient, outlining the tasks needed for the user as well as the
robots that can complete each task. We then build a ROS simulation to test our
coordination methods on two example workflows for PTSD care routines. Our
experiments show that our coordination successfully navigates each robot to its
task location at the proper time, thus showing the feasibility of these methods for
multi-assistive-robot coordination.
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1 Introduction

Assistive robotics is the intersection between robotics and assistive technologies. There
are many varieties of assistive robots, including those providing physical, therapeutic,
or social services [1]. According to the World Health Organization, as of 2023 an esti-
mated 16% of the world population has some form of disability [2]. These individuals
can often benefit from assistive devices, specialized medical care, or caretakers. Assis-
tive robotics must be designed based on the patient or user needs and must be capable
of working alongside people.

One major challenge of assistive robotics is designing or programming a robot in a
way that is truly useful for people with disabilities (PwD). This can be a very difficult
task due to the varying requirements of each specific person. Individuals with the same
diagnosis can experience the same condition in vastly different ways, and thus need
assistance with different tasks. When designing assistive robots, it can be very easy to
overlook certain aspects of a disability and end up with a robot that is only useful to a
subset of the target audience. Conversely, trying to cover all possible needs in a single
robot can result in a robot that is large, complicated, and very expensive. In both cases,
a significant portion of people will be unable to benefit from the robot.

One possible solution to this problem in assistive robotics is to design simple robots
that are suited for a more specific set of tasks, and then create a routine that will
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coordinate several of these robots. In this way, we can combine only the robots that are
needed to meet the needs of one specific individual. Thus, the healthcare needs of each
person can be catered to on an individual basis.

This paper proposes a multirobot coordination scheme that is customizable and scal-
able to user needs. The proposed method involves the design of workflows that specify
the tasks that need to be completed and the various entities that can complete them. The
tasks and robots are then simulated in an at-home environment. To demonstrate the
personalization and scalability, we design two example workflows for a fictional patient
with PTSD. The framework presented here is adaptable to more robots, and each task
is abstracted such that other tasks can easily be added or swapped in.

2 Background

2.1 Assistive Robotics

Assistive robots are defined as robots designed to help PwD, both with healthcare tasks
and in their daily lives. These robots are further categorized into physically assistive
robots and socially assistive robots [1]. Some examples of physically assistive robots
are exoskeletons and smart wheelchairs [3], [4]. Other examples include any robot that
the user touches, or that picks up, delivers, or moves objects for the user.

Socially assistive robots, on the other hand, do not physically interact with the user
or objects. Instead, they can facilitate social interaction between people or provide so-
cial interaction to a user. Some examples are [5] and [6], which both use HRI and hu-
man-robot interfacing to provide social services and facilitate social interaction.

2.2 Methods of Robot Coordination

Multi-robot coordination methods are highly application dependent, as the coordination
itself changes based on the types of robots and the tasks they are completing. These
coordination schemes can be categorized as homogeneous and heterogeneous, based on
the composition of the robots used. In homogeneous coordination, every robot is the
same, whereas heterogeneous coordination involves robots with different capabilities.

Two examples of homogeneous coordination are presented in [11] and [12]. In[11],
an impedance-based control scheme is used to allow feedback between robots as they
carry an object together. In [12], a leader-follower algorithm is used to guide mobile
robots to their goal. This exemplifies the robot- and task-dependent nature of coordina-
tion algorithms.

Heterogeneous multi-robot coordination, conversely, is used for scenarios in which
different kinds of tasks are required, and therefore robots with different capabilities are
needed. In [13], three robot modules work cooperatively to sew personalized stent
grafts. [14] uses an unmanned ground vehicle (UGV) and three unmanned arial vehicles
(UAV) to provide information on fields and move to specified locations. Once the task
is determined, requirements for robot capabilities, types of robots, movement, and in-
formation sharing can be used to define the control scheme and coordination method.
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2.3 Al in Robotics

CARE is an assistive multi-robot system that uses a system of heterogeneous assistive
robots to assist elderly patients within a nursing home [7]. The system uses a centralized
Al controller to learn user preferences with regards to different tasks. It also relies on
many sensors for data gathering, which means that it requires a specific environment
and setup. Al is also necessary for many robotic interfacing methods, such as EEG and
computer vision [15]. The processing of complex signals such as video or brain waves
is a complicated task that requires sophisticated machine learning algorithms, and there
is much ongoing work in improving the reliability and accuracy of those systems. The
notable differences in the system proposed in this paper compared to past work are that
it is designed for a generic home environment. Integration of ambient sensors or other
streams of data is possible, but they are not assumed to be present in all scenarios. Our
system also generalizes the robots used, so that different patients can receive exactly
the care that is necessary. Additionally, we assume that our system is set up in part with
input from the patient’s doctor or care provider, so preferences and care needs do not
need to be learned.

3 Methodology

A central controller is used to gather all relevant data from each robot and use that to
track the environment state. Factors such as robot location will inform the decisions
with regards to task assignment.
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Fig. 1. (a) A map of the apartment environment with the locations of tasks marked, and (b) a
top-down view of the apartment model.

Each robot will send their own sensor data to the central controller, which will help
determine the environment state, which in turn informs the assignment of tasks. The
internal data includes the overall workflow data. The workflow is the description of all
tasks that must be performed, which robots can perform those tasks, and the timing and
dependencies of certain tasks. The workflows will be outlined in Section 4.

The simulation environment is set up using ROS (robot operating system) melodic
on Ubuntu 18.04 and Gazebo for dynamic simulations. The older version of ROS was
chosen due to its compatibility with more robot simulation packages.
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The goal of this simulation is to demonstrate the functionality of a multi-robot coor-
dination system for scalable, at home healthcare. For this purpose, we have designed a
model apartment using Gazebo assets that will give the robots a physical environment
in which to move. A map and picture of the environment are shown in Fig. 1. The robots
themselves are three TurtleBot3s from Robotis [16].

4 Experimental Setup

4.1 Experiments

We have created two task graphs for patients with PTSD to demonstrate the efficacy of
our system. Each workflow describes different assistive tasks in a household environ-
ment. The goal of the simulation is to test coordination and navigation methods in order
to improve the service of the robots in each scenario. If a robot fails, it is assumed there
will be humans involved that can pick up the slack, so the simulation will note the
failure time and then move on to the next task, assuming that the previous task has been
completed by a human.

Each workflow has the same set of inputs. First, is the task graph that shows each
task, the robots capable of each task, the control/ data signals, and the dependencies
between tasks. Next, each task has a service time input, which is used to simulate the
time that a robot will have to remain at the task location to complete the task. The next
input for each task is the set of robots capable of completing the task, which are sum-
marized in Table 1. Each robot used in the simulation is a TurtleBot3, or TB3. The next
input for each task is the navigation time limit tolerance constant c. This parameter
determines the deadline for when a robot must arrive at the task. Robot navigation is
sometimes unreliable, and the navigation time limit input parameter allows the system
to abandon tasks when a robot becomes stuck or is oscillating, regardless of the reason
or navigation method. The final input for each task is the robot idle time; this is the time
that the robots remain idle after completing each task. It can be used to set the timing
between tasks, such as mealtimes, exercises, and when medicine must be taken.

Table 1. Robot to Task Mapping

Tasks
PTSD 1 Workflow PTSD 2 Workflow
TB3 (0) Food Delivery Food Delivery
Robot Label TB3 (1) Medicine Delivery Medicine Delivery
TB3 (2) — Social Check-ups

The outputs of each task graph are various timing metrics. The first is the coordination
time, which is the time between receiving the command to perform a task and sending
that command on to a robot. The next output is the navigation time limit; this is the time
calculated with Equation 1, and determines the maximum time allowed for navigating
to a task. The navigation time is the next output, which shows the time the robot spent
moving to the goal location. The next output is the total completion time. This is the
total time from sending the signal that a task must be completed until it has either been
completed or abandoned. Next, we mark if the task has been completed, and at the end,
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if the entire workflow was completed successfully. With these outputs, we can measure
the success of our system. The goal of the system is to maximize the completion rate
and minimize the navigation and coordination time.

4.2  User-Centered Workflow Design

The first task graph is shown in Fig. 2. This is a simple care routine for a patient with
PTSD, depression, or other mental disorders. Two robots are used to deliver meals and
medicine respectively. In this care routine, the patient’s medicine must be taken after
breakfast. At the end of all care scenarios, we make a report on the task completions
and user data for a care provider to ensure that the system is properly aiding the patient.
The legend at the bottom of the figure defines the different entities and symbols in the
diagram, and the robot labels correspond to the actual robots used in the simulation.
Each robot in the simulation is the same, but they represent different functionalities
needed for each task graph. For Fig. 2-3, the control signals are generated by the central
controller, which is not shown for brevity.

The inputs for the first experiment are shown in Table 2. The service time values are
stand-ins for actual tasks being completed and are chosen to be fairly realistic based on
the nature of the task.
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Fig. 2. The task graph for the PTSD patient in scenario 1.
The navigation time limits are set based on the distance that the robot has to travel to
get from its starting location to the task location based on the following formula:
T(i) = (path length/maximum translational velocity) x ¢ (1)

where c is the tolerance constant that allows extra time for correcting navigation mis-
takes and leniency for navigating obstacles. The path length is the distance determined
dynamically once a robot receives a navigation goal and the initial path is set. The max-
imum translational velocity is how fast the robot can move in a straight line, which is
provided by the robot manufacturer.

The second task graph is shown in Fig. 3. This is a scaled-up version of the first task
graph. The same delivery tasks are included, but we now have a Socially Assistive
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Robot (SAR) that completes wellness checks on the patient. The inputs for experiments

using this scenario are found in Table 3.
Table 2. PTSD Task Graph 1 Experimental Inputs

Inputs
Service Robot Set Navigation Robot Idle
Time (s) R={r, 1, Tolerance Con- Time (hr)
t,(i) oTm} stant ¢ tai)
Task 1 — Deliver Breakfast 45 TB3 (0) 2 2
Task 2 — Deliver Medicine 30 TB3 (1) 2 3%
Task 3 — Deliver Lunch 45 TB3 (0) 2 6
Task 4 — Deliver Dinner 60 TB3 (0) 2 0
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Fig. 3. The scaled-up task graph for the PTSD patient in scenario 2.
Table 3. PTSD Task Graph 2 Experimental Inputs
Inputs
Service Time Robot Set Navigation Robot Idle
(s) R={r, Tolerance Con- Time (hr)
t:(i) oI} stant ¢ tai)
Task 1 — Deliver Breakfast 45 TB3 (0) 2 Vs
Task 2 — Deliver Medicine 30 TB3 (1) 2 23
Task 3 — Morning Social Check-up 120 TB3 (2) 2 3
Task 4 — Deliver Lunch 45 TB3 (0) 2 6
Task 5 — Deliver Dinner 60 TB3 (0) 2 2
Task 6 — Evening Social Check-up 180 TB3 (2) 2 0

5 Results and Discussion

The results of the experiments are presented below. The total completion time includes
the coordination time, navigation time, task service time (if the task is successful), and
any overheads such as communication time.

The first set of experiments follow the PTSD Task Graph 1 inputs. As shown in
Table 4, all tasks in are completed successfully within the determined time limits. The
navigation time limits are quite consistent across similar tasks. The navigation times
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are less consistent, showing that the robot navigation is sometimes suboptimal and loses
time to obstacle avoidance and navigation recovery behaviors. .
Table 4. PTSD Task Graph 1 Experimental Outputs

Coordination Navigation Navigation | Total Execution | Task Com- | Task Graph
Time (ms) Time Limit (s) Time (s) Time (s) 2.(i) pleted Completed
te(i) (i) t(i)
Task 1 5 121.96 65.20 110.41 Yes
Task 2 4 134.31 76.39 107.24 Yes Yes
Task 3 14 121.51 63.49 110.23 Yes
Task 4 5 121.47 65.10 125.40 Yes

The second set of experiments, implementing the PTSD Task Graph 2 inputs, are shown
in Table 5. The robots are still able to successfully complete all tasks, despite the inter-
ference. However, this navigational failure is still worth noting, as it could cause task
failures in the future.

Table 5. PTSD 2 Task Graph 2 Experimental Outputs

Coordination | Navigation Time | Navigation Total Execution Task Com- Task Graph
Time (ms) Limit (s) 7() Time (s) Time (s) 2.(i) pleted Completed
t:(i) ta(i)

Task 1 8 121.47 63.60 108.95 Yes
Task 2 8 133.99 71.60 102.92 Yes
Task 3 4 247.47 130.30 250.60 Yes
Task 4 6 121.93 67.50 112.72 Yes
Task 5 5 121.47 65.30 125.67 Yes
Task 6 6 247.81 132.49 312.69 Yes

The robot coordination for these experiments is fairly trivial, as the current task
graphs call for a specific robot for each task. However, future experiments will include
more complex workflows and more robot capability overlap, and thus non-trivial coor-
dination methods.

6 Conclusions

Assistive robotics is the subfield of robotics that aims to help people with disabilities
by designing and developing assistive robots. Due to the varying needs of individuals,
even those with the same diagnosis, it is imperative that these robots be designed to be
customizable and scalable. For this purpose, we have designed a framework for assis-
tive robot coordination in a home environment.
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