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Abstract—The rise of Edge AI necessitates energy-efficient
models like Spiking Neural Networks (SNNs), often trained using
Federated Learning (FL) to preserve data privacy. However,
FL is vulnerable to Byzantine attacks, where malicious clients
disrupt training. While SNNs offer potential energy benefits due
to their event-driven nature, their unique training mechanisms,
particularly the use of surrogate gradients to handle non-
differentiable spike events, raise questions about their inherent
robustness in adversarial FL settings. We evaluate the robustness
of SNNs employing 5 surrogate gradients (distinct by function
shape) against 7 diverse Byzantine attacks and assess recovery
potential using S robust aggregation rules (AGRs). Our extensive
experiments (1032 runs) reveal that SNNs are not universally
more robust than ANNSs; they show resilience to certain struc-
tured attacks (e.g., MinMax) but vulnerability to others (e.g.,
Label Flip). We find a moderate positive correlation between
surrogate gradient choice and recovery effectiveness using AGRs,
with Triangle and Rectangle surrogates often enabling better
recovery, though this advantage is context-dependent. Our results
underscore that robust AGRs (like DnC and RFA) are essential
for mitigating attacks in SNN-based FL, regardless of the
surrogate gradient used. We conclude that achieving reliable
SNN deployment in adversarial FL requires a holistic, context-
aware approach, carefully considering the interplay between
network type, surrogate gradient, threat model, and defense
mechanisms. Our code is open-sourced for reproducibility '.

Index Terms—Surrogate gradients, SNNs, FL, Byzantine

I. INTRODUCTION

The proliferation of intelligent devices at the network edge
has spurred the development of Edge AI, enabling local-
ized data processing and reducing reliance on centralized
cloud infrastructure. However, edge devices often operate
under strict energy constraints. Spiking Neural Networks
(SNNG5s) represent a new class of brain-inspired neural network
with promising fault-tolerance and energy-efficiency poten-
tials [1], making them particularly attractive for deployment in
resource-constrained edge environments. The inherent event-
driven computation of SNNs, where processing only occurs
when necessary (i.e., upon spike arrival), offers potential for
significant power savings compared to traditional Artificial
Neural Networks (ANNs) [2].

On edge devices, training powerful AI models directly
presents significant challenges, particularly concerning data
privacy. Edge devices often collect sensitive, user-specific data
that cannot be shared directly due to privacy regulations and
user expectations. Therefore, Federated Learning (FL) [3] has
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emerged as a key paradigm to address this, enabling multiple
edge devices to collaboratively train a shared global model
without exchanging their raw local data. Instead, devices typi-
cally train models locally and share only model updates (e.g.,
gradients or weights) with a central server for aggregation,
thus preserving data locality and enhancing privacy.

Despite its privacy advantages, the distributed nature of
FL introduces vulnerabilities, particularly to Byzantine at-
tacks. Malicious participants (Byzantine clients) can disrupt
the training process by sending corrupted or intentionally
misleading updates to the central aggregator. These attacks
manifest mainly in two forms: model-poisoning, where attack-
ers aim to degrade the global model’s performance or insert
backdoors; and data-poisoning, where attackers manipulate
their local data to influence the training outcome [4]. The
literature landscape encompasses numerous attack strategies,
ranging from simple noise injection and label flipping to
more sophisticated attacks that mimic benign updates [4]-[6],
posing significant threats to the reliability of FL systems.

SNNs operate fundamentally different from conventional
ANNs, where as it mimics biological neurons in processing
information in a spatiotemporal manner through spike trains
instead of single real values in ANNs or binary values in
the original Multi-layered Perceptrons (MLP). This temporal
dimension and the use of non-differentiable spike activa-
tion functions necessitate specialized training algorithms. As
elaborated by Zenke et al. and other work [7], due to its
temporal nature, SNNs can be trained with a modified version
of back-propagation through time (BPTT), a recurrent neural
network (RNN) training technique, often referred to as Spatio-
Temporal Back-Propagation (STBP) [8]. A core challenge in
applying gradient descent is the non-differentiable nature of
the spike generation event (Heaviside step function).

To deal with this problem, previous work has proposed
that the partial derivative of the Heaviside step function
can be replaced with a continuous approximation during
the backward pass. This widely adopted technique is called
Surrogate Gradients [7]. While essential for training, the
choice and behavior of these surrogate gradients may impact
SNN performance beyond optimization, particularly regarding
robustness under adversarial settings like Byzantine Federated
Learning (FL). This raises the following key questions: Does
the surrogate gradient choice influence an SNN's resiliency to
malicious attacks? And how does SNN robustness compare to
traditional ANNs under attack?



Contribution. In this study, we systematically investigate
these questions. We evaluate SNNs employing 5 distinct surro-
gate gradients against 7 Byzantine attacks and assess recovery
using 5 different Byzantine-robust aggregation rules (AGRs)
across 4 benchmark datasets and two network architectures.
Our main contributions are three-folds:

1. Highlighting SNN Superiority Against Complex Attacks:
We demonstrate that SNNs exhibit superior resilience
compared to ANNs when facing sophisticated, structured
Byzantine attacks (such as Sign Flip and bounded attacks).
Defending against these structured attacks is notably more
challenging in federated learning, positioning SNNs as a
strategically advantageous choice for enhancing security in
these difficult adversarial scenarios.

2. Optimizing SNN Robustness via Surrogate Gradients: Our
analysis reveals a clear positive correlation between the
choice of surrogate gradient function and the ability of
SNNSs to recover from attacks. Specific gradients, notably
Triangle and Rectangle, consistently lead to enhanced
robustness, demonstrating that careful selection of the
surrogate gradient is a key factor in maximizing SNNs’
defensive capabilities against adversarial manipulations.

3. Validating Robust AGRs as Essential for FL-SNNs Defense:
We provide quantitative evidence establishing that robust
aggregation rules (AGRs), especially those leveraging clus-
tering or robust statistics, are critical for bolstering SNN
resilience in adversarial FL. These defenses significantly
amplify the inherent strengths of SNNs, providing a power-
ful mechanism to counteract Byzantine threats effectively,
complementing the benefits gained from optimized surro-
gate gradients.

Collectively, these findings underscore that SNNs offer a com-
pelling advantage over ANNs in defending against complex,
structured Byzantine attacks. This advantage can be further
amplified through strategic selection of surrogate gradients
and the implementation of robust aggregation rules, paving
the way for more secure and resilient SNN-based federated
learning systems.

II. RELATED WORK

A recent survey by Dampthoffer et al. [9] explores dif-
ferent techniques for training SNNs, highlighting spike-based
backpropagation with surrogate gradients as a prominent and
widely discussed topic. In [10], Guo et al. provided a survey
on the advancement in direct training SNNs with surrogate
gradients to enhance the model quality. In which, tech-
niques such as: adaptive threshold/leak-constant [11], [12],
dynamic/learnable surrogate gradient [13], [14] and batch-
normalization [15], are discussed. Other such work as from
Zenke et al. discussed and demonstrate the inherent robustness
in training stability and accuracy of different surrogate gradi-
ents [16]. However, recent research highlights the vulnerability
of surrogate gradients to adversarial attacks, namely: FGSM
and PGD [17], [18]; SNN-tailored rate and temporal based
(HART) [19]; a set of DVS-attacks [20]; and rate gradient
approximation attack (RGA) [21]. In terms of adversarial

robustness of surrogate gradients, Sharmin et al. [22] conclude
that directly training SNN with surrogate gradients instead
conversion from ANNSs results in SNNs that are more robust
against the FGSM and PGD attacks. Building upon this
inherent robustness of surrogate gradients, Kundu et al. [17]
introduce crafted input noise during training; Ding et al.
[23], [24] explore a dynamic LIF framework and a stochastic
gating mechanism; and Liu et al. [25] propose a gradient
sparsity regularization scheme; each of them to enhance the
robustness against the aforementioned attacks. Moshruba et
al. [26] empirically explore the privacy-preserving properties
of common surrogate functions and quantization levels under
membership inference attacks (MIA).

In the context of FL with SNNs, recent work such as
Abad et al. [27], Fu et al. [28], Walter et al. [29], and
Riano et al. [30], explore the vulnerability of SNNs against
backdoor attacks in FL. Thus, highlighting the need improve
the robustness of SNN in such training context. With regards
to resiliency of surrogate gradients in FL, Venkatesha et al.
[31], demonstrates the better accuracy and energy efficiency of
SNNs over ANNs in large-scale FL. While extensive research
addresses Byzantine attacks and defenses for ANNs in FL
[4]-16], [32]-[35], [35]-[39], this critical area remains largely
unexplored for SNNs trained with surrogate gradients. This
gap is particularly significant given that our previous work
[40], [41] has demonstrated SNNs to be inherently more
resilient in various FL settings. Filling in this critical gap,
our study undertakes a systematic exploration of the inherent
robustness of these SNNs against major Byzantine threats,
benchmarking their performance against ANNs and evaluating
the effectiveness of robust aggregation rules.

III. PRELIMINARIES

In this section, we first introduce SNNs training with
surrogate gradients, focusing on the most common surro-
gate functions—each characterized by distinct shapes—which
would be benchmarked in our experiments. We then review
prevalent Byzantine attack strategies in FL and discuss robust
aggregation rules designed to defend against such attacks.
These concepts provide the foundation for the analyses and
evaluations in the subsequent sections.

A. Surrogate Gradients in Spiking Neural Networks

In spiking neural networks, each neuron utilize a spike
train perceived over a determined number of timesteps (7') to
represent the input and output. With spike encoding, the leaky-
integrate-and-fire (LIF) mechanism is commonly used for
spike activation [8]. In which, the membrane potential (U) is
accumulated over time with a decay rate (), the neuron fires
an output spike (.S) and reset the membrane once its potential
exceed a threshold (99). Since spike signal is discrete over time
instead of analog and continuous as in ANNs, computation
of the gradients of the synaptic weights is hindered since
calculating 9.S/9U is intractable. Thus, surrogate gradients as
functions to approximate the derivative of the spike function.
In this work, we provide a survey of existing auxiliary function
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Figure 1. Visualizing the shapes of different surrogate gradient functions

and for surrogate gradients and categorize them based on their
shape, we select one formulation of each shape to benchmark

its robustness in Byzantine attacks and defense scenarios.
Their shapes are visualized in Fig. 1 and formulations are
discussed in the following.
Triangle. This surrogate gradient shape is constructed using
piece-wise linear approximation:
oS |U — 9|
— ~¢&-max (0,1 — 1
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Rectangle: The rectangular-shaped surrogate gradient Also
constructed using piece-wise linear approximation:
95 f-i if |U -9 < w,
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0 otherwise. @

Quadratic: We utilize the formulation that produces the
parabolic shape:

s e
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Gaussian: There are multiple variations of the bell-curve

shape, namely: SoftLIF, Sigmoid, Artan, Spike Rate Escape.
We utilize the Gaussian formula, which is given as follows:
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Fast-sigmoid: The concave-wedge shape also have many

approximation: Fast-sigmoid, Slayer, and Exponential. We
utilize the Fast-sigmoid formulation as follows:
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In which, £ < 0 is a dampening factor adjusted in propor-
tional to 7', it is used to prevent the gradients from exploding
as they accumulates over the timesteps. In the rectangular,
triangular and parabolic formula, w determine the window
size where 0S/0U > 0 around ¥. In the bell-curve formula,
o denotes the standard deviation, which controls the width of
the “bell”. In the concave formula, o denotes the slope of the
Fast-sigmoid approximation.

1= (559)%) i U -9 <w, .

otherwise.
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B. Byzantine Attacks in Federated Learning

To briefly describe our system model, we assume an FL
training apparatus [3] of n clients, of which f are Byzan-
tine clients. Without the loss of generality, we assume that
the first n — f clients are benign, and the last f clients,
ie. [n — f + 1,n], are malicious. We denote VET) as the

model update submitted by client ¢ € [n]| at round r. We
denote the coordinate-wise average of the benign update
as Vay = fave (Vi{se[n—ysy3)> Which is also known as the
true update. With the mix of benign and malicious updates
submitted, we denote V = AGR (V;c[n)}) as the aggregation
result performed by the parameter server. Section III-C lists
different methods of aggregation. In this work, we experiment
with seven untargeted Byzantine attacks, categorized by level
of knowledge the adversaries, that are: non-omniscient and
omniscient. Among which, one of them is data-poisoning and
the rest are of model-poisoning capabilities. These are briefly
described as follows.

1) Non-omniscient: In this type of attack, the adversaries
can modify the updates of the Byzantine clients. However,
they are unaware of the benign updates.

Label Flip (L.F.) [32]: This type of attack is called data-
poisoning. Namely, for each data point, label [ is flipped to
L — 1 —1, where L is the number of classes.

Gaussian Random (G.R.) [5]: The attacker injects random
vectors drawn from a Gaussian distribution with zero mean
and variance to tune potency of attack:

Vi =N(0,0%), with Vi € [n — f +1,n] (6)

Sign Flip (S.F.) [33]: After the process of local training,
the adversary intercept the communication process and flip
the sign of the obtained gradients being submitted:

Vi=-V,, withVi € [n— f +1,n] 7

2) Omniscient: The adversaries assume full knowledge of
the benign updates and can collude with each others to
produce stronger attacks. With the colluding scheme, we
denote the malicious update calculated by the adversary and is
submitted by all Byzantine clients as YV (ic(n—f41,n)} = V-
The formula for V), in different attacks are given as follows.

Mimic [34]: The adversary copies a benign update and
amplifies its influence while suppressing others, making the
attack nearly indistinguishable from normal activity. This
subtle manipulation skews the overall update aggregation in
their favor and evades standard anomaly detection measures,
posing a serious challenge to robust systems.

®)

IPM [6]: Aims to invert the sign of the benign average
(Vawg) in the malicious updates, yet, scaled down by the
factor ~ (estimated manually) so they remain undetected:

Vi = Vrandom([nff])

9)

The authors also highlight the need for v to be large enough
such that the inner product of the benign aggregation vector
Vae and the actual aggregation vector is negative, which
would break the gradient descent convergence.

Fang [4]: Still aim to negate the benign update (V)
coordinate-wise. However, there are two main difference from
IPM. First, the value of the perturbation vector at each
coordinate is either —1 or +1, depending on the corresponding

Vi = —* vavg



sign of V. Second, 7 is dynamically optimized so as to
bypass the filtering of the known AGRs (e.g. Krum [5]):

Vin = Vayg — 7 * sign(Vyye) (10)

MinMax [35]: Craft the malicious update by scaling the
perturbation calculated by coordinate-wise standard deviation
across the benign update. The authors propose an adaptive
scaling factor (vy) based on the maximum distance between the
malicious updates and the benign updates, and the maximum
distance among themselves. With V4 = fga (Vie[n_ f]), the
optimization problem for ~ is formulated as follows:

argmax max ||V — V2 <
i€[n—f]

max ||V, —V;
n max [V, =V

1,JEN

Wlth Vm = Vavg - ’sztd

C. Byzantine Defense with AGRs

Robust Aggregation Rules (AGRs) are evaluated based on
how effective they are at neutralizing the effect of the mali-
cious updates. The default aggregation in FL is coordinate-
wise averaging which is V. In this work, we benchmark
five recently proposed AGRs of different basis of reasoning.
They are briefly described in the following.

Norm Clipping (N.C.) [36] (Clipping-based): This AGR
postulate that the L2 norm of an update should not surpass a
predefined threshold M. Then, it clips the update by the ratio
of its L2 norm over M if the L2 norm of an update is higher
than M, as the following formula shows:

(1)

~ \v2
V= 12
2 (1 ¥ /80 2
Centered Clipping (C.C.) [37] (History, clipping-based):
In similar manner to momentum stochastic gradient descent,
this approach also incorporate historical updates to make
the aggregated update more robust. The formula of such
incorporation is given as follows:

o+ g L L 3 (VZ(_TH) _ §(r))
n

1€[n]

r (13)
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i
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in which, 7, is the clipping threshold parameter for round 7.
This acts as a safeguard, preventing any client’s update from
straying too far from the collective historical direction, thus
enhancing robustness to outliers and adversarial updates.
DnC [35] (Composite statistic-based): This approach iden-
tifies the malicious update using the outlier filtering method
via singular value decomposition (SVD) based spectral. To
mitigate the computational cost of apply SVD, the authors
proposed selecting a random subset of dimensions then cen-
tering the sub-samples by subtracting away their coordinate-
wise mean. These centered “sub-updates” are then projected
to their top-right singular eigenvector to compute the outlier
score. Finally, with the filtering fraction x < 1, the algorithm

Table 1
MODEL ARCHITECTURE AND CONFIGURATION

Dataset Network Model  Structure

Conv (64-64-128-128-256-256-256 filters)
AvgPool & BatchNorm

FC (conv_output, 1024, num_classes)
ReLU

CIFAR10
CIFAR100

VGGY ANN

Conv (64-64-128-128-256-256-256 filters)
AvgPool & BatchNorm

FC (conv_output, 1024, num_classes)
LIF (8 = 0.95;9 = 1.5;T = 15)

SNN

2 FC layers (Input, 1000, num_classes)
ReLU

MNIST
FMNIST

FCNet ANN

2 FC layers (Input, 1000, num_classes)

SNN  LIF (8 =0.95;9 = 1.5;T = 15)

filters out k- f vectors of the highest outlier scores, and return
the mean of the remaining ones.

RFA [38] (Single statistic-based): This AGR aims to cal-
culate the weighted geometric median vector is closer to
most received updates. The smoothed Weiszfeld algorithm to
approximate this solution. The objective function to find this
optimal vector is:

V = argmin ) H%-vi (14)
i)

VeR? ;e

Sign Guard (S.G.) [39] (Pattern-based): This defense aim

to use clustering algorithms (e.g. k-means, DBSCAN, mean-

shift) to identify the malicious updates using sign statistics

(i.e. total number of positive, zero, negative value of an
update) as the input features of the received updates.

IV. EXPERIMENTAL SETUP
A. Surrogate gradient configurations

We implement five surrogate gradients functions in our
experiment: Triangle, Rectangle, Quadratic, Gaussian, Fast-
sigmoid. To reduce the risk of exploding gradient, we set the
damping factor of all surrogate gradients to & = 0.3. For
Triangle and Quadratic, we set the width of piece-wise linear
and quadratic formulations as w = 1. For Rectangle, the width
is set as w = 0.5. For the Gaussian surrogate gradient, the
root-mean-square width, i.e. the width of the “bell”, is set as
o = 0.4. As for the Fast-sigmiod formulation, the slope of
the concave-wedge is set as o = 1.5.

B. Model Architectures, Datasets & Training

This study evaluates MNIST, FMNIST, CIFAR10 and CI-
FAR100 datasets. For all datasets, we follow the default
train/test splits provided, and apply the z-score normalization,
resulting in each input channel a mean of 0 and standard
deviation of 1. MNIST and FMNIST are gray scale images,
i.e. one input channels, of size 28 x 28, while CIFAR10 and
CIFAR100 are colored images with three input channels per
pixel and of size 32 x 32. We handle the data pre-processing
with the TorchVision library. We implemented the models and



trainings using PyTorch. We use fully connected network (FC-
Nets) architecture to train on MNIST and FMNIST datasets,
and convolutional neural networks architecture, specifically,
the VGGY model to train on CIFAR10 and CIFAR100. The
detailed configurations of these model architectures for both
ANNs and SNNs are presented in Table I. For activation
functions, we use ReLU for ANNs and Leaky Integrate and
Fire (LIF) neurons (with the membrane decaying rate of
B = 0.95, membrane firing threshold of ¢ = 1.5, number
of timesteps to propagate spikes as 7' = 15) for SNNs. For
the FL training configurations, we set the number of clients
as n = 20, in which the number of Byzantine clients is
f = 8. We implement the FedSGD algorithm where the clients
updates are the gradients, and set the number of training
rounds as 2000. These hyperparameters are carefully selected
so that the baseline training accuracy of ANN and SNN
models with different surrogate gradients are roughly similar.

C. Byzantine Attacks & Robust AGRs Configuration

In terms of Byzantine attacks, we evaluate seven different
types: Label Flip (L.F.), Gaussian Random (G.R.), Sign Flip
(S.E), Mimic, IPM, Fang and MinMax. For G.R. we set the
standard deviation of the noise distribution as ¢ = 1.0. For
IPM we set the scale of attack of A = 1.1, which is concluded
empirically to be the optimal value in the original paper [6].
For Fang, we set the filtering AGR to optimized against as
Krum [5], the search for optimized A starts at 1.0 and the stop
threshold is set as 10~°. For the MinMax attack, we utilize the
binary search algorithm as suggested by the authors to find
the optimized -, with the search space [0, 5] and tolerance of
0.01. In terms of Byzantine defenses, we consider coordinate-
wise mean (V,,) to be the baseline for comparison. We
evaluate five different robust AGRs (not including the default
coordinate-wise average): Norm Clipping (N.C.), Centered
Clipping (C.C.), DnC, RFA, and Sign Guard (S.G.). For N.C.,
we set the L2 norm threshold M = 3. For C.C., the L2 norm
threshold is set as 100, and number of iteration to optimize the
local update as 1. For S.G. we utilize the k-means algorithm
with & = 2 to separate the updates into two clusters. For DnC,
the size of the sub-sampling is set as 10000, the filtering
fraction as x = 1.0 and number of subset iterations as 10.
For RFA, we set the number of optimizing iterations for the
weighted geometric median vector as 20.

V. RESULTS & DISCUSSION

In this section, we present our experiment results, arranging
to answer four questions of increasing complexity. In each
subsections, we present the question, summarized metrics,
data analysis and our overall discussion to answer them.

A. Is FL-SNNs with surrogate gradients inherently more
Byzantine-robust than FL-ANNs?

Table II presents a comparative analysis of the robustness
of FL-SNN and FL-ANN under various Byzantine attack

strategies across four datasets. The robustness comparison

CSNNVANN

score (ac drop ) is quantified using the difference in

accuracy degradation due to an attack (accdmp) between ANNSs
and SNNs. As shown in the following equations:

aACCdrop = ACCpaseline — ACCattacked (15)
SNNVANN ANN SNN
aCCirop = aCCrop — ACCqrop (16)

Positive values indicate that SNNs are more robust (i.e.,
experience a smaller accuracy drop), while negative values
indicate that ANNs are more robust. Note that, SNN accuracy
under attack is averaged across five commonly used surrogate
gradient functions, as follows:

1 i . ;
SNN __ Triangle Rectangle Quadratic
aCCqrop = g ’ aCCclrop + aCCdrop + a‘Ccdrop

G i FastSigmoid
+ acCgop "+ ACCHp ) (17)

Table II
COMPARING THE ROBUSTNESS OF SNNS AND ANNS AGAINST
DIFFERENT BYZANTINE ATTACKS

Dataset L.F. G.R. S.F. Mimic | IPM | Fang | MinMax
MNIST -0.03 | -0.31 | -0.02 0.00 0.02 0.04 0.61
FMNIST -0.06 | 0.04 | -0.01 -0.01 0.03 0.01 -0.07
CIFARIO | -0.04 | 0.07 0.03 0.01 -0.05 | 0.06 0.05
CIFARI00 | -0.03 | 0.03 0.01 0.02 -0.03 | 0.07 0.03

Specific patterns emerge favouring one architecture over the
other depending on the attack type and dataset. SNNs con-
sistently demonstrated slightly enhanced robustness against
the Label Flipping (L.F.) attack across all four datasets,
with accii s AN values ranging from —0.03 to —0.06. This
suggests SNNs might possess some inherent resilience to
simple forms of data poisoning involving label manipulation.
The most pronounced advantage for SNNs was observed
under the Gaussian Random (G.R.) attack on the MNIST
dataset, registering a substantial difference of —0.31. Minor
advantages for SNNs were also noted for Sign Flipping (S.F.)
on MNIST and FMNIST, /PM on CIFAR10 and CIFAR100,
and MinMax on FMNIST, indicating context-specific benefits.

Conversely, ANNs exhibited superior robustness in several
key instances. The most striking result is the significantly
better performance of ANNs against the MinMax attack on
the MNIST dataset, where the accgyrrﬁﬁi’?eNN reached 0.61.
This indicates that, for this specific sophisticated attack on
a relatively simpler dataset, the conventional ANN archi-
tecture withstood the attack with substantially less accuracy
degradation compared to the averaged SNN performance.
ANNSs also generally showed better resilience against the Fang
attack (except on FMNIST) and the G.R. attack (except on
MNIST), although the margins were typically smaller than
the MinMax-MNIST case. These positive values highlight
scenarios where the mechanisms within ANNs might be better
suited to mitigating certain types of adversarial manipulations
introduced by Byzantine workers.

These findings collectively underscore that the relative
robustness of SNNs versus ANNs against Byzantine attacks
is not absolute but highly contingent on the specific attack



Table III
RECOVERY-EFFECTIVENESS OF SNNS vS ANNS WITH DIFFERENT AGRS APPLIED

Attacks MNIST FMNIST CIFAR10 CIFAR100

C.C. DnC N.C. RFA S.G. CC. DnC N.C. RFA SG. CC. DnC NC. RFA S8.G. C.C. DnC N.C. RFA SG.
L.F. —-0.15 —0.03 —0.96 —0.03 —0.19 —0.30 —0.02 —-0.51 —0.03 —-0.38 0.02 —0.05 —0.26 —0.05 —0.87 0.05 1.27 —-0.19 0.01 -0.17
G.R. 0.55 —0.01 —0.08 —-0.01 —-0.01 -0.17 0.00 —0.08 —0.01 —-0.01 —-0.33 0.00 —0.02 —0.01 0.02 —0.09 0.01 0.01 —-0.01 —0.02
S.F. -0.04 0.09 -0.30 —-0.02 —-0.26 0.02 0.02 -0.35 —-0.08 —0.24 0.02 0.02 —-0.20 —-0.38 —-0.24 0.02 0.63 —0.07 —0.06 —0.27
Mimic —0.12 —1.53 0.26 —15.90 —4.63 —0.63 —0.03 —1.01 —0.41 -0.54 —1.44 —4.11 —3.46 —81.04 —8.28 —0.21 —0.47 —0.05—-10.47 —0.04
IPM 0.00 —1.26 0.06 —32.71 —15.26 —6.07 70.95 —1.55 658.01 465.85 0.08 1.61 35.77 30.22 —3.28 —0.43 —3.17 27.04 18.64 —5.48
Fang 0.12 0.00 —-0.88 —0.23 —0.10 —0.33 0.17 —-0.60 —0.62 —0.58 0.13 0.09 0.30 0.16 —0.09 053 037 0.52 0.27 —0.41
MinMax -0.02 -0.02 -0.87 -0.37 -0.02 185 -0.01 -0.13 1.79 -0.02 0.00 0.00 0.03 0.01 0.01 0.00 0.03 0.01 0.01 0.01

methodology and the data characteristics. Neither architecture
demonstrates universal superiority across all tested condi-
tions. An important consideration is that the SNN values
are averaged across five surrogate gradient functions. This
averaging ensures that the robustness evaluations reflect the
intrinsic architectural characteristics of SNNs, rather than
the idiosyncrasies of any one optimization method. In later
sections, we present the data with regards to specific surrogate
gradients and compare the effectiveness among them.

B. Do common Byzantine-robust AGRs more effective when
applied to FL-SNNs than to FL-ANNs?

Table III provides a detailed view of how SNNs with
surrogate gradients compares to ANNs (accsfl}lgtvi{,zNN) in terms
of recovery-effectiveness under various Byzantine attacks and
robust AGR mechanisms. Across all datasets, the metric
ACCeffective Captures the relative gain when recovering lost
accuracy due to attacks when robust aggregation rules (AGRs)
are applied. The following equations provide insight into how

these metrics are computed:

ACCdefended — ACCattacked

aCCqrop

SNNVANN __ SNN ANN
effective ~ — 4CCeffective — ACCeffective

(18)

ACCeffective —

acc (19)

A positive value suggests SNNs are more resilient than ANNs
in that specific setting. Once again, the recovery-effectiveness
of SNN is also averaged across five surrogate gradients, in a
similar fashion as demonstrated in Eq. (17).

For simpler datasets like MNIST, SNNs often show
limited or even negative recovery-effectiveness. In several
cases—such as under RFA against IPM and Mimic attacks-
SNNs perform significantly worse than ANNs, with values
dropping to —32.71 and —15.90 respectively. This suggests
that in low-complexity datasets where ANNs can exploit
stable, dense patterns, SNNs may struggle to recover once
perturbed, possibly due to their inherent temporal sparsity and
reduced representational density. However, under Centered
Clipping (C.C.) and Gaussian Random (G.R.) attacks, SNNs
occasionally show competitive or slightly better robustness,
hinting that their noise-resilient spiking mechanisms might
still provide some defense against random perturbations.

In contrast, for FMNIST, the recovery-effectiveness of
SNNs dramatically improves. Under attacks like I/PM and
with defenses such as DnC or RFA, SNNs achieve large

positive values, even reaching +70.95 and +658.01. This
suggests that on datasets with moderate visual complexity,
the sparse, temporal encoding of SNNs offers substantial
benefits when paired with cluster-based or structure-aware
aggregation. These results highlight a strong synergy between
the SNN model and certain defenses that better isolate or
suppress corrupted updates, aligning well with the temporal
dynamics of SNNs.

On CIFAR10 and CIFAR100, the comparison becomes
more nuanced. CIFAR10 shows a mix of positive and negative
values, with SNNs showing some robustness under Norm
Clipping and RFA, especially against IPM attacks (435.77
and +30.22), but also struggling in extreme cases like the
Mimic attack with RFA (—81.04). CIFAR100, being the most
complex dataset, shows smaller but more balanced differences.
In several instances e.g., under Fang attack with Centered
Clipping or DnC—SNN:ss slightly outperform ANNSs, although
the margins are relatively modest. These observations suggest
that on high-complexity datasets, both architectures face sig-
nificant challenges, and the effectiveness of defense mech-
anisms becomes even more critical. Overall, these findings
indicate that SNNs are not universally more robust than ANNs
but their recovery-effectiveness can outperform them under
specific adversarial and defense conditions. Their performance
is especially promising when paired with defenses that exploit
clustering (like DnC) or robust aggregation (like RFA), par-
ticularly on datasets with moderate feature diversity.

C. Would different surrogate gradients offer various levels of
inherent robustness against Byzantine attacks?

In Fig. 2, we provide detailed data and analysis of compar-
ing the accuracy degradation, as shown in Eq. (15), of SNNs
training with five different surrogate gradients under seven
different Byzantine attacks. The results reveal that across the
spectrum of attacks and datasets, no surrogate gradient demon-
strates universal superiority. For each, catastrophic accuracy
drops occur under the most severe attacks (such as MinMax
and Gaussian Random), and especially on complex datasets
like CIFAR-10 and CIFAR-100, where all surrogates typically
lose more than 0.6 in accuracy. The difference in robustness
between surrogates here becomes indistinct. This suggests that
for the harshest and most effective Byzantine attacks, the
particular surrogate gradient employed does little to protect the
learning process, with attack strategy and dataset complexity
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Figure 2. Accuracy degradation (accqrop) under Byzantine attacks of different surrogate gradients (higher value is worse)

being the overwhelming factors. In scenarios with moderate
threats, such as Label Flip and Sign Flip, some variability in
surrogate robustness becomes more apparent, though differ-
ences remain subtle. For instance, under Label Flip across
all datasets, Gaussian and Fast-sigmoid exhibit marginally
reduced accuracy losses compared to others, particularly on
FMNIST and CIFAR-100. Meanwhile, the Triangle surrogate
is sometimes more vulnerable to Sign Flip on CIFAR-10, with
its accuracy drop peaking compared to its peers. Nonethe-
less, for these attack settings, all surrogates still experience
substantial performance degradation, indicating that choice of
surrogate alone is insufficient as a robust defense.

The relative strength of each surrogate emerges most
clearly under weak or ineffective attacks. With Mimic and
Fang attacks, all surrogate gradients maintain high accu-
racy, with losses near zero or even slight improvements
observed—especially for MNIST and FMNIST. Rectangle, for
example, shows the largest (but still small) accuracy loss under
Mimic in CIFAR-100, but in general all surrogates are robust
under these adversarial conditions. This indicates that in low-
threat environments, the type of surrogate gradient used is
largely irrelevant to overall robustness: all perform well.

D. Would different surrogate gradients impact the recovery-
effectiveness of FL-SNNs when AGRs are applied?

In Fig. 3, we shows how well SNNs training with dif-
ferent surrogate gradients recover from various adversarial
attacks when applied robust AGRs (rows), across four datasets
(columns). In each 3D plot, the x-axis lists surrogate gradi-
ents (colored lines), the y-axis denotes attack types (marker
shapes), and the z-axis shows recovery-effectiveness, as shown
in Eq. (18), the higher the line, the better the recovery.

The data reveals that the choice of surrogate gradient is
a significant factor in determining the recovery effectiveness.
Numerically, the Triangle and Rectangle surrogates yield the
highest and most consistent recovery effectiveness scores,

frequently ranging from 0.5 up to 1 on simpler datasets such
as MNIST and FMNIST, particularly when paired with Norm
Clipping (N.C.) or Centered Clipping (C.C.). In several in-
stances, Triangle achieves scores near or above 1.0, suggesting
that, in these settings, the defended model not only recovers
from the attack but may marginally outperform the attacked
baseline. On these datasets, the inter-surrogate difference can
reach as much as a factor of two to four in recovery effective-
ness, indicating a pronounced correlation between surrogate
selection and defense performance. In contrast, the Fast-
sigmoid surrogate demonstrates marked under performance,
with recovery effectiveness frequently dropping into negative
values, especially for complex datasets such as CIFAR10 and
CIFARI100 and under aggregation rules like Sign Guard and
DnC. For example, under RFA or Sign Guard defenses and
the CIFAR-class datasets, the effectiveness scores for Fast-
sigmoid and, at times, Gaussian, can fall well below zero,
with some values observed in the —100 to —600 range. These
negative values indicate not only unsuccessful recovery but
also possible exacerbation of attack effects, reinforcing the
notion of incompatibility between these surrogates and certain
robust aggregation rules.

The role of surrogate gradient diminishes in extremely ad-
versarial or complex scenarios, as evidenced by the narrowing
performance margins and universally lower recovery effective-
ness on CIFAR10 and CIFAR100, regardless of the surrogate
employed. The advantage of Triangle and Rectangle is less
consistent in these regimes, and variability increases across
all surrogates. Furthermore, the relative effect of surrogate
gradients is modulated by both the chosen aggregation rule
and the nature of the attack. For instance, aggressive attacks
such as MinMax and Fang consistently reduce overall recov-
ery, compressing the spread of effectiveness scores among
different surrogates. Nevertheless, even under these adverse
conditions, Triangle and Rectangle surrogates tend to retain a
relative edge in most settings.
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VI. CONCLUSION

This study provided a comparative analysis of SNNs and
traditional ANNs in Byzantine FL, and specifically the in-
fluence of different surrogate gradients. Our findings reveal
that SNNs possess distinct and valuable robustness character-
istics: they exhibit strong resilience against structured attacks
(such as MinMax), demonstrating a clear advantage in these
challenging scenarios. While vulnerabilities to certain noise-
based or data-poisoning attacks exist, this finding still posi-
tions SNNs as a promising alternative for specific adversarial
landscapes. Crucially, we show that SNNs can indeed surpass
ANN performance under attack conditions, particularly when

integrated with powerful aggregation rules (AGRs) like DnC
or RFA. Our analysis also indicates that the choice of surrogate
gradient, with functions like Triangle and Rectangle positively
contributes to the SNN’s inherent Byzantine-resiliency. Ulti-
mately, our results underscore that integrating robust AGRs is
critical for unlocking and enhancing the adversarial resilience
of SNN-based FL, requiring a strategic consideration of the
interplay between the network architecture, effective surrogate
gradient selection, and powerful aggregation defenses. Future
work will build upon these findings with deeper theoretical
and empirical analyses to fully realize the potential of robust
neuromorphic FL frameworks.



[1]

[2]

[3]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607-617, 2019.

H. Xue, “Neuromorphic Computing with Large Scale Spiking Neural
Networks,” Mar. 2025. [Online]. Available: https://www.preprints.org/
manuscript/202503.1505/v1

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
trends® in machine learning, vol. 14, no. 1-2, pp. 1-210, 2021.

M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to {Byzantine-Robust} federated learning,” in 29th USENIX security
symposium (USENIX Security 20), 2020, pp. 1605-1622.

P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
Advances in neural information processing systems, vol. 30, 2017.

C. Xie, O. Koyejo, and I. Gupta, “Fall of empires: Breaking byzantine-
tolerant sgd by inner product manipulation,” in Uncertainty in Artificial
Intelligence. PMLR, 2020, pp. 261-270.

F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer
spiking neural networks,” Neural computation, vol. 30, no. 6, pp. 1514—
1541, 2018.

Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropa-
gation for training high-performance spiking neural networks,” Frontiers
in neuroscience, vol. 12, p. 331, 2018.

M. Dampfhoffer, T. Mesquida, A. Valentian, and L. Anghel,
“Backpropagation-based learning techniques for deep spiking neural
networks: A survey,” [EEE Transactions on Neural Networks and
Learning Systems, 2023.

Y. Guo, X. Huang, and Z. Ma, “Direct learning-based deep spiking
neural networks: a review,” Frontiers in Neuroscience, vol. 17, p.
1209795, 2023.

S. Wang, T. H. Cheng, and M.-H. Lim, “Ltmd: learning improvement of
spiking neural networks with learnable thresholding neurons and mod-
erate dropout,” Advances in Neural Information Processing Systems,
vol. 35, pp. 28 350-28 362, 2022.

Q. Yu, J. Gao, J. Wei, J. Li, K. C. Tan, and T. Huang, “Improving
multispike learning with plastic synaptic delays,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 34, no. 12, pp. 10254—
10265, 2022.

Y. Guo, Y. Chen, L. Zhang, X. Liu, Y. Wang, X. Huang, and Z. Ma,
“Im-loss: information maximization loss for spiking neural networks,”
Advances in Neural Information Processing Systems, vol. 35, pp. 156—
166, 2022.

Y. Li, Y. Guo, S. Zhang, S. Deng, Y. Hai, and S. Gu, “Differen-
tiable spike: Rethinking gradient-descent for training spiking neural
networks,” Advances in neural information processing systems, vol. 34,
pp. 23426-23439, 2021.

H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with
directly-trained larger spiking neural networks,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 35, no. 12, 2021, pp.
11062-11070.

F. Zenke and T. P. Vogels, “The remarkable robustness of surrogate
gradient learning for instilling complex function in spiking neural
networks,” Neural computation, vol. 33, no. 4, pp. 899-925, 2021.

S. Kundu, M. Pedram, and P. A. Beerel, “Hire-snn: Harnessing the
inherent robustness of energy-efficient deep spiking neural networks
by training with crafted input noise,” in 202/ IEEE/CVF International
Conference on Computer Vision (ICCV). Los Alamitos, CA, USA:
IEEE Computer Society, oct 2021, pp. 5189-5198. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00516

J. Ding, T. Bu, Z. Yu, T. Huang, and J. Liu, “Snn-rat: Robustness-
enhanced spiking neural network through regularized adversarial train-
ing,” Advances in Neural Information Processing Systems, vol. 35, pp.
24780-24793, 2022.

Z. Hao, T. Bu, X. Shi, Z. Huang, Z. Yu, and T. Huang, “Threaten spiking
neural networks through combining rate and temporal information,”
in The Twelfth International Conference on Learning Representations,
2023.

A. Marchisio, G. Pira, M. Martina, G. Masera, and M. Shafique, “Dvs-
attacks: Adversarial attacks on dynamic vision sensors for spiking neural

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

(37]

(38]

(391

[40]

[41]

networks,” in 2021 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2021, pp. 1-9.

T. Bu, J. Ding, Z. Hao, and Z. Yu, “Rate gradient approximation attack
threats deep spiking neural networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
7896-7906.

S. Sharmin, N. Rathi, P. Panda, and K. Roy, “Inherent Adversarial
Robustness of Deep Spiking Neural Networks: Effects of Discrete Input
Encoding and Non-Linear Activations,” Jul. 2020, arXiv:2003.10399
[cs]. [Online]. Available: http://arxiv.org/abs/2003.10399

J. Ding, Z. Pan, Y. Liu, Z. Yu, and T. Huang, “Robust Stable Spiking
Neural Networks,” May 2024, arXiv:2405.20694 [cs]. [Online].
Available: http://arxiv.org/abs/2405.20694

J. Ding, Z. Yu, T. Huang, and J. K. Liu, “Enhancing the Robustness
of Spiking Neural Networks with Stochastic Gating Mechanisms,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38,
no. 1, pp. 492-502, Mar. 2024, number: 1. [Online]. Available:
https://ojs.aaai.org/index.php/AA Al/article/view/27804

Y. Liu, T. Bu, J. Ding, Z. Hao, T. Huang, and Z. Yu, “Enhancing
Adversarial Robustness in SNNs with Sparse Gradients,” May 2024,
arXiv:2405.20355 [cs]. [Online]. Available: http://arxiv.org/abs/2405.
20355

A. Moshruba, S. Snyder, H. Poursiami, and M. Parsa, “On the
Privacy-Preserving Properties of Spiking Neural Networks with
Unique Surrogate Gradients and Quantization Levels,” Feb. 2025,
arXiv:2502.18623 [cs]. [Online]. Available: http:/arxiv.org/abs/2502.
18623

G. Abad, S. Picek, and A. Urbieta, “Time-distributed backdoor
attacks on federated spiking learning.” [Online]. Available: http:
/arxiv.org/abs/2402.02886

H. Fu, G. Li, J. Wu, J. Li, X. Lin, K. Zhou, and Y. Liu, “Spikewhisper:
Temporal spike backdoor attacks on federated neuromorphic learning
over low-power devices.”

K. Walter, M. Mohammady, S. Nepal, and S. S. Kanhere, “Mitigating
distributed backdoor attack in federated learning through mode connec-
tivity,” in Proceedings of the 19th ACM Asia Conference on Computer
and Communications Security, 2024, pp. 1287-1298.

R. Riafo, G. Abad, S. Picek, and A. Urbieta, “Flashy backdoor: Real-
world environment backdoor attack on snns with dvs cameras,” arXiv
preprint arXiv:2411.03022, 2024.

Y. Venkatesha, Y. Kim, L. Tassiulas, and P. Panda, “Federated learning
with spiking neural networks,” IEEE Transactions on Signal Processing,
vol. 69, pp. 6183-6194, 2021.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” arXiv preprint arXiv:1206.6389, 2012.

G. Damaskinos, R. Guerraoui, R. Patra, M. Taziki et al., “Asynchronous
byzantine machine learning (the case of sgd),” in International Confer-
ence on Machine Learning. PMLR, 2018, pp. 1145-1154.

S. P. Karimireddy, L. He, and M. Jaggi, “Byzantine-robust learn-
ing on heterogeneous datasets via bucketing,” arXiv preprint
arXiv:2006.09365, 2020.

V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine: Op-
timizing model poisoning attacks and defenses for federated learning,”
in NDSS, 2021.

Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can You
Really Backdoor Federated Learning?” Dec. 2019, arXiv:1911.07963
[cs]. [Online]. Available: http://arxiv.org/abs/1911.07963

S. P. Karimireddy, L. He, and M. Jaggi, “Learning from history for
byzantine robust optimization,” in International conference on machine
learning. PMLR, 2021, pp. 5311-5319.

K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” IEEE Transactions on Signal Processing, vol. 70,
pp. 1142-1154, 2022.

J. Xu, S.-L. Huang, L. Song, and T. Lan, “Byzantine-robust federated
learning through collaborative malicious gradient filtering,” in 2022
IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS). 1EEE, 2022, pp. 1223-1235.

M. V. Nguyen, L. Zhao, B. Deng, W. Severa, H. Xu, and S. Wu,
“The robustness of spiking neural networks in communication and its
application towards network efficiency in federated learning,” arXiv
preprint arXiv:2409.12769, 2024.

M. V. Nguyen, L. Zhao, B. Deng, and S. Wu, “The robustness of spiking
neural networks in federated learning with compression against non-
omniscient byzantine attacks,” arXiv preprint arXiv:2501.03306, 2025.



