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Abstract

The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural
and functional aspects of the brain, encompassing the ramifications of diseases and developmental
processes. However, prevailing methodologies, often focusing on synchronous BOLD signals
from functional MRI (fMRI), may not capture directional influences among brain regions and
rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective
network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning
framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates
specifically designed directed node embedding layers, aiming at capturing the dynamic inter-play
between structural and effective networks via an ordinary differential equation (ODE) model,
which characterizes spatial-temporal brain dynamics. Our framework is validated on several
clinical phenotype prediction tasks using two independent publicly available datasets (HCP and
OASIS). The experimental results clearly demonstrate the advantages of our model compared to
several state-of-the-art methods.
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1 Introduction

Neuroimaging techniques, such as Magnetic Resonance Imaging (MRI), have significantly
advanced our understanding of the brain by providing a non-invasive way to explore its
anatomical structures and functions. Recent advances in network science have allowed for
the analysis of MRI-derived brain networks, revealing new biomarkers for diseases such as
Alzheimer’s and enabling the study of complex neural interactions across different brain
regions [3].

Different MRI techniques reveal diverse aspects of brain organization and dynamics. For
example, diffusion MRI (dMRI) maps white matter connections by tracking water molecule
diffusion, showing how brain regions are structurally linked. Functional MRI (fMRI), on
the other hand, utilizes blood-oxygen level-dependent (BOLD) signals to monitor brain
activity, offering insights into functional brain dynamics. Recent research utilizing fMRI
BOLD signals to delineate functional brain networks has made significant strides in
identifying patterns of connectivity through temporal correlations (e.g., Pearson correlation)
across different brain regions. These studies highlight the utility of fMRI in mapping the
intricate web of neural interactions, presenting the brain’s complex connectivity patterns
[20]. However, traditional methods primarily focus on synchronous BOLD signals, which
may overlook the nuanced directional influences (e.g., causality) between brain regions
over time. To capture the directional influences among brain regions, we employ Dynamic
Causal Modeling (DCM) [5,10] with time-lagged BOLD signals to construct temporal
effective connectivity networks. The temporal effective networks represent the dynamic
causal relationships where the activity of one brain region influences another over time.

In recent years, Graph Neural Networks (GNNs) [13] have become increasingly prominent
in brain network studies, showing significant advancements in mining brain structural and
functional networks [24]. Despite this progress, a scarcity of graph learning methods is
designed for dynamic effective network learning [4]. The dynamic effective brain networks
are a series of time-evolving directed graphs, which may present two challenges when we
build up GNNs on these networks. First, existing GNNs focused on embedding nodes in
undirected graphs, which may not effectively handle directed graph embeddings. Effective
brain networks feature pairs of brain regions connected by directed edges with different
weights, where the edge direction and weight represent the causal sequence and its
magnitude, respectively. To address this, we propose a directed graph encoder specifically
designed for capturing these causal sequences in brain node embedding. Furthermore, the
dynamic effective brain network consists of temporal sequences of brain graphs, with
changing connectivity over time. Thus, current GNNs need to be adapted to capture both
spatial and temporal dynamics of the brain. Recent efforts in dynamic graph learning
include approaches such as recurrent graph neural network [6], graph temporal attention
network [15], and graph transformer [29]. In this study, we tackle the brain spatial-temporal
dynamics with an ordinary differential equation (ODE) model. Particularly, we introduce

a graph learning framework, Spatio-Temporal Embedding ODE (STE-ODE), designed to
simultaneously solve an Ordinary Differential Equation (ODE) and embed brain networks,
capturing both their structural and functional properties. The framework’s unique approach
ensures that the training process yields brain network embeddings that are, in essence,
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solutions to the ODE, thereby intertwining the learning model with the ODE resolution.
These embedded graph representations are then leveraged for different clinical predictions,
such as brain disease classifications. Beyond prediction tasks, our study aims to identify
most significant connectomes related to various clinical phenotypes and neurodegenerative
diseases, tracking their changes over time for different tasks. To this end, we develop an
interpretable toolkit within our directed node embedding layer. This toolkit focuses on
pinpointing the top K edges with significant temporal changes, marking them as potential
biomarkers for distinct phenotypes. This method directly connects dynamic brain network
changes to specific biological traits, enhancing our comprehension of the mechanisms

tied to different phenotypes. Our contributions can be summarized as follows. (1) We
design a directed graph embedding layer tailored for encoding effective network under

the constrains of its structural counterpart. (2) We present a learning framework with the
directed graph embedding layer, referred to as STE-ODE, which captures temporal effective
network representations by solving an ordinary differential equation that models the brain
spatial-temporal dynamics. (3) We develop a toolkit to enhance the interpretability of our
framework, which enables the identification of the most significant connectome changes,
marking them as potential biomarkers for different clinical phenotypes.

2 Methodology

We first introduce our method for constructing directed effective networks through the
dynamic causal model (DCM). Additionally, we propose our interpretable directed graph
node embedding layer, which is tailored to encode both directed effective networks and
their structural counterparts. Subsequently, we detail our comprehensive spatio-temporal
framework with the directed graph embedding layer for downstream tasks. This framework
involves solving an ordinary differential equation that captures the spatial-temporal
dynamics of the brain.

2.1 Preliminaries
A brain network is a weighted graph G = {V, E} = (4, X) with N nodes, where V = {v;}/, is
the set of graph nodes representing brain regions, and E = {e, ;} is the edge set. X € RN X ¢ s
the node feature matrix where x, € R' X ¢ is the i — th row of X representing the node feature
(dim=c)ofuv. A€ RN XN is the adjacency matrix where a, ; € R represents the weights of
the edge between v, and v,. A brain structural network, denoted as G°, is an undirected graph,
where ¢;; = ¢;,; > 0. In stead, a brain effective network, denoted as el , is a directed graph,
where ¢/; # e/, € R. The sign of ¢/, indicates the causal sequence between v, and v;, where
e/, > 0 signifies the causal effect on v, induced by v, vice versa. Additionally, we denote the
blood-oxygen-level-dependent (BOLD) signal (with b signal points) obtained from fMRI as

Be RNVX*b

2.2 Construction of Brain Effective Network

We employ fMRI BOLD signals to construct brain effective networks using the dynamic
causal modeling (DCM) approach [17,21]. Each brain region serves as a graph node
embedded within the brain effective network, while the temporal dynamic effective
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connectivity comprises the edge set. Given the fMRI BOLD signals, the dynamic adjacency
matrix 47 (1) can be modeled as follows:

dB(t)

— = aAT (1) B() + Cu(r)

M

Cu(t) represents the term governing the influence of external neuronal inputs u(r) on the

dynamics of AS . In this work, Cu(r) = 0 as we concentrate on resting-state fMRI studies.
The parameter « serves as a constant regulating the neuronal lag among brain nodes.
Consequently, we can derive the expression of A7 as follows:

1 dB(t)

S =
AT = aB(t) dt

@

We construct the effective connectivity by deriving the discrete expression of the Eq. (2):

I _Be+1)—-B@® _ l(B(t+ D

Fon —
A(t)_aB(t) t+1—1t a® B()

D
©)
We define the connectivity between brain node v/ and v/ at timepoint ¢ as follows, with
1
p= €01l

fon e Bt+1)
AL = B = D

“

where B, is the BOLD signal of v,. The process of constructing brain effective networks is
illustrated in Fig. 1(a).

Interpretable Structural-Effective Network Embedding

Given a directed effective network G/ = (Af , X f ), we first perform asymmetric Laplacian
normalization on its adjacency matrix. The normalized adjacency matrix can be represented
as:

- Lo
il =p2afpz

in out ’

(&)

where D, and D,, are in-degree and out-degree of the adjacency matrix, respectively. Then,
our node embedding layer for the structural-effective network can be formulated as a
function F:
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Z =7, 3 x w0
=otvo Ao il +a - i’ Tix wy,

(©)

where A° represents the Laplacian-normalized adjacency matrix of the brain structural
network [13]. The brain structural network serves as spatial information to constrain the
temporal function dynamics, under the assumption that two brain regions are functionally
interconnected as long as they are structurally connected [22]. o( - ) is a nonlinear activation
function, such as ReLU. A € [0, 1] is a parameter that balances the information flow into
and out of each brain node. W represents trainable parameters for brain node embedding.

y € RV XN are trainable parameters used for model interpretability, enabling edge weights
to adapt themselves for different prediction targets. During the model validation stage,

we utilize self-adapted edge weights to track the most important connectomes for various
prediction tasks. The brain node embedding layer is depicted in Fig. 1(b).

2.4 Spatio-Temporal Embedding with ODE

Given a series of temporal effective networks (i.e., el @), t € [0,T1]), their dynamic
embeddings can be modeled using the following ordinary differential equation:

FoGT 1+ An,0) = 7,67 1), 0) + / 6 0.0,

)

where @ is the parameter sets (i.e., @ = {W,y, 4}) of the embedding function. We can
approximate the Eq. 7 into the discrete expression with our proposed node embedding layer
(see Eq. 6) as:

Zit+ 1) =Z0) +0GA° 0 DA G+ )+ (= A e+ Dixe + Hw).
(3)

We unfold the temporal brain network embedding into an residual graph learning
framework. In this framework, each embedding layer processes the dynamic effective

network at G/(r + 1), while the previous dynamic network embedding (i.e., Z(1)) is treated as

a residual term.

2.5 STE-ODE Framework for Brain Network Predictions

The proposed STE-ODE framework, incorporating the spatio-temporal embedding model,
is depicted in Fig. 1(c). Assuming we have obtained the last node embedding (i.e., Z(T)),

we employ an average global pooling layer (Z; = %2” " | Z(T)) to extract the entire graph

representation. Subsequently, a fully connected neural network (such as a Multilayer
Perceptron or MLP) is employed to generate the final classification or regression output

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 October 27.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Tang et al. Page 6

(i.e., y = MLP(Z)). For the classification task, we utilize the negative log likelihood loss
function, where & = NLL_Loss(3, y). For the regression task, we use the L, loss function,

where & = L,Loss(3, y).

3 Experiments

3.1 Dataset Description and Preprocessing

Two publicly available datasets were used to evaluate our framework. The first includes data
from 1206 young healthy subjects (mean age 28.19 + 7.15, 657 women) from the Human
Connectome Project [25] (HCP). The second includes 1326 subjects (mean age = 70.42

+ 8.95, 738 women) from the Open Access Series of Imaging Studies (OASIS) dataset

[14]. Details of each dataset can be found on their official websites. The preprocessing of
functional BOLD signals and the reconstruction of structural networks were conducted using
CONN [26] and FSL Probtrackx [12], respectively. For the HCP data, both structural and
effective networks have a dimension of 82 x 82 based on 82 ROIs defined using FreeSurfer
(V6.0) [9]. For the OASIS data, both networks have a dimension of 132 x 132 based on the
Harvard-Oxford Atlas and AAL Atlas. This intentional variation in network resolutions for
the HCP and OASIS datasets served to examine whether the dimension of the network or the
choice of atlas influences the efficacy of our newly developed framework.

3.2 Implementation Details and Experimental Setup

Implementation Details.—We divided the BOLD signal B into T = 5 time segments
and calculated the mean value of the points within each segment to construct 4 effective
networks. The edge weights of both the effective networks and structural networks were
normalized to the intervals [—1, 1] and [0, 1], respectively. Node features were initialized
by sampling from a standard Gaussian distribution with feature dimensions set to 16.
Each dataset was randomly partitioned into 5 disjoint sets for 5-fold cross-validation in
subsequent experiments. The Adam optimizer was utilized to train the model with a batch

current epoch )0'9. We
max epoch

size of 128. The initial learning rate was set to 0.001 and decayed by (1 —
also regularized the training with an L, weight decay of 1e~>. We terminated training if the
validation loss fails to improve for 100 epochs, following the epoch termination condition
outlined in [19], with a maximum of 500 epochs. All experiments were conducted on 1x

NVIDIA A100 GPU.

Experimental Setup.—We compared our approach against 6 baseline methods, including
3 static models (SVM [23], GCN [13] with global pooling, and DiffPool [28]), and 3
dynamic brain network embedding methods (LSTM [8], ST-GCN [11], and FE-STGNN
[4]). The g parameter is set to 0.5 for all experiments. We conducted a search for optimal

A parameter within the range of [0.1, 0.3, 0.5, 0.7, 0.9] (refer to Supplementary for details).
The resulting values were 4 = 0.3 for HCP and 4 = 0.5 for OASIS.

3.3 Brain Network Predictions

Classification Tasks.—e¢4 allele is a strong risk factor for the Alzheimers’ Disease
(AD) [18]. Table 1 presents classification results for gender on HCP, as well as for AD
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and 4 on OASIS. It shows that our model achieves the highest accuracy across all tasks
compared to other methods. Meanwhile, the comparison between results obtained with and
without structural connectivity (SC) demonstrates the importance of anatomical (or spatial)
constraints on effective network representation learning. Furthermore, the dynamic methods
consistently outperform the static methods, indicating their efficacy in brain network
analysis by capturing brain dynamics.

Regression Tasks.—The Mini-Mental State Exam (MMSE [2]) serves as a quantitative
assessment tool for cognitive status in adults. The Diagnostic and Statistical Manual of
Mental Disorders (DSM [1]) offers a comprehensive measure system for mental disorders
utilized by mental health professionals worldwide. Within the DSM system, DSM-Depr
and DSM-Antis gauge two mental disorders linked to depression and rebellious personality,
respectively. Table 2 summarizes the regression results for DSM and MMSE on the HCP
and OASIS datasets, showing that our model outperforms all baseline methods with lowest
mean absolute values.

3.4 Biological Insights and Model Interpretability

We provided two distinct biological insights from our interpretable framework. Firstly, we
utilized the designed parameter (y) to identify the most crucial effective connectomes for
various prediction tasks. Specifically, we pinpointed the top 400 and 256 connectomes
(highlighted in bold red curve in Fig. 2(a)) with the highest | y | weights for disease
classification on OASIS and DSM-Depr regression tasks, respectively. Our disease
classification results indicate that the highlighted connectomes are predominantly linked

to the most relevant brain nodes of Alzheimer’s Disease (AD), such as the right/

left insula cortex, anterior/posterior cingulate gyrus, and anterior/posterior divisions

of the parahippocampal gyrus. Additionally, connectomes associated with AD-relevant
subnetworks, such as the Default Mode Network (DMN) [7,27], are highlighted. Similarly,
connectomes connected to the most relevant brain nodes (e.g., left/right amygdala,
hippocampus and orbitofrontal) of depression are identified from DSM-Depr regression.
The Salience Network (SN) subnetwork, crucial for emotional regulation [16], is also
highlighted. Furthermore, we present the brain temporal dynamics of the identified
connectomes in Fig. 2(b), visualizing the related y © A/ derived from the discase
classification task at each of the four time-points to illustrate how the effective connectomes
change during an fMRI scan period. To quantify this change, we show the average of these y
weighted connectomes in Fig. 2(c). It demonstrates that the causal influence strength of the
normal control(NC) group and the AD group decays simultaneously over time. However, the
degree of decline in the AD group is more pronounced than in the NC group.

4 Conclusion

We propose an interpretable spatio-temporal framework with directed graph embedding
layers for learning brain effective network representations, leveraging ordinary differential
equations to model brain dynamics. Our framework contributes to important clinical
prediction tasks, pinpointing important connectomes linked to different clinical phenotypes
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and illustrating dynamic causal influence strengths across fMRI scan periods. Future work
will investigate dynamic causal influences at the level of brain ROIs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments.

This study was partially supported by the Presidential Research Fellowship (PRF) in the Department of Computer
Science at the University of Texas Rio Grande Valley (UTRGV), and the UTRGV seed grant, as well as by

the NSF (2112631, 2045848, 2319449, 2319450, 2319451, 2215789, 2319451), and the NIH (R01AG071243,
ROIMH125928, U01AG068057, R21EY034179).

References

1. American Psychiatric Association, D., Association, A.P., et al.: Diagnostic and statistical manual of
mental disorders: DSM-5, vol. 5. American psychiatric association Washington, DC (2013)

2. Arevalo-Rodriguez I, Smailagic N, i Figuls MR, Ciapponi A, Sanchez-Perez E, Giannakou A,
Pedraza OL, Cosp XB, Cullum S: Mini-mental state examination (mmse) for the detection of
alzheimer’s disease and other dementias in people with mild cognitive impairment (mci). Cochrane
Database of Systematic Reviews (3) (2015)

3. Bullmore E, Sporns O: Complex brain networks: graph theoretical analysis of structural and
functional systems. Nature reviews neuroscience 10(3), 186—198 (2009) [PubMed: 19190637]

4. Chen D, Zhang L: Fe-stgnn: Spatio-temporal graph neural network with functional and effective
connectivity fusion for mci diagnosis. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 67-76. Springer (2023)

5. Chuang KC, Ramakrishnapillai S, Madden K, St Amant J, McKlveen K, Gwizdala K, Dhullipudi
R, Bazzano L, Carmichael O: Brain effective connectivity and functional connectivity as markers
of lifespan vascular exposures in middle-aged adults: The bogalusa heart study. Frontiers in Aging
Neuroscience 15, 1110434 (2023) [PubMed: 36998317]

6. Demirbilek O, Rekik I: Recurrent multigraph integrator network for predicting the evolution of
population-driven brain connectivity templates. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 584—594. Springer (2021)

7. Dennis EL, Thompson PM: Functional brain connectivity using fmri in aging and alzheimer’s
disease. Neuropsychology review 24, 49-62 (2014) [PubMed: 24562737]

8. Dvornek NC, Ventola P, Pelphrey KA, Duncan JS: Identifying autism from resting-state fmri using
long short-term memory networks. In: Machine Learning in Medical Imaging: 8th International
Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada,
September 10, 2017, Proceedings 8. pp. 362—370. Springer (2017)

9. Fischl B: Freesurfer. Neuroimage 62(2), 774-781 (2012) [PubMed: 22248573]

10. Friston KJ, Harrison L, Penny W: Dynamic causal modelling. Neuroimage 19(4), 1273-1302

(2003) [PubMed: 12948688]

11. Gadgil S, Zhao Q, Pfefferbaum A, Sullivan EV, Adeli E, Pohl KM: Spatio-temporal graph
convolution for resting-state fmri analysis. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 528-538. Springer (2020)

12. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM: Fsl. Neuroimage 62(2),
782-790 (2012) [PubMed: 21979382]

13. Kipf TN, Welling M: Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907 (2016)

14. LaMontagne PJ, Benzinger TL, Morris JC, Keefe S, Hornbeck R, Xiong C, Grant E, Hassenstab
J, Moulder K, Vlassenko AG, et al. : Oasis-3: longitudinal neuroimaging, clinical, and cognitive
dataset for normal aging and alzheimer disease. MedRxiv (2019)

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 October 27.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Tang et al.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Page 9

LiJ, Pan W, Huang H, Pan J, Wang F: Stgate: Spatial-temporal graph attention network with
a transformer encoder for eeg-based emotion recognition. Frontiers in Human Neuroscience 17,
1169949 (2023) [PubMed: 37125349]

Pinto AM, Geenen R, Wager TD, Lumley MA, Héuser W, Kosek E, Ablin JN, Amris K, Branco J,
Buskila D, et al. : Emotion regulation and the salience network: a hypothetical integrative model of
fibromyalgia. Nature Reviews Rheumatology 19(1), 44-60 (2023) [PubMed: 36471023]

Sanchez-Romero R, Ramsey JD, Zhang K, Glymour MR, Huang B, Glymour C: Estimating
feedforward and feedback effective connections from fmri time series: Assessments of statistical
methods. Network Neuroscience 3(2), 274-306 (2019) [PubMed: 30793083]

Serrano-Pozo A, Das S, Hyman BT: Apoe and alzheimer’s disease: advances in genetics,
pathophysiology, and therapeutic approaches. The Lancet Neurology 20(1), 68—80 (2021)
[PubMed: 33340485]

. Shchur O, Mumme M, Bojchevski A, Giinnemann S: Pitfalls of graph neural network evaluation.

arXiv preprint arXiv:1811.05868 (2018)

Shinn M, Hu A, Turner L, Noble S, Preller KH, Ji JL, Moujaes F, Achard S, Scheinost D,
Constable RT, et al. : Functional brain networks reflect spatial and temporal autocorrelation.
Nature Neuroscience pp. 1-12 (2023)

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey

JD, Woolrich MW: Network modelling methods for fmri. Neuroimage 54(2), 875-891 (2011)
[PubMed: 20817103]

Stam C, Van Straaten E, Van Dellen E, Tewarie P, Gong G, Hillebrand A, Meier J, Van Mieghem
P: The relation between structural and functional connectivity patterns in complex brain networks.
International Journal of Psychophysiology 103, 149—-160 (2016) [PubMed: 25678023]

Suykens JA, Lukas L, Van Dooren P, De Moor B, Vandewalle J, et al.: Least squares support

vector machine classifiers: a large scale algorithm. In: European Conference on Circuit Theory and
Design, ECCTD. vol. 99, pp. 839-842. Citeseer (1999)

Tang H, Guo L, Fu X, Wang Y, Mackin S, Ajilore O, Leow AD, Thompson PM, Huang H, Zhan L:
Signed graph representation learning for functional-to-structural brain network mapping. Medical
image analysis 83, 102674 (2023) [PubMed: 36442294]

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium WMH,

et al. : The wu-minn human connectome project: an overview. Neuroimage 80, 62—79 (2013)
[PubMed: 23684880]

Whitfield-Gabrieli S, Nieto-Castanon A: Conn: a functional connectivity toolbox for correlated and
anticorrelated brain networks. Brain connectivity 2(3), 125-141 (2012) [PubMed: 22642651]
Yildirim E., SONCU BUYUKISCAN, E.: Default mode network connectivity in alzheimer’s
disease. Turkish Journal of Psychiatry 30(4) (2019)

Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J: Hierarchical graph representation
learning with differentiable pooling. Advances in neural information processing systems 31 (2018)
Zhao C, Zhan L, Thompson PM, Huang H: Revealing continuous brain dynamical organization
with multimodal graph transformer. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 346-355. Springer (2022)

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 October 27.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Tang et al.

@

A1) A(2) A(T-1)

=1 =2 ceceee =T

Page 10

). e
3 ol 2 +A-2

SC EC

R
ni‘ﬁ%\w

Effective Network Construction

Fig. 1.

~~~~_ Structural-Effective Network Embedding ___-—--~

(©). -

6/ (1) 6/(3) ¢ (T-1)

STE-ODE Framework

(a) describes the construction of brain effective networks from the BOLD signals. (b) is
the directed graph embedding layer for structural and effective networks. (c) presents the

STE-ODE framework for different clinical prediction tasks.
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Fig. 2.
(a) illustrates the importance of various effective connectomes (i.e., | y |) for disease

classification and DSM-Depr regression, with the most crucial connectomes highlighted

in bold red. (b) visualizes the brain dynamics of the identified effective connectomes during
an fMRI scan period, where colors tending towards red indicate large values. (c) quantifies
the change in the average strength of identified connectomes during an fMRI scan period.

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 October 27.




1duosnuey Joyiny 1duosnuelp Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Tang et al.

Table 1.

Page 12

Classification accuracy and F1-scores, along with their standard deviations under 5-fold cross-validation. The

best results are highlighted in bold.

Method HCP OASIS

Gender Disease e4

Acc. F1 Acc. F1 Acc. F1
SVM 59.25+£1.39 | 60.85£2.29+ | 57.72+£0.98 | 56.58 £1.93 | 58.09+2.37 | 59.83 £0.99
GCN 68.83+1.48 | 67.48+2.32 64.64+1.05 | 66.58+2.12 | 65.56+1.51 | 6428+ 1.11
DiffPool 73.25+£0.71 70.43 +£1.87 71.67+0.83 | 69.58+1.75 | 69.04+2.52 | 70.42+0.87
LSTM 7095+ 1.09 | 72.37+2.16 68.22+2.04 | 6890+0.74 | 69.33+1.88 | 67.31£2.65
ST-GCN 78.44+0.86 | 76.15+1.17 7626+ 098 | 77.02+1.47 | 77.20+1.79 | 78.14+1.35
FE-STGNN 81.04+0.39 | 81.75+1.26 79.92+0.73 | 79.39+1.15 | 78.98+0.92 | 80.06 +0.85
Ours w/o SC | 80.66+2.02 | 80.77+0.63 80.59+1.71 | 81.05+1.20 | 78.42+1.07 | 78.59+1.63
Ours 82.12+1.17 | 83.97 £ 0.96 80.01 £1.26 | 81.31+1.37 | 81.35+0.86 | 80.92 +1.03
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Regression mean absolute values with their std under 5-fold cross-validation. The best results are highlighted

Table 2.
in bold.

Method HCP OASIS

MMSE DSM-Depr | DSM-Antis | MMSE
SVM 4.06+0.33 | 466+0.79 | 3.43£0.59 | 3.91+0.24
GCN 316043 | 3.62£098 | 341037 | 3.70+1.06
DiffPool 2.82+093 | 3.23+0.54 | 2.09+£0.56 | 2.48+0.90
LSTM 2.74£091 | 237+£0.61 | 1.91£047 | 1.88+0.51
ST-GCN 197084 | 1.35+0.17 | 1.24+0.33 | 1.19£0.23
FE-STGNN | 0.73+029 | 1.19+0.14 | 1.08+0.06 | 0.96+0.15
Ours w/o SC | 0.93+0.44 | 1.24+032 | 1.19£024 | 1.08+0.33
Ours 0.62£0.23 | 1.08+0.45 | 0.92£0.79 | 0.76 £0.17
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