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Abstract

Understanding student practice behavior and its connection to their learning is essential for effective recommender
systems that provide personalized learning support. In this study, we apply a sequential pattern mining approach
to analyze student practice behavior in a practice system for introductory Python programming. Our goal is to
identify different types of practice behavior and connect them to student performance. We examine two types of
practice sequences: (1) by login session and (2) by learning topic. For each sequence type, we use SPAM (Sequential
PAttern Mining) to identify the most frequent micro-patterns and build behavior profiles of individual learners as
vectors of micro-pattern frequencies observed in their behavior. We confirm that these vectors are stable for
both sequence types (p < 0.03 for session sequences and p < 0.003 for topic sequences). Using the vectors, we
perform k-means clustering where we identify two practice behaviors: example explorers and persistent finishers.
We repeat this experiment using different coding approaches for student sequences and obtain similar clusters.
Our results suggest that example explorers and persistent finishers might represent two typical types of divergent
student behaviors in a programming practice system. Finally, to better understand the relationship between
students’ background knowledge, learning outcomes, and practice behavior, we perform statistical analyses to
assess the significance of the associations among pre-test scores, cluster assignments, and final course grades.
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1. Introduction

Understanding how students use interactive computer science (CS) educational resources on online
learning platforms and how this use shapes their learning is essential for developing efficient tools to
support learning, such as personalized learning systems. Insight into this behavior could be gained by
mining student activity logs, an approach widely used in numerous studies [1, 2, 3]. The results of
such an analysis could inform decisions or support the development of predictive models.

Over the last 10 years, the educational data mining (EDM) community has developed a wide range
of activity log mining approaches. Researchers have applied these approaches to various types of log
data, including Massive Open Online Course (MOOC) learning behavior [4], blended learning across
multiple platforms [5], problem-solving behavior [3], and course-taking patterns [6]. As new types of
learning systems become popular, the log data accumulated by these systems offer new opportunities
for research and potential new discoveries.

In this paper, we explore student learning behavior in a new type of learning system known as practice
system [7, 8, 9]. These systems support student free practice, i.e., self-directed study in which students
independently engage to gain skills in some domain or to complement their studies in regular classes.
Unlike college classes and MOOCs, which combine knowledge delivery (lectures, textbooks, videos)
with assessment (labs, assignments, exams), practice systems focus on learning through a combination
of worked examples [10] and problem-solving. To support this approach, modern practice systems
provide various types of interactive learning content with feedback and self-assessment. To examine
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this relatively new type of learning data and uncover patterns in student practice behavior, we applied
a sequential pattern mining approach. Focusing on student transitions between different activities, we
uncovered two groups of students with divergent practice behaviors: example explorers and persistent
finishers. These groups emerged consistently across two experiments using different sequence coding
methods, suggesting that they may reflect recurring types of student behavior in free-practice systems
that offer both worked examples and programming problems.

Finally, we conducted a series of statistical hypothesis tests to reveal patterns between students’
background knowledge as demonstrated through their pre-test scores, learning behavior represented
through their cluster assignment, and performance revealed through their final course grades. Our
experiments showed a significant relationship between student learning behavior and performance.

2. Related Work

Analyzing student learning behavior through activity logs became a popular research topic following the
rise of MOOCs [11, 12, 13, 3, 4]. On one hand, MOOCs provided an abundance of data to explore various
data mining approaches. On the other hand, the low retention rate observed in early MOOCs challenged
the research community. To understand learner behavior in MOOCs, many researchers focused their
exploration of MOOC data on revealing student behavior patterns. Most prior studies on behavior
pattern analysis have focused on resource usage (e.g., viewing course lectures and worked examples,
answering quizzes, solving problems, participating in forums) to identify behaviors of different groups of
students and relate those behaviors to high and low levels of learning [12, 14, 15]. While students have
been observed to alternate between learning at the surface level (more effort in challenge completion)
and going deep (more reliance on worked examples) [16], providing novice students with examples
followed by similar practice tasks led to better learning [17, 18].

However, even the first generation of behavior analysis research suggested that focusing solely on
resource usage might not lead to a reliable method to separate weak and strong students [19]. To address
this problem, an increasing number of studies attempted to look deeper than how much of each activity
type a student does by focusing on the order in which activities occurred. This shift enabled a deeper
understanding of learning strategies and behavioral trajectories of students. Additionally, clustering
and tracking students’ activity timelines uncovered common behavioral patterns of engagement that
evolve over a semester [20]. Building on this temporal perspective, several articles used relatively
simple transition mining approaches [21, 4, 22] and reported interesting results. Nonetheless, more
complex approaches such as sequential pattern mining gradually become more popular [23, 24, 6, 25, 26].
Sequential pattern mining is a group of machine learning techniques focused on finding time-related
behavior in sequences. Its basic idea is to discover frequent subsequences (patterns) in a sequence
database, in which each sequence is a time-ordered list of events [27]. In CS education, sequential
pattern mining has been used to analyze a broad range of time-ordered data, including sequences of
courses taken by students [6], sequences of student code-editing actions when solving construction
problems [3, 28], and sequences of student attempts on code-tracing problems [24]. In [23], a productive
approach to using sequential pattern mining in the educational context, known as differential sequence
mining, was introduced in [23]. They used the SPAM method [29] to find common patterns in the
sequences and applied statistical tests to check for differences in frequencies of those patterns among
distinct groups.

In our work, we apply a combination of exploratory and differential sequence mining to analyze
student sequences of work with different types of interactive learning content in a programming
practice system. Unlike most previous studies, which focus on finding and differentiating individual
patterns [23, 4, 6, 30], our work follows a more advanced approach suggested in [24], where individual
micro-patterns are combined into frequency vectors to more reliably capture individual student behavior.



Table 1
Tokens detailing attempts.

Token  Activity Focus ~ Outcome Attempt (n > 1)

scl construction correct 1
scn construction correct n
sil construction incorrect 1
sin construction incorrect n
sel construction example 1
sen construction example n
pcl comprehension  correct 1
pcn comprehension  correct n
pil comprehension incorrect 1
pin comprehension incorrect n
pel comprehension example 1
pen comprehension example n

Table 2
Tokens detailing topic switching.

Token  Description

_ start of a topic

< switching to a previous topic

> switching to a subsequent topic

3. Dataset

Our study used activity log data from Python Grids [7], a practice system for introductory Python
programming. The data is available via Carnegie Mellon University’s LearnSphere [31]. The system
offers worked examples and practice problems across 15 core topics of a typical introductory Python
course (e.g., variables and operations, if-else statements). Each logged activity corresponds to either
an exploration of a worked example or an attempt at a practice problem within one of these topics.
The system offers two types of problems: construction and comprehension. Construction problems
focus on writing code (e.g., interactive code examples, coding from a prompt, filling in blanks, Parsons
problems). Comprehension problems focus on interpreting and analyzing code behavior (e.g., animated
code execution examples, code-tracing questions such as “What is the final value of x?”). Students can
freely choose both the programming topics and problem types they wish to practice.

The dataset consists of anonymized activity logs from two sessions of the same undergraduate
introductory Python course held in the summer of 2021 at a large public university. The first session
contains 12,383 logged attempts (7,068 construction, 5,315 comprehension), and the second session
11,296 (6,294 construction, 5,002 comprehension). Although 174 undergraduate students were enrolled,
using Python Grids for practice tasks was not a required component of the course. As a result, our
dataset includes data from 41 students with no demographic information.

4. Methodology

4.1. Sequence Construction

To begin exploring student practice behaviors in Python Grids, we constructed sequences from its
activity log data. Each attempt to access learning content (either an example or a problem) is encoded
as a single token, and tokens are concatenated to form sequences. These tokens use three symbols to
capture details of each learning action (Table 1): a type of practiced knowledge (s’ for conStruction, ‘p’



Table 3
Example of building a student vector from the top 5 most frequent micro-patterns using sequences by learning
topic. A student vector is the average of all normalized frequency vectors for a student.

Frequency of Micro-Patterns
Topic _,pel pel,PEN sil,sin sin,sen sil,SIN | Total Normalized Frequency Vector
if-else 0 0 2 2 4 8 (0, 0, 0.25, 0.25, 0.5)
nested loops 0 1 2 0 1 4 (0, 0.25, 0.5, 0, 0.25)
while loops 2 2 1 0 0 5  (0.4,0.4,0.2,0,0)

v =(0.133, 0.217, 0.317, 0.083, 0.25)

for comPrehension), the nature of the action (‘c’ for Correct problem-solving attempt, ‘i’ for Incorrect
problem-solving, ‘e’ for examining a step of a worked Example), and attempt number (‘1° for first, ‘n’ for
not first). Since we aimed to capture student transitions between different activities, we condensed long
repetitions of attempts. A long repetition is defined as three or more consecutive actions within the same
activity, based on the median repetition length, and was coded using uppercase letters. Additionally,
three special tokens were used to represent topic switching (see Table 2). For example, in the sequence
_, sil, SIN, <, pel, PEN, the student begins a topic, made several attempts to solve a construction
problem with at least two incorrect responses in a row, and then switches to an example from a previous
topic, which the student examines two or more steps.

We explored creating sequences for two scenarios: by login session and by learning topic. In the by
login session scenario, we created a separate sequence for each student for each time they logged into
the system. In the by learning topic scenario, we created a separate sequence for each student for each
topic they practiced. We applied the same methodology to each scenario independently.

4.2. Sequential Pattern Mining

We used the SPAM [29] sequential pattern mining algorithm to identify frequent sequences in our
sequences. SPAM is an efficient breadth-first search strategy that has been successfully used to uncover
behavioral patterns in educational datasets in prior studies [24]. To identify frequent and meaningful
patterns, we focus on short sequences by defining a minimum and maximum pattern length of [2, 6]
and limited our analysis to the top 50 most frequent sequences, which we call micro-patterns.

4.3. Clustering Students

To cluster students based on similar behavior patterns, we first represented each student as a vector
derived from the frequencies of micro-patterns in their sequences. For each sequence, we created a
50-dimensional vector that captured the frequencies of the 50 most frequent micro-patterns identified
by SPAM. To avoid biasing our data on the total amount of practice, which varies considerably between
students, we focused on relative frequencies of frequent patterns in student behavior, i.e., each vector
was normalized according to the respective student’s overall number of attempts. We then averaged
these vectors for each student to obtain a single vector that represented their overall behavior patterns.
Table 3 illustrates this process using a small subset (n = 5) of frequent micro-patterns.

To ensure the consistency of our vectors, we checked their stability by splitting each student’s
sequence into two groups based on session number (even and odd). We then used Jensen-Shannon
divergence to calculate two types of distances: the self-distance (the distance between even and odd
sessions) and the other-distance (the distance between a student’s even session and the even sessions of
all other students). We performed a t-test on the difference of these distances to ensure stability. We
then applied k-means clustering to group the vectors and identify behavioral patterns among students.



4.4. Mann-Whitney U Test

To investigate the relationship between students’ problem-solving behavior as represented through
their cluster assignment, background knowledge, and performance, we conducted a series of statistical
significance test analyses. We first ran two Mann-Whitney U tests to identify a potential relation-
ship between background knowledge (pre-test scores) and behavior (cluster assignment), as well as
performance (final course grade) and behavior.

We further hypothesized that students who are at the more extreme ends of the clusters (i.e., who are
farther from the centroid of the other cluster) may represent more persistent and distinctive behavioral
patterns, significantly affecting their performance. We also hypothesized that performance differences
might exist between extreme and moderate members of each cluster. To evaluate these hypotheses, we
first calculated the distance between each student’s behavioral vector and the centroid vector of the
opposite cluster. We then divided the students in each cluster into extreme and moderate groups based
on the median of their distance to the centroid of the opposite cluster. We then performed a set of
Mann-Whitney U tests to evaluate the significance of proposed patterns.

The use of the Mann-Whitney U test in all scenarios is due to the lack of a normal distribution of
performance data per group.

5. Experiments and Results

5.1. Experiments

We conducted two experiments at different granularities: every attempt and every problem.

In the every attempt experiment, we analyzed each logged activity made by students, creating tokens
and sequences as described in the Methodology section. Each token represented either a distinct student
attempt or a repetition of the same student attempt. This approach allowed us to capture detailed
information about each step students took within the system, offering insights into their interactions at
a fine-grained level. These sequences averaged 21 tokens in length.

In the every problem experiment, each token represented a single problem. This less granular
representation resulted in more condensed sequences (on average, three less tokens), which further
magnified student transitions between different activities. By running two experiments, we wanted to
explore whether different levels of granularity in encoding sequences reveal different patterns.

5.2. Results and Discussion
5.2.1. Micro-Patterns

To identify frequent micro-patterns in our sequences, we used SPAM and selected the top 50 most
frequent micro-patterns based on support values. Table 4 provides a sample of the top 10 micro patterns
for each experiment. To assess the diversity of the most frequent 50 micro-patterns, we calculated
the Gini coeflicient for their frequency distribution (see Table 5). The distribution of micro-pattern
frequencies in the every attempt experiment shows moderate equality. However, the consolidation of
sequences in the every problem experiment led to a slightly more even distribution of micro-pattern
frequencies, indicating greater diversity in the micro-patterns observed.

5.2.2. Student Vectors

To evaluate the stability of our student vectors, we used the Jensen-Shannon divergence to compute
the self-distance and other-distance for each student. We then performed a t-test to compare these
distances, as described in the Methodology section. The results are summarized in Table 6. In all cases,
the self-distance is significantly smaller than the other-distance, showing that students’ behavior is
more similar within their own interactions than compared to others. Furthermore, the Cohen’s d values
indicate a high degree of consistency in how students engage with the system across different topics or



Table 4
Top 10 most frequent micro-patterns for experiments every attempt and every problem.

every attempt every problem

by login session by learning topic by login session by learning topic

pattern supp. pattern supp. pattern  supp. pattern supp.
1 < 101 _, pel 134 < 101 _, pel 58
2 sil, sin 79 pel, PEN 90 sin , scn 42 sin , scn 51
3 sin, scn 70 si1, sin 89 > 41 _,PEN 47
4 pel, pen 66 sin, scn 81 scn, SIN 41 scn, SIN 47
5 pel, PEN 65 si1, SIN 80 SIN, scn 39 pel, pen 45
6 <, pel 61 pel, pen 80 pel , pel 37 SIN, scn 42
7 _, <, pel 57 pil, pin 63 pel, pen 37 pel , pel 42
8 sil,sin, scn 53 pel, pel 62 <, PEN 34 scn, scn 39
9 si1, SIN 52 pin, pcn 61 scn, scn 33 PEN, pen 36
10 pil, pin 46 scn, sil 60 <, pel 32 pen, pen 36

Table 5
Gini coefficient of top 50 micro-patterns for experiments every attempt and every problem.

Gini Coefficient

by login session 0.229
every attempt . .

by learning topic 0.257

by login session 0.197
every problem y Log! ) ! i

by learning topic 0.180

Table 6
Statistical tests comparing students with themselves and others.

self-distance  other-distance

M STD M STD t p Cohen’s d
by login session ~ 0.550 0.144 0.637 0.048 -2.670 <0.02 -0.810
every attempt . .
by learning topic  0.550  0.108 0.650  0.042  -3.824 <0.002 -1.208
by login session 0.558 0.155 0.672  0.043 -2.630 <0.03 -1.002

every problem . i
by learning topic  0.534 0.121  0.666  0.033  -3.795 <0.003 -1.451

sessions. These results suggest that our student behavior profiles, constructed as frequency vectors of
micro-patterns, are stable and valid representations of student behavior.

5.2.3. Clustering

We applied k-means clustering (using the Elbow Method to determine optimal k) to the student vectors
to identify groups with similar behavior patterns. Figures 1a and 1b show the results of clustering
using t-SNE (t-distributed Stochastic Neighbor Embedding), a dimensionality reduction technique to
visualize high-dimensional data. As a hyperparameter, perplexity makes a guess about the number of
nearest neighbors each point considers when mapping the high-dimensional space to 2D. We considered
perplexity to be 10, meaning more emphasis on small groups of students with very similar topic behavior.
According to Figure 1a, cluster 0 has 27 students, while cluster 1 has 14. In Figure 1b, cluster 0 has
24 students, while cluster 1 has 11. Both figures confirm that clustering student topic-based vectors
produces meaningful separation, even when done at a detailed attempt level, as these clusters have
distinct boundaries with minimal crossing points.

Next, to analyze the differences between these clusters, we compared cluster profiles constructed
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Figure 1: t-SNE visualization (perplexity=10) of clustered student topic vectors. Each point represents a student.
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Figure 2: Top 50 micro-patterns and their frequencies in each cluster for experiment every attempt. Patterns are
ordered by the difference in frequencies between Cluster 1 (example explorers) and Cluster 0 (persistent finishers).

by averaging frequencies of the top 50 micro-patterns for each cluster. To highlight the discovered
differences, we displayed micro-pattern frequencies for both clusters in the same graph, ordering the
patterns by the difference in frequency between the clusters (see Figure 2 for every attempt and Figure
3 for every problem). This revealed that students in these clusters differed in their use of two distinct
groups of micro-patterns at opposite ends of the spectrum.

On the left end, we observe micro-patterns related to the focused exploration of comprehension-
focused worked examples. For every attempt, seven of the 10 leftmost micro-patterns include com-
prehension example tokens (containing ‘p’ and ‘e’), with six including at least two. Similarly, eight
of the 10 leftmost micro-patterns for every problem include comprehension example tokens, with five
including at least two. These micro-patterns are more frequent in Cluster 1, especially in every problem
experiment, which attempted to magnify the transition between different activities. The analysis shows
that students in Cluster 1 were considerably more engaged in example-based learning than those in
Cluster 0. To stress this behavior, we called students belonging to Cluster 1 example explorers.

On the right end, we observe micro-patterns involving repeated attempts, mostly at construction
problems. For every attempt, seven of the 10 rightmost micro-patterns include construction tokens
(containing ‘s’), with five including at least two. Similarly, eight of the 10 rightmost micro-patterns
for every problem include construction tokens, with six including at least two. Furthermore, in both
experiments, about half of the rightmost frequent sequences (i.e., sequences used much more frequently
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Figure 3: Top 50 micro-patterns and their frequencies in each cluster for experiment every problem. Patterns are
ordered by the difference in frequencies between Cluster 1 (example explorers) and Cluster 0 (persistent finishers).

Table 7
Characteristic examples of an example explorer and a persistent finisher during a practice session.
example sequence explanation
,pel, pen,pel,pel,PEN, , < This student attempts several examples
example explorer —-pelp pet-Pp - . . P P
pel, pel, PEN, > sel,sen, >, sen from different topics.

4 PIN . This student attempts several problems
, pril, , pen, _, >, St , sCn, . . .
persistent finisher —P . P ) from different topics, reaching a correct
pcl,si1, SIN, scn, >, si1, SIN, scn . ]
solution before moving to the next.

by students in Cluster 0) ended with a correct attempt to solve a problem (tokens containing ‘c’). The
dominance of these micro-patterns suggests that another important difference between clusters is a
much larger focus of students in Cluster 0 to persistently work on continuous problem solving, aiming
to achieve correctness. To stress this behavior, we called students belonging to Cluster 0 persistent
finishers.

The results of two distinct groups of students, example explorers and persistent finishers, highlight key
differences in how students engage with programming practice. Moreover, a similar split into example
explorers and persistent finishers observed in two experiments with different sequence coding approaches
suggests that this split might represent important differences in student practice behavior. Table 7
shows characteristic examples of practice behaviors from each group, illustrating how an example
explorer and a persistent finisher approach practice differently.

5.2.4. Mann-Whitney U Test

A Mann-Whitney U test showed a significant relationship between behavior (cluster assignment) and
performance (final course grades) (U=61, P<0.01), as final grades can be considered a reliable proxy for
meaningful learning [32]. According to these results, example explorers had significantly higher final
course grades compared to persistent finishers. Figure 4a illustrates the final course grade distribution
across clusters. A second Mann-Whitney U test between background knowledge (pre-test scores) and
performance revealed a non-significant relationship between behavior and background knowledge
(U=103, p>0.1). However, although pre-test scores are low across both clusters, we observe a trend
toward higher scores among example explorers. We hypothesize that a floor effect may be present,
where the pre-test may not have been sensitive enough to capture meaningful differences in background
knowledge. Figure 4b illustrates the pre-test score distribution.
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Figure 4: Box plots compare student performance across clusters with respect to final grades and pre-test scores.

We further divided students in each cluster into two groups, extreme and moderate, based on their
proximity to the opposite cluster’s centroid. Mann-Whitney U tests revealed a significant difference
between students’ performance in each cluster (U=22, p<0.01), with example explorers having significantly
higher final course grades compared to persistent finishers. On the other hand, no significant difference
was found between moderate and extreme groups for example explorers (U=22, p>0.1) and persistent
finishers (U=27.5, p>0.1). This suggests certain problem-solving strategies can be more indicative of
learning compared to others. This is especially important since no significant relationship was found
between performance and background knowledge.

6. Implications of Outcomes

While our quantitative results show a clear distinction between example explorers and persistent finishers
in terms of their final course performance, as computing education researchers, we find it imperative
to ground these findings within real classroom learning dynamics. For instance, students who are
considered persistent finishers often demonstrate a consistent pattern of attempting problems repeatedly
until they succeed. However, their persistence may not always translate into deeper understanding via
further internalization of concepts [33, 16]. Even while keeping their focus on solving problems, they
might essentially engage in surface trial-and-error learning without gaining a deeper understanding of
the underlying concepts. This pattern suggests that prioritizing repeated problem-solving attempts
over learning from worked examples might not lead to a better conceptual understanding, resulting in
lower course grades.In contrast, students exhibiting behavior characteristic of example explorers might
learn the proper way of solving the main type of problems presented by worked examples [34, 35, 36],
and reinforce their understanding and performance [37], as is evident from their higher course grades.

Recognizing these behavior profiles will allow instructors to scaffold learning more effectively [38],
leading to direct implications for personalized learning systems. These insights can be leveraged to
inform adaptive pedagogy that responds to student behavior pattern types: prompting persistent finishers
to reflect on examples and rewarding example explorers upon challenge completion. Such adaptive
actions based on student behavior can support their learning, leading to improved course outcomes
[39]. Based on how students engage with learning materials, instructors can also recommend specific
strategies to each set of learners to achieve greater conceptual understanding and higher learning gains.

7. Conclusions, Limitations, and Future Work

In this paper, we explored student practice behavior in a Python practice system. We mined frequent
micro-patterns from student practice sequences and built micro-pattern vectors consistently reflecting



their learning behavior profile. Through clustering, we revealed two distinct behavior patterns: example
explorers and persistent finishers. A Mann-Whitney U test demonstrated a significant relationship
between behavior patterns and final grade scores, with example explorers having significantly higher
performance.

Although our results offer insights for personalized learning systems, the relatively small sample size
and specificity of the data limit generalizability and may overestimate the broader applicability. Addi-
tionally, our study does not account for external factors such as teaching context, student engagement,
and educational support, all of which could influence the results. The dataset included only students
who voluntarily sought additional practice, introducing potential self-selection bias as participants may
be more self-motivated or in greater need of support than the average student. Lastly, our comparison
of pre-test scores to final course grades may be affected by test-taking ability, which can vary inde-
pendently of course understanding, and the type of assignments administered during the course. We
chose to use final course grades over post-test scores due to the very limited number of students who
completed the voluntary post-test. Our dataset also lacks information about assignments and exams
(e.g., whether students were tested more on example problems versus construction problems), which
could bias the comparison between pre-test and final course grades, as well as the types of problems
students chose in the practice system.

In the future, we plan to conduct a more in-depth investigation of learning behaviors and outcomes,
including classroom experiments testing different problem orderings and temporal analysis of behavior
change and learning gains. We also plan to conduct qualitative analysis on sequences to more deeply
understand the strategies behind the different student behaviors.
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