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Abstract
The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural 
and functional aspects of the brain, encompassing the ramifications of diseases and developmental 
processes. However, prevailing methodologies, often focusing on synchronous BOLD signals 
from functional MRI (fMRI), may not capture directional influences among brain regions and 
rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective 
network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning 
framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates 
specifically designed directed node embedding layers, aiming at capturing the dynamic inter-play 
between structural and effective networks via an ordinary differential equation (ODE) model, 
which characterizes spatial-temporal brain dynamics. Our framework is validated on several 
clinical phenotype prediction tasks using two independent publicly available datasets (HCP and 
OASIS). The experimental results clearly demonstrate the advantages of our model compared to 
several state-of-the-art methods.
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1 Introduction
Neuroimaging techniques, such as Magnetic Resonance Imaging (MRI), have significantly 
advanced our understanding of the brain by providing a non-invasive way to explore its 
anatomical structures and functions. Recent advances in network science have allowed for 
the analysis of MRI-derived brain networks, revealing new biomarkers for diseases such as 
Alzheimer’s and enabling the study of complex neural interactions across different brain 
regions [3].

Different MRI techniques reveal diverse aspects of brain organization and dynamics. For 
example, diffusion MRI (dMRI) maps white matter connections by tracking water molecule 
diffusion, showing how brain regions are structurally linked. Functional MRI (fMRI), on 
the other hand, utilizes blood-oxygen level-dependent (BOLD) signals to monitor brain 
activity, offering insights into functional brain dynamics. Recent research utilizing fMRI 
BOLD signals to delineate functional brain networks has made significant strides in 
identifying patterns of connectivity through temporal correlations (e.g., Pearson correlation) 
across different brain regions. These studies highlight the utility of fMRI in mapping the 
intricate web of neural interactions, presenting the brain’s complex connectivity patterns 
[20]. However, traditional methods primarily focus on synchronous BOLD signals, which 
may overlook the nuanced directional influences (e.g., causality) between brain regions 
over time. To capture the directional influences among brain regions, we employ Dynamic 
Causal Modeling (DCM) [5,10] with time-lagged BOLD signals to construct temporal 
effective connectivity networks. The temporal effective networks represent the dynamic 
causal relationships where the activity of one brain region influences another over time.

In recent years, Graph Neural Networks (GNNs) [13] have become increasingly prominent 
in brain network studies, showing significant advancements in mining brain structural and 
functional networks [24]. Despite this progress, a scarcity of graph learning methods is 
designed for dynamic effective network learning [4]. The dynamic effective brain networks 
are a series of time-evolving directed graphs, which may present two challenges when we 
build up GNNs on these networks. First, existing GNNs focused on embedding nodes in 
undirected graphs, which may not effectively handle directed graph embeddings. Effective 
brain networks feature pairs of brain regions connected by directed edges with different 
weights, where the edge direction and weight represent the causal sequence and its 
magnitude, respectively. To address this, we propose a directed graph encoder specifically 
designed for capturing these causal sequences in brain node embedding. Furthermore, the 
dynamic effective brain network consists of temporal sequences of brain graphs, with 
changing connectivity over time. Thus, current GNNs need to be adapted to capture both 
spatial and temporal dynamics of the brain. Recent efforts in dynamic graph learning 
include approaches such as recurrent graph neural network [6], graph temporal attention 
network [15], and graph transformer [29]. In this study, we tackle the brain spatial-temporal 
dynamics with an ordinary differential equation (ODE) model. Particularly, we introduce 
a graph learning framework, Spatio-Temporal Embedding ODE (STE-ODE), designed to 
simultaneously solve an Ordinary Differential Equation (ODE) and embed brain networks, 
capturing both their structural and functional properties. The framework’s unique approach 
ensures that the training process yields brain network embeddings that are, in essence, 
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solutions to the ODE, thereby intertwining the learning model with the ODE resolution. 
These embedded graph representations are then leveraged for different clinical predictions, 
such as brain disease classifications. Beyond prediction tasks, our study aims to identify 
most significant connectomes related to various clinical phenotypes and neurodegenerative 
diseases, tracking their changes over time for different tasks. To this end, we develop an 
interpretable toolkit within our directed node embedding layer. This toolkit focuses on 
pinpointing the top K edges with significant temporal changes, marking them as potential 
biomarkers for distinct phenotypes. This method directly connects dynamic brain network 
changes to specific biological traits, enhancing our comprehension of the mechanisms 
tied to different phenotypes. Our contributions can be summarized as follows. (1) We 
design a directed graph embedding layer tailored for encoding effective network under 
the constrains of its structural counterpart. (2) We present a learning framework with the 
directed graph embedding layer, referred to as STE-ODE, which captures temporal effective 
network representations by solving an ordinary differential equation that models the brain 
spatial-temporal dynamics. (3) We develop a toolkit to enhance the interpretability of our 
framework, which enables the identification of the most significant connectome changes, 
marking them as potential biomarkers for different clinical phenotypes.

2 Methodology
We first introduce our method for constructing directed effective networks through the 
dynamic causal model (DCM). Additionally, we propose our interpretable directed graph 
node embedding layer, which is tailored to encode both directed effective networks and 
their structural counterparts. Subsequently, we detail our comprehensive spatio-temporal 
framework with the directed graph embedding layer for downstream tasks. This framework 
involves solving an ordinary differential equation that captures the spatial-temporal 
dynamics of the brain.

2.1 Preliminaries
A brain network is a weighted graph G = {V ,E} = (A,X) with N nodes, where V = {vi}i = 1

N  is 

the set of graph nodes representing brain regions, and E = {ei, j} is the edge set. X ∈ ℝN × c is 

the node feature matrix where xi ∈ ℝ1 × c is the i − th row of X representing the node feature 

(dim = c) of vi. A ∈ ℝN × N is the adjacency matrix where ai, j ∈ ℝ represents the weights of 

the edge between vi and vj. A brain structural network, denoted as Gs, is an undirected graph, 

where ei, js = ej, is ≥ 0. In stead, a brain effective network, denoted as Gf, is a directed graph, 
where ei, jf ≠ ej, if ∈ ℝ. The sign of ei, jf  indicates the causal sequence between vi and vj, where 
ei, jf > 0 signifies the causal effect on vj induced by vi, vice versa. Additionally, we denote the 
blood-oxygen-level-dependent (BOLD) signal (with b signal points) obtained from fMRI as 
B ∈ ℝN × b.

2.2 Construction of Brain Effective Network
We employ fMRI BOLD signals to construct brain effective networks using the dynamic 
causal modeling (DCM) approach [17,21]. Each brain region serves as a graph node 
embedded within the brain effective network, while the temporal dynamic effective 
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connectivity comprises the edge set. Given the fMRI BOLD signals, the dynamic adjacency 
matrix Af(t) can be modeled as follows:

dB(t)
dt = αAf(t)B(t) + Cu(t)

(1)

Cu(t) represents the term governing the influence of external neuronal inputs u(t) on the 
dynamics of Af. In this work, Cu(t) = 0 as we concentrate on resting-state fMRI studies. 
The parameter α serves as a constant regulating the neuronal lag among brain nodes. 
Consequently, we can derive the expression of Af as follows:

Af(t) = 1
αB(t)

dB(t)
dt

(2)

We construct the effective connectivity by deriving the discrete expression of the Eq. (2):

Af(t) = 1
αB(t)

B(t + 1) − B(t)
t + 1 − t = 1

α (B(t + 1)
B(t) − 1)

(3)

We define the connectivity between brain node vif and vj
f at timepoint t as follows, with 

β = 1
α ∈ [0, 1]:

Ai, j
f (t) = β(Bj(t + 1)

Bi(t) − 1),

(4)

where Bi is the BOLD signal of vi. The process of constructing brain effective networks is 
illustrated in Fig. 1(a).

2.3 Interpretable Structural-Effective Network Embedding

Given a directed effective network Gf = (Af,Xf), we first perform asymmetric Laplacian 
normalization on its adjacency matrix. The normalized adjacency matrix can be represented 
as:

Af = Din
− 1

2AfDout
− 1

2 ,

(5)

where Din and Dout are in-degree and out-degree of the adjacency matrix, respectively. Then, 
our node embedding layer for the structural-effective network can be formulated as a 
function ℱG:
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Z = ℱG(As,Af,Xf;W , γ, λ)
= σ(γ ⊙ As ⊙ [λAf + (1 − λ)AfT]XfW ),

(6)

where As represents the Laplacian-normalized adjacency matrix of the brain structural 
network [13]. The brain structural network serves as spatial information to constrain the 
temporal function dynamics, under the assumption that two brain regions are functionally 
interconnected as long as they are structurally connected [22]. σ( ⋅ ) is a nonlinear activation 
function, such as ReLU. λ ∈ [0, 1] is a parameter that balances the information flow into 
and out of each brain node. W  represents trainable parameters for brain node embedding. 
γ ∈ ℝN × N are trainable parameters used for model interpretability, enabling edge weights 
to adapt themselves for different prediction targets. During the model validation stage, 
we utilize self-adapted edge weights to track the most important connectomes for various 
prediction tasks. The brain node embedding layer is depicted in Fig. 1(b).

2.4 Spatio-Temporal Embedding with ODE

Given a series of temporal effective networks (i.e., Gf(t), t ∈ [0, T ]), their dynamic 
embeddings can be modeled using the following ordinary differential equation:

ℱG(Gf(t + Δt),Θ) = ℱG(Gf(t),Θ) + ∫
t

t + Δt
ℱG(Gf(τ),Θ)dτ,

(7)

where Θ is the parameter sets (i.e., Θ = {W , γ, λ}) of the embedding function. We can 
approximate the Eq. 7 into the discrete expression with our proposed node embedding layer 
(see Eq. 6) as:

Z(t + 1) = Z(t) + σ(γAs ⊙ [λAf(t + 1) + (1 − λ)AfT(t + 1)]X(t + 1)W ) .

(8)

We unfold the temporal brain network embedding into an residual graph learning 
framework. In this framework, each embedding layer processes the dynamic effective 
network at Gf(t + 1), while the previous dynamic network embedding (i.e., Z(t)) is treated as 
a residual term.

2.5 STE-ODE Framework for Brain Network Predictions
The proposed STE-ODE framework, incorporating the spatio-temporal embedding model, 
is depicted in Fig. 1(c). Assuming we have obtained the last node embedding (i.e., Z(T )), 

we employ an average global pooling layer (ZG = 1
N ∑i = 1

N Zi(T )) to extract the entire graph 

representation. Subsequently, a fully connected neural network (such as a Multilayer 
Perceptron or MLP) is employed to generate the final classification or regression output 
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(i.e., y = MLP (ZG)). For the classification task, we utilize the negative log likelihood loss 
function, where ℒ = NLL_Loss(y, y). For the regression task, we use the L2 loss function, 
where ℒ = L2Loss(y, y).

3 Experiments
3.1 Dataset Description and Preprocessing

Two publicly available datasets were used to evaluate our framework. The first includes data 
from 1206 young healthy subjects (mean age 28.19 ± 7.15, 657 women) from the Human 
Connectome Project [25] (HCP). The second includes 1326 subjects (mean age = 70.42 
± 8.95, 738 women) from the Open Access Series of Imaging Studies (OASIS) dataset 
[14]. Details of each dataset can be found on their official websites. The preprocessing of 
functional BOLD signals and the reconstruction of structural networks were conducted using 
CONN [26] and FSL Probtrackx [12], respectively. For the HCP data, both structural and 
effective networks have a dimension of 82 × 82 based on 82 ROIs defined using FreeSurfer 
(V6.0) [9]. For the OASIS data, both networks have a dimension of 132 × 132 based on the 
Harvard-Oxford Atlas and AAL Atlas. This intentional variation in network resolutions for 
the HCP and OASIS datasets served to examine whether the dimension of the network or the 
choice of atlas influences the efficacy of our newly developed framework.

3.2 Implementation Details and Experimental Setup

Implementation Details.—We divided the BOLD signal B into T = 5 time segments 
and calculated the mean value of the points within each segment to construct 4 effective 
networks. The edge weights of both the effective networks and structural networks were 
normalized to the intervals [−1, 1] and [0, 1], respectively. Node features were initialized 
by sampling from a standard Gaussian distribution with feature dimensions set to 16. 
Each dataset was randomly partitioned into 5 disjoint sets for 5-fold cross-validation in 
subsequent experiments. The Adam optimizer was utilized to train the model with a batch 

size of 128. The initial learning rate was set to 0.001 and decayed by (1 − current epoch
max epoch )

0.9
. We 

also regularized the training with an L2 weight decay of 1e−5. We terminated training if the 
validation loss fails to improve for 100 epochs, following the epoch termination condition 
outlined in [19], with a maximum of 500 epochs. All experiments were conducted on 1× 
NVIDIA A100 GPU.

Experimental Setup.—We compared our approach against 6 baseline methods, including 
3 static models (SVM [23], GCN [13] with global pooling, and DiffPool [28]), and 3 
dynamic brain network embedding methods (LSTM [8], ST-GCN [11], and FE-STGNN 
[4]). The β parameter is set to 0.5 for all experiments. We conducted a search for optimal 
λ parameter within the range of [0.1, 0.3, 0.5, 0.7, 0.9] (refer to Supplementary for details). 
The resulting values were λ = 0.3 for HCP and λ = 0.5 for OASIS.

3.3 Brain Network Predictions

Classification Tasks.—ϵ4 allele is a strong risk factor for the Alzheimers’ Disease 
(AD) [18]. Table 1 presents classification results for gender on HCP, as well as for AD 
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and ϵ4 on OASIS. It shows that our model achieves the highest accuracy across all tasks 
compared to other methods. Meanwhile, the comparison between results obtained with and 
without structural connectivity (SC) demonstrates the importance of anatomical (or spatial) 
constraints on effective network representation learning. Furthermore, the dynamic methods 
consistently outperform the static methods, indicating their efficacy in brain network 
analysis by capturing brain dynamics.

Regression Tasks.—The Mini-Mental State Exam (MMSE [2]) serves as a quantitative 
assessment tool for cognitive status in adults. The Diagnostic and Statistical Manual of 
Mental Disorders (DSM [1]) offers a comprehensive measure system for mental disorders 
utilized by mental health professionals worldwide. Within the DSM system, DSM-Depr 
and DSM-Antis gauge two mental disorders linked to depression and rebellious personality, 
respectively. Table 2 summarizes the regression results for DSM and MMSE on the HCP 
and OASIS datasets, showing that our model outperforms all baseline methods with lowest 
mean absolute values.

3.4 Biological Insights and Model Interpretability
We provided two distinct biological insights from our interpretable framework. Firstly, we 
utilized the designed parameter (γ) to identify the most crucial effective connectomes for 
various prediction tasks. Specifically, we pinpointed the top 400 and 256 connectomes 
(highlighted in bold red curve in Fig. 2(a)) with the highest ∣ γ ∣ weights for disease 
classification on OASIS and DSM-Depr regression tasks, respectively. Our disease 
classification results indicate that the highlighted connectomes are predominantly linked 
to the most relevant brain nodes of Alzheimer’s Disease (AD), such as the right/
left insula cortex, anterior/posterior cingulate gyrus, and anterior/posterior divisions 
of the parahippocampal gyrus. Additionally, connectomes associated with AD-relevant 
subnetworks, such as the Default Mode Network (DMN) [7,27], are highlighted. Similarly, 
connectomes connected to the most relevant brain nodes (e.g., left/right amygdala, 
hippocampus and orbitofrontal) of depression are identified from DSM-Depr regression. 
The Salience Network (SN) subnetwork, crucial for emotional regulation [16], is also 
highlighted. Furthermore, we present the brain temporal dynamics of the identified 
connectomes in Fig. 2(b), visualizing the related γ ⊙ Af derived from the disease 
classification task at each of the four time-points to illustrate how the effective connectomes 
change during an fMRI scan period. To quantify this change, we show the average of these γ
weighted connectomes in Fig. 2(c). It demonstrates that the causal influence strength of the 
normal control(NC) group and the AD group decays simultaneously over time. However, the 
degree of decline in the AD group is more pronounced than in the NC group.

4 Conclusion
We propose an interpretable spatio-temporal framework with directed graph embedding 
layers for learning brain effective network representations, leveraging ordinary differential 
equations to model brain dynamics. Our framework contributes to important clinical 
prediction tasks, pinpointing important connectomes linked to different clinical phenotypes 
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and illustrating dynamic causal influence strengths across fMRI scan periods. Future work 
will investigate dynamic causal influences at the level of brain ROIs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) describes the construction of brain effective networks from the BOLD signals. (b) is 
the directed graph embedding layer for structural and effective networks. (c) presents the 
STE-ODE framework for different clinical prediction tasks.
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Fig. 2. 
(a) illustrates the importance of various effective connectomes (i.e., ∣ γ ∣) for disease 
classification and DSM-Depr regression, with the most crucial connectomes highlighted 
in bold red. (b) visualizes the brain dynamics of the identified effective connectomes during 
an fMRI scan period, where colors tending towards red indicate large values. (c) quantifies 
the change in the average strength of identified connectomes during an fMRI scan period.
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Table 1.

Classification accuracy and F1-scores, along with their standard deviations under 5-fold cross-validation. The 
best results are highlighted in bold.

Method HCP OASIS

Gender Disease ϵ4
Acc. F1 Acc. F1 Acc. F1

SVM 59.25 ± 1.39 60.85 ± 2.29 ± 57.72 ± 0.98 56.58 ± 1.93 58.09 ± 2.37 59.83 ± 0.99

GCN 68.83 ± 1.48 67.48 ± 2.32 64.64 ± 1.05 66.58 ± 2.12 65.56 ± 1.51 64.28 ± 1.11

DiffPool 73.25 ± 0.71 70.43 ± 1.87 71.67 ± 0.83 69.58 ± 1.75 69.04 ± 2.52 70.42 ± 0.87

LSTM 70.95 ± 1.09 72.37 ± 2.16 68.22 ± 2.04 68.90 ± 0.74 69.33 ± 1.88 67.31 ± 2.65

ST-GCN 78.44 ± 0.86 76.15 ± 1.17 76.26 ± 0.98 77.02 ± 1.47 77.20 ± 1.79 78.14 ± 1.35

FE-STGNN 81.04 ± 0.39 81.75 ± 1.26 79.92 ± 0.73 79.39 ± 1.15 78.98 ± 0.92 80.06 ± 0.85

Ours w/o SC 80.66 ± 2.02 80.77 ± 0.63 80.59 ± 1.71 81.05 ± 1.20 78.42 ± 1.07 78.59 ± 1.63

Ours 82.12 ± 1.17 83.97 ± 0.96 80.01 ± 1.26 81.31 ± 1.37 81.35 ± 0.86 80.92 ± 1.03
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Table 2.

Regression mean absolute values with their std under 5-fold cross-validation. The best results are highlighted 
in bold.

Method HCP OASIS

MMSE DSM-Depr DSM-Antis MMSE

SVM 4.06 ± 0.33 4.66 ± 0.79 3.43 ± 0.59 3.91 ± 0.24

GCN 3.16 ± 0.43 3.62 ± 0.98 3.41 ± 0.37 3.70 ± 1.06

DiffPool 2.82 ± 0.93 3.23 ± 0.54 2.09 ± 0.56 2.48 ± 0.90

LSTM 2.74 ± 0.91 2.37 ± 0.61 1.91 ± 0.47 1.88 ± 0.51

ST-GCN 1.97 ± 0.84 1.35 ± 0.17 1.24 ± 0.33 1.19 ± 0.23

FE-STGNN 0.73 ± 0.29 1.19 ± 0.14 1.08 ± 0.06 0.96 ± 0.15

Ours w/o SC 0.93 ± 0.44 1.24 ± 0.32 1.19 ± 0.24 1.08 ± 0.33

Ours 0.62 ± 0.23 1.08 ± 0.45 0.92 ± 0.79 0.76 ± 0.17
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