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Abstract. Robotic cooking can alter both home and commercial kitchens by 

automating and improving a variety of cooking operations. The incorporation of 

modern technology, such as robot manipulation, computer vision, deep learning, 

modal sensors, and other machine learning techniques, allows these robots to per-

form difficult culinary operations with accuracy and consistency. However, sev-

eral challenges still exist in adapting robotic systems to the diverse tools and 

techniques used in cooking. Robots need to use a wide array of kitchen tools 

designed for humans, such as knives, spatulas, and whisks. This requires not only 

the ability to grasp and manipulate these tools but also the adaptability to switch 

between them efficiently and use them correctly in different cooking contexts. 

This paper reviews the latest developments in robotic cooking platforms, exam-

ining their design, performance, and public perception. It also covers various 

technologies critical for building robotic chefs, categorizing these advancements 

into need and importance, emerging technologies, different techniques, and fu-

ture challenges. Furthermore, it addresses the technical and practical obstacles 

that currently hinder their widespread implementation.  
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1 Introduction 

The enormous surge in the adaptation of robots in numerous sectors has transformed 

old processes, bringing efficiency and precision to tasks previously considered too com-

plicated for automation. Among these improvements, the concept of cooking robots has 

evolved to transform both home and commercial kitchens. A cooking robot differs from 

a smart device or traditional automation by its ability to cook various dishes, make 

sensory-based decisions, learn different recipes, adapt to user preferences, and integrate 

into human kitchens [1], [27]. 

Technological advances like standard dexterous robotic arms, deep learning, power-

ful computer vision models, and advances in modal sensors have brought us closer to 

fully autonomous cooking robotsThese include sensors, tactile grippers, ingredient and 

recipe recognition, and understanding of human input. Devices can perform tasks like 

cutting, stir frying, washing, and other tasks. Robot chefs also help to alleviate labor 

shortages, save cooking time, and improve food availability and quality [19].  
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Most households continue to rely on traditional tools and methods, with only incre-

mental ergonomic and production cost improvements over the centuries. Cooking takes 

up substantial time, and for many, the only alternatives to home-cooked meals are mass-

produced, often nutritionally inferior factory meals or costly restaurant options. Chef 

robots offer numerous advantages. They underscore the pressing need for a more de-

centralized approach to culinary productivity, which robotic chefs could partially or 

largely provide.  In commercial settings, employing chef robots can save cost and space, 

as robots do not need to take breaks and can come in different sizes. In addition, robots 

can work longer hours, allowing restaurants to conduct business during holidays or for 

more time, enabling more flexibility for both the restaurant and its patrons.   

As Figure 2 illustrates, current cooking robot research is divided into multiple areas. 

These can be divided into human experience, robotic development, and machine learn-

ing. Human experience topics include social acceptance, ethical considerations, afford-

ability, safety, and hygiene. Robotic development covers sensory feedback, modeling 

objects, evaluating performance, and object manipulation. Machine learning topics 

span areas such as computer vision, food recognition and classification, understanding 

human input, and estimating human actions and poses. 

 
Fig. 1. A brief history of cooking robot research. This figure gives background information 

about the history of cooking robots and talks about the importance of each robot. 

 
Fig. 2. Different areas of cooking robot research, with a specific focus on Human Experience, 

Robotic Development, and Machine Learning. 
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importance, emerging technologies, different techniques, and future challenges. Fur-

thermore, it highlights the potential of robotic chefs to revolutionize and automatize 

cooking while addressing the technical and practical obstacles that currently hinder 

their widespread implementation.  

The Need and Deployment: Apart from the numerous benefits of using cooking robots 

in households, restaurants, and the food industry over traditional automation machines 

and manual labor, there are some specific needs. However, there are associated tech-

nical challenges as well. For example, the elderly and people with disabilities (PWD) 

have special needs for such robots, as kitchens are often poorly designed for people 

with limited mobility, cognitive function, or other disabilities. Robots can also offer 

more clean, safe, and efficient cooking while working longer hours and in various types 

of kitchens. However, current technology faces many setbacks that make it difficult for 

robots to prepare ingredients and cook various recipes, especially in noisy real-life en-

vironments. Judging the quality of food is a highly subjective matter, but improving 

robots requires objective and quantitative feedback. As for the cooking process itself, 

many robots have preset recipes and hardcoded control sequences, limiting uses to a 

certain environment or food. Food objects and actions are also difficult to clearly model 

and compute, requiring engineers and robots to make many intermediate and special-

ized steps to accomplish tasks simple for humans. Robots that are versatile and robust 

are not affordable for everyday use, causing difficulty in creating a robot that is afford-

able and performs well. 

Studies have provided evidence that the elderly and PWD can benefit significantly 

from cooking robots. [8] explains how the kitchen poses a large risk for older people 

from misuse of kitchen appliances, cooking tools, and cutlery. The study investigated 

physical difficulties and safety in cooking tasks for older people, with many of the sub-

jects having to adopt awkward postures due to problematic kitchen designs. Subjects 

stated problems with bending, stooping, lifting, opening packages, cleaning cooking 

appliances, mobility, cutting, stirring, and being tired, as well as burning and packaging 

accidents. Kitchen designs may also be inaccessible and difficult to work with for 

PWD, such as reaching a cabinet for someone in a wheelchair. Cooking robots can 

reach places that may be impractical for some individuals to access with the combina-

tion of joints, cameras, and sensors. The study conducted in [23] found the kitchen was 

the second most common place for domestic accidents to occur, with fires and burns 

caused by memory problems in elderly people.  

Hygiene and Safety: Robotic technology can offer a wide variety of advantages over 

manual cooking for the average person. Robots have been used for quality inspection 

of meat [14], so they can ensure that the ingredients meet the standard of the user. Ro-

bots do not have a risk of illness and infection from raw and contaminated foods, en-

suring that the workers do not get sick. In addition, robots do not have a risk of injury 

as severe as humans. Mechanisms can be put in place to protect the robot from burning 

due to stovetops and ovens, cutting, or crushing itself. Robots can also detect hazards 

that humans may not notice or alert others fast enough about, such as fires [27]. 

Efficiency: Using robots can offer more consistent and precise results when dealing 

with food [14]. Humans can forget, misplace, and mismeasure food items while robots 

are programmed to have exact timings and positions to prepare food. In addition, the 
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robot can search the internet and identify properties of foods, learn new cooking recipes 

and techniques, and parse manuals to learn how to use a cooking device [9]. This pro-

vides an advantage over humans, as online information may not always be accessible 

or available to humans. For example, if a human is cooking on a stovetop or working 

in a restaurant with a high volume of orders, it would be inconvenient for the human to 

stop cooking and search up information. 

Flexibility: Learning new recipes requires time and is prone to error, while robots can 

create new dishes through interpreting an online recipe such as in [2] or observing a 

video such as in [19]. Existing datasets such as [3] and [12] provide vision and sensor-

based data, which could include a wide variety of recipes in the future. Restaurants have 

a set menu and limited options that can be expanded through robots. Robots can adapt 

to user preferences and provide a customized dining experience, which can greatly 

change restaurant experiences. 

2 Technical Challenges 

Formulating Subjectivity: One of the main difficulties in measuring the efficiency 

and success of cooking robots has been finding an objective way to evaluate subjective 

qualities. One quality that is highly subjective is taste, as not only do individuals inher-

ently have different preferences for tastes, but their previous experiences and expecta-

tions for food influence their opinions. A benchmark for measuring taste has been pro-

posed in [19], but has yet to be widely adopted. [5] uses a numerical evaluation of taste, 

texture, and appearance on a scale of 1-10 to compare a human-made pancake versus a 

robot-made pancake. The human pancake was always set to a score of 5-5-5, which can 

change the scores of the robot depending on the human making the pancake. In addition, 

creating statistically significant data is difficult as testing a large number of samples or 

eating samples over multiple days is difficult due to finite appetite, fading memory, and 

a high cost of time and ingredients [11]. 

Cooking Setup: Another limitation of cooking robots is the setup and environment in 

which the robot performs. Currently, robots work in controlled and favorable environ-

ments, but it has yet to be seen whether robots can successfully cook in complex envi-

ronments. Ingredients, heating up the pan, and cleaning up workstations must be man-

ually set up for the robot. [5] hardcoded picking up and returning tools, which required 

tools to be placed in exact positions. The hotplate was also preheated and oiled before-

hand. The robot learned by observing a human making a pancake recipe and analyzing 

the trajectory of the right wrist, restricting the human to making the recipe only with 

their right hand. In [11], an omelet-making robot needed the tools to be in a set location 

as well as eggs to be put in a cracker manually. Other factors such as heat level, duration 

of heating, and pouring bowl contents were constant, which limits evaluating a robot’s 

performance to a specific, predefined recipe. In addition to having hardcoded control 

sequences, robots are currently trained using either video footage [18], motion capture 

equipment [22], depth cameras [3], or inertial sensors [3], limiting widespread usage. 

Actions: An action is any task that a robot can perform. Handling actions and action 

parameters is difficult as well, as there is a large amount of implicit information that 
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robots may not have access to. For example, in [24], there was difficulty in modeling 

objects and coordinating both arms for the specific task of stir-frying. [13] aims to de-

fine actions and constraints for a robot to perform a specific goal, such as loading a 

dishwasher or setting trays in the oven, which non-expert users may find challenging. 

[2] explains how a pancake-making robot must not only pour the right amount of batter 

at the right position in the pan but also account for physical constraints and optimize 

movements such as the height to pour a pancake mix to allow for a circular pancake. 

[20] describes how recipes often have incomplete or ambiguous instructions that would 

make sense to a human, but not a robot. To cut carrots, humans know that you must 

place the carrots on the cutting board and hold the knife, which robots do not know. 

Robots must infer intermediate motions and perform them in the correct order. 

Affordability and Quality: There seem to be tradeoffs between cost, speed, and pre-

cision. Moley Robotics offers a robot with dual arms that can cook from scratch, pre-

pare ingredients, use pots and utensils, clean up after itself, choose from over 5000 

recipes, and learn the user’s recipes with the movements and speed of an expert chef 

[1]. However, the high-speed and high-precision robot costs $340,000, making it unaf-

fordable for the average family. On the other hand, [15] developed a cooking robot for 

the elderly and PWD with the goal of being affordable. However, the cost of maintain-

ing hygienic food for the robot would be too expensive for the average user, so the robot 

is unable to prepare ingredients. Similarly, [16] designed a low-cost robot with medium 

precision and low speed, which is suitable for domestic use. Employing robots in res-

taurants can also provide more speed and precision than human chefs, as robots do not 

tire, but come with the costs of staff training and maintenance. 

3 Various Techniques and Skills 

Human tasks related to cooking are vast but typically include things like slicing, cutting, 

peeling, spreading, mixing, pouring, and wiping. Some cooking tasks require different 

skills than others, meaning robotic techniques are required for both cooking tasks and 

human-like skills such as planning, environment 

adaptability, and perception. While there are a vast 

number of techniques used for cooking robots, com-

mon features to mimic such tasks include robot ma-

nipulation, machine learning, and multimodal sen-

sors. Concerns revolving around how the robot 

might detect, identify, and manipulate an object can 

be solved with these techniques, creating a robust 

and efficient system. Tasks that require manipula-

tion and detection are generally dependent on sense 

and perception, which can be achieved through mul-

timodal sensors and machine learning techniques 

such as computer vision and deep neural networks. 

Subsequently, relevant algorithms are needed for such tasks. This section will survey 

tradeoffs, concerns, and implementation of such techniques. 

Fig. 4 A dual arm humanoid robot 

[24]. 
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Robot Manipulation: General robotic manipulation for robotic cooking includes a 

dual arm manipulation system [4]. The dual arm manipulation system in most robotic 

cooking consists of bimanual manipulation, which is defined as the physical interaction 

using two hands on the same object [4]. An example of this system can be seen in Figure 

4, where a dual-arm cooking robot is doing a cooking-specific task using bimanual 

manipulation [24]. Robotic manipulation is also necessary for mimicking cooking ac-

tivities that require more mechanical skills. This can include opening, peeling, closing, 

and pouring items [10], [6].   

Machine Learning Approaches: Machine learning (ML) is revolutionizing robotic 

cooking by enabling machines to learn and adapt to culinary tasks. Many ML ap-

proaches, including computer vision, natural language processing, and deep learning, 

synergize to create sophisticated robotic cooking systems capable of handling diverse 

recipes and interactions with human users.   

Computer Visions: A machine learning approach in robotic cooking can help create 

artificial perceptual skills. One way to do this is through the use of computer vision. 

Computer vision can be used to determine the position, type, and quality of the food 

item [7], such as whether an object is rotten, fresh, or raw. One approach is to use 

cameras and computer vision to record and track the positions of kitchen tools to match 

a demonstrator’s movements [5]. Learning by demonstration can be done by using com-

puter vision alongside computer vision libraries. One popular library is OpenPose [5], 

which provides users with a variety of human poses along with tracking different parts 

of the human body.   

Natural Language Processing: Natural Language Processing (NLP) in robot cooking 

systems can help minimize error when it comes to following a recipe and also allows 

for more of a collaborative effort between humans and robotic systems in regard to 

cooking and deciding on recipes [21]. Translating recipes into simpler steps using NLP 

can be useful in solving concerns revolving around the ambiguity of the kind of object 

one may need for a recipe. Giving clear instructions through natural language with ro-

botic cooking systems can solve these types of ambiguities. NLP can also be used to 

help with mimicking the way humans plan their cooking tasks when following a recipe 

[18]. One approach is to use NLP along with web instructions to allow for motion plan-

ning for cooking robotic systems as seen in [2],[20].   

 

Fig. 3. A classification of the different machine learning techniques. 
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Deep Learning for Cooking Tasks: As stated previously, some cooking tasks may 

require skills such as precise coordination and subtle motion. One way to mimic such 

skills is to use Deep Learning techniques, which allow the classification of different 

textures, tastes, and shapes in cooking [17]. Concerns around the automatization of 

classification in cooking robotic systems can also be solved through the use of Deep 

Learning neural networks and CNNs (Convolutional Neural Networks) [17]. Deep 

Learning neural networks can also be used to improve robot manipulation accuracy and 

interpretation [13]. Balancing accuracy and speed of identification can be done through 

libraries such as OpenCV-Python as seen in [17]. One approach to improve robot ma-

nipulation accuracy and interpretation is by using Deep Learning Graph Neural Net-

works (GNN), which allows for generalized yet accurate instructions for robots [13].   

Data Collection: Data collection is extremely important in robotic cooking because it 

allows for these systems to get better at recognizing mistakes and become automatable. 

Some may have apprehensions about the way data is collected and may be curious as 

to how data is collected on cooking robots. Conclusions 

Robotic cooking can save time, encourage healthy eating habits, and lower operational 

costs in commercial settings. As technology advances, these robots are likely to become 

more adaptive, efficient, and accessible, making them an essential component of future 

kitchens. 
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