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Abstract. Assistive robots are robots that are designed to help people with disa-

bilities in their daily lives. These robots often are either too simple, and thus can-

not meet the needs of the user, or are too complex, and thus become overly ex-

pensive or unreliable. To mitigate this problem, we propose a system of multi-

robot coordination that allows several heterogeneous robots to work coopera-

tively to assist an individual. We design care task workflows that cater to the 

needs of a specific patient, outlining the tasks needed for the user as well as the 

robots that can complete each task. We then build a ROS simulation to test our 

coordination methods on two example workflows for PTSD care routines. Our 

experiments show that our coordination successfully navigates each robot to its 

task location at the proper time, thus showing the feasibility of these methods for 

multi-assistive-robot coordination. 
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1 Introduction 

Assistive robotics is the intersection between robotics and assistive technologies. There 

are many varieties of assistive robots, including those providing physical, therapeutic, 

or social services [1]. According to the World Health Organization, as of 2023 an esti-

mated 16% of the world population has some form of disability [2]. These individuals 

can often benefit from assistive devices, specialized medical care, or caretakers. Assis-

tive robotics must be designed based on the patient or user needs and must be capable 

of working alongside people. 

One major challenge of assistive robotics is designing or programming a robot in a 

way that is truly useful for people with disabilities (PwD). This can be a very difficult 

task due to the varying requirements of each specific person. Individuals with the same 

diagnosis can experience the same condition in vastly different ways, and thus need 

assistance with different tasks. When designing assistive robots, it can be very easy to 

overlook certain aspects of a disability and end up with a robot that is only useful to a 

subset of the target audience. Conversely, trying to cover all possible needs in a single 

robot can result in a robot that is large, complicated, and very expensive. In both cases, 

a significant portion of people will be unable to benefit from the robot.  

One possible solution to this problem in assistive robotics is to design simple robots 

that are suited for a more specific set of tasks, and then create a routine that will 
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coordinate several of these robots. In this way, we can combine only the robots that are 

needed to meet the needs of one specific individual. Thus, the healthcare needs of each 

person can be catered to on an individual basis. 

This paper proposes a multirobot coordination scheme that is customizable and scal-

able to user needs. The proposed method involves the design of workflows that specify 

the tasks that need to be completed and the various entities that can complete them. The 

tasks and robots are then simulated in an at-home environment. To demonstrate the 

personalization and scalability, we design two example workflows for a fictional patient 

with PTSD. The framework presented here is adaptable to more robots, and each task 

is abstracted such that other tasks can easily be added or swapped in. 

2 Background 

2.1 Assistive Robotics 

Assistive robots are defined as robots designed to help PwD, both with healthcare tasks 

and in their daily lives. These robots are further categorized into physically assistive 

robots and socially assistive robots [1]. Some examples of physically assistive robots 

are exoskeletons and smart wheelchairs [3], [4]. Other examples include any robot that 

the user touches, or that picks up, delivers, or moves objects for the user. 

Socially assistive robots, on the other hand, do not physically interact with the user 

or objects. Instead, they can facilitate social interaction between people or provide so-

cial interaction to a user. Some examples are [5] and [6], which both use HRI and hu-

man-robot interfacing to provide social services and facilitate social interaction. 

2.2 Methods of Robot Coordination 

Multi-robot coordination methods are highly application dependent, as the coordination 

itself changes based on the types of robots and the tasks they are completing. These 

coordination schemes can be categorized as homogeneous and heterogeneous, based on 

the composition of the robots used. In homogeneous coordination, every robot is the 

same, whereas heterogeneous coordination involves robots with different capabilities.  

Two examples of homogeneous coordination are presented in [11] and [12]. In [11], 

an impedance-based control scheme is used to allow feedback between robots as they 

carry an object together. In [12], a leader-follower algorithm is used to guide mobile 

robots to their goal. This exemplifies the robot- and task-dependent nature of coordina-

tion algorithms. 

Heterogeneous multi-robot coordination, conversely, is used for scenarios in which 

different kinds of tasks are required, and therefore robots with different capabilities are 

needed. In [13], three robot modules work cooperatively to sew personalized stent 

grafts. [14] uses an unmanned ground vehicle (UGV) and three unmanned arial vehicles 

(UAV) to provide information on fields and move to specified locations. Once the task 

is determined, requirements for robot capabilities, types of robots, movement, and in-

formation sharing can be used to define the control scheme and coordination method.  
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2.3 AI in Robotics 

CARE is an assistive multi-robot system that uses a system of heterogeneous assistive 

robots to assist elderly patients within a nursing home [7]. The system uses a centralized 

AI controller to learn user preferences with regards to different tasks. It also relies on 

many sensors for data gathering, which means that it requires a specific environment 

and setup. AI is also necessary for many robotic interfacing methods, such as EEG and 

computer vision [15]. The processing of complex signals such as video or brain waves 

is a complicated task that requires sophisticated machine learning algorithms, and there 

is much ongoing work in improving the reliability and accuracy of those systems. The 

notable differences in the system proposed in this paper compared to past work are that 

it is designed for a generic home environment. Integration of ambient sensors or other 

streams of data is possible, but they are not assumed to be present in all scenarios. Our 

system also generalizes the robots used, so that different patients can receive exactly 

the care that is necessary. Additionally, we assume that our system is set up in part with 

input from the patient’s doctor or care provider, so preferences and care needs do not 

need to be learned. 

3 Methodology 

A central controller is used to gather all relevant data from each robot and use that to 

track the environment state. Factors such as robot location will inform the decisions 

with regards to task assignment. 

 

 

Fig. 1. (a) A map of the apartment environment with the locations of tasks marked, and (b) a 

top-down view of the apartment model. 

Each robot will send their own sensor data to the central controller, which will help 

determine the environment state, which in turn informs the assignment of tasks. The 

internal data includes the overall workflow data. The workflow is the description of all 

tasks that must be performed, which robots can perform those tasks, and the timing and 

dependencies of certain tasks. The workflows will be outlined in Section 4. 

The simulation environment is set up using ROS (robot operating system) melodic 

on Ubuntu 18.04 and Gazebo for dynamic simulations. The older version of ROS was 

chosen due to its compatibility with more robot simulation packages. 

(b) (a) 
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The goal of this simulation is to demonstrate the functionality of a multi-robot coor-

dination system for scalable, at home healthcare. For this purpose, we have designed a 

model apartment using Gazebo assets that will give the robots a physical environment 

in which to move. A map and picture of the environment are shown in Fig. 1. The robots 

themselves are three TurtleBot3s from Robotis [16].  

4 Experimental Setup 

4.1 Experiments 

We have created two task graphs for patients with PTSD to demonstrate the efficacy of 

our system. Each workflow describes different assistive tasks in a household environ-

ment. The goal of the simulation is to test coordination and navigation methods in order 

to improve the service of the robots in each scenario. If a robot fails, it is assumed there 

will be humans involved that can pick up the slack, so the simulation will note the 

failure time and then move on to the next task, assuming that the previous task has been 

completed by a human.  

Each workflow has the same set of inputs. First, is the task graph that shows each 

task, the robots capable of each task, the control/ data signals, and the dependencies 

between tasks. Next, each task has a service time input, which is used to simulate the 

time that a robot will have to remain at the task location to complete the task. The next 

input for each task is the set of robots capable of completing the task, which are sum-

marized in Table 1. Each robot used in the simulation is a TurtleBot3, or TB3. The next 

input for each task is the navigation time limit tolerance constant c. This parameter 

determines the deadline for when a robot must arrive at the task. Robot navigation is 

sometimes unreliable, and the navigation time limit input parameter allows the system 

to abandon tasks when a robot becomes stuck or is oscillating, regardless of the reason 

or navigation method. The final input for each task is the robot idle time; this is the time 

that the robots remain idle after completing each task. It can be used to set the timing 

between tasks, such as mealtimes, exercises, and when medicine must be taken. 

Table 1. Robot to Task Mapping 

  Tasks 

  PTSD 1 Workflow PTSD 2 Workflow 

Robot Label 

TB3 (0) Food Delivery Food Delivery 

TB3 (1) Medicine Delivery Medicine Delivery 

TB3 (2) ― Social Check-ups 

The outputs of each task graph are various timing metrics. The first is the coordination 

time, which is the time between receiving the command to perform a task and sending 

that command on to a robot. The next output is the navigation time limit; this is the time 

calculated with Equation 1, and determines the maximum time allowed for navigating 

to a task. The navigation time is the next output, which shows the time the robot spent 

moving to the goal location. The next output is the total completion time. This is the 

total time from sending the signal that a task must be completed until it has either been 

completed or abandoned. Next, we mark if the task has been completed, and at the end, 
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if the entire workflow was completed successfully. With these outputs, we can measure 

the success of our system. The goal of the system is to maximize the completion rate 

and minimize the navigation and coordination time.  

4.2 User-Centered Workflow Design 

The first task graph is shown in Fig. 2. This is a simple care routine for a patient with 

PTSD, depression, or other mental disorders. Two robots are used to deliver meals and 

medicine respectively. In this care routine, the patient’s medicine must be taken after 

breakfast. At the end of all care scenarios, we make a report on the task completions 

and user data for a care provider to ensure that the system is properly aiding the patient. 

The legend at the bottom of the figure defines the different entities and symbols in the 

diagram, and the robot labels correspond to the actual robots used in the simulation. 

Each robot in the simulation is the same, but they represent different functionalities 

needed for each task graph. For Fig. 2-3, the control signals are generated by the central 

controller, which is not shown for brevity.  

The inputs for the first experiment are shown in Table 2. The service time values are 

stand-ins for actual tasks being completed and are chosen to be fairly realistic based on 

the nature of the task. 

 

Fig. 2. The task graph for the PTSD patient in scenario 1. 

The navigation time limits are set based on the distance that the robot has to travel to 

get from its starting location to the task location based on the following formula: 

 𝑇(𝑖) = (𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ/𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) × 𝑐      (1) 

where c is the tolerance constant that allows extra time for correcting navigation mis-

takes and leniency for navigating obstacles. The path length is the distance determined 

dynamically once a robot receives a navigation goal and the initial path is set. The max-

imum translational velocity is how fast the robot can move in a straight line, which is 

provided by the robot manufacturer. 

The second task graph is shown in Fig. 3. This is a scaled-up version of the first task 

graph. The same delivery tasks are included, but we now have a Socially Assistive 
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Robot (SAR) that completes wellness checks on the patient. The inputs for experiments 

using this scenario are found in Table 3. 
Table 2. PTSD Task Graph 1 Experimental Inputs 

 Inputs 

 Service 
Time (s) 

ts(i) 

Robot Set  
R = {r1, r2, 

...rm} 

Navigation 
Tolerance Con-

stant c 

Robot Idle 
Time (hr) 

td(i) 

Task 1 – Deliver Breakfast 45 TB3 (0) 2 ½ 

Task 2 – Deliver Medicine 30 TB3 (1) 2 3 ½ 

Task 3 – Deliver Lunch 45 TB3 (0) 2 6 

Task 4 – Deliver Dinner 60 TB3 (0) 2 0 

 

Fig. 3. The scaled-up task graph for the PTSD patient in scenario 2. 

Table 3. PTSD Task Graph 2 Experimental Inputs 

 Inputs 

 Service Time 

(s) 
ts(i) 

Robot Set  

R = {r1, r2, 
...rm} 

Navigation 

Tolerance Con-
stant c 

Robot Idle 

Time (hr) 
td(i) 

Task 1 – Deliver Breakfast 45 TB3 (0) 2 ½ 

Task 2 – Deliver Medicine 30 TB3 (1) 2 ½ 

Task 3 – Morning Social Check-up 120 TB3 (2) 2 3 

Task 4 – Deliver Lunch 45 TB3 (0) 2 6 

Task 5 – Deliver Dinner 60 TB3 (0) 2 2 

Task 6 – Evening Social Check-up 180 TB3 (2) 2 0 

5 Results and Discussion 

The results of the experiments are presented below. The total completion time includes 

the coordination time, navigation time, task service time (if the task is successful), and 

any overheads such as communication time. 

The first set of experiments follow the PTSD Task Graph 1 inputs. As shown in 

Table 4, all tasks in are completed successfully within the determined time limits. The 

navigation time limits are quite consistent across similar tasks. The navigation times 
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are less consistent, showing that the robot navigation is sometimes suboptimal and loses 

time to obstacle avoidance and navigation recovery behaviors. .  
Table 4. PTSD Task Graph 1 Experimental Outputs 

 Coordination 

Time (ms) 
tc(i) 

Navigation 

Time Limit (s) 
T(i) 

Navigation 

Time (s) 
tn(i) 

Total Execution 

Time (s) te(i) 

Task Com-

pleted 

Task Graph 

Completed 

Task 1 5 121.96 65.20 110.41 Yes 

Yes 
Task 2 4 134.31 76.39 107.24 Yes 

Task 3 14 121.51 63.49 110.23 Yes 

Task 4 5 121.47 65.10 125.40 Yes 

The second set of experiments, implementing the PTSD Task Graph 2 inputs, are shown 

in Table 5. The robots are still able to successfully complete all tasks, despite the inter-

ference. However, this navigational failure is still worth noting, as it could cause task 

failures in the future. 
Table 5. PTSD 2 Task Graph 2 Experimental Outputs 

 Coordination 

Time (ms) 
tc(i) 

Navigation Time 

Limit (s) T(i) 

Navigation 

Time (s) 
tn(i) 

Total Execution 

Time (s) te(i) 

Task Com-

pleted 

Task Graph 

Completed 

Task 1 8 121.47 63.60 108.95 Yes 

Yes 

Task 2 8 133.99 71.60 102.92 Yes 

Task 3 4 247.47 130.30 250.60 Yes 

Task 4 6 121.93 67.50 112.72 Yes 

Task 5 5 121.47 65.30 125.67 Yes 

Task 6 6 247.81 132.49 312.69 Yes 

The robot coordination for these experiments is fairly trivial, as the current task 

graphs call for a specific robot for each task. However, future experiments will include 

more complex workflows and more robot capability overlap, and thus non-trivial coor-

dination methods.  

6 Conclusions 

Assistive robotics is the subfield of robotics that aims to help people with disabilities 

by designing and developing assistive robots. Due to the varying needs of individuals, 

even those with the same diagnosis, it is imperative that these robots be designed to be 

customizable and scalable. For this purpose, we have designed a framework for assis-

tive robot coordination in a home environment.  
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