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Abstract—In this work, we present a novel approach to
enhance the robustness of autonomous robotic Radio Frequency
Identification (RFID) inventory systems using Conformal Predic-
tion (CP). Recent AI-driven approaches, especially deep-learning
models, have made significant advances in performing inventory
strategies and action planning. However, these models lack the
capability to measure uncertainty during the prediction process,
which can result in accumulated errors and lead to catastrophic
failures. To address the above challenge, we propose a confidence-
guaranteed policy using CP to ensure reliable predictions in RFID
inventory tasks. Our method focuses on managing the uncertainty
in sub-goal estimation for a trained model, ensuring that predic-
tions can meet or exceed a user-specific confidence level. We
conduct extensive experiments to assess the proposed method
by regulating an existing model and evaluate its effectiveness
in identifying uncertain predictions. The experimental results
demonstrate the effectiveness of our approach in improving both
the reliability and efficiency of RFID inventory tasks, ensuring
consistent and trustworthy operation.

Index Terms—Robustness, Conformal Prediction (CP), Radio-
frequency identification (RFID), Inventory.

I. INTRODUCTION

The Radio-frequency Identification (RFID) technology pro-
vides a low-cost and efficient solution for inventory man-
agement [1], [2]. It offers a touchless and non-line-of-sight
(Non-LoS) inventory to enable robots to automatically scan all
RFID-tagged items in a large space (e.g., warehouses, retail
stores) by navigating to cover the interest area [3]. While
previous work has successfully applied deep learning models
and robotic systems to automate RFID inventory tasks [4],
[5], they often face challenges in robustness to environmental
changes. These discrepancies increase the uncertainty of the
trained model and cumulatively lead to incorrect predictions,
resulting in inefficiencies and failed inventory tasks. An exam-
ple highlighted in [5] involves a robot colliding with a shelf
and leading to a failed task, a typical failure resulting from
accumulated uncertainties throughout the prediction process.

To address these challenges, we propose a confidence-
guaranteed policy for reliable prediction in RFID inven-
tory tasks, utilizing Conformal Prediction (CP) – a sta-
tistical method that quantifies and manages uncertainty in
real-time [6], [7]. Previous studies across various domains,
including natural language processing [8], indoor localiza-
tion [9], robot navigation [10], [11], have demonstrated the

Fig. 1. Traditional AI-driven Methods vs. Proposed Confidence-Guaranteed
RFID Inventory Policy: The figure’s upper part illustrates traditional methods’
limitations, where a lack of ability to detect uncertainty leads to specious
actions, resulting in catastrophic failures. The bottom part shows the proposed
confidence-guaranteed RFID inventory policy using Conformal Prediction,
which efficiently detects prediction uncertainty and offers well-calibrated,
confident predictions for conducting inventory tasks.

effectiveness of CP-based confidence methods. These studies
also employ uncertainty assessment metrics to evaluate model
performance. Building on this, we develop a confidence-
guaranteed RFID inventory policy that uses CP to detect uncer-
tainty in sub-goal predictions and enables proactive responses.
The sub-goal enables our method in various platforms without
being affected by the hardware of the platforms. Our approach
leverages a small set of calibration samples collected from
the specific environment and task conditions to provide well-
calibrated, confident sub-goals, ensuring the safe and effective
execution of RFID inventory tasks. When uncertainties are
detected, our method allows the robot to recover from un-
certain predictions and subsequently request assistance from
a human operator if repeated recovery attempts fail. Fig. 1
visually illustrates and compares our proposed method to
existing methods. This calibration-based method supports real-
time adjustments based on environmental uncertainties, user-
defined confidence levels, and an efficient recovery process,
helping address trust gaps and maintain operational safety [12].
Furthermore, we introduce several quantification metrics to
evaluate the proposed method and the uncertain performance
of the trained model. The major contributions of this work are
summarised as follows:

• This work proposes a confidence-guaranteed RFID in-



ventory policy by incorporating CP into a trained model,
enhancing the model’s robustness.

• We introduce the self-recovery action under model uncer-
tainties to allow the robot to proactively collect additional
information from environments or human users to gain a
confident prediction. It enables the robot to smoothly and
safely handle uncertain conditions during the deployment.

• Our method is based on calibration and task agnostic,
making it more user-friendly in deployments. It creates a
promising paradigm for robot deployment by collecting a
small sample set from end users to ensure robots behave
robustly in new environments.

• The proposed metrics evaluate an existing model’s per-
formance in terms of uncertainty, providing a solid tool
for unveiling its internal robustness in specific scenarios
that will help in future training.

The remainder of this paper is organized as follows: Section II
outlines the problem statement and the objectives of this work.
Section III provides a detailed explanation of the methods.
Section IV-A describes the experimental setup, results, and
analysis. Finally, the conclusions are presented in V.

II. PROBLEM STATEMENT

This work focuses on a robotic autonomous RFID inventory
task T , where a robot navigates in an unknown environment E
to scan all RFID tags. The task will be broken down to visit a
sequence of sub-goals and defined as T = {g0, . . . , gn}, with
gt is a sub-goal and n is the number of steps to complete
the task. While the robot reaches a given sub-goal gt→1, the
next sub-goal will be predicted by a policy: gt = ω(st).
Here, st = (ot, {gi}t→1

i=t→T→1) denotes the state at step t,
which comprises T of historical sub-goals {gi}t→1

i=t→T→1 and
the current observation ot collected from environment E . In
this work, the robot perceives E , and the collected raw data
is processed by a pre-processing module introduced in [5] to
produce the observation ot. Then, a local planner will move
the robot from gt→1 to gt, using the built-in reader to scan
RFID tags. Our ultimate goal in this project is to scan all
RFID tags with an optimized route. For any given state st,
it has and only has one ground truth sub-goal ĝt that will
navigate the robot in this optimized route. Several methods [5],
[13] attempt to address this issue by learning the policy ω

and gaining good results in laboratory environments, but their
performance degrades dramatically in deployments. Usually,
the discrepancies between the deployment and training sce-
narios impose uncertainties to the trained policy, and the lack
of ability to consider those uncertainties is the main reason for
the performance degrades. To solve this robustness problem,
we will achieve two goals in this work:

a) Goal 1. Develop a Confidence Guaranteed RFID
Inventory Policy: To enhance the robustness of the RFID
inventory task, we aim to develop a confidence guaranteed
policy ωω that ensures the robot can always navigate to the
ground truth sub-goal ĝt as each step within an acceptable
confidence margin. We formulate this goal as follows:

P
[
ĝt → ωω(st)

]
↑ (1↓ ε), ↔ st → T (1)

where ε → (0, 1) is a user-specified error tolerance level,
P denotes the probability. When satisfied, it guarantees that
policy ωω can predict the ground truth ĝt with 1↓ε confidence.

b) Goal 2. Quantify uncertainty: While the E changes,
it will result in a higher uncertainty for the policy. In this
work, we aim to evaluate the uncertainty in our proposed ωω

at any given step t by formulating the uncertainty function U
as follows:

U
(
ωω(st)

)
=

{
1, NO uncertainty detected
0, Uncertain

(2)

this function indicates that the prediction result of ωω is
considered “certain” when U = 1. It enables the robot to
be aware of its uncertainty in sub-goal prediction to avoid
potential errors.

III. PROPOSED METHOD

This work introduces the confidence-guaranteed RFID in-
ventory policy, ωa, a calibration-based method for regulating
a well-trained model to new dynamic environments during
deployment. This method enables the robot to measure its
uncertainty in sub-goal prediction and ensure its action failure
is consistently lower than the user-defined tolerance level, ε,
under different environments. In other words, it guarantees
a success rate greater than the confidence level 1 ↓ ε. We
illustrate its architecture in Fig. 2: a well-trained model M
will predict a goal probability map ht at each step based on
the state, a grid probability map h

g

t
is then constructed from

ht, and then feed to the CP. The CP will generate a conformal
prediction set to detect the uncertainty and predict the ground
truth sub-goal ĝt.

A. Policy model
Inspired by our previous work [5], we deploy a method

to allow the robot to learn a model M : st ↗ f(st) = ht
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Fig. 2. The proposed confidence-guaranteed RFID inventory policy utilizes
a small calibration set from the representative samples to detect sub-goal
prediction uncertainties and act correspondingly. CP rigorously guarantees that
(1→ω) of the predicted sub-goals will be correct when without uncertainties
detected. While uncertainties are detected, self-recovery actions will be offered
to gain additional observations or ask for help from human users.



by giving “expert” samples {(s0, g0), . . . , (sm, gm)|E}. Here,
ht → RH↑W is the goal probability map with a width of W ,
and height of H , an example of ht is given in Fig. 2. Each
pixel in ht corresponds to a location in the environment E ,
with its value representing the model’s empirical confidence.
Considering the environmental noise and hardware defect, a
sub-goal gt is defined as a navigational cycle zone in ht with
noise level derr as the radius. A robot arrives at gt when it
stops inside any place inside this zone. To settle this inherent
noise, we apply a sum-pooling approach to process the ht to
generate a grid probability map h

g

t
: [0, 1]Hg↑Wg , defined as:

h
g

t
[x, y] = Softmax

( (x+1)·sh∑

i=x·sh

(y+1)·sw∑

j=y·sw

ht[i, j]

)
(3)

where x, y is the coordinate of the hg

t
, sh, sw is the stride of the

pooling window, and h
g

t
is normalized with Softmax function

to value range from 0 to 1. The stride is chosen when the width
or height of the ht is divisible by the corresponding stride. It
is a trade-off between navigation resolution and computational
performance; a higher stride will have better computational
performance but a lower navigation resolution. To achieve the
best balance, usually, the stride should be in the range of
derr/2 to derr based on empirical results. An example of this
h
g

t
is shown in the top right corner of Fig. 2. Thus, a sub-goal

gt will correspond to a specific position (x, y) in this grip map
and can be defined as:

gt = (x, y), (4)

it coordinates with an empirical confidence value h
g

t
(x, y).

Our previous experiment and initial investigations found that
the empirical confidence may not be aligned with correctness:
sometimes, the ground truth sub-goal ĝt may not be the one
with the highest value, especially when the test environment
differs from the training environment.

B. Conformal Prediction based sub-goal prediction

To satisfy our goal (1), we employ CP to guarantee the
confidence level of the model’s prediction results. CP is a
statistical method that converts any model’s empirical confer-
ence value to a statistic rigorously guaranteed assurance [14],
[15]. It utilizes a calibration set Ccal consisting of a small
number of representative samples comprising the observations
and correlated ground truth predictions for a given task in
a specific environment. It regulates the model to ensure its
output satisfies the given confidence level by calibrating the
empirical conference value. More importantly, this rigorously
guaranteed conformal prediction set Cω

t
can be produced at

each step t to ensure it comprises the ground truth prediction
with at least (1- ε) confidence.

By deploying CP, we introduce a new robotic deployment
paradigm. When a robot is deployed in a new environment
for our RFID inventory task, end users first collect a small
set of state samples Ctask = {s0, . . . , sn}. Then, end users

will select the ground truth sub-goal ĝt for each st to form a
calibration sample pair (st, ĝt) and construct the Ccal as:

Ccal = {(s0, ĝ0), . . . , (sn, ĝn)}, st → Ctask (5)

This Ccal provides end users’ specific expectations at the task
context in this given environment. With the Ccal, we will take
several steps to calibrate any new prediction and ensure it is
an optimized sub-goal with at least (1- ε) probability.

Step 1. to calculate the conformal quantile. We start by
calculating the empirical confidence value for each sample
in Ccal and form the empirical confidence value set Cucv =
{1 ↓ h

g

t
(ĝi)}ni=1. Here, h

g

t
(ĝi) is the empirical confidence

value for the ground truth sub-goal ĝi at i-th sample. Our grid
probability map h

g

t
at the position of ĝi provides this empirical

confidence value. With an user-specified error tolerance level
ε, we have q = (n+1)(1↓ε)/n to get the conformal quantile
q̂ of Ccal as:

q̂ = Q(Cucv, ↘q≃) (6)

where Q is the quantile function, ↘·≃ is the ceil function.
Step2. Now with the q̂, we can calculate the conformal

prediction set Cω

t
for a new state st ⇐ Ccal. Given the new state

st, our model M produces the grid probability map h
g

t
that

offers candidate sub-goals and related empirical confidence
value. Based on h

g

t
, we can get the conformal prediction set

Cω

t
as follows:

Cω

t
= {gt|hg

t
(x, y) ⇒ q̂}Hg,Wg

x=1,y=1 (7)

Where gt is defined in (4). Therefore, the proposed conformal
prediction based sub-goal prediction ωω can be defined as:

ωω(st) = Cω

t
, ↔st ⇐ Ccal (8)

Based on the CP’s statistical guarantee, we can satisfy our
goal (1) with an additional constraint that the new state st

should have a similar distribution with calibration set Ccal.
C. Uncertainty Quantification & Self-recovery Actions

a) Uncertainty Quantification: Based on equation (8),
the ωω guarantees to produce a prediction set Cω

t
comprised

of the ground truth subgoal within the given confidence level.
From this Cω

t
, we can quantify its prediction uncertainty at

step t via analyzing the number of equivalent sub-goals. We
formalize uncertainty quantification as follows:

Uω

(
ωω(st)

)
= I

[∣∣Cl(Cω

t
, derr)

∣∣ = 1

]
, (9)

where | · | denotes the cardinality of the set, Cl is a clustering
function that measures the distances between candidate sub-
goals in Cω

t
and groups those with distances less than derr

into an equivalent sub-goal, and the indicator function I = 1
when only a single equivalent sub-goal is produced. The
distance is the Euclidean distance measured in the units of
the environment (such as meters). Thus, Uω = 1 indicates
the prediction is certain because all elements in Cω

t
are in

proximity within the noise level derr; in other words, as
previously stated, all these elements represent the equivalent
ground truth sub-goal ĝt. Otherwise, we will have Uω = 0
indicates the policy is uncertain about the prediction result.



b) Self-recovery Action: By using the equations (8)
and (9), we provide a way to detect task uncertainty, and the
robot confidently performs the task when it provides a certain
sub-goal. However, we still need a strategy to handle and
respond to the uncertainties. To this end, we define and develop
the self-recovery action At to allow the robot to recover from
the uncertainties. Usually, At is a tasking-dependent strategy
that needs the knowledge and context of a given task and
environment. In our RFID inventory task, At will be deployed
as a simple navigational strategy that allows the robot to move
around the current position within a limited safe zone. This
strategy empowers the robot to gather more environmental
information, thereby making a certain prediction. We allow
at most mrec self-recovery attempts during the inventory task.
If the model is still not able to predict a certain prediction, the
robot will proactively ask the human user for help. Therefore,
we complete our final confidence-guaranteed RFID inven-
tory policy ωω with uncertainty quantification ability and self-
recovery, and it is defined as follows:

gt = ωω(st) =

{
Cl(Cω

t
, derr), when Uω = 1

At, otherwise
(10)

The ωω will output a specific sub-goal gt while it is certain
about the current prediction. Otherwise, it will produce the
recovery action At. Here, the probability of the gt is an
equivalent sub-goal of the ground truth ĝt is at least (1↓ ε).

D. Evaluation Metrics
Inspired by previous work [9], we proposed 3 metrics to

quantify the uncertainty performance of a trained model M.
Given a evaluate set Ceval = {(s0, ĝ0), . . . , (sn, ĝn)}, the
Average Sub-goal Prediction set Size (ASP) is defined as:

ASPω(Ceval) =
1

n

n∑

i=1

∣∣ωω(si)
∣∣, ↔si → Ceval (11)

This metric represents the uncertain degree of the well-trained
model M for the task; a large ASPω denotes its lack of confi-
dence. Then, we define the Uncertainty Detection Percentage
(UDP) to describe the ratio of uncertain predictions:

UDPω(Ceval) =
1

n

n∑

i=1

Uω

(
ωω(si)

)
, ↔si → Ceval (12)

UDPω represents the overall confidence prediction ratio at
the evaluation set; therefore, a UDPω closer to 1 denotes that
the model is more certain about the task. The Conformal Pre-
diction Accuracy (CPA) represents the accuracy of conformal
prediction, defined as:

CPAω =

∑
n

i=1 I
[
D(ωω(si), ĝi) < derr

]
∑

n

i=1 I
[
Uω = 1

] , ↔si → Ceval (13)

where D is the Euclidean distance function; as previously men-
tioned, a prediction gt = ωω(st) is considered correct if it is
within a distance derr of the ground truth ĝt. CPAω is defined
as the rate of correct predictions among all certain predictions;
thus, a CPAω closer to 1 denotes that the proposed CP-based

Fig. 3. An example of the virtual experimental environment: (a). It is a virtual
indoor apparel store with a size of 5m ↑ 5m = 25m2, and 5 shelves are
placed randomly in the room. (b). A zoom-in of the virtual robot that equipped
a 2D Lidar and simulated RFID reader as main sensors.

method effectively produces correct results in these certain
predictions.

IV. EXPERIMENTAL STUDY

A. Experiment Setup
In this section, we introduce the experimental environment

and configurations for the proposed confidence-guaranteed
RFID inventory policy ωω. We employed a well-trained model
M similar to our prior work, which has sufficient capability
to complete the autonomous RFID inventory task even in
complex environments. For all experiments, we deployed
a Unity3D-based digital-twin virtual environment proposed
in [5] and adapted the new scenario in which the robot is asked
to conduct an RFID inventory task in a novel environment that
is not included in the training dataset. It was an indoor apparel
store comprised of 5 shelves of 3 types, randomly placed in
this 5m ⇑ 5m = 25m2 room to create novel scenarios. We
show an example of this virtual store in Fig. 3.a. As shown in
Fig. 3.b, a virtual mobile robot was deployed in this store for
inventory tasks. It is a virtual replica of an Interbotix X-Series
LoCoBot Base robot, which is equipped with a 2D Lidar and
a simulated RFID reader.

In this virtual environment, the navigational noise level
derr = 0.3 meters, which was calculated based on the naviga-
tion local planner precision and the localization accuracy of the
virtual environment. The resolution of the goal probability map
ht was 0.05 meter per pixel. In our setup, all pixels in ht were
uniquely matched with the locations in the environment. To
balance navigation resolution and computational performance,
we chose a pooling window stride of sh = 8, sw = 8, resulting
in a grid probability map h

g

t
with the size of 32 ⇑ 32. Each

grid in h
g

t
was equal to an area with a length of 0.4 meters.

Thus, a navigational cycle zone with derr = 0.3 meters can
be approximated as an area of 2⇑2 grids. For the confidence-
guaranteed RFID inventory experiment, we set the maximum
self-recovery attempts mrec = 3. When the policy failed
to yield a certain conformal prediction after the maximum
attempts, an alert was sent to the user, and the user was
asked to select the next sub-goal from the conformal prediction
results. An episode was completed when the robot scanned all
RFID tags in the room or reached the maximum step limit.



TABLE I
UNCERTAINTY QUANTIFICATION RESULTS

Error Tolerance Level ω ASPω UDPω CPAω

0.10 444.59 0.186 0.967
0.15 348.99 0.262 0.956
0.20 274.87 0.315 0.948
0.25 207.92 0.361 0.930
0.30 111.07 0.434 0.899

B. Experiment Result and Analysis
a) Uncertainty Quantification: We first evaluated the

uncertainty performance of the trained model M by analyzing
the CP results of multiple task episodes. First, we conducted
15 episodes to collect and construct the calibration set Ccal
with 368 samples that included state st and manually given
ground truth sub-goal ĝt. Then, we used Ccal in our pro-
posed confidence-guaranteed policy ωω to conduct other 135
episodes to collect 3287 samples, which formed the evaluation
set Ceval. We also manually selected the true sub-goals for
each sample in Ceval, then compared the results from ωω.
Based on this Ceval, we calculated all the uncertainty quan-
tification metrics defined in equations (11), (12), and (13).
The experimental results are presented in Table. I.

The metric ASPω offers an overall indicator of the un-
certainties for M in step level. A higher value of ASPω

represents the model is more uncertain about its predictions,
which is also affected by the user-defined error tolerance level
ε. Table. I tells a linearly decrease as ε increases because
when the users can tolerance more errors, the ωω utilizes a
loose constraint that allows making more certain predictions
with a higher risk of excluding the ground truth sub-goal in
the predicted set, which is proofed by the decreasing CPAω.
UDPω offers a tool to indicate the model M’s uncertainty
in the task level under the current environmental scenarios.
A higher UDPω indicates the model is more overall certain
for the task. Table. I also shows the linearly increasing as the
ε increases, indicating that the model is more certain about
the task under higher error tolerance. Experiment results show
that by introducing the user-specific error tolerance ε, the
proposed ωω offers an effective method to allow users to adjust
the model’s confidence level to align with their expectations.
With the statistical results of ASPω and UDPω, although our
current model M can successfully execute the autonomous
RFID inventory task at a very high scan percentage, without
the regulation from our ωω its ability to handle uncertainty
is limited that may accumulate leads to catastrophic failures.
Additionally, the metric CPAω shows the correctness ratio
in certain predictions, and our ωω rigorously guarantees that
certain predictions can offer a correctness rate that reaches
or exceeds (1-ε). The results in Table. I proved that our
proposed ωω achieved this goal to empower robots to safely
and confidently conduct RFID tasks in novel environments and
can significantly reduce the risk of failures.

b) Insights of Uncertainty Identification: In this exper-
iment, we dived into the details of uncertainty detection by

Fig. 4. An example of insights into certainties detection. Both figures are
in the same step t = 13; the green dot represents the optimal sub-goal, the
yellow dot represents the predicted sub-goal, and the orange dot denotes the
start point. (a) A close look at the wrong prediction made by only the M in
the simulation environment with trajectory, (b) The map with CP prediction
set Cω

t from εω, each candidate sub-goals are shown as red rectangles.

comparing the behavior between the proposed confidence-
guaranteed policy ωω and only the model M through con-
ducting multiple RFID inventory tasks by them separately.
We explored and discussed the behavior of both policies in
uncertain prediction situations and analyzed how ωω regu-
lated the behavior of the model M in episode-to-episode
comparison to provide insights into the possible reasons that
caused those behaviors through the intermediate result in the
conformal prediction set Cω

t
. Fig. 4.a demonstrates a situation

when M predicts a sub-optimal sub-goal. The figure shows
that the model can navigate from the initial position down
along half of the circle shelf. However, it predicts a sub-goal
that has already been navigated, represented with a yellow dot,
instead of the optimal sub-goal, represented by a green dot.
Fig. 4.b shows the conformal prediction result: the conformal
prediction set in this position contains multiple candidate sub-
goals, and we notice that this set also includes the optimal sub-
goal. However, the ωω shows a higher uncertainty at this step,
which outputs several candidate sub-goals over all racks. In
contrast, Fig. 5 shows the behavior from ωω when it is certain
about the prediction at other steps. Here, only one candidate
sub-goal is also near our target scan rack. As we can see, ωω

is more certain about navigating this type of shelf that only
outputs a single sub-goal candidate, which indicates the M
was better trained under this scenario.

Fig. 5. Two sequential certain predictions provided by the proposed
confidence-guaranteed policy εω at steps t = 16 and t = 17.



TABLE II
UNCERTAINTY QUANTIFICATION RESULTS

Policy Scanned Percentage Average Travel Distance

M 0.980 124.23
εω 0.951 91.08

c) Confidence Guaranteed RFID inventory: This exper-
iment evaluated the effectiveness of the proposed confidence-
guaranteed policy ωa in the inventory tasks regarding RFID
tag scanning. We ran e = 25 episodes of autonomous RFID
inventory task that covers all possible shelf distributions for
environment E . Each environment was deployed with 288
RFID tags that were randomly placed on each rack. We
evaluated its RFID inventory performance by comparing it
with only the M and compared their results in Table II. We
used the criteria in [5] to assess the robotic inventory task by
the RFID tag scanned percentage and average travel distance
for all episodes. An effective and efficient policy should offer a
higher scanned percentage with short travel distances. Table II
shows that the proposed ωω significantly reduces the average
travel distance while maintaining the scanned percentage at
the same level as the well-trained model M, revealing the
proposed policy’s effectiveness. This experiment also unveiled
the effectiveness of the proposed self-recovery action At in
accomplishing the inventory task under uncertainties. Fig. 6
shows an episode of a completed confidence-guaranteed RFID
inventory task while the robot adopted three recovery actions.
In this episode, ωω demonstrated very high certainty when
navigating a close shelf, but when it finished the shelf and
was ready to transit, uncertainties arose. These uncertainties
in the M might guide the robot randomly transited among
racks, causing excessive time consumption; our proposed ωω

identified them and proactively adopted At. Then, the self-
recovery action At enabled the robot to handle these uncer-
tainties appropriately. Furthermore, this phenomenon indicates
that the model M was poorly performed in transition scenarios
and offers great clues to help in raining processes, such as
providing more related training data.

Fig. 6. An example of a confidence-guaranteed inventory task, the red
cycles indicate the recovery actions raised and help accomplish the task under
uncertainties detected.

V. CONCLUSION

This paper introduces a confidence-guaranteed RFID in-
ventory management policy using Conformal Prediction (CP).

The approach enhances the robustness of AI-driven robotic
inventory systems by filtering out uncertain predictions and
only allowing confident actions, improving task reliability and
performance. Additionally, the proposed policy will proac-
tively adopt self-recovery actions to handle the detected un-
certainties and accomplish the inventory task with robust
strategies. The evaluation metrics provide a systematic tool for
assessing prediction uncertainty in any AI model. Extensive
experiments confirm the method’s effectiveness in managing
uncertainties in dynamic environments. Future work will focus
on integrating CP into training to improve performance in
novel scenarios, such as for transitions between racks.
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