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Abstract

Bilevel optimization problems have been actively studied in recent machine learning re-
search due to their broad applications. In this work, we investigate single-loop methods
with iterative differentiation (ITD) for nonconvex bilevel optimization problems. For deter-
ministic bilevel problems, we propose an efficient single-loop ITD-type method (ES-ITDM).
Our method employs historical updates to approximate the hypergradient. More impor-
tantly, based on ES-ITDM, we propose a new method that avoids computing Hessians. This
Hessian-free method requires fewer backpropagations and thus has a lower computational
cost. We analyze the convergence properties of the proposed methods in two aspects. We
provide the convergence rates of the sequences generated by ES-ITD based on the Kurdyka-
Lojasiewicz (KL) property. We also show that the Hessian-free stochastic ES-ITDM has the
best-known complexity while has cheaper computation. The empirical studies show that
our Hessian-free stochastic variant is more efficient than existing Hessian-free methods and
other state-of-the-art bilevel optimization approaches.

1 Introduction

Bilevel optimization problems arise in various machine learning scenarios, including game theory Stackelberg
(1952), meta-learning (Franceschi et al., 2018; Ziigner & Gilinnemann, 2019; Finn et al., 2017a; Snell et al.,
2017), hyperparameter optimization (Franceschi et al., 2017; Pedregosa, 2016; Grazzi et al., 2020; Mehra &
Hamm, 2021; Maclaurin et al., 2015), and reinforcement learning (Hong et al., 2020). Please refer to (Liu
et al., 2022b). A bilevel optimization problem involves two optimization problems, wherein one problem
(the upper-level problem) includes the solution of another optimization problem (the lower-level problem).
A typical formulation of this problem takes the following form:

iIelliRI}z f(z) == F(z,y()),

1
s.t. y(z) € argmin G(z, y), .
yERm

where F: R X R™ — R and G : R™ x R™ — R are continuously differentiable functions.

Gradient-based methods are popular for solving (1) due to their ease of implementation and efficiency. A
key issue in gradient-based methods is how to approximate the hypergradient V f. There are two prevailing
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approaches in the current literature: iterative differentiation (ITD) that aims at approximating the Jacobian
of y(x) when calculating the hypergradient (Franceschi et al., 2017; 2018; Finn et al., 2017a; Liu et al., 2020;
Ghadimi & Wang, 2018; Ji et al., 2021; Rajeswaran et al., 2019) and approximate implicit differentiation
(AID) (Chen et al., 2022b; Ji et al., 2021; Li et al., 2022; Gould et al., 2016; Lorraine et al., 2020). The
framework of ITD-based methods are easier to understand. Also, compared with AID-based methods, ITD-
based methods dose not require solving an additional linear equation, which may have better accuracy in
computation. In this paper, we focus on the ITD approach.

In general, if we view y(x) as a function of x, ITD methods are designed based on the chain rule of the
gradient of F'(x,y(z)), which has the following form:

V(@) = VaF(z,y(x)) — J(y(x)) Vy F(z,y(x)). (2)

How to approximate the J(y(x)) is the key concern of ITD methods. In Ghadimi & Wang (2018), the closed
form of J(y(z)) was considered. Ghadimi & Wang (2018) showed that

J(y(x)) == =V G(z, y(m))Tvny(aj, y(w))_l-

The method proposed in Ghadimi & Wang (2018) replaced (z,y(x)) in the above formula with (2!, y'*1),
where [ is the iteration. Franceschi et al. (2017) provided forward and backward ways to approximate
J(y(z!)) directly. Ji et al. (2021) also used the backward way to approximate J(y(z')). To reduce the time
and space complexity of estimating V f(z'), Shaban et al. (2019) proposed a truncated back-propagation
to approximate .J(y(z!)). However, all above mentioned methods are double loop methods, which can be
sophisticated and computationally expensive.

To enhance the efficiency of ITD-based methods, single-loop techniques have been proposed in prior work
(Yang et al., 2021; Guo et al., 2021; Khanduri et al., 2021; Li et al., 2022; Chen et al., 2022a; Hong et al.,
2020). Guo et al. (2021) introduced SVRB, which updates y'*! using a single gradient descent step. Chen
et al. (2022a) proposed STABLE, which updates x and y based on continuous-time dynamics. One chal-
lenge faced by SVRB and STABLE is the need to compute a matrix inverse in each iteration, which is
computational expensive. An alternative approach is to use the Neumann series, as seen in Khanduri et al.
(2021); Yang et al. (2021); Hong et al. (2020). In particular, the inverse V,,G(z,y)! is approximated by
Zi’:l (I —V,,G(z,y))" with some b € N;. The greater b is, the less error this approximation has. However,
if y is not a good approximation of y(x), which is likely the case for most existing single-loop methods that
only possess one inner loop to update y, the Neumann series approach to approximate J(y(x)) can still result
in significant errors. In this study, we introduce a novel approach for approximating the Jacobian J(y(x)).

Another limitation in many existing ITD-type methods relies heavily on the calculation of the Hessian, its
inverse, or the multiplication of the Hessian with a vector. These computations incur high computational
costs. Additionally, scenarios may arise where computing the Hessian of G is challenging or where G
lacks second-order differentiability. For instance, in cases where the lower-level problem involves robust
regression, G can take the form of the Huber loss, which is not twice differentiable (Huber, 1964; Hastie
et al., 2009). Consequently, there has been a pursuit of methods that avoid Hessian computation. Gu et al.
(2021) applied Gaussian smoothing (GS) techniques (Nesterov & Spokoiny, 2017), enabling their method
to bypass the computation of gradients of G. However, Gu et al. (2021) does not leverage any first-order
information from F' and G, potentially leading to a larger discrepancy between the approximation and the
true hypergradient. Similarly, Sow et al. (2022) employed GS techniques to estimate the Jacobian of y(x).
Nevertheless, their resulting method needs to compute the full gradient of GG, which is often impractical in
real-world applications. Additionally, the methods introduced in Gu et al. (2021); Sow et al. (2022) involve
a double-loop structure, which can be inefficient. Thus, in this work, we propose a stochastic single loop
method that avoids calculating the Hessian of G.

Another aspect that is overlooked in single-loop bilevel methods is the convergence analysis of the generated
sequences, specifically the convergence of (z!,'). Sequential convergence holds significance as it illustrates
the method’s behavior in the long run. For example, it helps determine whether the accumulated point of the
generated sequence is a stationary point of (1), whether the generated sequence achieves global convergence,
and the its convergence rate. The third goal of this work is to provide sequential convergence guarantees for
the single-loop bilevel method.
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1.1 Main Contributions of Qur Paper

In this paper, we propose efficient single loop ITD-type (ES-ITD) methods for the deterministic and stochastic
bilevel optimization problem (1) and (7). Our contributions are three fold:

e The proposed ES-ITD method makes use of much information about lower level updates as the

double loop method has but retains the single loop computation cost.

We propose a computationally efficient Hessian free method for the stochastic bilevel optimization
problem (7). Based on a natural extension of ES-ITDM using the stochastic gradients or Hessians
of F' and G, we use the Gaussian smoothing techniques to approximate the stochastic Hessian of G.
The resulting method is called Hessian free stochastic ES-ITD method (HF-SES-ITD). Compared
to current single loop method, HF-SES-ITD method only uses the first order information to approx-
imate the Jacobian of y(z). Compared with Hessian vector multiplication, our method is
much cheaper because it only needs computing gradient vector inner product.

We provide convergence analysis of the proposed methods. For the deterministic method, we analyze
the convergence of the sequences {z'}, {y'} and {J'} generated by ES-ITDM, where J' is the
approximation of the Jacobian of y(xl) To this end, we propose a new potential function. We
show that the iterative value of the potential function is nonincreasing. After that, we show that the
successive changes of the generated sequence converge to zero. We show that any accumulation point
of {x'} is a stationary point of (1). Furthermore, under the Kurdyka-Fojasiewicz (KL) property, we
derive the convergence rates of {(z!,4', J')}. Especially, when the potential function is a KL function
with exponent 3, we show that {(z',4', J')} converges linearly. As far as we know, this is the
first work that provides the convergence rate of the sequences generated by single loop
methods. Compared with sequential convergence analysis for methods solving general nonconvex
optimization problems, the nested formula for updating J'*' in our method makes a technical
challenge in our sequential convergence analysis nontrivial. We also give convergence guarantees of
the stochastic variant of ES-ITDM. We show the resulted method has a complexity of O(e2) to
reach an e-stationary point under mild assumptions.

We evaluate our methods via the hyper-parameters learning task. We first compare our methods
with the current Hessian-free methods (Gu et al., 2021; Sow et al., 2022). Then we compare our
methods with other popular single loop bilevel optimization methods in Franceschi et al. (2017);
Grazzi et al. (2020); Ji et al. (2021); Grazzi et al. (2020); Sow et al. (2022); Guo et al. (2021); Chen
et al. (2022a). In both comparisons, our stochastic Hessian free fully single loop method has better
performance in both time and accuracy.

Table 1: Comparisons between our method and ESJ , BA, ITD-Bio, FMM = Forward Mode Method, TTSA,
SUSTAIN, MRBO, SVRB, STABLE. HVM = Hessian Vector Multiplication; ds= diminishing stepsize; cs=

constant stepszise; € denotes an (e + variance errors)-accuracy for ||V f(ama¥iter)

Methods Loops | Use Matrix inverse | Use HVM | Sequential Convergence Complexity
ESJ Sow et al. (2022) No No O(e=%) with ds
Deterministic BA Ghadimi & Wang (2018) Double Yes O(e2) with cs
Methods ITD-Bio Ji et al. (2021) O(e?) with cs
FMM Franceschi et al. (2017)
ES-ITDM (Ours) Single No Yes O(e=?) with cs
TTSA Hong et al. (2020) O(e=2%) with ds
SUSTAIN Khanduri et al. (2021) Yes O(e?) with ds
Stochastic MRBO Yang et al. (2021) O(¢?) with ds
Methods SVRB Guo et al. (2021) Single Yes O(e~?) with ds
) STABLEChen et al. (2022a) i O(e %) with ds
SES-ITDM with (S) No O(e~?) with cs
SES-ITDM with (HF) No O(e~?) with cs

2 Related Work

Comparisons between our methods and current I'TD methods are summarized in Table 1.
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Bilevel Optimization Methods. When F and G in (1) are deterministic functions, Franceschi et al.
(2017); Ji et al. (2021) proposed double loop ITD methods for (1). Ji et al. (2021) used the backward way
to approximate J(y(x!)). For stochastic problem (7), Ghadimi & Wang (2018) introduced a double loop
method that solves the lower level subproblem with multiple stochastic gradient steps and replaces each
element in (2) with the stochastic gradients and Hessian. Besides double loop methods, single loop methods
were proposed in Yang et al. (2021); Guo et al. (2021); Khanduri et al. (2021); Li et al. (2022); Chen et al.
(2022a); Hong et al. (2020); Li & Huang (2024). Guo et al. (2021) presented SVRB which updates y'*! using
one stochastic gradient descent step. SVRB employs the variance reduction on each element in the right-
hand side of (2).Chen et al. (2022a) proposed STABLE that updates « and y based on the continuous-time
dynamics.Also using Neumann series, Yang et al. (2021) designed a momentum-based stochastic single loop
method. Yu et al. (2024) considers adding dropout to address the overfitting problems in bilevel training
tasks.

Sequential Convergence Analysis. The sequential convergence analysis is a fundamental problem of first-
order methods. It has been investigated for nonconvex minimization problems (Bolte et al., 2014; Attouch
et al., 2010; Yu et al., 2021; Li & Pong, 2016). However, the sequential analysis of bilevel optimization
methods is still in its early stages. Chen et al. (2023) used the KL assumption to analyze the sequential
convergence of an AID-type method. However, they assume that the linear equation in their AID method
is solved exactly, which creates a gap between theory and practice. Additionally, the method they analyze
is a double-loop method, whereas ours is single-looped. Liu et al. (2022a) demonstrated that the sequence
generated by their proposed method accumulates at a stationary point. In our analysis, we further provide
the convergence rate of the generated sequence. Under the KL assumption, we show that it can converge
linearly, sublinearly, or finitely.

3 Notation and Preliminaries

In this paper, we denote R™ the n-dimensional Euclidean space with inner product (-, -) and Euclidean norm
I - ||. We denote the spectrum norm of a matrix A € R"*™ as ||A|| and the Frobenius norm of A as || 4| g.
For a ramdom variable ¢ defined on a probability space (2,3, P), we denote its expectation as E§. Given
an event A, the conditional expectation of £ is denoted as E 4(€).

We say an extended-real-valued function f : R™ — [—o00, 00| is proper if domf = {z € R" : f(z) < oo}
is not empty and f never equals —oo. We say a proper function f is closed if it is lower semicontinuous.
A proper closed function is said to be level-bounded if for any a € R, the set {z : f(z) < a} is bounded.
For a function F : R"*™ — R, we denote the function F(z,y) with respect to y for a fixed x as F(z,-)
and denote the function F(z,y) with respect to z for a fixed y as F(-,y). Following Rockafellar & Wets
(1998), the regular subdifferential of a proper function f at 2 € domf is defined as Of(z) := {¢ € R" :
lim inf w > 0}. The subdifferential of f at € domf is defined by 9f(z) := {{ € R™ :

2T, 2FT |z—zll

Ja* with 2% — 2 and f(zF) = f(z), € — € with & € Of(«¥), Vk}. For ¢ domf, we define df(z) =
df(z) = 0. We denote domdf := {z : 0f(x) # 0}. We say z is a sationary point of f if 0 € df(z). For a
twice differential function F' : R™ x R™ — R, we denote V,F(z,y) and V,F(z,y) as the partial gradients

aF{gi’y) and 8F{§z’y) correspondingly. We denote V,, F(z,y) := %{gy) and Vy, F(z,y) := %. For a

function g(z) := E¢upg(z; §) with distribution P, let S = {¢; }‘jszl1 be a mini-batch of samples drawn from
P. We denote g(x;8) := Fll Z‘fz‘l g(z; &5).

Now, we first present the basic assumptions for (1).

Assumption 1. Consider (1). Suppose the following assumptions hold:

(i) Suppose F is Lipschitz continuous with modulus L.

(ii) For any fived &, V,F(Z,-) and V,F(Z,-) are Lipschitz continuous with modulus L{, > 0 and L%, >0
respectively, i.e., for any y1 and ya, it holds that |V F(Z,y1) — Vo F(Z,y0)| < Ly and |V, F(z,y1) —
VyF(z,y0)| < L3,
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(iii) There exists Cy >0 such that |V, F(z,y)|| < C[ for any x and y.
(iv) For any fived y, V,F(-,y) is Lipschitz continuous with modulus L%, > 0.

Assumption 2. Consider (1). Suppose the following assumptions hold:

(i) Denote z = (x,y). G is twice continuously differentiable in z. In addition, suppose V,G(z,-) is
Lipschitz continuous with modulus Lg > 0 for any x.

(i) For any x, G(z,-) is strongly convex with modulus ug.
(iii) For any x, V%,G(x,-) and V3, G (x,-) are Lipschitz continuous with modulus Ly and Lgy.
(iv) For anyy, V3,G(-,y) and V2 G(-,y) are Lipschitz continuous with modulus Lgs and Lgs.

(v) There exist Cgyy > 0 and Cgyy > 0 such that || V2
any x and y.

G(z,y)| < Ceay and ||V5,G(z,y)|| < Cayy for

Ty

4 Efficient Single Loop ITD Method for Deterministic Problem (1)

To develop the fully single loop method, we investigate a basic double loop ITD algorithm. At each iteration
[, let y'+1 = ybK(2!), where y" ¥ (2!) is the output of Algorithm 1. Note that y"¥(z!) is a function of z!.

Algorithm 1 A gradient descent method for min, G (!, y)

Input 350, v > 0.

Fork=0,..., K —1

Let 3o+ +1 (zh) = yb¥ (a!) — AV, G (o, ).
Output y'+1 = yHE(2h).

The double loop ITD method approximates the Jacobian of y(z) with the Jacobian of y"¥ (2!). Using the
l

chain rule, we have the following formula for the Jacobian of y"¥ (x l) 1
K1 K-1
T (@) = D _AVay Gty * @)X [ [ (1= 1V Gt g0 (@) - (3)
k=0 s=k+1

Then, at the outer loop, we let J*1 = J(y" ¥ (2!)) and update z'+! with
o' =at - BV, Py + (JTYHTV, F (Y.

If K =1, we get a single loop bilevel method. However, the resulting Jacobian approximation becomes
J(yh(zh) = =4V, Gl yh0). V., G(a!,y"?) does not make use of previous information about the y
coordinate. Even if we choose 3"° in Algorithm 1 to be the last update y', J(y"! (2!)) still does not make use
of the previous information such as {V,,G(z!,y")}; or {V,,G(z',y")};. Thus, simply changing the double
loop method to a single loop method by letting K = 1 will lose information in the previous iterates. However,
we notice that (3) implies

Ty @) =T (g @ WI =4V Gty (@) = 7Vay Gty (). (4)
Inspired by this, we update

JHY = JH(I =4V, G, yh)) — YVay Gt o) (5)

1We denote H}ilirl (I - ')/Vny(zl,yl’s)) as [ when K = 1 by convention
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and propose Algorithm 2. In this way, we make full use of the previous information to update the approxi-
mation of the Jacobian. (5) implies that

1 l
Jl+1 — —Z’szyG(l"k, yk) XH (I— ’}/Vny(xs’ ys)) (6)

k=0 s=k+1
Comparing (6) with (3), there are the following differences:

o At iteration I, computing J(y"X (2!))V, F(z!,y'*1) based on (3) needs O(K?) Hessian-vector mul-
tiplications (HVM), where K is the iterations of the inner loop. The cost of each HVM is
O(max{n,m}) using the technic in Pearlmutter (1994). Here, We have two equivalent ways to
update J!T1V, F (2!, y!*1): either by using (5) and making use of J!, or by using (6) without involv-
ing J!. When applying deduction (5) in the algorithm, we need n+1 HVM computations. However,
when using (5) to update J'*!, we must compute J'+! = J! (I — vvny(xl,yl)) — YWV Gzl yh),
which involves an R™*™ x R™*"™ matrix operation. When calculating J! x V,,,G(z!,y'), it requires n
HVM computations. Therefore, in each iteration, we actually need n+1 HVM computations, which
is less than O(k?). Thus, our method is advantageous when n + 1 < k?. On the other hand, when
using (6), we require 12 HVM computations. In summary, our method outperforms the classical ITD
method when either n + 1 < k2 or [ < k2.

o The formula in (6) makes use of historical updates {z°,...,2'} and {¢°,...,4'}, while (3) only
depends on {z'}. Although making use of historical updates requires more storage, (6) makes use
of more information to approximate the Jacobian of y(z').

Algorithm 2 Efficient Single ITD Method (ES-ITDM) for (1)

: Input: «, 8,7 >0, 2° € R?, 4% e R™, JY € R"*™ and N € N,.
:for!=0,...,N—1do

Let y'*+1 = ¢! — aV,G(a!, 9).

Compute

V)=V F(a,y )+ (T TV, Pt gt
with J'*! be defined as in (6).
5: Let 2/t = 2! — BV f(2!).
end for
: Output (y,zV).

@

5 Efficient Single Loop ITD Method for Stochastic Problem (7)

In many applications that involve bilevel optimization problems, we need to consider a stochastic bilevel
problem:

g?elJiRI}l f(z) == Eeup F(z,y(); ),

(7)

s.t. y(z) € argminE, . p G(x,y; 1),
yeR’NL

where P and P’ are distributions.

One natural idea is to replace the gradient/Hessian in Algorithm 2 with the mini-batch gradients/Hessian
of F and G. At iteration I, we draw a sample batch S'. Then using

! !
JH = —ZvvaG(xk,yk;Sl)xH(I—'yVny(xk, y*:Sh) (8)
k=0 s=k+1
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to approximate J'*1 in (6).

Now, based on the mini-batch Hessian of G, we propose a Hessian-free approach to estimate the Hessian of
G. We present this approach as (HF) in Algorithm 3.

Algorithm 3 Hessian Free Stochastic efficient single loop stochastic ITD method (HF-SES-ITDM) for (7)
1: Input: a,v, B, p,v >0, 2° € R, 4 ¢ R™, N € N,.
2: for 1 =0,1,2,--- ,N do
3: Draw a sample batch Z! change the notation in the proofs. Let y!*1 = ¢! — aVyG(xl, yhIh.
4 Draw a sample batch B! and S'. Compute

Vf(a')=VoF (' gy B + (S TV, Fa g BY),

with J!*1 defined in (All).
5. Let 2!t =2l — BV f(a!).
6: end for

The idea of Algorithm 3 is as follows. We aim to approximate V., G(z,y; S') and V,,G(x, y; S') with the first-
order information of G. V., G(z,y;S') and V,,G(x,y; S') consist of the gradients of {Vij(acl,yl;Sl) o
with respect to = and y. Inspired by Nesterov & Spokoiny (2017), we use Gaussian smoothing technique as
follows. Pick @ € N, u > 0and v > 0. For j = 1,...,Q, generate ué ~ N(0,I) € R™ and Ué ~N(0,I) e R™.
Forg=1,...,m, let

Q l. ql 1,1, ¢l
V,.G(z! + put, vt S - v, G2,y S
V.V, Gy 8Y) ~ Q§ 0, G+ e,y 1) = Vi, Glaly )ug

Jj=1 H
and
yq :v Y +l/vl Sl) G(xlayl;sl) I
V,V,, Gy S QZ V vl

Notice that the fractions in the above equalities are scalers of dimension 1. Now, we approximate
VayG(2,y; 8 and V,,,G(z,y; S') as follows:

(VaVy, Gla' ' 8T

Q
Ve Gty S = : %Z VG (' + pus,y'; S — VG(xl,yl;Sl)) ()T 0
(vay'/nG(xl7yl;Sl)T =t ( )
= ﬁxyG(‘rlvyl)
and
vyvylG(xlaylé‘sl)T Q
Vi Gy ) = : iQZ @+ fiS) - VGE S 0T
Vy Vi, Gla',y'; YT =t (10
= @ny(ml,yl)A
Now, we use
l
Jit = Zmya O] (I— ’yvny(xk7yk)> (11)

s=k+1
to approximate J'*1 in (6).
Remark 1. Now we compare the computation cost of SES-ITDM and HF-SES-ITDM. The main cost is

computing
Dl .— jl+1va(xl y”l'Bl).
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Figure 1: Test Accuracy w.r.t. logio(Training Time) for the hyper-representation task. The top two plots are 5-way-
1-shot (left) and 5-way-5-shot (right), and the bottom two plots are 20-way-1-shot (left) and 20-way-5-shot (right).
Postfix of ESJ and HOZOJ methods is the number of queried noise vectors (Q).

When J“t1 is chosen as (8), computing D' needs to compute the HVM. To this end, we need to compute
the gradient V,G first and then compute the HVM, which requires 2 backpropagation in implementation.
However, when JHL s chosen as (11), computing D' only needs to compute the gradient V,G and one
vector inner product using the formulas (9) and (10). Thus, computing D' only need 1 backpropagation in
implementation. When the dimension of parameters is large, this can save time compared to methods that
need to compute the gradients and HVM. However, computing ' with JH in (11) needs to calculate @
times of gradients and inner products. Thus, there is a tradeoff between using (8) and (11).

6 Convergence Analysis

6.1 Convergence Analysis for Algorithm 2

Now we analyze Algorithm 2. We first give the following theorem that will be used in proving our main
convergence properties.

Theorem 1. Consider (1) and let Assumptions 1 and 2 hold. Let {(z',y', J')} be generated by Algorithm
2. Suppose F is bounded from below. Suppose o € (0, X). Then there exist f > 0 and v € (0, -), A >0

and ¢ € (0,1) such that " "
H < H = Alla’ = 2"? = 8ly(a') — ™ 1P = 8]l J (y(a") — T [E,
where H' := H (2!, z!=1, o1 JHY) with
H(w,a',y,J) = f(2) + Ao —2/|* + [ly(z) —ylI* + T (y()) = J|[%.
Furthermore, {H'} is nonincreasing and there exists H* such that {H'*'} is convergent to H*.

Thanks to Theorem 1, we now have the following observation indicating the limiting point of the generated
sequence satisfies the first order optimality condition of (1).
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Corollary 1. Let assumptions in Theorem 1 hold and suppose F is level-bounded. Then any accumulation
point x* of {x'} satisfies V f(x*) = 0. In addition, any accumulation point y* of {y'} is an optimal solution
of the lower level problem in (1) defined with x*.

Now, we show the global convergence properties of the sequences generated by Algorithm 2. To this end, we
introduce the Kurdyka-Lojasiewicz (KL) property.

Definition 1 (Kurdyka-Yojasiewicz Function). We say a proper closed function f : R™ — (—o0,00]
satisfies the Kurdyka-Lojasiewicz (KL) property at & € domdf with exponent 9 € [0,1) if there are a €
(0,00], a neighborhood V of & and ag > 0 such that dist(0,0f(z)) > ao(f(x) — f(2))? for any x € V with
f(@) < f(z) < f(&) + a. A proper closed function f satisfying the KL property with exponent ¥ € [0,1) at
every point in dom O f is called a KL function with exponent 9.

Many functions are KL functions. It is known that proper closed semi-algebraic functions (i.e., functions
whose graphs are unions and intersections of polynomial functions) satisfy the KL property, Attouch et al.
(2010); Li & Pong (2018); Attouch et al. (2013); Bolte et al. (2017). Semi-algebraic functions include widely
used losses such as quadratic loss, L2 loss, Huber loss, hinge loss, and 0-1 loss. KL property is a general
property in convergence analysis when the considered function is not smoothness.

Under the KL assumption, we have the following convergence rate of {(x, ', J'*1)} generated by 2.

Theorem 2. Consider (1). Let H be defined as in Theorem 1. Suppose assumptions in Theorem 1 hold and
F is level-bounded. Suppose H is a KL function with exponent ¢, then

(i) when ¥ =0, {(z!, 4", JH1)} converges finitely;
(ii) when ¥ € (0, 3], {(z',y', J"1)} converges linearly;
(iii) when ¥ € (3,1), {(z',y', J'™)} converges sublinearly.

Remark 2. Note that, together with Corollary 1, Theorem 2 shows that the limiting point x*, to which the
sequence x' converges, is a stationary point of (1). In addition, the limiting point y*, to which the sequence
y' converges, is the optimal solution of the lower-level problem in (1) defined with z*.

Remark 3. Since the lower-level problem is strongly convex, the lower-level minimizer is unique. When the
lower-level problem is semi-algebraic, and since y(x) is the infimum projection of a semi-algebraic function,
its graph is also the intersection of polynomial functions, making y(x) semi-algebraic, as well as its Jacobian
J(y(z)). If the upper-level objective is also semi-algebraic, then the potential function H is a KL function,
satisfying the assumption in Theorem 2.

6.2 Convergence Analysis for Algorithm 3

In this section, we make the following assumption.

Assumption 3. Consider (7). Suppose for any fixed y,

EV.F(z,y;§) = Vo F(x,y)
E||V.F(z,y;€) — Vi F(z,y)|* < 0F.

Suppose

E|VyG(z,y;€) — VyG(z,y)|* < 02,
E||V4yG(z,y;€) — Vo Gz, y)|* < 02

TY?

EHvny(x,y;g) - Vny(337y)||2 < Uzy'

Now, we present the short version of the convergence result of Algorithm 3.
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Figure 2: Test Accuracy w.r.t. logio(Training Time) for the hyper-representation task. Ablation study HF-SES-
ITDM behave when choosing different @, v and . As we can see, the greater @ is, the slower the algorithm is. But
when @ = 1, the accuracy is still competitive with the accuracy with greater @Q’s

Theorem 3. Suppose Assumptions 1, 2 and 3 hold. Suppose o < i Let {2'} be generated by Algorithm 3

with J in Step 4 being generated by (11) based on Gaussian sampling. Suppose the optimal value for (7)
is f* > —oo. Then there exists  small enough such that

N
1 1
N E HIR < E,+E
¥ 7 BV € g B e

where
By = A(C))? + Ar(f(2%) — %) + Aally(2®) — 4°)1* + Avl| T (y(2%)) = Vay G(2°, °)|1?

for some A1 > 0, E5 = Ay max{Aw + Ayy,a?g,aé} for some Ay > 0 with Amy and Ayy being the upper
bound of By s [|Vay Gzt y') — VGl yh)|1? and B stri||Vyy Gzt yt) — VGt yh)||? respectively.

7 Experiments

In this section, we test the efficacy of the proposed algorithms: Algorithm 2 and Algorithm 3 on the hyper-
representation learning task Franceschi et al. (2018).2 Hyper-representation refers to a shared representation
(or shared deep neural network) across multiple tasks in a meta-learning framework. The parameters in
the shared representation are referred to as hyperparameters. Let ¢(-; A) denote the hyper-representation
mapping, parameterized by A\. When applying this to solve a specific classification task, a linear layer w
is added on top of the hyper-representation, and only the parameters w are trained, while the parameters
A in the shared "hyper-representation" remain fixed. To train the parameters in the hyper-representation,
[Franceschi et al. (2018)] formulated it as the bilevel programming problem (1), where the upper-level
objective minimizes a validation loss, and the lower-level objective minimizes a task-specific training loss.
Specifically, we have the following problem:

min—— 57 1w (V) (i A), )

A |DV’£|($i,yi)€Dv,g

st w*(A) = argmin ly,- (N, w),
w
where

1
lir (A w) i= —— Z Hw"p(i5X),1:) + Cllw|]?
|DT’£| (i,y:)EDT,E

20ur code is available at https://github.com/Peiran225/Bilevel_Hessian_free.
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with [(-) denoting the cross entropy loss, Dy ¢ and Dy ¢ being training and validation dataset for a randomly
sampled meta task. Here A = {\;},ep, are hyper-representations and C' > 0 is a tuning parameter to
gaurantee the inner problem to be strongly convex. In experiment, we set C' = 0.01. All experiments are
run over a machine with Intel Xeon Gold 6248 CPU and 4 Nvidia Tesla V100 GPUs. The code is written
with Pytorch.

In the task, we perform the hyper-representation learning task over the Omniglot dataset Lake et al. (2015),
the details of the ominiglot dataset and the formulation of our hyper-representation task are included in the
supplementary. In general the target of our task is to learn a useful hyper-representation such that we can
learn a linear classifier on top of it with a small number of samples and training cost.

We first compare our algorithms with two existing Hessian free methods, i.e. the HOZOJ Gu et al. (2021),
ESJ Sow et al. (2022) and F2SA in Kwon et al. (2023). HOZOJ is a hyper-parameter optimization method
which applies the evolution strategy over the hyper-gradient directly. ESJ applies the evolution strategy over
the Jacobian matrix. Kwon et al. (2023) view the bilevel problem as a constrained optimization problem and
use a penalty-type method that only requires the first-order information. As a comparison, our HF-SES-
ITDM instead approximates the second order derivatives V,,G and V,,G. The experimental results are
summarized in Fig. 1. We search hyper-parameters for all methods, and we find setting the outer learning
rate 8 = 0.1 and the inner learning rate o = 0.4 can get good performance for all methods. For F2SA, we set
the additional Lagrange multiplier as 2. We find the scale of the noise (x4 and v in HF-SES-ITDM and p
in ESJ and HOZOJ) and the number of Gaussian vectors (@) are very important for the model performance.

We also test HF-SES-ITDM with (11) being replaced by (8), which is named as SES-ITDM. As shown by
Fig. 1, HF-SES-ITDM greatly accelerates the SES-ITDM by avoiding computing the second derivatives
explicitly. Furthermore, the ESJ and HOZOJ methods need to query a relatively large amount of noise
vectors to get good performance. For example, in the 5 way 1 shot case, ESJ needs to query 50 noise vectors
to reach the same test accuracy as HF-SES-ITDM with @Q = 1, and has longer running time cost. For
HOZOJ, we need to query at least 50 noise vector to get converged training, while for 100 and 500 noise
vectors, we still observe a great performance margin compared to our method. The need of many noise
vectors for ESJ and HOZOJ might come from the evolution strategy used in both methods to approximate
higher level properties, and thus lead to more noise.

Figure 2 shows how HF-SES-ITDM behave when choosing different @, v and p. As we can see, the greater
Q is, the slower the algorithm is. But when ) = 1, the accuracy is still competitive with the accuracy with
greater Q’s.

8 Conclusions

In this paper, we focused on studying the bilevel optimization problem and proposed a new single-loop
ITD method that is more efficient in approximating the Jacobian of the lower-level solution with respect
to the upper-level variable. We proposed a Hessian-free stochastic bilevel optimization. Based on a natural
stochastic extension of ES-ITDM, we first proposed a Hessian-free stochastic ES-ITDM. This Hessian-free
variant eliminates the need to compute the Hessian vector multiplication, thus potentially leading to faster
implementation. We theoretically analyze the proposed methods. For the deterministic method, we investi-
gate the global convergence rates of the generated sequences. As for the stochastic method, we conducted
an analysis of its complexity. Our methods were validated using the hyper-representation learning task.
In experiments, our Hessian-free stochastic ES-ITDM demonstrated greater efficiency compared to existing
Hessian-free methods.
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A Additional Preliminaries
For any matrices A and B, we denote trace(AT B) := (A, B). Given independent random variables &1, ..., &,
and a function f(1,. .., &), we denote the conditional expectation of g with respect to &; as E¢,j49(&1, .-+, &p)-

Under Assumptions 1 and 2, we have the following properties (Lemma 2.1 and Lemma 2.2 in Ghadimi &
Wang (2018)) about f in (1).

Lemma 1. Consider (1) and suppose Assumptions 1 and 2 hold. Then y(x) is Lipschitz continuous

F
with L, = % In addition, Vf is Lipschitz continuous with modulus Ly := (Lmz% + LE +
LezCEF Lo C LoyCE  LguCaay
r Gy -y G2 CGay _TF L Ia GYYy Gy
Cy< no T 'z ),whereC.—le—i—Hi?—&—C ( —+ JHQG )
Lemma 2. Consider (1) and suppose Assumption 2 holds. Then for any x, it holds that
_ Lgr+LgyL,
J(y(x)) = — (V2,G(z,y(x))) ' V2,G(z,y(x)) is Lipschitz continuous with modulus Ly := G“”Tcgy
(LGg‘i’LGULy)CGIy . Ca
— . Also, for any x, it holds that ||J(y(x))||lr < My := et
G

Proof. By Lemma 2.1 of Ghadimi & Wang (2018), we have that

T(y(x)) = — (V2,G(z,y(x))) "' V2,G(z,y(x)).

Thank to Lemma 1 and Assumption 2, it is easy to see that V2, G(z,y(z)) is Lipschitz continuous with
modulus Lgz + LgvL,. Also, thanks to Lemma 1 and Assumptlon 2, we know that V7 G(x,y(z)) is
Lipschitz continuous with Laz + Loy Ly. Thus, for any z; and x9, it holds that

17 (y (1)) = J (y(22))l

-1 1

V2, Gl y(@)) = (V3,Glan,y(e1)) Va,Glas,y(wo))]
V2, G2, y(2)) — (V2, G2, y(x )1 V2, G2, y(x2))|

) (V2,6 y(@)) = V2, G, y(x2))) |

) = (V3,Glany(a2)) ) viyamy(u))n

)" (V2,Gla1,y(a1)) — V2,Glaa,y(x2)) | + [TV2, G2, y(22))]]
)

)
)—1

where I':= (V3, G(acl,y(xl)))_l(v2 G(z2,y(x2)) — Vi,G(21,y(21))) (Vi,G(22,y (mg)))_l. These together
with Assumption 2 (ii) and (iii) gives the Lipschitz cont1nu1ty of J(y(x)).

On the other hand, using Assumption 2 (i) and (ii), we have

1@l < || (92,6, y(@) || IV3,G y@)]) < %

B Proofs for results in Section Convergence Analysis for Algorithm 2

B.1 Proofs for Theorem 1

To prove Theorem 1, we give the following lemmas first.

Lemma 3. Consider (1) and let Assumptions 1 and 2 hold. Let {(2',y', J")} be generated by Algorithm 2.
Then, it holds that

IVf(z') = Vi)

< (A5 + AMALEY?) Jy(at) — I + 4(CF ]I (yah)) — T2 ()
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Proof. First, using the chain rule, we have that

Vi) = Vo F(2!, y(2h) + (J(y(a")TV, F(a!, y(2")).
This together with the definition of V f(!) in Algorithm 2, we have that

IVf(z') = Vi)
= Vo F(a',y(a')
< 2| Vo F (2! y(a') = Vo F 2!,y )2
+2/|(J(y (") TV, F (2! y(a") = (S5 TV, F )12

For the first term in the above relation, we have that

IVaF (2! y(a') = VoF(a!,y™* )1 < (L) [ly"™ = y(h)].

For the second term in (13), it holds that

1T (y(2") 'V F(ay(zh)) = (JHH TV, P!y 2

<2 J(y(a")"V F(a! y(ah) — J(y(@') TV, Py h)°
+2[J(y(a") TV Fal ™) — (ST, F(a y )2
=2||J(y(z")" (VyF (' y(a") = VyF' g™ ) |12
+2[[(J(y(2") = JH)TV F !,y )2

< 2MF(L5)?[ly(a") — 5 + 202 (y (") = T,

where the last inequality is thanks to Lemma 2 and Assumptions 1 and 2.

Combining the above inequality with (14) and (13), we obtain that

IVf(') = VFh)?

< 2Lyl = y(@IP + 4MF(L5)? [y (') — ™17 +4(C))2 (I (y(ah) = JFH TP

< (2(L12)* +4MF(L3)%) ly(a') = y™ 1P +4(C))? (1T (y(ah) — T2

Thus, the conclusion follows from the fact that ||A|| < ||A||r for any matrix A.

|
)+ (J(y(@") TV P! y(ah) = Vo F (2! y™h) = (JFY)TV, P!y ™2

(13)

Lemma 4. Consider (1) and let Assumptions 1 and 2 hold. Let s > 0. Let {(2',y',J")} be generated by

Algorithm 2 Then, it holds that

1 _
17l = TR < 601+ )V (L + L2 M3y~ — o2

1 _
+3(1+ )V (20202 + 29218 M3) L2 + (1 = )L ) la — '~
+ (14 Al — a2 Ty 1) = T
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Proof. Using Step 4 of Algorithm 2 and the fact that J(y(z!)) = J(y(a'))(I — vV,,G(z!, y(z!))) —
YVayG (2!, y(2!)), we have that

1T Gy(ah) - T T2

<[ T )T =V Glat, y(2) =y Vay Ga, y(a') — T T =3V G2,y ) +7V ey G2 ) |12
< 30+ IV Gl y(a) — Ty Glat )P

£330+ IOV Glat) — 2V Gt y() P

£30+ I ()~ T6 ) (T -9,66 I

+ (1482 (Jya ™) = JY) (I =1V, G, yh)|1?

<80+ DRl I 80+ LB M - )

£304 Bt — o P~ A9, Gt )P

+ (14 82| (Tt = JD) (I = 4V, G, y))|12,

where (a) uses the fact that ||a; +as+ a3 +aql]? < (1+S%)||a1 +az+as||* + (1+5%)]Jasl|* < 3(1+ &) ([|lar|* +
llaz||? + |laz||?) + (1 + s?)||as||? for any matrices {a1,az,as,as}, (b) uses Assumption 2 and Lemma 2. Using
Assumption 2, the above inequality can be further passed to

(T (y(") = JHHTI* < 301 + S%)WQLZg ly(a') = y'l* +3(1 + S%)ngéngllyl —y(h)|?
F304 )1 =g Bllat — 7P+ (14 )1~ eIyl ) - I

<30+ ) (2L + 20712, M3) lya' ™) — /1P

+3(1+ Siz) (20212 + 20203y M3 ) L|ja’ — 2|

£3(1+ ) (=L — 2P 4 (14 )1 = )T () — TP

= 61+ 5 0? (L + L2 M3) (™) — o'

+3(1+ S%) (20208 +292L2y M3) L2+ (1= 70)°L3) 12’ — o'~

+ (L4821 = ype)? Il (y(=' 1) = J1?,

where the last inequality uses Lemma 1. Then the conclusion follows from the fact that ||Al|r < ||A]| < ||A|lr
for any matrix A. O

Now we are ready to present the detailed version of Theorem 1.
Theorem 4. Consider (1) and let Assumptions 1 and 2 hold. Suppose that F is bounded from below.

Let {(z!, 9", JY)} be generated by Algorithm 2. Let a € (0, H%) Denote { = ai"fyg. Let dy > 0 and
2 1 ._ 2 a : 2 1
dy, € (0, e ~ 1). Denote ¢ := (1 + di)(1 — (). Let s > 0 and satisfies s* < i b Let
Fy\2
r > 0 and satisfies r > max 1—(1+s§)(\c/%()1—wc)27 4(Lf2)2+8M§(L§2)202 . Let (1 — %)H% <7<
C76(1+s2)\/ﬁ<Léy+Léy fgy)
min < =2 ,#% . Let 6 > 0 and satisfies
6(1+s2)\/ﬁ(L2Gy+Léy TGLM)
z Y 9
4(L{y)? 4+ 8M3(L3y)* 1
5 <1 A . s(Lz)” (1=0) =61+ —5)vny® (L?; +LZ,.ZM3) (16)
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and
§<1-— 8(07;5)2 — (14 )Vl —ype)’. (17)
Denote
Co 1= (1+d,2)(1 - §)L§+3(1+8i2)\/ﬁ (2222, +207 L3, M3) L2+ - 0g)*L3)
Let A > 0 and suppose (8 is small enough such that
—Lf”’"z_w_l +Cy < —A. (18)
Denote
H(z,2',y,J) = f(2) + Allz = 2'l]* + [ly(z) — y|* + [|(J (y(2)) = T |-
Then H' := H (2!, 2!=1 o'+ JHY) is nonincreasing and
HE =0l (y(a")) = T (19)

H' < H = Alla’ = 2"H? = 8lly(2') —y

Furthermore, there exists H* such that {H'™'} is convergent to H*

Proof. Using Lemma 1, we have that
L
F@) < @) +(VFah) 2T = at) + St o)
1
7Hxl+1 _ .Z‘l||2

= f(a) + <Vf( Dttt —al) 4+ o
< Vi), 2t - xz> n Ly —Qﬁ_l 2+ — 2|2
(a) fah) - %H L )2 4 <Vf(:vl) — S (), 2 —
£+ (T 1) = D, —at) + L2 e
< 1)+ 219 fat) - ) 2+ L e,
where (a) is because z/*! is minimizer of min, <@f(:1,’l), x— xl> + %Hx — || whose objective is strongly

convex. Using (12), the above inequality can be further passed to

L, — -1
:Cl>—|— f 25 ||:Cl+1—£rl||2

Ar — —1
Fat) < paty + HETTH
(20)
4(LE,)? 4+ 8M3(LE,)? 8(Cy)?
(i SMI P oty — g2 4 260 g0ty — a1

r

2uc

On the other hand, recall that { = a~tipg - Phanks to the assumption that o < ,%G, we have that ¢ € (0,1)
Thanks to Assumption 2 (i) and (ii), it is easy to show (see Theorem 29 of Beck (2017)) that for I > 0,

ly(a") =y 12 < (1= Olly(z") = |17

<+ =y =y IP + 1+ d, %) (1 = Olly(z!) —y(='H)?

<A+ =y —y'IP + 1+ d, %) (1 = Ll — 2!
< (1= Qly(™h) =yl + 1+ d, ") (1 = L[l — 2",
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where the third inequality follows from Lemma 1 and the last inequality is because the definition of (.

: 2 1
Thanks to the assumption that d2 € (0, 2~ 1), ¢ € (0,1).

Summing (20), (15) with [ =1+ 1 and (21) with [ =1+ 1, we have that
FETH + ly™h) =y 22+ 1T (") = T

Li+4r—2871 4(LE)? + 8M2(LL,)?
< f(l‘l)-i- f 5 ||.Z‘l+1 —J,‘ZHZ—I— ( 12) J( 22) ||y(xl) _yl+1H2
8(CIF)2 B .
+ == ") = JHHE + (= Olly() = ™+ (4 ) (1 = QL™ = 2

1
601+ )V (L + L2y M3 ) y(a!) — )12

1
+3(1+ )V ((272L2Gg + 272ngM3) L2+ (1 - qu)QL?]) 2+t — )2
+(1+ )Vl = ype)?(| I (y(=")) = T+ %

— F\2
N e ||xl+1—xl||2+<w,?)+<1+82>¢ﬁ<1—wa)nJ(y(ml»—Jl“n%

2

4(L15)* +8M7(Lg,)? 1
# (MBI 1) o1+ )V (B + L 013) ) Intel) — P

where Cy = (14 d,2)(1 = ()12 + 31+ )V (20203, +242L2, M3) L2 + (1 - 1ue)*L3).

2
On the other hand, thanks to the assumption on v, we have that ¢ — 6(1 + s2)/n~y? (LQGg + LZGZ Ci?) > 0.

Using the assumption on 7, we know that
A(L{5)* + 8MF(L3,)?
r

0<

1
+ (1= ) +6(1+ —)Vny? (L2 + 12, M3) < 1.

In addition, thanks to assumption on s and v, we have 0 < (1+ s?)y/n(1 —yug)? < 1. Using the assumption
on r, we know

8 CF 2
0< ¥+(1+s2)\/ﬁ(177ug)2 <1
Therefore, there exists ¢ € (0,1) such that (16) and (17) holds.
Thus, using (16) and (17), (22) can be further passed to

FE + y™h) =y 2P+ (I () = T2

L;+4r—2p71
< fla) 4 (BT ) ot P e — R ) - S (2

= dlly(a") =y = 8T (y (") = T

Using (18), the inequality (23) can be further passed to
Fa) + ly(a™) =y ™22+ (1T (y(") — T2
< flah) = A"t =2+ ly(a”) =y 4 1 (y (') = T
= f(a!) = Al =22+ Alle’ — 22 4 ly(@h) =y TP 4 T (y(") = T
— Al =272 = dly(a’) — y P = o)1 (y(h)) — T
Rearranging the above inequality we obtain
H™ = (™) + Alla™ = 2! |? 4 [y (@) — 22 + [Ty = (7))
< fa) Al = 2P+ ly () =y P (T (y(h) = TR
— Allz! =22 = dlly(a") =y P = ol (y(ah)) — T
=H'— Alla’ — "1 = dlly(a") — " * = 8]l T (y(a")) — T3
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Since H'! is nonincreasing, F is bounded from below and oo < F(z!,y(z2!)) < H*, we know that H* is
convergent.

O

B.2 Properties of the limits of the generated sequences

The following corollary states the detailed version of Corollary 1.

Corollary 2. Let assumptions in Theorem 1 hold and suppose F is level-bounded. Then:

(i) lim; o0 [|2!T — 2 = limy oo [|y(2!) — ¥ Y| = limyoo || (y(2))) — JHY |7 = 0. In addition, the
sequence {(x',yt, J1)} is bounded.

(ii) Any accumulation point x* of {x'} satisfies V f(z*) = 0. In addition, any accumulation point y* of
{y!} is an optimal solution of the lower level problem in (1) defined with x*.

Proof. Noting that {H (z!*%, 2!, y!*2, J'*2)} is nonincreasing, we know that

P y(@ ) = f@) < B < H' < oo,
Since F is level-bounded, we have that {(z!T!, y(2'*1))} is bounded.
Summing (19) from [ = 0 to N, we have that

N+1 N+1 N+1
HNPE < HO — AN e =22 =6 >yl =y TP =0 > 1 (yh) = T
1=0

1=0 1=0
Rearranging the above inequality, we have that
N+1 N+1 N+1

AST =253 yta) — g P+ 6 3 () — S < HO -
=0 =0 =0

< HO —llim H' < .

—00

Taking the N in the above inequality to oo, we have that lim; . |2/ 7! — 2!|| = 0, lim;_,« [ly(z!) =y =0
and lim;_,o ||J(y(2!)) — J*| = 0. This together with the boundedness of {(z!*!,y(z'*1))} and the
continuity of y(x) and J(y(z)) w.r.t  guaranteed by Lemma 1 and Lemma 2, we have that {y'} and {J'*!}
are bounded.

For (ii), since 2/ is the minimizer of min, <@f(xl), x — ml> + %Hx — 2!||?, it holds that
. A 1
0€BVf(ah) + (@ —2b) & V! — Vi) - B(xlﬂ — 2y e Vf(ah).
Thus, using (12), we have that

IVf @) < IV f(ah) - VfE)] + %nw .

< \/(Q(Li“ﬂz)2 +AMF(L5)?) [ly(2h) — g2+ 4(C)2 T (y(2")) — T + %II%Z+1 —a' (24)

1
< V2ULEP + ML Ply(ah) = o) + 265 1)) = I e + 5l =),
where the second inequality uses (12).
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Now let {(2%,y%)} be the subsequence of {(z!,4')} such that lim;(z%,y%) = (z*,y*). Using Lemma 1, we
have that,

IV f (@)l = lim IV £(a)]| < lim \/Q(Lifz)2 +AMF(LE)?[ly(=b) -y
, . 1, .
+2C, [ (y(ab)) = J5H g + Ellx“+1 —a] =0,

where the last equality uses (i). Thus V f(z*) = 0.

Finally, let y* be an accumulation point of {y'}. Then, we have

ly* =yl <Tim g™ = g™ + ™ = y@)] + ") - y(=)]]

<lim|ly” — | + [y — (@)l + Ly’ — 27 =0

where the second inequality use Lemma 1 and the last equality uses (i). Therefore, we have y* is a solution
of the lower level problem defined by z*. O

B.3 Proofs of Theorem 2
To prove Theorem 2, we first prove the following lemma.

Lemma 5. Let assumptions in Corollary 2 hold.

(i) Denote the set of accumulation points of {(x!,x'=1, y!*1 JHN)} as Q. Then Q is bounded and H is
constant on €.

(ii) It holds that

dist(0, 0H (1, ol '+, 112)) < (¢2<Lﬂ>2+4L5<L52>2+2<Ly+1>> lya ) 2
(25)

1

+ 2L+ 2(Ly + D)) =2 ot 52— 4 VI - o).

Proof. First, the boundedness of  follows from Corollary 2. Now, let (x*,z** y*, y**, J*) be any point
in Q. Then there exists a sequence {(z!i,zli=1 ¢ylitl Jlith)}. such that lim;(xli, ali=t ylitt Jlitl) =
(z*, 2**,y**, J*). Thanks to Lemmas 1 and Lemma 2, we have that H is continuous. Thus,

H(ac*,x**,y**, J*) — 1imH($lj,xlj_l,ylj+1, Jlj-i-l) — H*,
J

where the last inequality uses Theorem 4.

Now we prove (ii). Denoting Z := (x,2’,y,J) and using Corollary 10.9 of Rockafellar & Wets (1998), we
have that

Oz H(z,2',y,J) D Oz H(x, 2’ y,J)

R S A R R
= 02f(2) + 0z 5 o = @'II* + 0zlly(2) — yll* + 02| T (y(=)) = J%

Vf(x) Az —2') Uy us (26)
B 0 n —A(x —a') n 0 n 0
0 0 U2 0]’
0 0 0 Uy

where (uy,us) € 3(ul’u2)|\y(x) —y||? and (usz,uq) € 3(u3,u4)|\J(y(x)) — J||% and the second equality uses
Proposition 10.5 Rockafellar & Wets (1998).
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Using the definition of regular subgradient, we have that

e e @) =P = @)yl — (). (@) ~ (@)

T (@) A@y). () () [(z,y") — (z,9)]l

_ lim inf (ly(=") =yl + lly(=) = yIDUly (") =yl = lly(=) —yl)

(@ ") A (@) ()= (z.9) [(z',y") — (z,9)l
B Jim sup {(ur,u9), (@', y") = (z,9))

(2' )2 (@) (@ )= (2,y) (=, y") — (2, y)ll
- T (ly(=") =yl + lly(=) =yl Uly(=’) = 3" —y(=) +yl)
T (@ )R @). () () (", y") — (zv)l
B Jim sup {(ur,u9), (', y') = (z,9))

@ )@~y 1@y = (@)
- T (ly(=") = y'll + lly(=) — yIDly(=") —y(@)] + lly — ¥'l))
T (@ ) A (@) (e ) () (2, y") = (z, y)l
B Jim sup {(ur,u9), (', y') = (z,9))

(2' ) (@) (@ ") (2,y) (=", y") = (z,y)]

. N ly(") —y@)I | lly =9I

S a8 oy 19 ~ ¥+ @) =) ( o —al v - y||)
B lim sup ((u1,u9), (') = (z,9))

(2" ") 2 (@,y), (@' " )= (2y) (2", y") = (z,y)]

.. , ’ (u1,u2), (2',y") — (x,y
S ) 1 ) ) By 1) = )
This together with Lemma 1 gives
0oL, 4 D)yl —  tmsp kG )
(2 52 (@), (@' y") = (z,y) (@, y") — (x,y)]l

Thus, we deduce that |[(uq,u2)| < 2(L, + 1)||y(z) — y||. Similarly, we have that ||(us,u4)|| < 2(Ly +
D|J(y(z)) = J||z. Combining two facts with (26), we have that

dist(0, 0H (2!, 2, ¢! T2, J1H2))
<IVAEH+ V2Alla™ = 2!+ 2(L, + Dly(a) — '+
+2(Ly + DI (y(a"*) = I e

1
< \/(sz)2 +4L3 (L5 ly (") =y 22 + 207 [T (y(" ) = 2% + Bllﬂﬂl+2 — |

+ \/iAHxl-H _ mlH + Z(Ly + 1)Hy(xl+1) _ yl+2|| + Q(LJ + 1)||J(y(xl+1)) _ Jl+2||F

= (V2R HATLER + 22, + 1)) Iy ™) - ]

1
+ 20y +2(Ly + )T (y(="*) = S| + Bllxl+2 — 2|+ V2A [T — 2l

where the second inequality uses (24). O
Now we are ready to prove Theorem 2.

Proof. Denote Z! = (x!, x!=1 ¢!T1 J*+1). Note that to show the convergence of {(z!,y!, J)}, it is sufficient
to show the same convergence of {Z'}.

We first show that {Z!} is convergent when H is KL. Suppose there exists [ € N such that H' = H !, Then
thanks to Theorem 4, we know that H' = H*, ||z!T! — 2| = ||y(2!) — ¢! Y| = || J(y(2!)) — JI || = 0 for all
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I > [. This implies that {Z'*!} converges finitely to (z!,z!,y(a!), J(z!)). Thus, in the rest of the proof, we
only consider the case where H' > H* for all 1.

Since H is a KL function and thanks to Lemma 5, H is constant on €2, using Lemma 6 of Bolte et al. (2014),
there exist € > 0 and a function ¢ : [0,a) — [0, 00) with ¢(0) = 0 such that

¢'(H(Z) — H*)dist(0,0H(Z)) > 1

when Z € {Z : dist(Z,Q) < e} N{Z : H* < H(Z) < H* + &}. Since  is the set of accumulation points of
Z!, we know that there exists [; such that dist(Z!,Q) < e when [ > [;. In addition, using Theorem 4, we
know that there exists I such that H(z') < H* + ¢ when [ > l5. Thus, when | > max{l1,l>}, we have that

¢'(H(Z") — H*)dist(0,0H (Z')) > 1. (27)
Using the concavity of ¢, it holds that

(p(H' — H*) — p(H'"T — H*)) dist(0,0H (Z"))
> ¢/ (H' — H*)dist(0,0H(Z")) (H' — H™*) (28)
> Hl o Hl+1,

where the last inequality uses (27) and Theorem 4. Now, we denote D} = |z! — 2!, D} = ||y(2!) — '+,
D} = || J(y(a!)) — J'FY|F, AL = Dt + D, + DL. Combining these definitions with (28), (19) and (25), we
obtain that

min{A, 6}(A")? < 3min{A, 5}((D})? + (D})? + (D)%)

< 3AJat — 22+ 30|ly(a!) -y P + 30]| T (y(2") — TR

(19) (28)
< H' —H'"' < ¢ ((H'— H*) — (H"' — H")) dist(0,0H(Z"))
(25) - 1
< (b ((Hl _ H*) _ (Hl+1 _ H*)) (ClDl2+1 + ClDé-i-l + BDll-‘rl + \/iADll)

< max{Cy, (), %,\/iA}gb ((H' = H*) — (H*' — H*)) (A4 + 4Y)

where C; = \/Q(L{g)2 +4M3(LE)2 + 2(L, + 1) and C := 2CF 4 2(Ly + 1). Rearranging the above
inequality and taking square root on both sides, we have that

2max{C} Cy, L V2A} Al 4+ Al
l < ) ’ B 1 _ *) I+1 _ * .
A _\/ e () — (a1t - 1) [

maX{ChC’l,%,\/EA} N Al—i—l +Al

d) ((Hl _ H*) _ (HH-I o H*))

min{A, ¢} 4
Rearranging the above inequality, we have that
max{Cy,C1, +
%Al < ﬁ\/ﬁ}mmm, 8} ((H' — H*) — (H'* — H)) + i (Al — Al (29)

b

Summing the above inequality from any 1 > max{ly,lo} + 2 and recalling H' is convergence to H* given by
Theorem 4, we obtain that

> max{C1,C1, &,v2A} 1
Al <2 B H gy + -4l
lz% - min{A,d§} o )+ 2 < 0 (30)
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Thanks to the Lipschitz continuity of y(x) and J(y(z)) guaranteed by Lemmas 1 and 2, we have that

Z Iyt T = @y T < (et =2+ =y + 1T = T e)
1=l

(D} + D5+ DY 2 + [ly(2' 1) — y(='2) | + Dy + DY2 + [T (271 — J(2'72) | p)

(31)

M8 .IM8

(DY + Dy '+ Dy 2+ LDVt + Dyt + D2 + LD

I
I—

l

o0
<max{1,L,, Ly} [ Y 3474241 4 a2 ) < o,
1=l

where the last inequality uses (30). This inequality implies that the sequence {(z',y', J')} and {Z'} are
convergent.

Now, we show the convergence rate when H is a KL function with exponent . First, when ¢ = 0, there
exists [ such that H' == H* when [ > . In fact, suppose to the contrary that H' > H* for some [ > [. Since
Z! is convergent (denote lim; Z! = Z*) and H' is nonincreasing thanks to Theorcm 4, noting that ¢(s) = cs
and the KL inequality holds for large [, it holds that dist(0,0H(Z')) > %, contradicting (25). Thus, there

exists | such that H' == H* when | > [ and recalling the arguments in the beginning of this theorem, we
have {Z!} converges finitely.

Finally, we consider the case where ¢ € (0,1) and H' > H* for all I. Denote B' = Y 77, A*, which is well
defined thanks to (31). Then, for any [ > 1 using (29)

2maX{Cl,Cl7B,\[A} 1 &
< _H*) k+1 _ - k+1
Z ( min{A, §} ¢((H H) - # )+ 2 Z -4
~ 1
< Zmax{cl.a 017 B \/iA}
min{A, 0}
maX{Ol,C’l, %, \/iA}

1
¢(Hl _ H*) 4 §Al—2

=9 Hl _ H* - Bl 2 Bl—l
min{A, §} 9 )+ 2( )
max{C}, C, %, V2A} 1
<2 — H*)+ -(B""2-BY).
- min{A, §} )+ 2( )

Now, following the classical steps for analyzing the convergence rate under the KL assumptions see (Attouch
et al. (2010); Attouch & Bolte (2009); Liu et al. (2019); Wen et al. (2018) for examples, we have

(i) B! converges linearly when 9 € (0, 1].

(ii) B' convergence sublinearly when 9 € (3, 1).

This together with

It oty 2 — @yt T < Sl o T — @y )
=1

oo
< max{1, M, L;} Z s 2411 + Al-2
=1

= max{1, MJ,LJ}< Bl yoal-1 4 4l- 2) < 2max{1, My, L;} B2
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guaranteed by the convergence of {(z!,y', J')} and (31), we obtain the same convergence rate of (:cl, yl, Jl)
as BL. This completes the proof. O

B.4 Details of results in Section Convergence Analysis for Algorithms 3

Lemma 6. Consider (1) and suppose Assumptions 1, 2 and 3 hold. Let {(z!,4')} be generated by algorithm

3. Denote g := ’f;g with ¢ € (0, 1/%). Denote (s :==1—(1+d2 )(1— () with d,, € (0, ,/ T 15 —1).
2a 2 E —(s
Suppose o < i Let x71 = 2% and pick any{u=2,u='} C R" and {v=2,07 1} CR™. Let S7!, §72, B!

and B2 be any sample batches. Then ¢, € (0,1) and for any 1 >0,

Enlly™ =y < (1= CEplly@@'™) — o'
272 9 (32)

-2 > 21| ,.0 —12
+(1+dys )(1_CS)ERZ*1Lny — T || +@0G

or equivalently,

Epally(z'™") —¢'|* <

+ (1 + d;52)<1 - ES)

En-ly@"") =o'l = Eglly™ = y(@)I?)

1 272

— 0.
pe 4 1 VG
C“‘ 2 + 2

1
Cs

LiEpi-i|lat — 2712 +

Proof. Thanks to Assumption 2, for [ > 0, we have that

La,
2

1
= G(l‘l,yl) + <VyG(.rl,yl;Sl),yl+1 _ yl> + %HyH—l _ yl||2

Gyt < Gl yh) + (V,G(ah, yh), 't — by + =yt — |

Lo—1
+ (VG y") - VG, y'; 8H, ¢t — ) + THyl“ -7

1 1
<G y) + (VG5 8, y(Y) = o) + oy = o117 = - llv(h) — o
Lo—1
(VG y) = Vy Gy 81y =) + =2y =y
1 1
<G y) + (VG5 8D, y(") = o) + oy = o117 = oo llv(h) — o

2 Lg—1
+ gIIVyG(xﬂyl) = V,yGat,y s SHIP +2¢ |y (') — ' + Tllyl+1 — 4|1

where the second inequality is because y'*! in Step 3 of Algorithm 2 is the minimizer of arg min G(z!, ') +
(V,G('y'5 8N,y —y') + £ |ly"™ — ¢'||* and the objective of this subproblem is strongly convex with
modulus % Taking the conditional expectation of S! on both sides of the above inequality and recalling

Assumption 3, for [ > 0, we have that

1
Esir— Gla',y™h) < Gl y') + (Vy GGl ) y@) = o) + o llv') — o'

1 2
— Egipo 5 lly(@) = o + So% + 26 y(e) - |

LG*% I+1 12
+Egip-—o—lly" — ¢

Ha 1 1
< G(fﬂl7y(ffl))—7||y(9€l)—ylHer%IIy(fEl)—ylllg—]EquH%Hy(ffl)—y”lll2

2 Le—1
+ 508+ 20 ly(@") =¥l + Es o =5 [ly"™" =/,
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where the second inequality uses the strong convexity of G(z,-). Rearranging the above inequality, for [ > 0,
it holds that

0 1
Egijm+ (G = Gl y(ah) < 22yl oI + 5 lly(e') = o'

1 2
— Egijpi ﬁlly(xl) —y P+ 0303; +2¢y(a") = o/l (34)

Lo— 2+
+Egpor—5 [y = y'|1%

Since G(x,-) is strongly convex with modulus pg and y(z') is argmin, G(z!,y) by definition, for I > 0, we
have

€,
Esir— Y™ = y@)? < Esip (G, 9™ = G, y(2))

Ha 1
= Iy =17+ oy = o)1 + 26y (') — ol

1
l+1||2 — E”yl—‘rl

1 2
—IES”Rz_l%Hy(xl) -y +§Ué+Esl\Rl—l — P

LG 1 1 P
et~ 1P+ (5 +262) Ioe) =311 ~ Bsos g loel) = 712 + S,

where the second inequality uses (34) and the third inequality is because the assumption that Lo — é < 0.
Rearranging the above inequality and dividing both sides with £ + i, for [ > 0, we obtain that

2
By ~y(a)I? < (=)~ I+ g 0%
2 2a

where ¢, = Zf%%i; € (0,1) thanks to the assumption that 0 < ¢ < % and a < i Now taking the

@ 2
expectation on {R'~1} on both sides, for [ > 0, we have that

2
Eplly™ —y@")I* < (1 = G)Bpima ly(a") =o' I° + g 0%
A5+ 3q)

< (1 dy )1 = GOBrma y@ ™) =P+ (L 2 (1 = GE s fly(e!) = y(a' ™)
+ 2 2

s 1.0

A5 +45) ¢
< (@ +dy )1 = CGErafly(@' ™) = o' + (1 4+ dy ) (1 = C)Egea Lo’ — 2!~
+ 2 2

T

A+ 55)

=(1—-¢)Epi ly(z'=Y — >+ 1 + d;f)(l — 5S)ER171L‘,2J||£8Z e
+ 2 2

2 e

(5 + 35)

where the third inequality uses Lemma 1 and the last inequality uses the definition of (5. Thanks to the
assumption that di < 1.

i
1-C.
Rearranging the above inequality, we have that

Enlly(@'™) —y'|* < o ( aelly@ ™) =y 1P = Eglly™ —y(@))?) +

1+d,? 1 2
17<g LzEz1zfx112+—702.
A s A

[
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Next we estimate @myG(xl,yl) and @ny(xﬂyl). We first present the following basic properties shown in
Nesterov & Spokoiny (2017), see equation (21), Lemma 3 and Lemma 5 in Nesterov & Spokoiny (2017)

respectively.

Lemma 7. Let h: R™ — R be a differentiable function with L-Lipschitz gradient. Define h,(z)

pw)], where >0 and u is a standard Gaussian random vector. We have that:

(i) hy is differentiable and Vh,(x) = E,Vh(z,u), where Vh(z,u) = h(“'“+)_h(x)u

M\W

(ii) ||Vhy(2) — Vh(z)|| < & L(n+3)3.

~ 2
(x,u)H < A(n + 4)|Vhu (@)% + 32 L2 (n + 4)°.

Now we bound nabla V.,G and V.,G.

=E,[h(z+

Lemma 8. Consider (1) and let Assumptions 2 and 3 hold. Let {(z',y")} be generated by Algorithm 3.

Denote
2 4 ) )
Agy = Q”; ((2@2 +4Q(4n + 15)) %LQ 2 (n+3)° +6Qu*LE. (n + 4)5>
C?%  + o2
Q

and

2 4

Ayy = Qﬂ; ((2Q2 +4Q(4m + 15)) (m +3)°% + 6Qu2LéZ (m + 4)3>

C2 + a
+ 4(4m + 15)nyT

Then it holds that
Eu”,S”Rl_l ||VlyG(xl7yl) - @xyG(xlvyl;Sl)H? < 203y + Aly

and

Byt st)pi-1 ||Vny(xl,yl) — Vny(Jcl,yl;Sl)H2 < 205?/ + A, for @ny(Jcl,yl).

Proof. Thanks to Assumption 3, it holds that
B | Vay Gt y') = Vi, Gty SH|1?
SB[ Vay G, y') — Vi G, 45 SYP
+ 2B, 1 | Vay G (2!, 05 8Y) = Vi Gt o' S
<202, 4 2B, | Vay G o5 ST — Vi Ga', o SN2
By the definition of V,,G(z!,y%; S') and V,,G(z!,y'), we have that

E,l|Vay Gla! 45 81) = Vo Glat )1
2

m |SY| Q
1 _
SZEWW |SI|Z G2,y €5)) — @Z% ué
i=1 =
2
st
l ‘IE +(V,,G Logr Ly 57
Z| l‘z ul| R Yi ( »y,fs))—éz s )
j=1
T—IS'\, o )

@‘,_.

ZEMR Z #(Vy,Gla' 41 €5)) — 8], )

i= 1
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where {55}‘5 | are the elements in S'. Denoting
Vy.G(@,y€5) =By p Vi, Gla + pu' y' €5),

we have that,

2
Q l I ,l.¢r Il ¢r
\% 7G($ +,LLU»,y;f )*v 7G(1’,y,£ )
ul‘Rl Z( »y €s)) — . ’ j . : ué
2
Q
Z (2,9 €5)) — Va (Vi G, 5 €5)))
Q 1 1,1 1,1 ?
i V., G(z' + pus,y'5€5) — V,,, G(2', y'; €5
+ 2B Z(vwzﬁ(x%yl;&g))— WO i) 2 Tull 55)%—) BT
j=1
Q 2
=20Q ||Va(V,,G(a!, 4 €5)) — Va(VE G(a' o5 €5)) |
=1
Ul ?
VGt + pul, ot €5) — V,, G(ah, yt5 €5)
+2E 1 Z( G,y &%) — — : Z Y Sl

For the first term in the above inequality, using Lemma 7 (ii) together with Assumption 2 (i), we have that
T T 2 lu’
Ve (Vy Glat,y'€5)) = Va(Vh Gy €9))|| < ZL 2 (n+3)°. (38)

For the second term in (37), denote

Vi G + il gt €5) — V,,Gat y'; €5)
1

rj = Va(VEG(a' ' 65)) —

(uf).

Then we have

2
Yy Gla' + i 45 €5) — Vi Gla', yl;5g>ull>
L J

(V (VEG(a' o' €8)) —

(39)

Vi, G + il i €5) =V, G(a!, ys &),
"

2
42 (i)

Jj1<J2

(Vi G2,y €5))—

”M@ Mo

Thanks to Lemma 7 (i) and that “.lh and ué»z are independent, we have that

B i R Z (rj1:755) = 0,V j1 # jo.

Yiyo —
J1<7J2
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Thus, taking expectation of u!, (39) can be further passed to

2
V.. G2t + put, ot €5) =V, G(al, ot €7
EUZ‘RZ Z(VI(V;G(xl,yl;Eg)) v G( Hug, Yy £5) v Gy ES)ué
i=1 H
Q ! Ul er Ul er 2
V., Gzt + pul, yl - V,,G(z', y";
=1 #
2

(a) \Y z‘G(‘rl"—;U'ul‘vyl;fr) -V iG(xlayl;gr) r 2
E3 B || pr o8 8 S| | Ve (VE Gty €5) ||

=i\ H
(? (4 o I L. ¢r 2 2712 3 o I L. ¢r 2

= (40)
= ((4n +15) || Vo (V2 Gt s €6)|) 7 + 3 L (n + 4)3)

j=1

2

< D2+ 15) [|Va(Vh G2, ' 65)) = Va(V,, G,y 65))|

j=1

Q ) Q ‘
+ > 2040+ 15) |Va(Vy, Gla' 5 €6)]| + D 3p?LE. (n + 4)°

j=1 j=1

Q 4
<30 (20n+19) (2 L0+ 37) 2600 +15) [V (9, Gat o 6430 s+ 47

2
is the variance of

l Lo L.er U, l.gr
3 - Ul er in(w +pug,ytiEg)— in(I Y 5Es) 1
where (a) is because Eué\Rl } Vo (VE G(a',y'5 €5)) v . v ul

v.. G 1 Lo l.er -Vv..G pbogloer vee . . 53
v G@ Huu;y 85) =V, Gy ’gS)ué, (b) uses Lemma 7 (iii) and the last inequality uses Lemma 7 (ii) and

o
Assumption 2 (i).
Now, combining (37), (38) and (40), we have that

2
Q l 1l ¢r U Ll.er
. Vi G(@' + puf, v €s) — Vy, G2,y €5)
Eu’\é’ Z <VI(Vy,G($l;yl;£S)) o E 5 Y 5 ué
j=1 2
p @ A
<2Q)° ZLég(n +3)%+2) " 2(4n + 15) (4L2:(n + 3)3>
j=1 =1

Q Q
+23 " 2(4n + 15) | Va(V,, Gl o 6|7 + 23 302 L. (n + 4)°
j=1 j=1

4
= (2Q2 +4Q(4n + 15)) %LQ L (4 3) + 6QuALE (n +4)°

+4Q(4n + 15) ||V (V,, G (2! o €5))||
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This together with (36) gives

E il Vay Gy 8') = Vi Gl ' 8|17

|Sl‘ m 4 |5l\ m
< |SITQ2 D3 (2Q% +4Q(4n + 15)) %L2z(n+ 3)% + |SZTQ2 DO T 6QuALE. (n +4)°
r=1i=1 r=1i=1
1 IS m ,
+ 5TGE 2 2 4QUn +15) [ Va (V. G 5 65) |
r=11i=1
m S r -
_ 2 [l &) 3 272 3
— |Sl|Q2§(2Q +4Q(4n +15)) T L (n+3)° + |SZ‘Q2;6QM Lg.(n+4)
1 IS'| m )
+4(4”+15)WZZ||Vx(Vin(xlyyl;§§))H :
r=11i=1

Taking the conditional expextion of S! on both side of the above inequality, recalling Assumption 2 (i) and
Assumption 3, we have that

Eoi stri-1]|VayG(a!,y's SY) — Vo Gl ' 81|12

4
< % ((2Q2 +4Q(4n + 15)) %Lézz (n+3)° + 6Qu* L. (n + 4)3>
C%, +o2
%%Mﬂr 15).

This together with (35), we have

EUL,SlIRl_l ||VZyG($la yl) - @wyG(xlv yl; Sl) H2
2m
Q

C%, +o2
%8(47’#{— 15).

4
<203, + ((2622 +4Q(4n + 15)) %LQ (n+3)> +6Qu° L. (n + 4)3>

In the same way, we can calculate that
]Eul,Sl\Rl*1 ||Vny(mlayl) - vny(Ilvyl§Sl)||2
2m
Q*
C2, . +o?

+4(4m + 15) nyQ v

4
<20, + <(2Q2 +4Q(4m + 15)) %ng (m +3) +6Qu*LEy (m + 4)3)

Next we bound of ||.J(y(z!)) — J1|=2.

Lemma 9. Assume assumptions in Lemma 8 hold. Denote 7 = 1 — (1 + ¢%)(1 + d3)(1 — yug)?* with
dy € (0, , /m —1) and ¢y € (0, \/m —1). Suppose v € (0, ,/N%). Denote C,, := 3(1 +
A)1+d;*)(1—yug)? LA+ (4(1 ey )Ly +6(1+c3)(1+ d}Q)LQGgMﬁ) L. Denote Gy :=4(1+¢;*) L, +
6(1+03)(1+d;2)LéyM§, Let v € (0,7). Then, v € (0,1) and it holds that

EpillJ(y(2")) = TP < Cy*Eria lly(@' ™) =4 ? +Con® B ! —a! 12

R (41)
+ A+ (1= )Egs [T (y(="h)) = JI* + Ap,
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where Ay = 2(1+4c¢;%)7? (2a§y + Agy) and Ap == 6(1+c2)(14+d;?)7? (20, + Ayy) M3 when Vay Gzl yt)
and @ny(xl,yl) are generated by (ii) of Step 4 of Algorithm 3, v < /Tyt with W := 6(1 + A1+
d;%)(202, + Ayy).

Proof. First, using the facts that J(y(z!)) = J(y(z!))(I — 7V, G(x,y(x))) — 7V G(z,y(z!)) and Jitt =
J! <I - 'yﬁny(xl, yl)) - ’y%wyG(xl, y!), we have that

1T (y(at)) — S|

< (14 ;) 2IVay Gl y (@) — Vay Gl )2

(14 )T (y(a) (I =1V, Ga, y( ) = I (1=%,,GE ) I
<2(1+¢5*)7? | Vay Gt y(ah)) — Vay G(a', )|

+2(1 + ;)2 Vay G, o) — Vi Gty )12 (42)
(14 )T~ VGl y(@) — (T =29, Gl y)) P

a) - - .
< 201+ 77212 ly(a') = 512 + 201 + 2P Vay Gl ') = Vi GGt )|
+ (L4 I =V Gl y(@') = I (1=, Gty I,

where (a) is thanks to Assumption 2(iii). Note that

1T (@) =V, Gt (@) = ' (1= 9,,Gla ) |1
< 3(1+d32) [T (@) =1V, G’ y(a >>> Ty ) =7V, Gl )2
+3(1+d;?) () =1V, G, y) = J (') =1V, Gla' )2
+ (14 a3 ('™ =1V, G, y)) = (I = 49, G,y )]
+3(1+ )| T = AV, Glat ) = I (1 =2V, Gl ) |
<3(1+ 5277 |V G(a! y(a)) = Ty Glat, g )P ()|
+3(1+ )T =V, Glat ) 21T () = T (')
+ (14 a3 =V Gl )21 (') = J2
+3(1+ A7)V, Glats o) = Vi GGy P12,
where the first inequality uses ||a1 + a2 + az + a4|®> < (1 +d?)a? + (1 + d;?)|laz + az + as||> < (1 +d?)a? +

3(1+d;?)|az|® +3(1 +d;?)||las||? + 3(1 +d;?)||as||?. Using Assumption 2 (ii), the above inequality can be
further passed to

17N =3V Gl (@) = I (1= 1V, Glat i) ) |1

<3(1+d; 207V Glasy(a) = Yy Gty DI I (o))

+3(1+d52)(1 = 36?1 T (y(@)) = Ty DI + (L +d3) (1 = u6)* | Ty =) = ')
+3(1+ d5 292V, Gt ) = Vi Glat )21 2

< 3(1+d7?)y2LEy M3 y(a') — |2 + 31+ d7*)(1 = )Ly [la! — 2|2

(U d3)(1 = eI (@) = TP 4301+ 4722 W0y Gt ) = Yy Gl g2,

(43)

where the second inequality follows from Assumption 2 (iii) and Lemma 2.
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Plugging (43) into (42), we have that

17 (y(a")) = THH? <201+ 2y Lewlly(@') — o' P + 21+ ;)P Vay Gl o) —
+3(1+c5) (1+d; )V Lgy M3 y(a) —y") P +3(1+c5) (1+d5%) (1 —ype)* L 2" —=

+ (14 )+ dI)(1 —qpe)?|| I (y("1) = T
+3(L+ )1+ d;)72 VGt y') — Vi, Gl )P

< (404 )Ly + 601 + )1+ d7*)LEy M3 ) 2 ly(a ) — o/ |

+ (404 €5 LEy +6(1+ )1+ dy ) L2, M3 ) 72 y(a' ") = ylah)|?
+ (301 + )1+ d5 ) (1 = pc) L2)||x T
+2(1+ 22 Vay Glat s y) = Vi Glat )12

+ (L4 )1 +dP) (1 —yue)? 1T (y(' =) = J'|°
+3(1+ ) (1 +d; )2V Glatsy') = Vi, Gl ) 12117,
Using Lemma 1, the above inequality can be further passed to

17 (y(z")) — T
< (4
(4
B+ 1+ d;*)(1 - vue)*L?) ! — 212
21+ ;)2 Vay Gl y) — Vay Gla' ) 1P
(

+ (14 )1+ d3) (1 —ypa)? T (y(a 1)) - J|P?
+3(1+ ) (1+d;*)7V Vi G, ') = Vi Gl o) P

)
+ (40 4+ 5 EEy +6(1+ )1+ d5 ) LEy M3 ) L2A? '
+
+

= (40 + 7Ly + 6014+ (1+d572) Ly M3) 1 lly(a' ) =y I+ Cor?lle —2
L+ ¢V Gl y') = Vi Gl yHIP + (1 = )]l (y(a'
(

+

2
+3(L+ )L+ dy)P IV G y') = Vi Gty PP

< (3014 €2) L2y +6(1+63) (1+d5 ) Ly M3) 12 ly (') =4 [P+ Con?a! —a

+2(1+ ;)P Vey Gl y') = Vi Gl yh)|1P + (1 = )| (y(a'
+6(1+c7)(1+d7)?[VyyGla',y') =V (
+6(1+ )1+ dr)? [V, Gl ') = Vi, G,y (1 (y ('~

= (100 + 7Ly + 6(1+3) (1+d7 ) Ly M3) 22y ™) =4 |2+ Co 0’ —2

+ 2(1 + 632)72”wa6¥($[’ yl) - @QJZJG((‘IL‘I7 yl)ll2

+ (1= 7+ 61+ ) (1 +d;)0? |V, Gla' y') = Vi, Gty )1 (y ('

A

+6(1+ )+ dy )|V, G, y') = Vi Gl g 1P ()17,

(L4 ;%) Ly + 6(1+ 3) (1 +d5 ") Ly M3 ) ¥y =) — o'
(

=V Gl I (y(=' 1) —
G

ﬁxyG(xl’yl)HZ
l—1||2

l71H2

l—1H2

l—1H2

o jl||2

where the equality uses the definitions of 7 and C,. Note that the assumptions on ¢y, d; and ~ give that

7 € (0,1). Now we show that A satisfies

Eul|RlA S 1-— L.

Using Lemma 8, we have that

Eyisip1A<1—=74+6(14c3)(1+d;*)7v (200, +Ayy) =1 -7+ W <14,
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where the equality uses the definition of W and the second uses the assumption that v < \/ij .
Therefore, (45) holds. Combining (45) with (44), we obtain
Eyt it stiri- || (y(ah)) — I 2
< (40 + %) 12 + 6014+3) (1+d; ) 2y M3) 22y~ 4/ [P4+Car? !~ 2
+2(1+ ¢V Bt stiri- [ Vay Gt y') = Vi Gl )|
+ (1=l (y(' 1) = TP
+6(1+ 31+ d7") By st jm-1 [ Vi Glatsy') = Vi Gty (y(=' D)2
< (40 + 67 LEy + 6(1+63) (1+d5) Ly M3) 12 lly (') =y |+ Cor?la —a' = |
+ A+ (L= )l J(y@Eh) = TP + A
where the last inequality uses Assumption 2 (i), Lemma 8 and the definition of Ay and Ap.
Taking expectation on both side with R!~!, we obtain
Epi|lJ(y(a") = JFH? = BByt sty || (y(a!)) — T2
< (40 + 7 L2y + 6(1+63)(1+d5 %) Ly M3) 7 *Es y(e' ™) ')
+Cey B[l =2 PP 4+ Ay 4+ (1= OB [ J(y(2' 1)) = TP + Ap.
O

Before showing the details of Theorem 3. We first give the following lemma that estimates the error between
Vf(x!) and Vf(a!).
Lemma 10. Suppose assumptions in Lemmas 6 and 9 hold. Then it holds that
Er||Vf(z') = V@)
160% + 16(C[)?

[2

< (4(L1Fz)2 +4M3(L3y)* + CwQ) Enully(z') -y

1602 + 16(CF)?2
+ B—(y)Cﬂ?ERZ H:cl“ _ xl”?

5\, 160% +16(CF)

2 L

1602 + 16(CF)2
+ = () (AH+AL)+(4+8M§)U%,

where A = Eg [ J(y(a)) — JHL2 — Egra ]| T(y(a'+)) — F4212

Proof. First, using chain rule we have that
V(') = Vo F(a' y(a") + I (y(a")) Vy F (2!, y(a')).
This together with the definition of V ('), we have that
B [[Vf(') = V()]
< 2B || Vo F(a',y(2h)) = Vo F(a!,y"h B (46)
+ 2B || JT (@ )V, F (ol y(ah)) — (ST, Fat, g+ B2
For the first term in (46), we have that
Ep||VaF(a',y(2")) = Vo F(a',y™ B
< 2RIV @ y(@) = Ve F (! y P+ 2B By [V P (&, y ) = Vo F (2 y 5 B2 (47)
< 2L1)*Eglly(a’) —y™ | +20%,
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where the last inequality uses Assumptions 1 (i) and 3.

For the second term in (46), it holds that

Epi || (y(@") TV, Fa' y(ah)) = (J5)TV, Fat, g+ B2

< 2Ep || J(y(=") "V, F( (') = T(y(a) TV, Fat g2

+2Ep || I (y(«") "'V, F (2, ylH) (ST Fat gt B2

< 2Bl (y(2")' V Fa!,y(2') — J(y(@") TV, Fla',y™ )|

+4EUl7Vl,3(l),B[’)—1EBl\Ul,vus(l),Bé—l”J(y(zl) Tva(xlvyHl) - J(y(xl))Tva(xlayHl;Bl)”2

4B v s s By v sy s 1) TV Pty B — (YT, P2ty BY|

< 2Bl I (y(2")' V Fa!,y(2') — J(y(@") TV, Fla!,y™* )|

4By g s B s 0TV, Bl ) = IV, Pty B2
()" = (JHTPIVF, g+ B2

)
)

+ 4EUZ,Vl,s[g,Bg—1EBl\Ul,vl,sg),Bf)—l [
(a)

< 2B | J(y() 'V Fat,y(a") — J(y(a') TV, F ',y

4By 1 s s By v s s 1 (@) TV F g™ = T (y(2') TV Fat,y™ 5 B2
4By g g 19 (y(2)T = (JNTP (20 +2(C))?)

(48)

(b)

< 2B ()T IP (LA lyat) — o2

4By g o B v sy st 170V F Gl ) = )TV, by B
F 4By g o [T — (TP (203 +2(CF))

< 2E | (y (=) TP (L52) 2 ly(a") = y™ 1P + 4B v g g1 1T (y(a") T [P0
4By g g [T (y(2)T = (ST (20 +2(C))?)
< 2M3(L5) Eglly(z') — y'*? + 4Mjo
4By g i 1T (y(@)T = (JNTP (20 +2(C))?)
= 2M3 (L) Egully(a’) — y™I* + 4MJoR
+AE g || (y(2)T = (JHT|P (20 +2(C))%),

where (a) is thanks to Assumptions 1 and 3, (b) is thanks to Assumption 1, (c) uses assumption 3, and the
last inequality is thanks to Lemma 2.

Now using Lemma 9 and the definition of A!, (48) can be further passed to

Epi|lJ(y(a") TV, F (! y(at) — (JF) TV, Fat, g5 B2
8o +8(C))?

< 2MF(L5)*Eqilly(2!) — ™ |* + AMSoR + Oy’ Egely(a’) — 12

802 + 8(CF)2 8o +8(CF
C;p'72ERlel+l_xl”2+ B L( U) Al+ B ( ) )

8a2 +8(CF)2
4+ B vl L( y) (Ag +Ap).
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Combining this with (46) and (47), we have that

Er ||V f(z") — V(')
<ALG)Eply(a) — "2+ doh + AM3(L5) B ly(2') — o 7? + 8M30%

160% + 16(CI)? 160% + 16(CI)?
+ O Byt — |

N 160% +L16(C’5)2Al N 1603 + 16(C[)?

Coy’Ep [l — o' ||?

(Ag+Ap)

160% + 16(CF)?

160% + 16(CL)?2
e

1602 + 16(C*F)2 1602 + 16(CH)2
+ B L(y)A[+ B (y)

(A + ApL) +40% + 8M30%,.

Now we the details of Theorem 3.

Theorem 5. Suppose assumptions in Lemmas 6 and 9 hold. Denote

. . (AP )
28 2
and
160% + 16(C))?
D, :§<4(Lf2)2+4M3(L§2)2+B - ) Cyy* |

Ly -
WI’?J > 0. Then

Suppose B is small enough such that D, —
2
N+18
1 2D, 2(80% +8(C;)%) , 0 012
— 1-¢, C _
+N+1<csﬂ( )+ . vy | () =yl
L L 2D, 2c72 L] 2(80% + 8(CY)?)
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Proof. Thanks to Lemma 1, we have that
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where the first equality and last equality use Step 7 of Algorithm 3. Taking expectation w.r.t R, we have
that

Ep f(e ) < Epros f(o) ~ 3 FBR IVF @) + B 3 BIV 5 ) — 95|

L 1
+ (f - ) Ep |2zttt — 2|2

Using Lemma 10, the above inequality can be further passed to
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B
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Lf 1 I+1 12
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L

Al + (Ap +Ap) + (2+4M3) B0,

L

where the last inequality uses the definition of D, and D,,.
Using (33), the above inequality can be further passed to

1 D
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Thanks to the assumption that g is small enough such that D, — %Li > 0, the above inequality

can be further passed to

s
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Rearranging the above inequality, it holds that
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Taking expectation on R! and R!, we have that
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Summing the above inequality from [ = 0 to N, we have that
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Now we define 72 = 27! = 20 and 3y~ ! = ¢°. Let {ul_l,...,uél,uﬁ,...,uéQ} be any vectors in R"

and {vfl, e ,vél7vf2, e ,v(f} be any vectors in R™. Let S™', 872,871, 372 be full batches. Then since

{z~!, 272} are deterministic, using (41), using Lemma 1, we have that
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Using this together, (41) with [ = 1 and the fact that 27! = 2% and y~! = ", we have that
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where the last inequality follows from the fact that ¢ € (0,1) and the fact that J° is deterministic. This
implies

2(80% +L8(C5)2)E|J(y(x0)) FP < (P + 2(80% +L8(C5)2) (Cyr?) Iy() — 50
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On the other hand, using (32), it holds that
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Sum (50), (51) and (49), we have that
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Since f is lower bounded by f*, 2= = 20 and A~' = ||J(y(z~1)) — J°||2 by the definition of A’ in Lemma
10, the above inequality can be further passed to
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Dividing the above inequality on both sides by N 4 1, and rearranging terms, we obtain
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C Additional Experimental Details

The code is available in a anonymous way at https://anonymous.4open.science/r/Bilevel _ITD-5F46/. The
formulation of the hyper-representation task is as follows:

min ot (A0 (V) = Bl (" )):6)] = o 37 () s A )

“ D
| V’£| (zi,y:)€Dv ¢

. 1
st w'(Y) = argminly (A w) = 5 ST 1w @i N),y) + Cllwll?,
S (xa,yi)EDTLE

where {(-) denotes the cross entropy loss, Dy ¢ and Dy ¢ are training and validation dataset for a randomly
sampled meta task. Here A = {\;},ep, are hyper-representations and C' > 0 is a tuning parameter to
gaurantee the inner problem to be strongly convex. In experiment, we set C' = 0.01.

The Omniglot dataset includes 1623 characters from 50 different alphabets and each character consists of
20 samples. We follow the experimental protocols of Vinyals et al. (2016) to to divide the alphabets to
train/validation /test with 33/5/12, respectively. We perform N-way-K-shot classification, more specifically,
for each task, we randomly sample N characters from the alphabet over that client and for each character,
we sample K samples for training and 15 samples for validation. We augment the characters by performing
rotation operations ( multipliers of 90 degrees). We use a 4-layer convolutional neural networks and each
convolutional layer has 64 filters of 3x3 and is followed by batch-normalization layers Finn et al. (2017b).
The parameters of convolutional layers are treated as hyper-representation and the last linear layer is the
fined tune inner parameters. For all experiments, we use mini-batch size 4, outer learning rate 0.1, inner
learning rate 0.4, perform 4 inner gradient steps. In particular, for F2SA, we set the Lagrange multiplier as
2.
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