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Abstract— Millions of people with hearing disabilities use sign
language for communication, creating a communication gap with
those who are not fluent in ASL (American Sign Language). This
paper aims to introduce an ASL interpreter system using a smart-
glasses-based augmented reality system. We begin by introducing
and comparing two models that translate spoken language into
ASL poses. The first system translates spoken text to ASL Gloss,
an intermediate representation, before generating ASL poses. The
second system directly translates the text to ASL poses. Our
analysis shows that using ASL Gloss as an intermediate step
significantly improves the translation speed. We then explore a
system of encoding ASL pose videos for display on smart glasses.
The chosen translation method has a BLEU score of 66.5801 and
a rate of 1.825 milliseconds per gloss translation. Our algorithm
for mapping gloss text to ASL videos obtained a mean squared
error of 0.05, indicating that our system has good translational
accuracy and a low mapping error.
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I. INTRODUCTION

Hearing loss is a global phenomenon that affects millions
worldwide and in the United States. One in eight people in the
U.S. aged 12 and older has hearing loss in both ears, which
equates to 30 million people [11]. Many individuals with
permanent hearing loss may choose to learn and communicate
in ASL (American Sign Language) as their natural first
language. According to a 2018 study, adult sign language use
was substantial (2.80%), with respondents with complete
hearing loss having a far higher rate of sign language use than
any other hearing acuity group [9].

The World Health Organization (WHO) projects that over 1
billion young adults are at risk of permanent, avoidable hearing
loss due to unsafe listening practices [4]. To the effect of
growing cases of hearing loss nearing the future, the U.S. Bureau
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of Labor Statistics expects the employment of interpreters and
translators to grow 4% from 2020 to 2032 [8].

Moreover, hearing loss is likely to impact many areas of life
on an individual and national basis. Individually, hearing loss
can impact communication, cognition, education, employment,
social interaction, and mental health. On a larger scale, hearing
loss incurs economic losses in healthcare, education, and
productivity. Specifically, WHO has calculated a $980 billion
annual cost due to neglected hearing impairment issues [4].
Therefore, there can be both personal and national implications
to a lack of effective assistive technologies for people with
hearing impairments, suggesting a strong need for improving
our current sign language-enhanced devices. Optimizing our
current state-of-the-art speech to ASL pose translators is
relevant, as a handy artificially intelligent ASL interpreter
proves a cost-effective option for many.

The population of individuals with permanent hearing loss
who use ASL as their natural language and special educators
who would like an applicable way to learn ASL will benefit from
Smart Glasses equipped with a state-of-the-art, real-time
speech-to-ASL pose translator rendered in their augmented
reality (AR) view.

Individuals who want to learn ASL to communicate with
their ASL-speaking peers or loved ones can benefit from this
software. On the same token, ASL-speaking individuals can use
this software as a personal on-the-go interpreter in case they
prefer audio translated to ASL poses rather than captioned text.

As the rate of total hearing loss is expected to rise in the
coming decades and employment of interpreters begins to
increase, the hiring prices of interpreters are also expected to
rise, or a price market will form in turn. A personal free speech
to ASL pose translator could succeed in hiring a real interpreter.



The layout of the paper is as follows: Section II gives a brief
overview of related work. Section III outlines our proposal.
Section IV describes our experimental setup and results. Section
V provides our conclusions and potential future work.

II. RELATED WORK

In [3], Othman and Jemni implement the state-of-the-art
text-to-ASL pose translator, utilizing an ASL Gloss translation
intermediate step. Other researchers, such as Stoll [6],
implement translating text to signed poses, also with an
embedded text to gloss stage for performance speedup.

Several other works explore sign language applications for
smart glasses or AR. [1], [10], and [13] evaluate technology as
a learning tool for sign language students. Other research, such
as [14], performs sign language recognition using smart glasses
cameras. There is much additional research in using computer
vision or wearable devices to translate sign language to text, but
this is outside of the scope of this paper. Our focus is on
translating speech to ASL to develop an AR interpreter.

III. PROPOSAL

Our proposal is a Smart Glasses system that will translate
speech to ASL poses, which will be displayed in an AR view.
To this goal, a performance comparison between two speech-to-
ASL pose translations is done. To preface, a sign language gloss,
here “ASL gloss,” is an abbreviation of text such that the
remaining words each correlate to a sign language pose. For
example, “of,” “the,” and other terms would be filtered out in
the gloss translation process, as they do not map to a signed
gesture. The first implementation we compare converts speech
to text to ASL Gloss to ASL poses. The second implementation
converts speech to text to ASL poses, skipping the ASL gloss
step. The latter will have more cluttered input in handling ASL
pose translation, while the former will experience speedup while
reading information due to its shorter length. Thus, the first
implementation's text-to-gloss translation should have a
duration faster than the second’s text-to-pose translation. The
system with the best performance will then be used for a Smart
Glasses AR translation module, which will allow sign language
users and learners to translate speech to ASL in everyday
scenarios.

IV. EXPERIMENTS

Our experiment is a performance comparison between two
implementations of speech to ASL pose translators, labeled
implementations 1 and 2 for this paper. Implementation 1
translates from audio to text to ASL Gloss to ASL poses.
Implementation 2 translates from speech to text to ASL poses
and skips ASL gloss generation. Our experiments show that
using an English text-to-ASL gloss Natural Language
Processing (NLP) learning model, specifically t5-small, speeds
up text-to-ASL pose translation. Our proposal is a cumulative
speech-to-ASL pose software package that employs the better
implementation of implementations 1 and 2 listed above.

A. Speech to Text and Gloss Modules

Our first module is for speech to text. We used the state-of-
the-art speech-to-text software Speech Recognition and pyttsx3
for generating text from speech input. In our project, we intend
to pass the text as a parameter for interpreting the ASL gloss
model in Implementation 1 and the ASL pose interpreter for
Implementation 2.

After generating text from the PyAudio speech-to-text
translator, the text in Implementation 1 must be transformed into
an ASL Gloss or a contextual abbreviation of the text. In
selecting the best text-to-gloss transformer, we favored a high
BLEU score to indicate high similarity between the model-
generated and reference texts [5] and a shorter duration average
processing time in seconds per gloss. These two performance
metrics are necessary for defining the model's latency and text
accuracy.

We first implemented an open-source pretrained text-to-
gloss transformer model from [7] to determine the best model
for translating text to ASL Gloss. Yet, due to a low BLEU score
and poor unimproved average time post-fine-tuning, we trained
the same t5-small model from scratch. Post-fine-tuning, the new
model yielded an improved BLEU score and average time per
gloss.

Thus, this section evaluates the performance of two t5-small
models on a shared dataset. For simplicity, in this section, the
open-source model provided by [7] is referred to as 'Model 1',
and the t5-small model supplied by us is referred to as 'Model 2.

A concluding additional contribution to the proposal is a
performance-improved finely tuned t5-small text-gloss model,
or Model 2.

HuggingFace's Synthetic English-ASL  Gloss Parallel
Corpus 2012 (ASLG_PC12) [2] was used for training both
Model 1 [7] and Model 2.

As mentioned, we first implemented Model 1 from [7]. This
model is a fine-tuned version of the t5-small learning model for
Text2Text Generation. White’s paper reports a loss of 0.5811
using the Cross-Entropy Loss function [7], indicating a
converging training process and thus improved responses. The
reported BLEU score is 56.4281 [7], indicating average
similarity to the target text. White confirmed the model's
Generation Length or average number of tokens per generated
text as 15.5526 [7]. The generation length is consistent
throughout all trained t5-small models in the text-gloss
experiment.

We implemented extra fine-tuning for both models, and for
training Model 2. After importing the ASLG_PC12 dataset from
HuggingFace, the first step to data preprocessing is making all
columns in the dataset lowercase, as all text samples matching
in case make it easier for the model to detect and learn

differences when processing the text. Thus,
[english("adjournment of the session"), ASL
Gloss("ADJOURNMENT SESSION")] becomes
[english("adjournment of the session"), ASL

Gloss("adjournment session")].

The 'batched' flag is also set to true as a data preprocessing
step, which groups the data into batches of dictionaries



containing fields: "input ids" for numerically representing the
tokens in the "labels" field, "attention mask" for prioritizing
learning performance of specific tokens, and "labels" for storing
the target output text as a tokenized sequence. Moreover, it
enables the data collator class to pad each element's token
sequence for each batch dynamically. Dynamic Padding sets the
length of every element in the batch to the size of the longest
string. T5-small models process each example of data as a list of
512 tokens. The first tokens in the list are the sequentially
tokenized words, followed by null tokens as fillers to the
maximum number of tokens. Since the reported average
generation length of the dataset is 15.5526 [7], only
approximately 16 tokens need to be evaluated. Thus, Dynamic
Padding is employed as a data preprocessing step to speed up
training and evaluation by efficiently using GPU resources.

B. ASL Gloss Model Training

After the aforementioned preprocessing for both Model 1
and Model 2, the dataset undergoes tokenization and
initialization with an instance of a Data Collator after getting
converted to PyTorch format.

For evaluating and comparing text-to-gloss models 1 and 2,
we are using average generation time and their BLEU scores.
We favor average generation time for determining translation
stage duration, such as translating text to ASL Gloss. We use the
BLEU Score to observe the similarity between the generated and
target texts. After all data is processed, the total time is divided
by the number of elements in the dataset, yielding the average
generation time in seconds per ASL Gloss. A plotting of loss per
epoch using the Cross-Entropy Loss function is obtained post-
training.

Comparison of BLEU Scores by Fine-tuning Stage

BLEU Score

Pre Fine-tuning Past Fine-tuning

Fig. 1. Comparison of BLEU scores by fine-tuning stage.

This text-to-gloss portion of the paper explores the
performance of trained t5-small models. It contributes a finely
tuned text-to-gloss t5-small model or an open-source text-to-
gloss competitor alongside Model 1 and an optimized version of
Model 1.

Fig. 1 summarizes the performance results of the optimized
Models' BLEU scores before and after fine-tuning. The BLEU
score reported by the author for Model 1 was 56.4281, shown as
the Junowhite Reported line on the plot. Our system observed a
BLEU score of 18.4829 pre-fine-tuning and 66.5801 post-fine-
tuning. The contributed optimizations generated from this
experiment raised Model 1's BLEU Score by 10.152 points,
shown in Fig. 2. The BLEU score of Model 2 is 5.0671 pre-fine-
tuning and 66.5801 post-fine-tuning.

Comparison of Average Processing Time by Fine-Tuning Stage
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Fig. 2. Comparison of average processing time by fine-tuning stage.

Fig. 2 summarizes the performance results of the Models'
average generation time in seconds per ASL Gloss before and
after fine-tuning. The average generation time is relatively the
same across both trained models and their pre- and post-fine-
tuning stages. Model 1 had an average generation time of
1.823ms/gloss before and 1.838ms/gloss after fine-tuning.
Model 2 had an average generation time of 7.952ms/gloss before
and 1.825ms/gloss after fine-tuning. On both models, the
average generation time in seconds per gloss slightly increased
after fine-tuning as the BLEU score increased and thus reflected
more similarity to the target.

Fig. 3 plots the loss of the contributed, optimized version of
Model 1 and Model 2 using the t5-small built-in Cross-Entropy-
Loss function. The models share similar convergence rates.

In conclusion, our text-to-ASL Gloss findings and
performance tests contribute an optimized version of a T5-small
model for text-to-text generation. The additional preprocessing
step of making each text lowercase improved the BLEU Score
by approximately 10 points. The custom-trained t5-small model
yielded a lower BLEU score than the pre-trained Junowhite
model, yet both models resulted in the same BLEU score post-
fine-tuning. The average generation time was consistent across
both models, before and after fine-tuning. Lastly, the plots of
both models converge in sync to 0. The final contribution to our
more significant research from this section is providing an
improved open-source text-to-gloss model.

Loss Over Epochs for Two T5-Small Models
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Fig. 3. Loss over epochs for two TS5-Small models.



C. Text to ASL Pose Module

“World-level Deep Sign Language Recognition from
Video: A New Large-scale Dataset and Methods Comparison”
(WLASL) provided an effective source from which to map
gloss words to ASL gestures through videos [12]. The dataset
includes about 64,000 ASL gesture videos with a file providing
its corresponding URL, bounding box, frame rate, starting
frame, ending frame, instance id, signer id, subset, source site,
dialect variation id, and unique video identifier. Considering the
large size of the dataset, we decided to focus on encoding the
video URLs, so that it was not integral to download all of the
videos. After collecting the data, we analyzed our set to
determine steps for processing.

Processing the WLASL dataset for a recurrent neural
network (RNN) model was twofold in that it required cleaning
and encoding. Once the dataset was cleaned to better serve our
needs while encoding the glosses and video URLs, we
researched and selected new libraries to begin encoding our
data. The URL and gloss data was then encoded into vector and
numerical values in preparation for training.

TABLE L. KERAS VGG16 MODEL’S VIDEO TO VECTOR ENCODING
RATE
Trials | Average Video Encoding Rate (s/step)
1 5.7
2 8.39

Table 1 describes the multiple trials involved in determining
the efficiency of using Keras’ VGG16 model to encode video
URLs into vector values in order to create a numerical array to
feed into the RNN model. Descriptive statistics and terminal
output were used to collect data in s/step and determine the
mean value.

D. Text to ASL Pose Model Training

In order to map English to glosses to ASL gestures, we
developed an RNN model to map the words to videos. We used
Keras’ built-in RNN layers, specifically employing the
Sequential model to process the integer encodings into 64-
dimensional vectors [7]. This model is usually evaluated using
mean squared error.

TABLE I TEXT TO ASL POSE MEAN SQUARED ERROR
Test Set Size Mean Squared Error
5 0.12
15 0.09
30 0.09
50 0.05

Table 2 highlights how the mean squared error decreased
for larger test sets, indicating more accuracy in the RNN
model’s prediction with larger sample sizes. The mean squared
error for the RNN model was relatively low, considering that a
0 mean squared error value indicates a perfect model.
Additionally, it was promising to note that the mean squared
error generally functions inversely with sample size, indicating
that this model could work on even large amounts of input data.

E. ASL Pose to Vuzix Blade Projection

In this section, we present the tangible results obtained from
our experiments, which focus on seamlessly translating
American Sign Language (ASL) signs into immersive visual
projections using Vuzix Blade augmented reality (AR) glasses.
This innovative approach not only enhances the accessibility of
ASL communication but also opens new possibilities for
immersive language learning and communication experiences.

Before the ASL signs from the WLASL dataset could be
transformed into visually immersive projections, a series of
preprocessing steps was performed to optimize the data. First,
we converted the video data from the WLASL dataset into a
format compatible with Vuzix Blade glasses, ensuring seamless
playback. Real-time synchronization of video data with the
Vuzix Blade's display frame rate was essential for seamless
projection. The synchronization process minimized any
perceivable delays between sign selection and projection
display. We then identified the start and end points of individual
ASL signs within the video streams. This segmentation allowed
for precise projection of each sign.

The final piece of our experiments lay in the pose-to-
projection mapping module, the first component of which is the
video playback mechanism. Using the playback mechanism,
ASL sign videos are able to be overlayed onto the user’s real-
world view. Finally, Augmented Reality Markup Language
(ARML) was used to encode instructions on how and where to
project the ASL videos. ARML allowed for precise placement
and scaling of sign videos based on user interactions.

V. CONCLUSIONS AND FUTURE WORK

The proposal discussed in this paper compares two
implementations of translating speech to ASL gestures,
rendered in real-time, utilizing real-time latency and accuracy
to assess performance. Both implementations used Speech
Recognition and pyttsx3 for speech-to-text translation. In
implementation 1, this was input into the t5-small-trained
model to generate the ASL gloss. After, the text is translated
into ASL poses using an RNN.

We tested the two implementations of speech-to-ASL
pose translation methods. Implementation 1 including the ASL
gloss intermediary step, and implementation 2 translating
English text directly to ASL poses. Our findings show that
implementation 1 outperformed implementation 2 in terms of
speed and accuracy. We additionally tested two text-to-ASL
translation models and found that our fine-tuning steps for the
models improve the translation time in s/gloss and the model’s
BLEU score. Using the better performing implementation and
translation models, we also develop a method of displaying the
ASL pose videos on AR glasses so that the translation can be
viewed in real time.

The future work for this proposal is fully testing the first
implementation as a smart glasses application to determine the
feasibility and usability of a seamless real-time interpreter via
AR glasses. The future work concerning the speech-to-ASL
pose translation problem is improving the text-to-ASL gloss
learning model so that it can convert long text into



grammatically correct and correlating ASL glosses for ASL
pose generation.

ACKNOWLEDGMENT

This project was funded by the National Science Foundation
under Award Number:1757641.

REFERENCES

[1] A. Miller, J. Malasig, B. Castro, V. Hanson, H. Nicolau, and A. Brandao,
“The Use of Smart Glasses for Lecture Comprehension by Deaf and Hard
of Hearing Students.” ACM, 2017, pp. 1909-1915.

[2] A. Moryossef, "Synthetic English-ASL Gloss Parallel Corpus 2012,"
HuggingFace, https://huggingface.co/datasets/aslg_pcl2 (accessed Sep.
15, 2023).

[3] A. Othman and M. Jemni, “Designing high accuracy statistical machine
translation for sign language using Parallel Corpus,” Journal of
Information Technology Research, vol. 12, no. 2, pp. 134-158, 2019.
doi:10.4018/jitr.2019040108

[4] “Deafness and Hearing Loss,” World Health Organization, February
2023.

[5] E. Reiter, “A structured review of the validity of BLEU,” Computational
Linguistics - Association for Computational Linguistics, vol. 44, no. 3, pp.
393-401, Sep. 2018, doi: 10.1162/coli_a_00322.

[6] G. Varol, L. Momeni, S. Albanie, T. Afouras, and A. Zisserman, “Scaling
Up Sign Spotting Through Sign Language Dictionaries,” Springer
International Journal of Computer Vision, vol. 130, 2022, pp. 1416-1439.

(7

(8]

9]

[10]

[11]

[12]

[13]

[14]

“junowhite/transformer model - Hugging Face,” Jan. 09, 2001.
https://huggingface.co/junowhite/transformer_model (accessed Sep. 15,
2023).

J. Wu, L. Sun and R. Jafari, "A Wearable System for Recognizing
American Sign Language in Real-Time Using IMU and Surface EMG
Sensors," IEEE Journal of Biomedical and Health Informatics, vol. 20,
September 2016, no. 5, pp. 1281-1290.

R. E. Mitchell and T. A. Young, “How many people use sign language?
A National Health Survey-Based estimate,” Journal of Deaf Studies and
Deaf Education, vol. 28, no. 1, pp. 1-6, Nov. 2022, doi:
10.1093/deafed/enac031.

S. Al-Megren and A. Almutairi, “Assessing the Effectiveness of an
Augmented Reality Application for the Literacy Development of Arabic
Children with Hearing Impairments,” Cross-Cultural Design.
Applications in Cultural Heritage, Creativity and Social Development
Lecture Notes in Computer Science(), vol. 10912, June 2018 .

S.R.,S.M,, S. K., and A. Thilagavathy, "Al-Powered Smart Glasses for
Blind, Deaf, and Dumb," 2022 5th International Conference on Advances
in Science and Technology (ICAST), Mumbai, India, 2022, pp. 280-285.

S. Zhu and F. Chollet, “Working with RNNSs,” TensorFlow.
https://www.tensorflow.org/guides/keras/working_with rmns (accessed
Sep. 15, 2023).

V. Falvo, L. P. Scatalon and E. Francine Barbosa, "The Role of
Technology to Teaching and Learning Sign Languages: A Systematic
Mapping," 2020 IEEE Frontiers in Education Conference (FIE),
Uppsala, Sweden, 2020, pp. 1-9.

Y. Jin, S. Choi, Y. Gao, J. Li, Z. Li, and Z. Jin, “TransASL: A Smart Glass
Based Comprehensive ASL Recognizer in Daily Life Proceedings of the

28th International Conference on Intelligent User Interfaces,” ACM,
March 2023, pp. 802-818.



