
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

A Performance Comparison Between Two Speech-to-

ASL-Gesture-Projection Translation Implementations 
 

Alexandra Kashani Motlagh  

Computer Science and Engineering 

The University of Texas at Arlington 

Arlington, Texas, USA 

alexandra.kashanimotlagh@uta.edu 

 

Shikha Mehta 

Computer Science and Engineering 

The University of Texas at Arlington 

Arlington, Texas, USA 

shikha.mehta@uta.edu 

 

Ahmed Shah Rahid Syed 

Computer Science and Engineering 

The University of Texas at Arlington 

Arlington, Texas, USA 

axs0743@mavs.uta.edu 

 

 

 

 

 

Ishfaq Ahmad 

Computer Science and 

Engineering 

The University of Texas at 

Arlington 

Arlington, Texas, USA 

iahmad@cse.uta.edu  

Addison Clark 

Computer Science and 

Engineering 

The University of Texas at 

Arlington 

Arlington, Texas, USA 

addison.clark@mavs.uta.edu 

 

 

 

 

 

 

Abstract— Millions of people with hearing disabilities use sign 

language for communication, creating a communication gap with 

those who are not fluent in ASL (American Sign Language). This 

paper aims to introduce an ASL interpreter system using a smart-

glasses-based augmented reality system. We begin by introducing 

and comparing two models that translate spoken language into 

ASL poses. The first system translates spoken text to ASL Gloss, 

an intermediate representation, before generating ASL poses. The 

second system directly translates the text to ASL poses. Our 

analysis shows that using ASL Gloss as an intermediate step 

significantly improves the translation speed. We then explore a 

system of encoding ASL pose videos for display on smart glasses. 

The chosen translation method has a BLEU score of 66.5801 and 

a rate of 1.825 milliseconds per gloss translation. Our algorithm 

for mapping gloss text to ASL videos obtained a mean squared 

error of 0.05, indicating that our system has good translational 

accuracy and a low mapping error. 
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I. INTRODUCTION 

Hearing loss is a global phenomenon that affects millions 
worldwide and in the United States. One in eight people in the 
U.S. aged 12 and older has hearing loss in both ears, which 
equates to 30 million people [11]. Many individuals with 
permanent hearing loss may choose to learn and communicate 
in ASL (American Sign Language) as their natural first 
language. According to a 2018 study, adult sign language use 
was substantial (2.80%), with respondents with complete 
hearing loss having a far higher rate of sign language use than 
any other hearing acuity group [9].  

The World Health Organization (WHO) projects that over 1 
billion young adults are at risk of permanent, avoidable hearing 
loss due to unsafe listening practices [4]. To the effect of 
growing cases of hearing loss nearing the future, the U.S. Bureau 

of Labor Statistics expects the employment of interpreters and 
translators to grow 4% from 2020 to 2032 [8].  

Moreover, hearing loss is likely to impact many areas of life 
on an individual and national basis. Individually, hearing loss 
can impact communication, cognition, education, employment, 
social interaction, and mental health. On a larger scale, hearing 
loss incurs economic losses in healthcare, education, and 
productivity. Specifically, WHO has calculated a $980 billion 
annual cost due to neglected hearing impairment issues [4]. 
Therefore, there can be both personal and national implications 
to a lack of effective assistive technologies for people with 
hearing impairments, suggesting a strong need for improving 
our current sign language-enhanced devices. Optimizing our 
current state-of-the-art speech to ASL pose translators is 
relevant, as a handy artificially intelligent ASL interpreter 
proves a cost-effective option for many. 

The population of individuals with permanent hearing loss 
who use ASL as their natural language and special educators 
who would like an applicable way to learn ASL will benefit from 
Smart Glasses equipped with a state-of-the-art, real-time 
speech-to-ASL pose translator rendered in their augmented 
reality (AR) view.  

Individuals who want to learn ASL to communicate with 
their ASL-speaking peers or loved ones can benefit from this 
software. On the same token, ASL-speaking individuals can use 
this software as a personal on-the-go interpreter in case they 
prefer audio translated to ASL poses rather than captioned text. 

As the rate of total hearing loss is expected to rise in the 
coming decades and employment of interpreters begins to 
increase, the hiring prices of interpreters are also expected to 
rise, or a price market will form in turn. A personal free speech 
to ASL pose translator could succeed in hiring a real interpreter.  
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The layout of the paper is as follows: Section II gives a brief 
overview of related work. Section III outlines our proposal. 
Section IV describes our experimental setup and results. Section 
V provides our conclusions and potential future work. 

 

II. RELATED WORK 

In [3], Othman and Jemni implement the state-of-the-art 
text-to-ASL pose translator, utilizing an ASL Gloss translation 
intermediate step. Other researchers, such as Stoll [6], 
implement translating text to signed poses, also with an 
embedded text to gloss stage for performance speedup. 

Several other works explore sign language applications for 
smart glasses or AR. [1], [10], and [13] evaluate technology as 
a learning tool for sign language students. Other research, such 
as [14], performs sign language recognition using smart glasses 
cameras. There is much additional research in using computer 
vision or wearable devices to translate sign language to text, but 
this is outside of the scope of this paper. Our focus is on 
translating speech to ASL to develop an AR interpreter. 

 

III. PROPOSAL 

Our proposal is a Smart Glasses system that will translate 
speech to ASL poses, which will be displayed in an AR view. 
To this goal, a performance comparison between two speech-to-
ASL pose translations is done. To preface, a sign language gloss, 
here “ASL gloss,” is an abbreviation of text such that the 
remaining words each correlate to a sign language pose. For 
example, “of,” “the,” and other terms would be filtered out in 
the gloss translation process, as they do not map to a signed 
gesture. The first implementation we compare converts speech 
to text to ASL Gloss to ASL poses. The second implementation 
converts speech to text to ASL poses, skipping the ASL gloss 
step. The latter will have more cluttered input in handling ASL 
pose translation, while the former will experience speedup while 
reading information due to its shorter length. Thus, the first 
implementation's text-to-gloss translation should have a 
duration faster than the second’s text-to-pose translation. The 
system with the best performance will then be used for a Smart 
Glasses AR translation module, which will allow sign language 
users and learners to translate speech to ASL in everyday 
scenarios. 

IV. EXPERIMENTS 

Our experiment is a performance comparison between two 
implementations of speech to ASL pose translators, labeled 
implementations 1 and 2 for this paper. Implementation 1 
translates from audio to text to ASL Gloss to ASL poses. 
Implementation 2 translates from speech to text to ASL poses 
and skips ASL gloss generation. Our experiments show that 
using an English text-to-ASL gloss Natural Language 
Processing (NLP) learning model, specifically t5-small, speeds 
up text-to-ASL pose translation. Our proposal is a cumulative 
speech-to-ASL pose software package that employs the better 
implementation of implementations 1 and 2 listed above. 

 

A. Speech to Text and Gloss Modules 

Our first module is for speech to text. We used the state-of-
the-art speech-to-text software Speech Recognition and pyttsx3 
for generating text from speech input. In our project, we intend 
to pass the text as a parameter for interpreting the ASL gloss 
model in Implementation 1 and the ASL pose interpreter for 
Implementation 2.  

After generating text from the PyAudio speech-to-text 
translator, the text in Implementation 1 must be transformed into 
an ASL Gloss or a contextual abbreviation of the text. In 
selecting the best text-to-gloss transformer, we favored a high 
BLEU score to indicate high similarity between the model-
generated and reference texts [5] and a shorter duration average 
processing time in seconds per gloss. These two performance 
metrics are necessary for defining the model's latency and text 
accuracy. 

We first implemented an open-source pretrained text-to-
gloss transformer model from [7] to determine the best model 
for translating text to ASL Gloss. Yet, due to a low BLEU score 
and poor unimproved average time post-fine-tuning, we trained 
the same t5-small model from scratch. Post-fine-tuning, the new 
model yielded an improved BLEU score and average time per 
gloss. 

Thus, this section evaluates the performance of two t5-small 
models on a shared dataset. For simplicity, in this section, the 
open-source model provided by [7] is referred to as 'Model 1', 
and the t5-small model supplied by us is referred to as 'Model 2'. 

A concluding additional contribution to the proposal is a 
performance-improved finely tuned t5-small text-gloss model, 
or Model 2. 

HuggingFace's Synthetic English-ASL Gloss Parallel 
Corpus 2012 (ASLG_PC12) [2] was used for training both 
Model 1 [7] and Model 2. 

As mentioned, we first implemented Model 1 from [7]. This 
model is a fine-tuned version of the t5-small learning model for 
Text2Text Generation. White’s paper reports a loss of 0.5811 
using the Cross-Entropy Loss function [7], indicating a 
converging training process and thus improved responses. The 
reported BLEU score is 56.4281 [7], indicating average 
similarity to the target text. White confirmed the model's 
Generation Length or average number of tokens per generated 
text as 15.5526 [7]. The generation length is consistent 
throughout all trained t5-small models in the text-gloss 
experiment.  

We implemented extra fine-tuning for both models, and for 
training Model 2. After importing the ASLG_PC12 dataset from 
HuggingFace, the first step to data preprocessing is making all 
columns in the dataset lowercase, as all text samples matching 
in case make it easier for the model to detect and learn 
differences when processing the text. Thus, 
[english("adjournment of the session"), ASL 
Gloss(''ADJOURNMENT SESSION")] becomes 
[english("adjournment of the session"), ASL 
Gloss("adjournment session")].  

The 'batched' flag is also set to true as a data preprocessing 
step, which groups the data into batches of dictionaries 



containing fields: "input_ids" for numerically representing the 
tokens in the "labels" field, "attention_mask" for prioritizing 
learning performance of specific tokens, and "labels" for storing 
the target output text as a tokenized sequence. Moreover, it 
enables the data collator class to pad each element's token 
sequence for each batch dynamically. Dynamic Padding sets the 
length of every element in the batch to the size of the longest 
string. T5-small models process each example of data as a list of 
512 tokens. The first tokens in the list are the sequentially 
tokenized words, followed by null tokens as fillers to the 
maximum number of tokens. Since the reported average 
generation length of the dataset is 15.5526 [7], only 
approximately 16 tokens need to be evaluated. Thus, Dynamic 
Padding is employed as a data preprocessing step to speed up 
training and evaluation by efficiently using GPU resources.  

B. ASL Gloss Model Training 

After the aforementioned preprocessing for both Model 1 
and Model 2, the dataset undergoes tokenization and 
initialization with an instance of a Data Collator after getting 
converted to PyTorch format.  

For evaluating and comparing text-to-gloss models 1 and 2, 
we are using average generation time and their BLEU scores. 
We favor average generation time for determining translation 
stage duration, such as translating text to ASL Gloss. We use the 
BLEU Score to observe the similarity between the generated and 
target texts. After all data is processed, the total time is divided 
by the number of elements in the dataset, yielding the average 
generation time in seconds per ASL Gloss. A plotting of loss per 
epoch using the Cross-Entropy Loss function is obtained post-
training.  

 

Fig. 1. Comparison of BLEU scores by fine-tuning stage. 

This text-to-gloss portion of the paper explores the 
performance of trained t5-small models. It contributes a finely 
tuned text-to-gloss t5-small model or an open-source text-to-
gloss competitor alongside Model 1 and an optimized version of 
Model 1. 

Fig. 1 summarizes the performance results of the optimized 
Models' BLEU scores before and after fine-tuning. The BLEU 
score reported by the author for Model 1 was 56.4281, shown as 
the Junowhite Reported line on the plot. Our system observed a 
BLEU score of 18.4829 pre-fine-tuning and 66.5801 post-fine-
tuning. The contributed optimizations generated from this 
experiment raised Model 1's BLEU Score by 10.152 points, 
shown in Fig. 2. The BLEU score of Model 2 is 5.0671 pre-fine-
tuning and 66.5801 post-fine-tuning.  

 

Fig. 2. Comparison of average processing time by fine-tuning stage. 

Fig. 2 summarizes the performance results of the Models' 
average generation time in seconds per ASL Gloss before and 
after fine-tuning. The average generation time is relatively the 
same across both trained models and their pre- and post-fine-
tuning stages. Model 1 had an average generation time of 
1.823ms/gloss before and 1.838ms/gloss after fine-tuning. 
Model 2 had an average generation time of 7.952ms/gloss before 
and 1.825ms/gloss after fine-tuning. On both models, the 
average generation time in seconds per gloss slightly increased 
after fine-tuning as the BLEU score increased and thus reflected 
more similarity to the target. 

Fig. 3 plots the loss of the contributed, optimized version of 
Model 1 and Model 2 using the t5-small built-in Cross-Entropy-
Loss function. The models share similar convergence rates. 

In conclusion, our text-to-ASL Gloss findings and 
performance tests contribute an optimized version of a T5-small 
model for text-to-text generation. The additional preprocessing 
step of making each text lowercase improved the BLEU Score 
by approximately 10 points. The custom-trained t5-small model 
yielded a lower BLEU score than the pre-trained Junowhite 
model, yet both models resulted in the same BLEU score post-
fine-tuning. The average generation time was consistent across 
both models, before and after fine-tuning. Lastly, the plots of 
both models converge in sync to 0. The final contribution to our 
more significant research from this section is providing an 
improved open-source text-to-gloss model. 

 

Fig. 3. Loss over epochs for two T5-Small models. 

 



C. Text to ASL Pose Module 

“World-level Deep Sign Language Recognition from 

Video: A New Large-scale Dataset and Methods Comparison” 

(WLASL) provided an effective source from which to map 

gloss words to ASL gestures through videos [12]. The dataset 

includes about 64,000 ASL gesture videos with a file providing 

its corresponding URL, bounding box, frame rate, starting 

frame, ending frame, instance id, signer id, subset, source site, 

dialect variation id, and unique video identifier. Considering the 

large size of the dataset, we decided to focus on encoding the 

video URLs, so that it was not integral to download all of the 

videos. After collecting the data, we analyzed our set to 

determine steps for processing. 

 Processing the WLASL dataset for a recurrent neural 

network (RNN) model was twofold in that it required cleaning 

and encoding. Once the dataset was cleaned to better serve our 

needs while encoding the glosses and video URLs, we 

researched and selected new libraries to begin encoding our 

data. The URL and gloss data was then encoded into vector and 

numerical values in preparation for training. 

TABLE I.  KERAS VGG16 MODEL’S  VIDEO TO VECTOR ENCODING 

RATE 

Trials Average Video Encoding Rate (s/step) 

1 5.7 

2 8.39 

 

Table 1 describes the multiple trials involved in determining 

the efficiency of using Keras’ VGG16 model to encode video 

URLs into vector values in order to create a numerical array to 

feed into the RNN model. Descriptive statistics and terminal 

output were used to collect data in s/step and determine the 

mean value. 

D. Text to ASL Pose Model Training 

In order to map English to glosses to ASL gestures, we 

developed an RNN model to map the words to videos. We used 

Keras’ built-in RNN layers, specifically employing the 

Sequential model to process the integer encodings into 64-

dimensional vectors [7]. This model is usually evaluated using 

mean squared error.  

TABLE II.  TEXT TO ASL POSE MEAN SQUARED ERROR 

Test Set Size Mean Squared Error 

5 0.12 

15 0.09 

30 0.09 

50 0.05 

 

Table 2 highlights how the mean squared error decreased 

for larger test sets, indicating more accuracy in the RNN 

model’s prediction with larger sample sizes. The mean squared 

error for the RNN model was relatively low, considering that a 

0 mean squared error value indicates a perfect model. 

Additionally, it was promising to note that the mean squared 

error generally functions inversely with sample size, indicating 

that this model could work on even large amounts of input data. 

E. ASL Pose to Vuzix Blade Projection 

In this section, we present the tangible results obtained from 

our experiments, which focus on seamlessly translating 

American Sign Language (ASL) signs into immersive visual 

projections using Vuzix Blade augmented reality (AR) glasses. 

This innovative approach not only enhances the accessibility of 

ASL communication but also opens new possibilities for 

immersive language learning and communication experiences. 

Before the ASL signs from the WLASL dataset could be 

transformed into visually immersive projections, a series of 

preprocessing steps was performed to optimize the data. First, 

we converted the video data from the WLASL dataset into a 

format compatible with Vuzix Blade glasses, ensuring seamless 

playback. Real-time synchronization of video data with the 

Vuzix Blade's display frame rate was essential for seamless 

projection. The synchronization process minimized any 

perceivable delays between sign selection and projection 

display. We then identified the start and end points of individual 

ASL signs within the video streams. This segmentation allowed 

for precise projection of each sign. 

The final piece of our experiments lay in the pose-to-

projection mapping module, the first component of which is the 

video playback mechanism. Using the playback mechanism, 

ASL sign videos are able to be overlayed onto the user’s real-

world view. Finally, Augmented Reality Markup Language 

(ARML) was used to encode instructions on how and where to 

project the ASL videos. ARML allowed for precise placement 

and scaling of sign videos based on user interactions. 

V. CONCLUSIONS AND FUTURE WORK 

The proposal discussed in this paper compares two 

implementations of translating speech to ASL gestures, 

rendered in real-time, utilizing real-time latency and accuracy 

to assess performance. Both implementations used Speech 

Recognition and pyttsx3 for speech-to-text translation. In 

implementation 1, this was input into the t5-small-trained 

model to generate the ASL gloss. After, the text is translated 

into ASL poses using an RNN. 

 We tested the two implementations of speech-to-ASL 

pose translation methods. Implementation 1 including the ASL 

gloss intermediary step, and implementation 2 translating 

English text directly to ASL poses. Our findings show that 

implementation 1 outperformed implementation 2 in terms of 

speed and accuracy. We additionally tested two text-to-ASL 

translation models and found that our fine-tuning steps for the 

models improve the translation time in s/gloss and the model’s 

BLEU score. Using the better performing implementation and 

translation models, we also develop a method of displaying the 

ASL pose videos on AR glasses so that the translation can be 

viewed in real time. 

The future work for this proposal is fully testing the first 

implementation as a smart glasses application to determine the 

feasibility and usability of a seamless real-time interpreter via 

AR glasses. The future work concerning the speech-to-ASL 

pose translation problem is improving the text-to-ASL gloss 

learning model so that it can convert long text into 



grammatically correct and correlating ASL glosses for ASL 

pose generation.  
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