2409.15557v1 [cs.CV] 23 Sep 2024

arxiv

Mixture of Efficient Diffusion Experts Through
Automatic Interval and Sub-Network Selection

Alireza Ganjdanesh'*, Yan Kang?, Yuchen Liu?, Richard Zhang?, Zhe Lin?, and
Heng Huang!

! Department of Computer Science, University of Maryland College Park
2 Adobe Research
{aliganj,heng}@umd.edu, {yankang,yuliu,rizhang,zlin}@adobe.com

Abstract. Diffusion probabilistic models can generate high-quality sam-
ples. Yet, their sampling process requires numerous denoising steps, mak-
ing it slow and computationally intensive. We propose to reduce the
sampling cost by pruning a pretrained diffusion model into a mixture
of efficient experts. First, we study the similarities between pairs of de-
noising timesteps, observing a natural clustering, even across different
datasets. This suggests that rather than having a single model for all time
steps, separate models can serve as “experts” for their respective time
intervals. As such, we separately fine-tune the pretrained model on each
interval, with elastic dimensions in depth and width, to obtain experts
specialized in their corresponding denoising interval. To optimize the
resource usage between experts, we introduce our Expert Routing Agent,
which learns to select a set of proper network configurations. By doing
so, our method can allocate the computing budget between the experts
in an end-to-end manner without requiring manual heuristics. Finally,
with a selected configuration, we fine-tune our pruned experts to obtain
our mixture of efficient experts. We demonstrate the effectiveness of our
method, DiffPruning, across several datasets, LSUN-Church, LSUN-Beds,
FFHQ, and ImageNet, on the Latent Diffusion Model architecture.

Keywords: Efficient Deep Learning - Model Pruning - Diffusion Models

1 Introduction

Diffusion Probabilistic Models (DPMs) [28, 55,57] have become the de facto
models for generative modeling applications like image synthesis [10, 28], image
editing (68, 71], super-resolution [18, 53], and video generation [27]. They train
a denoising model that learns to generate samples from an input noise in an
iterative denoising scheme. DPMs have achieved better mode coverage and
training stability [10] than GANs [20] and show higher sample quality than
VAEs [33]. Yet, the main drawback of DPMs is their slow and computationally
intensive sampling process, making their cloud deployment costly and hindering
usage on resource-constrained edge devices.

* Part of this work was done during an internship at Adobe Research.

2 A. Ganjdanesh et al.

Fig. 1: Overview of DiffPruning. We prune a pre-trained LDM model [50] (top)
into a mixture of efficient experts (bottom). Each expert handles an interval, which
allows their architectures to be separately specialized by removing layers or channels.

Two important factors contribute to slow sampling in DPMs: the models use
1) a large number of denoising steps and 2) a large number of parameters in each
denoising step. Methods to speed up DPMs have primarily focused on reducing
the sampling steps, using techniques like faster solvers [2,39,41,69], better noise
schedules [47,56], and distillation [22,45,54]. In an orthogonal direction, a group
of methods address the second factor and develop more efficient architectures for
DPMs. Latent Diffusion Models (LDMs) [50] perform the diffusion process in a
latent space with lower dimensions than pixel space, thereby significantly speeding
up the sampling process while retaining a competitive performance. Accordingly,
LDMs have been deployed in modern generative models like DALL-E 3 [4] and
Stable Diffusion [50]. Thus, compressing LDMs is of significant interest. As LDMs
do not have redundancies of the pixel-space DPMs by design, pruning them is
much more challenging than pruning pixel-space DPMs.

Recently, several works [34,37,67] have explored architectural efficiency for
LDMs. They divide the denoising path of an LDM into several intervals and
use a distinct model for each one. These methods [34,37,67] are mainly in-
spired by studies [1,64] showing different timesteps have distinct roles in the
denoising process, and employing a single denoising model for all timesteps is
sub-optimal [1, 19]. Thus, the key design choices here are the clustering scheme
of the denoising timesteps and the method for allocating the resource budget be-
tween the selected clusters. MEME [34] uses uniform clustering, and TMDA [67]
clusters the denoising timesteps by their loss values’ similarities. Both MEME [34]
and TDMA [67] manually design a distinct U-Net model [51] for each cluster,
thereby heuristically allocating the resource budget between the denoising inter-
vals. However, by doing so, these methods need to re-design intervals’ models for
a new distinct budget, which is a complex, time-consuming, and labor-intensive
task. OMS-DPM [37] avoids manual designing intervals’ models as it trains a
model zoo with different sizes and searches for an optimal mixture of denois-
ing models, given a desired computational budget. Still, training a model zoo

DiffPruning 3

h N N . ~
Channel Pruning given v;') Remove j- th block of ~+

Expert E; given u‘/"

1
1

1

’ ’_’ i % ?
: I-th layer of (@) i

l‘ Expert E; V) L

e

Expert Routing
Agent (ERA)

Fig. 2: Our Pruning Scheme: We train our Expert Routing Agent (ERA) to prune the
experts into a mixture of efficient experts (Sec. 2.3). The ERA predicts the architecture
vectors (v,u) to prune experts’ width and depth. Then, we calculate the denoising
objectives of selected sub-networks of experts, Lpppm,z;, as well as our Resource
regularization term, R, that encourages the ERA to provide a mixture of efficient
experts with a desired compute budget (MACs). We train ERA’s parameters to minimize
the objective functions. Thus, it learns to automatically allocate the compute budget
(MAGCs) between experts in an end-to-end manner.

of various LDMs is extremely costly, even for medium-sized datasets, making
OMS-DPM expensive to deploy in practice.

In this paper, we propose a novel approach to make LDMs more efficient by
pruning a large pretrained LDM into a mixture of efficient experts (Fig. 1) in four
steps. First, we find an optimal division of time intervals by studying how aligned
pairs of denoising steps are to each other in a pretrained LDM. Interestingly,
while different datasets all show natural clustering, the exact time intervals
differ slightly between them. Thus, we adapt our clustering depending on the
behavior of the dataset rather than using a static approach across datasets as
in previous work [34]. Second, we fine-tune the pretrained model with elastic
depth and width on each interval so that the sub-networks of the resulting
model have a strong performance on that interval. We denote the elastically
fine-tuned models as experts for the intervals. Our elastic fine-tuning provides
an ‘implicit’ model zoo within each expert for its corresponding interval with
fewer training iterations than training multiple models from scratch like OMS-
DPM [37]. Third, we develop an Expert Routing Agent (ERA) that learns to
select proper network configurations for the experts simultaneously, guided by
the sub-networks’ denoising objectives and allocated compute resource (e.g.,
MACs). As we train our ERA in an end-to-end manner, it can automatically
allocate computing resources between the experts without the need for complex
heuristics [34,67]. We summarize our contributions as follows:

— We introduce a method for pruning LDMs into a mixture of efficient experts.

— We propose to cluster denoising timesteps of a pretrained LDM into several
intervals based on their pairwise alignment scores, showing that the optimal

4 A. Ganjdanesh et al.

clustering intervals are distinct for different datasets. We employ a specialized
efficient model for each interval.

— We fine-tune the pretrained LDM on selected intervals with elastic dimensions
so that resulting expert models will have strong sub-networks to choose
from. Thus, we can readily prune the experts for different computational
budgets, and the pruned experts can properly recover their performance
without long fine-tuning iterations.

— We develop a new pruning scheme in which our expert routing agent learns
to select optimal layouts of the experts together in an end-to-end manner,
thereby allocating the compute budget between experts automatically.

2 Related Work

Mixture of Experts (MoE) diffusion models. MoE methods cluster denoising
timesteps of DPMs into intervals and train a separate expert model for each. eDiff-
I [1] supports developing MoE for DPMs by showing that different denoising
timesteps have separate roles. Yet, how to cluster timesteps is non-trivial. eDiff-I
employs a tree-based-branching scheme, sequentially dividing the denoising path
into two intervals and initializing a child model by its parent. ERNIE-VILG [13]
and MEME [34] uniformly cluster the denoising timesteps. Yet, these heuristic
schemes do not necessarily transfer to other tasks. Alternatively, we propose to
cluster denoising timesteps in a data-driven way by measuring the alignment
between their training objectives. We observe that the optimal cluster assignments
are different for distinct datasets. We note that although NT [19] has explored
timesteps’ alignment scores in the course of training, our paper is the first one to
leverage post-training scores to cluster the timesteps for MoE DPMs.
Efficient DPMs. Ideas for improving DPMs’ efficiency mostly reduce their
denoising steps by faster samplers [42,63,69], distillation [22,45,54], better noise
schedules [2,32,47,56,70,73], learning denoising steps [60,61], and caching [43]. We
explore an orthogonal direction, compressing DPMs’ architectures.

A few ideas have recently addressed compressing DPMs’ architectures having
two main categories. Single-model methods develop a single efficient model for
all denoising timesteps. SP [12] approximates weights’ importance using the Tay-
lor expansion and removes structures with low scores. Yet, SP’s performance has
been mainly verified on pixel space DPMs, and its pruned models on datasets like
LSUN-Church [66] still have more than 6x MACSs than the full-size LDM [50]. Mo-
bileDiffusion [72] introduces heuristics to enhance DPMs’ efficiency and develops
two efficient architectures. Nevertheless, it is highly non-trivial how to generalize
the heuristics for different compute budgets. Spectral Diffusion (SD) [64] performs
frequency domain distillation from a teacher model into a small LDM. However,
the main weakness of single-model methods is that they use the same model
for all denoising steps, which is shown to be sub-optimal [1, 19]. Mixture of
expert methods employ a separate model for different stages of the denoising
process. OMS-DPM [37] trains a model zoo with various sizes and searches for a
proper model schedule given a desired compute budget. Yet, gathering a model

DiffPruning 5

FFHQ ImageNet LSUN-Bedroom LSUN-Church
T T 1

Cosine Similarity

L L 2 9o o ¢
S © o
Py

| A i

0 125 250 375 500 625 750 875 1000 O 125 250 375 500 625 750 875 1000 0 125 250 375 500 625 750 875 1000 0 125 250 375 500 625 750 875 1000

Fig. 3: Our Interval Selection Scheme: We calculate gradients of denoising timesteps’
objectives w.r.t the pre-trained LDM’s parameters and take the cosine similarity value
of two timesteps’ gradients as their alignment score. The dashed lines show our selected
cluster intervals for the experts. One can observe the optimal cluster assignments are
different for distinct datasets, and employing a deterministic clustering strategy [1] like
uniform clustering [13] for all datasets is sub-optimal.

zoo is very costly on large-scale datasets, making OMS-DPM impractical for
them. MEME [34] and TMDA [67] cluster denoising timesteps and design a
distinct expert for each. However, they need to manually allocate the compute
budget between experts and re-design the experts for a new budget, which makes
them cumbersome in practice. We prune an LDM into a mixture of efficient ex-
perts. We cluster denoising steps into intervals using their alignment scores. Then,
we fine-tune the pre-trained model with elastic dimensions on each interval to
obtain our experts. Thus, our method gathers an implicit model zoo within each
expert with much lower training iterations than OMS-DPM. Finally, we prune
all experts simultaneously using our expert routing agent to obtain our mixture
of efficient experts. By doing so, in contrast with MEME [34] and TMDA [67],
our method automatically allocates the compute resource (e.g., MACs) between
experts. We refer to supplementary materials for a review of other related works.

3 Method

We introduce a framework to prune an LDM [50] model into a mixture of efficient
experts in four steps. First, we cluster denoising timesteps of the model into
several intervals based on their objectives’ alignment scores. Second, we fine-tune
the pre-trained model on the selected intervals with elastic dimensions to obtain
our interval experts. Third, we prune the experts together using our expert
routing agent in an end-to-end manner (Fig. 2). Finally, we fine-tune the pruned
experts to obtain our mixture of efficient experts.

3.1 Background

Given a random variable xg ~ P, the goal of DPMs [28,55] is to model the
underlying distribution P using a training set D = {z(} of samples. To do so,
first, DPMs define a forward process parameterized by ¢ in which they gradually
perturb each sample zg with Gaussian noise with the variance schedule of 5;:

6 A. Ganjdanesh et al.

q(ze|zi—1) = N(2e:\/1 = Brag—1, Bed) (1)

where ¢ € [1,T]. Thus, q(z¢|zo) has a Gaussian form:

q(z¢|xo) = N (x; Vayzo, (1 — ay)I) (2)
where oy = 1 — 8; and a; = H§:1 ;. The noise schedule B; is usually se-

lected [28] such that g(zr) — N(0, I). Assuming §; is small, DPMs approximate
the denoising distribution g(x;_1|x:) by a parameterized Gaussian distribution
po(Ti—1|xe) = N(xt_l;\/%(xt - %eg(xt,t)),afﬂ, and o? is often set to
B:. DPMs implement €p(.) with a neural network called the denoising model and
train it with the variational evidence lower bound (ELBO) objective [28]:

Lpppm = E¢opn,1 Lt 3)

= Bt [1,7),e~N (0,1).01 ~q(a: o) | [€0 (1, 1) — €[

DPMs generate a new sample by sampling an initial noise from z ~ p(ar) =
N(0,7) and iteratively denoising it using the denoising model by sampling from
po(xi—1|x¢). Thus, the sampling process requires T’ sequential forward passes to
the large denoising model, making it a slow and costly process.

3.2 Notations

Fig. 4 shows the U-Net [51] architecture used in LDM [50] models. The encoder
and decoder branches have several stages (each row in Fig. 4). Each stage has one
or several layers. We represent the layers’ functions and feature maps with f;(.)
and Fj, respectively, where [€ [1, L], and L is the total number of layers. Each
layer consists of one or several blocks. For instance, the green-colored layers
in Fig. 4 are in the third stage of its encoder and decoder and consist of a
Residual block [24] and an Attention block [59].

3.3 Clustering Denoising Timesteps into Intervals

We propose to cluster denoising timesteps 7 = [1, 7] of an LDM into N intervals
{Z4,Z5,--- ,Zn} such that T =Z; UZy U - - UZy. The intuition is that different
intervals have separate roles [1]|. For example, it has been empirically shown [9]
that an LDM first generates the layout of an image in high-noise timesteps and
then fills in the details in low-noise ones. Thus, using the same denoising model
for all timesteps is sub-optimal. We employ alignment scores of training objectives
L: (Eq. 3) for denoising timesteps of a pre-trained LDM to cluster them. We
estimate the gradient of each £; w.r.t the denoising model’s parameters () using
a random batch of samples in the training data and take the cosine similarity
between the gradients of £; and L, as the alignment score of timesteps ¢t and s.

We visualize pairwise alignment scores of denoising time-steps for pre-trained
LDMs [50] of different datasets in Fig. 3. We select two distinct clusters (N = 2)

DiffPruning 7

-

] ﬁ Residual Down samplmg v
v ! Block [DNJ Residual Block | GN S|LU Conv
Attemlon Up-sampling |
Block [UP]Residual tockl
x At RB
.Convo ut\onﬂ GroupNorm I
Layer

RB RB
RB| Al RB | Al
l-- e~ (2] |tH]
RB RB
- At UP n-
RB
-
ol]re

Fig. 4: U-Net architecture of the LDM [50]. We randomly drop/preserve each colored
layer in our elastic depth fine-tuning.

for all datasets (shown by dashed lines in Fig. 3) in our experiments. We choose
the cut-off point between the clusters to be the one that maximizes the weighted
mean of the average scores of the clusters, and we refer to the supplementary
for the formulation. We do not use more than two experts in our experiments
for computational efficiency. However, our formulation can find cut-off points
for more than two clusters, as we elaborate in the supplementary. One can ob-
serve that intra-cluster alignment scores are high, and inter-cluster scores are
small and even negative for LSUN-Bedroom [66], ImageNet [52], and FFHQ [31].
Accordingly, further training the denoising model on one of the clusters de-
grades its performance on the other. This observation supports our decision to
employ a specialized model for each interval, that using a single model for all
intervals is sub-optimal. Further, the optimal cluster assignment is different for
distinct datasets. Thus, our clustering method is more robust than deterministic
ones [1,13]. In summary, we select clusters (Z1,Z») to be ([0, 700], [701, 1000]) for
LSUN-Church as well as LSUN-Bedroom, ([0,400], [401,1000]) for FFHQ, and
([0, 625], [626, 1000]) for ImageNet.

3.4 Fine-tuning with Elastic Dimensions

We fine-tune the pre-trained LDM with elastic dimensions (depth and width) on
each denoising interval Z; (i € [1, N]) after clustering the denoising timesteps. We
call the resulting models experts and denote them with F;, corresponding to
Z;. Our main inspiration is that by doing so, each sub-network of an expert F;
has a decent performance on the denoising interval Z;, which brings in several key
benefits: First, the loss value of each sub-network of E; will be a proper proxy for
its actual performance after fine-tuning on Z;. Second, the pruned experts will be
able to recover their performance promptly during fine-tuning without requiring
long fine-tuning iterations. Finally, our elastic fine-tuning provides a model zoo
within the expert FE; for the denoising interval Z; without extreme computational
and memory expensive training of several architectures from scratch like in

8 A. Ganjdanesh et al.

OMS-DPM [37]. We first fine-tune the pre-trained model with elastic depth on
each interval. Then, we fine-tune the resulting model with elastic width. We do
not perform elastic depth and width training together to prevent instabilities.
Fine-tuning with elastic depth. We randomly drop the last layer in each
stage of the U-Net’s encoder and decoder (colored blocks in Fig. 4) for our elastic
depth training. Formally, for each training batch, we randomly select to map the
last depth layers fj@ in stages of the expert E; independently with a probability
p to the identity function:

=1y s§i> ~ Bernoulli(p) (4)
J

f]@ = g

J {s;i):O} +11

We train selected sub-network’s parameters with the interval denoising objective:

Loppm,z; = Bz, Lt (5)

where £; has the same formulation as Eq. 3.

Fine-tuning with elastic width. After fine-tuning the pre-trained model
on each interval Z; with elastic depth, we fine-tune the resulting experts with
elastic width. For each ResBlock in the U-Net, we sort the channels of its
convolution layers based on an estimate of their importance (determined by their
Ly norm [5,35]). Then, for each training batch, we randomly remove some ratio of
the least important channels of each convolution layer. Similarly, for the attention
layers [59], we sort the attention heads based on the L; norm of their projection
weights, and we randomly drop some of the least important heads during our
elastic width fine-tuning. Finally, we update the selected sub-network’s weights
using Lpppm,z; (Eq. 5). We refer to supplementary for more details.

3.5 Expert Routing Agent

We develop our Expert Routing Agent (ERA) to prune the elastically fine-tuned
experts E; (i € [1,N]) into a mixture of efficient experts. We denote our ERA as
a function hgra(.; 8) parameterized by 8, predicting architecture vectors (u,v):

u,v = hgra(z; 3) (6)

2 is a constant, randomly initialized input. Vectors u = [u(?]Y_; determine pruning
depth layers f;l) (Eq. 4). Similarly, vectors v = [v]¥, determine widths of
blocks of N experts. Together, (u,v) select sub-networks e; from experts E;.

Given a total constraint on the computation budget (e.g., MACs, latency,
etc.), denoted as Ty, we optimize the ERA model’s parameters S to predict
architecture vectors (u,v) for an efficient and high-performing set of experts’
architectures. Next, we describe how we parameterize and apply (u,v). We show
the formulation to determine the compute budget of selected architectures and
the final optimization procedure for the ERA in Eq. 15.

DiffPruning 9

Pruning Width: Although one can prune widths of blocks in an expert E;
using a binary vector v(*), keeping the 7" channel when véi) is 1 and vice versa,
such an operation is not differentiable, making the optimization of parameters 3
of the ERA challenging. Thus, we introduce soft vectors v(), relax them to have

continuous values, and use them for width pruning. We calculate them as follows:

v® 4+ n

) (7)

n ~ Gumbel(0, 1) is a noise from the Gumbel distribution [21]. Parameter 7 is
the temperature that when set appropriately, brings elements of v(?) close to 0 or
1. The calculation from v to v(?) is called the Gumbel-Sigmoid trick [30,44]. It
is a differentiable estimation of sampling from a Bernoulli distribution with the

Bernoulli parameter of sigmoid(v(?). We apply vectors v(¥) = [vl(i)]lL:1 to prune

the width of blocks in all of the layers f{”) for the expert Ej:

v(® = sigmoid(

i =176 (8)
Here, we apply (multiply) the width vector vll) to feature maps of the first
convolution layer in the ResBlocks and inputs of the attention operation in the
attention blocks in the layer fl(l). The granularity of our width pruning is similar
to our elastic width fine-tuning, i.e., we prune channels of convolution layers of
ResBlocks and heads of the attention layers.

Pruning depth. Similarly, we employ relaxed continuous vectors u? = [u§i)]

for pruning the depth layers f](i) (Eq. 4) of the expert E;:

(]
ul® = sigmoid(U()Tﬁ) 9)
As there are skip connections in the U-Net, we apply the depth architecture
vectors for the encoder and decoder branches differently.
Encoder depth pruning. We use the following formulation to apply the vector
ul® for pruning depth layers in the encoder of the expert E;:

FO = fOFD)+ 1 -l FY (10)
In other words, we interpolate between the feature map of the previous layer,

]_-](1_)17 and the result of applying the current layer to it, f]@ (}"J(z_)l) The u;-i)

values close to 1 simulate preserving the layer, and 0 simulate removing the layer.
Decoder depth pruning. The input for the layer f]@ in the decoder of the

expert F; is the concatenation of feature maps F. 7(1_)1 of its previous layer and the

Thus, we apply the vector u'? to it as:

skip connection feature maps F, (@) "

J,skip”

7 =l 1 O F) + (0= w) (11)

where || denotes concatenation. Similar to Eq. 10, we interpolate between applying
or removing the layer in Eq. 11.

10 A. Ganjdanesh et al.

3.6 Pruning the Mixture of Experts

We train our Expert Routing Agent to select competent sub-networks of elastically
trained experts given a desired total compute budget. We measure the compute
budget of our models with MACs, following [12,34]. Given an architecture width

vector Vl(i), the MACs of the layer fl(z)(.) after applying vl(i) will be:

T =17 x v x 17 (12)

where 1 denotes a vector of all ones. |-] is the function that rounds to the nearest
integer, and Tl(z) is the MACs of the layer fl(l)(.). Similarly, the MACs for the
layers f;l)(.) that we use for depth pruning (Eq. 4) after applying u;l) will be:

JA“J.(i) = Lugi)] x 17 x Lv;i)} X Tj(i) (13)

After applying architecture vectors of each expert E;, we calculate the total
MACs of our mixture of experts as:

N

~ (77 PR

T(u,v) =) ———TO WD, (14)
i=1 ZIIcV=1 |Ik|

where 7 (u®,v™) is the MACs of the expert F; after applying its architecture
width and depth vectors. In Eq. 14, we assume that the denoising schedule is
linear such that the number of denoising steps that the expert F; will contribute
to the denoising process is proportional to the size of its interval |Z;|. One can
alter Eq. 14 for other denoising schedules like quadratic [56], but we focus on the
linear schedule as it has been widely adopted in the literature [12,34, 50, 56].

Given a desired MACs budget Ty, we train our ERA with the following
objective to encourage it to select sub-networks of experts such that each of them
has a high performance and their mixture has a total MACs close to Ty:

N

min J (Ta) = [% ; Lppem z, (Bi(w®,0)] + R(T (u,v), Ta) (15)
Lpppum z; (Ei(u®,v@))) is the interval denoising objective (Eq. 5) of the sub-
network of E; chosen by (u(®,v®). T(u,v) is the total MACs of the mixture of
experts (Eq. 14) determined by the architecture vectors (u, v) that are functions of
the ERA’s parameters 5. R(-) is the MACs regularization term that we implement
it as R(z,y) = log(max(z,y)/ min(x,y)). Now, as the round function |-| used
in Egs. (12, 13) is not differentiable, we use the Straight Through Estimator
(STE) [3] to calculate the gradients of R w.r.t the parameters 8 of our ERA. We
implement our ERA model with a GRU [8] layer followed by dense layers. We
found in our experiments that a lightweight (~ 0.5M parameters) ERA model
suffices to obtain a performant mixture of efficient experts. We show our pruning
scheme in Fig. 2 and refer to supplementary for more details of our pruning
algorithm as well as the ERA’s architecture.

DiffPruning 11

Fine-tuning pruned models. After our pruning stage, we use architecture
vectors predicted by the ERA to prune experts. Then, we fine-tune the experts
with the same settings as the original LDM model [50].

4 Experiments

We experiment on the LSUN-Church [66], LSUN-Bedroom [66], FFHQ [31], and
class-conditional ImageNet [52] to verify our method’s effectiveness. We apply
our method to the LDM [50] that implements their denoising model with a
U-Net [51] architecture. For all datasets, we prune the LDM model with three
MACs budgets of 70%, 50%, and 30%. In all experiments, we mainly follow the
same hyper-parameter settings as LDM [50], and we refer to supplementary for
more details of our experimental setup. We denote our method as DiffPruning
in the rest of the experiments section. We mainly compare our method with
a few recent baselines on architectural efficiency of pixel-space [12] and latent
space [34,37] DPMs. We do not benchmark with Spectral Diffusion (SD) [64]
because it uses a package® that does not count MACs of the attention operation
QKVAttention implemented in the LDM repository*. Hence, the MACs of models
reported by SD [64] are not accurate. For instance, SD reports the LDM [50] for
LSUN-Church has 18.7G MACs, but it actually has 20.96G (Tab. 1c).

4.1 Comparison Results

We summarize comparison results in Tab. 1 and refer to supplementary for
FID vs. MACs as well as FID wvs. Throughput curves of our method and baselines.
LSUN-Bedroom. Tab. 1la presents the results on LSUN-Bedroom. First, we
can observe that the LDM [50] can achieve better sample quality (lower FID)
while having significantly lower MACs (higher sampling speed) than the pixel-
space DPM, DDPM |[28]. Although SP [12] prunes more than 44% MACs of the
DDPM |[28], its pruned model still has 36% more MACs than LDM while drasti-
cally degrading the sample quality to 18.6 FID. These results demonstrate that
pixel-space DPMs have much more redundancies than LDMs, and pruning LDMs
is significantly more challenging. Second, our pruned models can achieve higher
throughput speed-up ratio than their pruning ratio while having competitive FID
scores. DiffPruning 70%/50%/30% models reduce MACs by 30%/50%/70%, but
can secure 43%/87%/135% sampling speed up compared to LDM [50]. Notably,
DiffPruning 70% (50%) has 5.90 (6.73) FID score which is fairly close to the
original LDM (4.39) while substantially better than the pruned model by SP [12]
(18.6). Finally, although not directly comparable, our pruned models require less
training iterations than SP, and we refer to supplementary for details.

LSUN-Church. The architecture MACs of the LDM [50] for LSUN-Church is
smaller than LDM models for other datasets as its encoder reduces the spatial

3 https://github.com /sovrasov /flops-counter.pytorch
4 https://github.com /CompVis /latent-diffusion

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/CompVis/latent-diffusion/blob/a506df5756472e2ebaf9078affdde2c4f1502cd4/ldm/modules/diffusionmodules/openaimodel.py#L379

12 A. Ganjdanesh et al.

Table 1: Comparison results of DiffPruning vs. baselines. Throughput values are
calculated using an NVIDIA A100 GPU. f: the values are average of our two efficient
experts. *x: calculated by sampling from provided checkpoints. }: speed-ups relative to
the LDM model. The shadowed values are inaccurate, and we refer to supplementary
for a detailed discussion.

LSUN-Bedroom (256 x 256)

Complexity Performance FFHQ (256 x 256)
Model Params | MACs Th‘roughp’th [©) FID (1) Complexity Performance
(Sample/Sec) Model Params | MACs | Lroughput (Dpy)y
DDPM [28] 113.7M | 248.7G 0.74 6.62 T | (Sample/Sec)
SP [12] 63.2M | 138.8G - 18.6 DM [50] 274.06M [101.32G 1.01 9.53"
LDM [50] 274.06M |101.32G 2.01 4.39% DiffPruning (70%)|194.79M"| 71.05G | 1.35 (x1.33)*| 9.80
DiffPruning (70%)|162.06M7| 70.84G | 8.11 (x1.55)7 | 5.90 DiffPruning (50%)|134.67M"| 51.87G | 1.83 (x1.81)*| 9.90
DiffPruning (50%)|100.87M'| 50.69G | 3.75 (x1.87)%| 6.73 DiffPruning (30%)| 63.07M" | 30.68G | 2.90 (x2.87)*| 10.66
DiffPruning (30%)| 48.43M' | 31.11G | 4.73 (x2.35)!| 9.22 (b)
(a)
LSUI;’C““I”*_‘ (256 x 256) _— Class-Conditional TmageNet (256 X 256)
omplexity Throug}e];ﬁin(:)nce Complexity Performance
Model Sampler | Params | MACs | "¢ WGV IFID (1) Model Params | MAGs T(k;r:r:i}llrustcg) FID ()
LDM [50] _ |DDIM-100| 294.7M |20.96G 5.19 521" _ _ | \2aImpe/oee
LDM [50] |DDIM-200] 204.7M [20.96G 2.60 5.11° ‘I}gi‘ll [10] 607'91\\11 “8"'43 0.07 459
DDPM [50] TI3.7M [248.7C 0.7 10.58 __LDM }50] 400.82M | 108.78 082 | 360
SP [12] DDIM-100| 63.2M |138.8G _ 13.9 DiffPruning (70%) |250.79M'| 76.24G |0.43 (x1.34)* | 8.03
DiffPruning (70%) 188.09M'[14.64G| 5.78 (x1.11)! | 9.39 LDM 50% Scratch [12]] 189.43M [53 71 - 51.45
OMS-DPM [37] | Searched | - B 256 11.10 Taylor [12] 189.43M | 59 7163 - 11.18
DiffPruning (50%) [DDIM-200 112.61\[1‘ 10.48G a1 | 1022 SP[12] 189.43M | 5971 B 9.16
D(‘)ﬂ;rs“ggi[(??f/]“) [)b[e):r\clh]e?lo 112.6M [10.48G|6.28 (6X4"21) 1103'879 DiffPruning (50%) |161.06M'| 54.32G | 0.56 (x1.75)% | 8.45
N 37 - - . 3. n N0 = T 20 5 T E
DiffPruning (30%)|DDIM-100] 36.9M' | 6.35G | 6.87 (x1.32)* | 11.39 DiffPruning (30%) [79.82M | 3271G |0.92 (x2.87)"] 13.18
(c) (d)

dimension by 8 vs. 4 for others. Thus, pruning the LDM for LSUN-Church is more
challenging than other ones, and Tab. 1c summarizes the results. First, we can ob-
serve that DiffPruning 70% achieves drastically better FID than the DDPM model
pruned by SP [12] while having almost 9.5x fewer MACs. Remarkably, DiffPrun-
ing 70% achieves better FID than the full DDPM model, illustrating that LDMs
have better computation-performance frontier than pixel-space DPMs. Second,
DiffPruning 50% and 30% models can achieve both higher throughput and better
FID while requiring more than 7x less training iterations than OMS-DPM [37]
(details in supplementary). DiffPruning 50% with the 100-step DDIM [56] sam-
pler has 2.45x higher throughput (6.28 vs. 2.56) than OMS-DPM with a lower
FID. Also, DiffPruning 50% with 200 steps DDIM sampler still has a higher
throughput and better FID than OMS-DPM. Notably, DiffPruning 50% with 200
steps DDIM sampler can outperform the full DDPM model (10.22 vs. 10.58 FID)
while having 4.25x faster sampling throughput. Finally, DiffPruning 30% has
higher throughput (6.87 vs. 6.4 FID) while outperforming OMS-DPM’s model
by 2.31 FID. In summary, the comparison results with OMS-DPM demonstrate
the benefit of our elastic fine-tuning for our experts that enables our method
to gather a model zoo without requiring training several models from scratch,
thereby obtaining a higher-performing mixture of efficient experts with much
lower training iterations than OMS-DPM.

DiffPruning 13

DiffPruning 30% (x2.35)

DiffPruning 70% (x1.43) DiffPruning 50% (x1.87)

LSUN-Bedroom

. 1§

DiffPruning 30% (x1.32)

(5 4

LSUN-Church

3
z
%
=
&
&

Fig. 5: Samples from the LDM [50] model and our pruned mixture of experts for
different MACs budgets. The green numbers show the relative sampling throughput
speed-up of our pruned models compared to LDM on an NVIDIA A100 GPU.

FFHQ. Tab. 1b shows the results on FFHQ. DiffPruning 70%/50% models
can achieve close FID scores to LDM [50] while enjoying 33%/81% throughput
speed-ups. In the extreme case of 30% MACs budget, DiffPruning secures 2.87 x
speed-up while having a 1.13 worse FID score than LDM, which shows that it
can successfully prune the LDM for small-scale datasets like FFHQ as well.

Class-Conditional ImageNet. Tab. 1d summarizes results for ImageNet. Diff-
Pruning 50% model can achieve 0.71 better FID score than SP [12]. The reported
MACs values by SP are not directly comparable to ours, and we elaborate on the
reason in supplementary. In addition, DiffPruning 70%/30% obtain 1.34x /2.87 x
increase in throughput compared to LDM. Thus, DiffPruning can effectively prune
conditional LDMs as well. In summary, our experimental results demonstrate
that our method can effectively prune both unconditional and conditional LDM
models for datasets with various scales. We provide samples generated by the
original LDM and our pruned mixture of experts with different budgets in Fig. 5.

4.2 Ablation Study

We conduct an ablation study to explore the contribution of each component of
our method to its final performance. We implement a Baseline that uses naive

14 A. Ganjdanesh et al.

parameterizations v = sigmoid(—(8, +n)/7) (Eq. 7) and u = sigmoid(— (8, +
n)/7) (Eq. 9) for pruning a single model. Then, we add the mixture of experts,
our ERA model, elastic depth fine-tuning, and elastic width fine-tuning one at a
time for pruning the model. Tab. 2 summarizes the results. First, we can observe
that employing the mixture of experts improves both the sample quality FID
score (which is aligned with the prior works [1,13]) and the inference throughput
of the pruned model. This result quantitatively justifies our design choice for
clustering the denoising timesteps into intervals and using a specialized model
for each of them. Employing our ERA model yields a faster model than the naive
parameterization. The reason may be that the naive parameterization cannot
properly model the complex interactions between experts and between different
layers within an expert. Noticeably, employing each component of our method
improves both dimensions of sampling throughput and sample quality such that
our method can obtain a 1.28 % faster model (throughput 3.75 vs. 2.92) with 3.59
better FID than the naive Baseline. In summary, our ablation experiments verify
our design choices for DiffPruning.

Table 2: Ablation results of our proposed method for pruning the LDM model [50] for
LSUN-Bedroom to 50% MACs budget.

Model Sampler | MACs T(}slgifl}g;lslg)) FID (1)
Baseline 2.92 10.32
+ Mixture of Experts 3.05 9.65
+ Expert Routing Agent 50.69G 3.25 8.53
{ Elastic Depth DDIM-100 3.61 8.03
+ Elastic Width (Ours) 3.75 6.73
LDM [50] 101.32G 2.01 4.39

5 Conclusions

We introduce a novel approach for pruning an LDM model into a mixture of
efficient experts in which each expert performs the denoising task on an interval
of the denoising path. We employ the model’s denoising timesteps’ alignment
scores to cluster them into several intervals and empirically show that the optimal
cluster assignments are different for distinct datasets. Thus, using static clustering
schemes is sub-optimal. We propose to fine-tune the pre-trained LDM on each
cluster interval with elastic dimensions to obtain our interval experts. By doing
0, each expert contains an implicit model zoo within itself for its corresponding
interval. Finally, we develop a new pruning scheme in which our Expert Routing
Agent (ERA) learns to prune the elastically trained experts together in an end-to-
end manner. Thus, our ERA automatically allocates the compute budget between
experts. Our experimental results validate our method’s effectiveness, and our
ablation studies show that our design choices improve both dimensions of the
pruned model’s throughput and its sample quality.

DiffPruning 15

Acknowledgments

Alireza Ganjdanesh and Heng Huang were partially supported by NSF IIS
2347592, 2347604, 2348159, 2348169, DBI 2405416, CCF 2348306, CNS 2347617.

References

10.

11.

12.

Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Kreis, K., Aittala, M., Aila,
T., Laine, S., Catanzaro, B., et al.: ediffi: Text-to-image diffusion models with an
ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022) 2, 4, 5, 6, 7,
14, 30, 31

. Bao, F., Li, C., Zhu, J., Zhang, B.: Analytic-DPM: an analytic estimate of the opti-

mal reverse variance in diffusion probabilistic models. In: International Conference on
Learning Representations (2022), https://openreview.net/forum?id=0xiJLKH-
ufZ 2, 4, 30

Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432
(2013) 10

Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L., Ouyang, L., Zhuang, J.,
Lee, J., Guo, Y., et al.: Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf 2(3), 8 (2023) 2

Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: Train one network
and specialize it for efficient deployment. In: International Conference on Learning
Representations (2020), https://openreview.net/forum?id=HylxE1HKwS 8, 23
Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: Train one network
and specialize it for efficient deployment. In: International Conference on Learning
Representations (2020), https://openreview.net/forum?id=HylxE1HKwS 31

. Cheng, H., Zhang, M., Shi, J.Q.: A survey on deep neural network pruning-taxonomy,

comparison, analysis, and recommendations. arXiv preprint arXiv:2308.06767 (2023)
31

. Cho, K., van Merrienboer, B., Giilgehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL. ACL (2014).
https://doi.org/10.3115/v1/d14-1179, https://doi.org/10.3115/v1/d14-
1179 10, 24

. Choi, J., Lee, J., Shin, C., Kim, S., Kim, H., Yoon, S.: Perception prioritized training

of diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11472-11481 (2022) 6

Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances
in neural information processing systems 34, 8780-8794 (2021) 1, 12

Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image
synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 12873-12883 (2021) 31

Fang, G., Ma, X., Wang, X.: Structural pruning for diffusion models. In: Advances
in Neural Information Processing Systems (2023) 4, 10, 11, 12, 13, 21, 28, 29, 30, 31

https://openreview.net/forum?id=0xiJLKH-ufZ
https://openreview.net/forum?id=0xiJLKH-ufZ
https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=HylxE1HKwS
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179

16

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A. Ganjdanesh et al.

Feng, Z., Zhang, Z., Yu, X., Fang, Y., Li, L., Chen, X., Lu, Y., Liu, J., Yin, W., Feng,
S., et al.: Ernie-vilg 2.0: Improving text-to-image diffusion model with knowledge-
enhanced mixture-of-denoising-experts. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 10135-10145 (2023) 4, 5, 7,
14, 30

Ganjdanesh, A., Gao, S., Alipanah, H., Huang, H.: Compressing image-to-image
translation gans using local density structures on their learned manifold. In: Pro-
ceedings of the AAAT Conference on Artificial Intelligence. vol. 38, pp. 12118-12126
(2024) 31

Ganjdanesh, A., Gao, S., Huang, H.: Interpretations steered network pruning via
amortized inferred saliency maps. In: European Conference on Computer Vision.
pp. 278-296. Springer (2022) 31

Ganjdanesh, A., Gao, S., Huang, H.: Effconv: efficient learning of kernel sizes for
convolution layers of cnns. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 37, pp. 7604-7612 (2023) 31

Ganjdanesh, A., Gao, S., Huang, H.: Jointly training and pruning cnns via learnable
agent guidance and alignment. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 16058-16069 (2024) 31

Gao, S., Liu, X., Zeng, B., Xu, S., Li, Y., Luo, X., Liu, J., Zhen, X., Zhang,
B.: Implicit diffusion models for continuous super-resolution. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
10021-10030 (2023) 1

Go, H., Kim, J., Lee, Y., Lee, S., Oh, S., Moon, H., Choi, S.: Addressing negative
transfer in diffusion models. In: Thirty-seventh Conference on Neural Information
Processing Systems (2023), https://openreview.net/forum?id=3G2ec833mW 2, 4,
30, 31

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural
information processing systems 27 (2014) 1

Gumbel, E.J.: Statistical theory of extreme values and some practical applications:
a series of lectures, vol. 33. US Government Printing Office (1954) 9

Habibian, A., Ghodrati, A., Fathima, N., Sautiere, G., Garrepalli, R., Porikli, F.,
Petersen, J.: Clockwork diffusion: Efficient generation with model-step distillation.
arXiv preprint arXiv:2312.08128 (2023) 2, 4, 30

Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. Advances in neural information processing systems 28
(2015) 31

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016) 6, 23

He, Y., Xiao, L.: Structured pruning for deep convolutional neural networks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence pp. 1-20
(2023). https://doi.org/10.1109/TPAMI.2023.3334614 31

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: Amc: Automl for model
compression and acceleration on mobile devices. In: Proceedings of the European
conference on computer vision (ECCV). pp. 784-800 (2018) 31

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D.P.,
Poole, B., Norouzi, M., Fleet, D.J., et al.: Imagen video: High definition video
generation with diffusion models. arXiv preprint arXiv:2210.02303 (2022) 1

Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840-6851 (2020) 1, 5, 6, 11, 12, 21, 29

https://openreview.net/forum?id=3G2ec833mW
https://doi.org/10.1109/TPAMI.2023.3334614
https://doi.org/10.1109/TPAMI.2023.3334614

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

DiffPruning 17

Hou, L., Huang, Z., Shang, L., Jiang, X., Chen, X., Liu, Q.: Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing
Systems 33, 9782-9793 (2020) 31

Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In:
International Conference on Learning Representations (2017), https://openreview.
net/forum?id=rkE3y85ee 9, 25, 28

Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 44014410 (2019) 7, 11, 22

Kingma, D., Salimans, T., Poole, B., Ho, J.: Variational diffusion models. Advances
in neural information processing systems 34, 21696-21707 (2021) 4, 30, 31
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., LeCun,
Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014), http:
//arxiv.org/abs/1312.6114 1

Lee, Y., Kim, J.Y., Go, H., Jeong, M., Oh, S., Choi, S.: Multi-architecture multi-
expert diffusion models. arXiv preprint arXiv:2306.04990 (2023) 2, 3, 4, 5, 10, 11,
30, 31

Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. In: International Conference on Learning Representations (2017), https:
//openreview.net/forum?id=rJqFGTslg 8, 23

Li, H., Kadav, A., Durdanovic, 1., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. In: International Conference on Learning Representations (2017), https:
//openreview.net/forum?id=rJqFGTslg 31

Liu, E., Ning, X., Lin, Z., Yang, H., Wang, Y.: Oms-dpm: Optimizing the model
schedule for diffusion probabilistic models. In: International Conference on Machine
Learning. pp. 21915-21936. PMLR (2023) 2, 3, 4, 8, 11, 12, 21, 29, 31

Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search. In:
International Conference on Learning Representations (2019), https://openreview.
net/forum?id=S1eYHoC5FX 31

Liu, L., Ren, Y., Lin, Z., Zhao, Z.: Pseudo numerical methods for diffusion models
on manifolds. In: International Conference on Learning Representations (2022),
https://openreview.net/forum?id=P1KWVd2yBkY 2

Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2019), https://openreview.net/forum?
1d=Bkg6RiCqY7 28

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver: A fast ode solver
for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems 35, 5775-5787 (2022) 2

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: DPM-solver+-+: Fast solver
for guided sampling of diffusion probabilistic models (2023), https://openreview.
net/forum?id=4vGwQqviud5 4, 30

Ma, X., Fang, G., Wang, X.: Deepcache: Accelerating diffusion models for free.
arXiv preprint arXiv:2312.00858 (2023) 4, 30

Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: A continuous
relaxation of discrete random variables. In: International Conference on Learning
Representations (2017), https://openreview.net/forum?id=S1jE5L5gl 9, 25
Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon, S., Ho, J., Salimans, T.: On
distillation of guided diffusion models. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 14297-14306 (2023) 2, 4, 30

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=4vGwQqviud5
https://openreview.net/forum?id=4vGwQqviud5
https://openreview.net/forum?id=S1jE5L5gl

18

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

A. Ganjdanesh et al.

Molchanov, P., Mallya, A., Tyree, S., Frosio, 1., Kautz, J.: Importance estimation for
neural network pruning. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2019) 31

Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In:
International Conference on Machine Learning. pp. 8162-8171. PMLR, (2021) 2, 4,
30

Pan, Z., Zhuang, B., Huang, D.A.) Nie, W., Yu, Z., Xiao, C., Cai, J., Anandkumar,
A.: T-stitch: Accelerating sampling in pre-trained diffusion models with trajectory
stitching. arXiv preprint arXiv:2402.14167 (2024) 31

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing
systems 32 (2019) 30

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684-10695 (2022) 2,
4, 5,6, 7,10, 11, 12, 13, 14, 20, 21, 26, 27, 28, 29, 30, 31

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention-MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18. pp. 234-241. Springer (2015) 2, 6, 11
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211-252 (2015). https://doi.org/10.1007/s11263-015-0816-y
7,11, 22

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-
resolution via iterative refinement. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45(4), 4713-4726 (2022) 1

Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models. In:
International Conference on Learning Representations (2022), https://openreview.
net/forum?id=TIdIXIpzhol 2, 4, 30

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised
learning using nonequilibrium thermodynamics. In: International conference on
machine learning. pp. 2256-2265. PMLR (2015) 1, 5

Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International
Conference on Learning Representations (2021), https://openreview.net/forum?
id=StigiarCHLP 2, 4, 10, 12, 21, 27, 29, 30

Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems 32 (2019) 1
Vahdat, A., Kreis, K., Kautz, J.: Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems 34, 11287-11302 (2021) 30
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, t.., Polosukhin, I.: Attention is all you need. Advances in neural information
processing systems 30 (2017) 6, 8, 23

Watson, D., Chan, W., Ho, J., Norouzi, M.: Learning fast samplers for diffusion
models by differentiating through sample quality. In: International Conference on
Learning Representations (2022), https://openreview.net/forum?id=VFBjuF8HEp
4, 30

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=VFBjuF8HEp

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

DiffPruning 19

Watson, D., Ho, J., Norouzi, M., Chan, W.: Learning to efficiently sample from diffu-
sion probabilistic models (2022), https://openreview.net/forum?id=L0z0xDpwdY
4, 30

White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T., Zela, A., Dey, D.,
Hutter, F.: Neural architecture search: Insights from 1000 papers. arXiv preprint
arXiv:2301.08727 (2023) 31

Xu, Y., Deng, M., Cheng, X., Tian, Y., Liu, Z., Jaakkola, T.: Restart sampling for
improving generative processes. arXiv preprint arXiv:2306.14878 (2023) 4, 30
Yang, X., Zhou, D., Feng, J., Wang, X.: Diffusion probabilistic model made slim.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 22552-22562 (2023) 2, 4, 11, 30, 31

Yao, L., Pi, R., Xu, H., Zhang, W., Li, Z., Zhang, T.: Joint-detnas: Upgrade
your detector with nas, pruning and dynamic distillation. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 10175-10184
(2021) 31

Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: Lsun: Construction of a large-
scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365 (2015) 4, 7, 11, 22, 31

Zhang, H., Lu, Y., Alkhouri, I., Ravishankar, S., Song, D., Qu, Q.: Improving
efficiency of diffusion models via multi-stage framework and tailored multi-decoder
architectures. arXiv preprint arXiv:2312.09181 (2023) 2, 3, 5, 31

Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion
models. arXiv preprint arXiv:2302.05543 (2023) 1

Zhang, Q., Chen, Y.: Fast sampling of diffusion models with exponential integrator.
In: The Eleventh International Conference on Learning Representations (2023),
https://openreview.net/forum?id=Loek7hfb46P 2, 4, 30

Zhang, Q., Tao, M., Chen, Y.: gDDIM: Generalized denoising diffusion implicit
models. In: The Eleventh International Conference on Learning Representations
(2023), https://openreview.net/forum?id=1hKE9qjvz- 4, 30

Zhao, S., Chen, D., Chen, Y.C., Bao, J., Hao, S., Yuan, L., Wong, K.Y.K.: Uni-
controlnet: All-in-one control to text-to-image diffusion models. arXiv preprint
arXiv:2305.16322 (2023) 1

Zhao, Y., Xu, Y., Xiao, Z., Hou, T.: Mobilediffusion: Subsecond text-to-image
generation on mobile devices. arXiv preprint arXiv:2311.16567 (2023) 4, 31
Zheng, H., He, P., Chen, W., Zhou, M.: Truncated diffusion probabilistic models
and diffusion-based adversarial auto-encoders. In: The Eleventh International Con-
ference on Learning Representations (2023), https://openreview.net/forum?id=
HDxgaKk9561 4, 30

Zoph, B., Le, Q.: Neural architecture search with reinforcement learning. In: In-
ternational Conference on Learning Representations (2017), https://openreview.
net/forum?id=r1Ue8Hcxg 31

https://openreview.net/forum?id=LOz0xDpw4Y
https://openreview.net/forum?id=Loek7hfb46P
https://openreview.net/forum?id=1hKE9qjvz-
https://openreview.net/forum?id=HDxgaKk956l
https://openreview.net/forum?id=HDxgaKk956l
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

Supplementary Materials for
Mixture of Efficient Diffusion Experts Through
Automatic Interval and Sub-Network Selection

Alireza Ganjdanesh'*, Yan Kang?, Yuchen Liu?, Richard Zhang?, Zhe Lin?, and
Heng Huang!

! Department of Computer Science, University of Maryland College Park
2 Adobe Research
{aliganj,heng}@umd.edu, {yankang,yuliu,rizhang,zlin}@adobe.com

We elaborate on more details about our method, experimental setup, experi-
mental results, and related work in the supplementary materials. We follow the
same notations introduced in the paper.

1 Experimental Results

We present the FID vs. MACs and FID ws. Throughput of our method and
baselines in Fig. 1.

2 Details of Our Method

2.1 Clustering Denoising Time-Steps into Intervals

In this section, we provide details of our method to cluster denoising time-steps
of an LDM [50] into intervals. As mentioned in Sec. (3.3) in the paper, we use
two experts in our experiments for computational efficiency. Thus, we explain
our approach for clustering the denoising path into two intervals, but one may
extend it to a higher number of intervals as well.

Given denoising time-steps 7 = [1,T], we divide it into two intervals 7; =
[T,t1] and Zy = [t1,1]. Now, the main question is how to determine the cut-
off time-step t;. We propose to leverage alignment scores of time-steps to find
the optimal t;. We take the cosine similarity between the gradients of training
objectives L; and L, as the alignment score of the time-steps ¢ and s and denote
it with a; ;. We propose to select the cut-off point that maximizes the weighted
average of the mean of alignment scores in clusters:

[\v]

rr}taxj(tl :Zwl Z Z a]k (1)

i=1 JET; keT; Zi|

(3

w; =

N
—~
[\
~—

* Part of this work was done during an internship at Adobe Research.

Supplementary Materials for DiffPruning 21

20

20 LSUN-Beds 14 LSUN-Church 11 FFHQ 14 ImageNet
L J
SP. sk .\Ours 30%
o 12
121 ours 30% pours 30% t, ervior
15 1051 A
* Ours 50% DDPMg \ \eSP
@) 10 \ > 0
= Iy 8 Ours 50% ~*Ours 70%
=~ 10 \Ours 30% Ours 70% 10 \‘Ours 50% 6 ?
L \ours50% ppPvy 8 ~yOurs 70%
“» Ours 70% LDM 4 LDM
[] [)
5 ®.on 6 Lo 9.5
PY 2
0 4 9 0
0 125 250 0 125 250 30 50 70 90 110 20 40 60 80 100 1.
+ MAGCs (G) + MAGCs (G) + MAGCs (G) + MAGCs (G)
10 15 11.5 16
Ours 30%,, OMS;E)PM 14
9 I -, 11 Ours 30%;p
1| 125 . o 12 P
8 1 OMS-DPM ~ f Ours'30 o Ours 30/} ’
a ! o |¥ o 5'50/ 105 , 10 L/
[U urs 0% ’ Ours 70%
7 DD:M Ours 50%; 10 DDPM P! ’ 8 - 'Ours 50%
4 7 |10} Ours50%/
6 Ours 70%g Ours 70% - 6
75 Ours 70%
5 o5/ @ 41%m o
LDM LDM
[] LDNL 2
4 5 9
0 25 5 0o 2 4 6 8 0 1 2 3 0 0.25 0.5 0.75
Throughput Throughput Throughput Throughput
(Sample/Sec) — (Sample/Sec) — (Sample/Sec) — (Sample/Sec) —

Fig. 1: Comparison Results of our method vs. baselines, SP [12], OMS-DPM [37],
DDPM [28], and LDM [50]. First Row: FID vs. MACs curves. Second Row: FID vs.
Throughput curves. We calculate the Throughput values with an NVIDIA A100 GPU.
Higher Throughput and Lower FID and MACs indicate a better performance.

where |Z;| is the number of time-steps in Z; and T is the total number of denoising
time-steps that is usually set to 1000 in practice [28,50,56]. The Obj 1 encourages
to choose 1 such that the average of alignment scores be high in each cluster while
the weights w; adjust the contribution of each cluster to the objective based on
their size. Our weighting scheme prevents degenerate solutions such as choosing
a single time-step as a separate cluster. Figs (2-5) show the [J(¢;) functions
for different datasets. We choose the cut-off values 400, 625, 700, and 700 for
the FFHQ, ImageNet, LSUN-Bedroom, and LSUN-Church models to maximize
their J(t1) values. These values result in the (Z;,Z5) clusters that we chose in
Sec. (3.3) and Fig. (3) in the paper. We believe that one can readily extend
our method to the cases with a higher number of experts by optimizing for the
cut-off points that maximize similar objectives to J. Specifically, if one decides
to use C+1 experts (clusters), they should find C cut-off points t;<to<--- <tc
to optimize the following objective:

C+1

max J = [wi(z Z C;"];)] (3)

ty,ta,tc
i=1 JET; keT; IZi

with the same definitions as Egs. (1, 2).

1

22 A. Ganjdanesh et al.

Finally, we note that we use 1024 random images to estimate the gradient of
each time-step for the models for LSUN-Church [66], LSUN-Bedroom [66], and
FFHQ [31]. We employ 16384 samples to do so on ImageNet [52].

FFHQ

0.750 1

0.725 4

0.700 1

0.675 1

0.650

J(t1)

0.625 1

0.600

0.575 1

800 1000

o
N
=]
)
N
oS4
)
o
=3
S)

Fig. 2: Weighted average J(¢1) (Eq. 1) of the mean of alignment scores in two clusters
for the LDM trained on FFHQ.

ImageNet

0.60 -

0.55 -

0.50 -

0.45

J(t1)

0.40 -

0.35 -

0.30

800 1000

o
N
=3
S)
N
oS4
S
o
=}
o

Fig. 3: Weighted average J(¢1) (Eq. 1) of the mean of alignment scores in two clusters
for the LDM trained on ImageNet.

Supplementary Materials for DiffPruning 23

LSUN-Bedroom

0.65 -

0.45 -

0.40 -

800 1000

o
N
=]
S
N
o4
)
o
=3
)

Fig. 4: Weighted average J(¢1) (Eq. 1) of the mean of alignment scores in two clusters
for the LDM trained on LSUN-Beds.

LSUN-Church

0.68 1
0.66
0.64 1

o624
0.60 1
0.58 1

0.56

800 1000

o
N
=]
S)
N
oS4
)
o
=3
)

Fig. 5: Weighted average J(¢1) (Eq. 1) of the mean of alignment scores in two clusters
for the LDM trained on LSUN-Church.

2.2 Fine-tuning with Elastic Width

We mentioned in Sec. (3.4) in the paper that we fine-tune the experts with elastic
width after training them with elastic depth. Here, width means the channels
of the convolution layers in the Residual Blocks [24] and heads of the attention
layers [59] in the attention blocks of the U-Net. Before starting the elastic width
fine-tuning, we sort the channels in the convolution layers in ResBlocks based
on their importance, determined by their L; norm [5,35]. Similarly, we sort the
attention heads based on the L; norm of their projection weights. Then, in each
batch of elastic width fine-tuning, We independently sample a random ratio r

24 A. Ganjdanesh et al.

(r ~U]0, 1)) for each convolution layer with W channels (attention layer with
W heads) and drop the |Wr| least important channels (attention heads) of the
layer. We illustrate our elastic width channel selection for a convolution layer with
4 channels in Fig. 6. The channels are sorted based on their L; norm (shown by
their color intensity). The values 01.4 represent different possible channel dropping
cases for our elastic width training of the convolution layers. We similarly drop a
ratio of least important attention heads.

01

%)

/ (0]
/.

Fig. 6: Illustration of our Elastic Width training. We sort the convolution channels
(attention heads) based on their importance (L1 norm) before starting elastic width
training. We drop a random ratio of the least important channels (heads) for convolution
layers (attention layers) for each batch of training. The values 01.4 represent different
possible dropping ratios for a convolution layer with 4 channels.

2.3 Expert Routing Agent

We use a Gated Recurrent Unit (GRU) [8] and dense layers to implement our
Expert Routing Agent (ERA). As mentioned in Sec. (3.5) in the main text,
our ERA predicts architecture vectors (u(?, v()) that determine (depth, width)
pruning for the expert F;. We assume that each expert has D depth pruning
layers and L layers for width pruning. We show the detailed architecture in
Tab. 1. We randomly initialize the inputs z(¥) and keep them fixed during our
pruning process. The values C,(CZ) when k € [1,---, L] are equal to the widths of

the layers. In addition, C(Liil = D as we use the outputs of the Denser 1 layer

to calculate the depth architecture vectors u(?.

Formulation of Architecture Vectors In this section, we describe our ap-
proach to calculate the architecture vectors (u(®,v(®) from the output vectors
o) (Tab. 1) of the ERA.

Width Architecture Vectors: We design our width pruning method while
considering our elastic width fine-tuning scheme. As mentioned in Sec. 2.2 and
Fig. 6, we drop a random ratio of the least important convolution channels
(attention heads) when training the convolution layers (attention layers) in the
elastic width manner. We call each convolution channel and attention head a

Supplementary Materials for DiffPruning 25

Table 1: The architecture of our Expert Routing Agent. We calculate width architecture
vectors v from the outputs og) (k € [1, L]). We compute the depth architecture vector

u from O@H- We refer to Sec. 2.3 for detailed formulations.

Inputs 2 = [zl(f)], (k=1,---,L+1),(i=1,---,N)

GRU(128, 256), WeightNorm, ReLU
Densey, (256, C\), WeightNorm, (k= 1,--- , L + 1)

Outputs ogf), (k=1,---,L+1)

‘width unit.” Due to our dropping scheme, the weights of more important width
units get trained more than the lower-importance ones in a layer and are robust
to removing the lower-importance units.

Accordingly, we embed such a prior into the calculation of our width pruning
architecture vectors v(¥ = [vl(z)]lel. Let’s assume that the I-th layer of the
expert E; has W width units [c,])V_; that are sorted based on their orders,
namely ¢; is the most important unit, and cy is the least important one. As
mentioned in Sec. (3.5.1) of the paper, the calculation from v to v(¥ is called
the Gumbel-Sigmoid trick [30,44], which is a differentiable estimation of sampling
from a Bernoulli distribution with the Bernoulli parameter of sigmoid(v(?). We

calculate the vector vl(i) = [vl(li]q‘j)vzl
that the Bernoulli parameters sigmoid(vl(iz)) follow the importance order for the
width units ¢,,. By doing so, the probability of preserving the more important

width units is higher than low-importance ones. Specifically, we calculate vl(

follows:

from the output vector ol(i) (Tab. 1) such

7
)as

yl(i) = Softmax(ol(i)))
pz(i) = cumsum(yl(i)) ©)
vl(D= inverse—singid(pz(i) —e) ©)

In other words, first, we calculate the Softmax of the output logits vector
D, Then, we take the cumulative summation of the elements of yl(l) as pl(z) such

that pl(lg = ZYUVZE 41 yl(?u Thus, pl(? > pl(lz) > > pl(lav Finally, we calculate

the inverse sigmoid function for the elements of the probability vector pl(i) to

obtain the vector vl(i) (the small constant € ensures numerical stability of the
inverse sigmoid function). Doing so ensures that the ERA will preserve the more

important width units with a higher probability than the low-importance ones.

o}

Depth Architecture Vectors: We calculate the depth architecture vectors u(?)

similar to the scheme for vl(i):

26 A. Ganjdanesh et al.

-

l Residual Down samplmg v
v ! Block [DNJ Residual Block | GN S|LU Conv
Attemlon Up-sampling |
Block [UP]Residual tockl
At RB
.Convo\ut\onﬂ GroupNorm I
Layer
RB RB
RB| At | [RB | A
RB RB
E - ﬁ M lup n -
RB
Hﬁ

Fig. 7: U-Net architecture of the LDM [50].

yi)y = Softmax(o),) (7)
pi), = cumsum(y(?,) (8)
u® = 1nverse-51gm01d(p(Lil_1 —€) (9)

For the depth layers, we empirically found that removing the shallower depth
layers results in a more severe increase in training loss values as well as degradation
in sample quality. Similarly we observed that for the depth blocks in the same
stage of the U-Net, the depth block in the decoder branch is more crucial to
the model’s performance than the one in the encoder branch. Thus, we rank the
depth blocks based on 1) their stage and 2) the branch of the U-Net that the
block belongs to. For instance, we rank the depth pruning blocks in Fig 7 as: r =
[decoder red block, encoder red block, decoder green block, encoder green block,
decoder blue block, encoder blue block, decoder orange block, encoder orange
block]. We then apply the elements of the soft relaxed depth pruning architecture
vector ul®) calculated from u((Eq. 9 in the main text) with the same order as
the ranking r to the depth blocks. By doing so, the probabilities that our method
preserve the depth pruning blocks will have the same order as the ranking 7.

Table 2: Hyperparameters of fine-tuning our models with elastic dimensions.

LSUN-Bedroom |LSUN-Church| FFHQ|ImageNet

Elastic Depth Batch SizexNum GPU 32x8 32x8 32x8 | 32x8
astic beb Tearning rate 9.605 5e-5 8de5| 8eb
Fine-tuning 2 B
Iterations 200k 50k 30k 40k
. . Batch SizexNum GPU 32x8 32x8 32x8 | 32x8
Elastic Width—— o ate 9.66-5 55 |8.4e5| 8eh

Fine-tuning Trerations 130k 50K 30k | 40k

Supplementary Materials for DiffPruning 27

Algorithm 1: Our Pruning Algorithm

Input: Training dataset D = {(Zm, cm)}5—; of images x; and possible
conditional inputs ¢;; ERA model hgra(z; 8); Elastically fine-tuned experts
E;; pruning iterations GG; Total MACs budget Ty

Output: Trained Expert Routing Agent.

for e:=1 to G do

1. Sample a mini-batch (x,c) from D.

2. Calculate architecture vectors (u?,v(¥) using the ERA model
hera(z; 8) and Egs. 6, 9.

3. Compute soft pruning vectors (u“), v(“) using Eqgs 7, 9.

4. Apply the soft pruning vectors (u(i),v(i)) to the experts using Egs. 8, 10,
11.

5. Calculate the interval denoising objectives Lpppm,z; (E'i(u“),v(i))) for
the experts using the samples (x, ¢) in the mini-batch.

6. Compute the MACs regularization term R(T(u,v), Ty).

7. Compute the training objective J(Tq), backpropagate the gradients w.r.t
the ERA parameters 8 and update them.

end
Return: Trained ERA model.

2.4 Pruning Algorithm

We present our pruning algorithm to train our Expert Routing Agent to select
proper sub-networks of the experts in Alg.1.

3 Experiments

We provide more details about our experimental setup as well as experimental
results in this section.

3.1 Setup

We implement our method upon the LDM codebase® and mainly follow the
hyperparameter settings of the LDM [50]. We refer to Tables (12, 13) of LDM *
for hyperparameters of the architecture of the pretrained models that we use in
our experiments. We use the DDIM sampler [56] for sampling from our pruned
models. We set the number of sampling steps to 100 for the LSUN-Bedroom, 200
for the FFHQ, and 250 for the ImageNet experiments. We conduct all of our
experiments on a server with 8 NVIDIA A100 GPUs. We calculate the inference
throughput value for each model by sampling a batch of 64 samples from it
100 times and averaging the throughput values. We provide more details of our
experimental setup for each stage of our method in the following.

3 https://github.com/CompVis/latent-diffusion
4 https:/ /arxiv.org/pdf/2112.10752.pdf

https://github.com/CompVis/latent-diffusion
https://arxiv.org/pdf/2112.10752.pdf

28 A. Ganjdanesh et al.

Fine-tuning with Elastic Dimensions Tab 2 summarizes the hyperparameters
that we use to fine-tune our experts with elastic depth and width on their
intervals. We adopt the learning rate values from the settings used to train the
pre-trained checkpoints in the LDM [50] paper.

Pruning and Fine-tuning We provide the hyperparameters for the pruning
and fine-tuning stages of our method in Tab. 3.

For the pruning stage of our method on all datasets, we use the AdamW
optimizer [40] with a learning rate of 0.001, weight decay of 0.01, and beta
parameters (81, 82) = (0.9,0.999) to train the ERA model’s parameters. We also
set the temperature parameter 7 for the Gumbell-Sigmoid [30] estimations to 0.4
for all experiments.

Ablation Experiments We prune all the baselines in the ablation experiments
for 60k iterations. Then, we match their fine-tuning iterations with the summation
of the iterations of our elastic depth fine-tuning, elastic width fine-tuning, and
fine-tuning the mixture of efficient experts for the 50% MACs budget (550k
iterations) for a fair comparison.

Table 3: Hyperparameters for the pruning and fine-tuning stages of our method for
different MACs pruning ratios (30%, 50%, and 70%).

Pruning Fine-tuning
Dataset Parameters 30% | 50% | 70% | 30% | 50% | 70%
Batch SizexNum GPU|12x8|12x8|12x8|32x8|32x8|24x8
LSUN-Bedroom learning rate - - - 19.6e-5|9.6e-5(9.6e-5
Iterations 70k | 60k | 50k | 270k | 220k | 195k
Batch SizexNum GPU[12x8|12x8|12x8|32x8|32x8|24x8
LSUN-Church learning rate - - - 5e-5 | be-5 | be-H
Iterations 70k | 60k | 50k | 165k | 180k | 90k
Batch SizexNum GPU|[12x8|12x8|12x8|32x8|32x8|24x8
FFHQ learning rate - - - [8.4e-5(8.4e-5(8.4e-5
Tterations 40k | 30k | 20k | 90k | 85k | 100k
Batch SizexNum GPU|[12x8|12x8|12x8|32x8|32x8|24x8
ImageNet learning rate - - - | 8e-5 | 8e-5 | 8e-5
Iterations 50k | 40k | 30k | 205k | 130k | 135k

3.2 Comparison of Training Iterations

We provide a comparison of the number of training iterations for different
methods to obtain a pruned model on LSUN-Bedroom and LSUN-Church in
Tabs. 4, 5 respectively. For example, our method’s total number of iterations is
the summation of iterations for pre-training, elastic depth fine-tuning, elastic
width fine-tuning, pruning, and fine-tuning the mixture of experts.

Although not directly comparable to SP [12] as it prunes a pixel-space DPM,
our method can obtain a pruned model with significantly better quality with less

Supplementary Materials for DiffPruning 29

iterations than SP. This shows that LDMs have much fewer redundancies than
pixel-space DPMs. Thus, they can converge faster and pruning them is more
challenging.

On LSUN-Church, On the one hand, DiffPruning (70%) converges with
only 0.74M iterations while pixel-space pruned model by SP [12] requires 4.9M
iterations to converge with a 4.51 worse FID score. On the other hand, the
comparison results with OMS-DPM [37] clearly demonstrate the value of our
elastic fine-tuning. DiffPruning 50% and 30% require more than 7x less training
iterations than OMS-DPM to obtain a performant mixture of efficient experts. The
reason is that our elastic fine-tuning scheme provides an implicit model zoo within
the experts for each interval without requiring to train multiple models from
scratch to obtain a model zoo as done in OMS-DPM [37].

Table 4: Comparison of the number of training iterations for different methods on
LSUN-Bedroom. The “Method’s Iterations" column denotes the number of all the
training iterations that the pruning method performs to obtain its final efficient model.

LSUN-Bedroom (256 x 256)

Complexity Performance
Pre-training| Method’s| Total Throughput (1)

Model Tterations |Iterations|Iterations MACs (Sample/Sec) FID (1)
DDPM 28] 2.4M - 2.4M 248.7G 0.74 6.62
SP [12] 2.4M 02M | 2.6M |[138.8G - 18.6
LDM [50] 1.9M - 1.9M |101.32G 2.01 4.39
DiffPruning (70%) 1.9M 0.575M | 2.475M | 70.84G 3.11 5.90
DiffPruning (50%) 1.9M 0.61M 2.51M | 50.69G 3.75 6.73
DiffPruning (30%)| 1.9M 0.67M | 257M |[31.11G 473 9.22

Table 5: Comparison of the number of training iterations for different methods on
LSUN-Church. The “Method’s Iterations" column denotes the number of all the training
iterations that the pruning method performs to obtain its final efficient model.

LSUN-Church (256 x 256)

Complexity Performance
Pre-training| Method’s| Total Throughput (1

Model Iterations |Iterations|Iterations MACs (Sample/ Sei)) FID (1)
LDM [50] 0.5M - 0.5M | 20.96 5.19 5.21
DDPM [28,56] 4.4M - 4.4M |248.7G 0.74 10.58
SP [12] 4.4M 0.5M 4.9M [138.8G - 13.9
DiffPruning (70%) 0.5M 0.24M 0.74M [14.64G 5.73 9.39
OMS-DPM [37] 0 ~6M | >6M - 2.56 11.10
DiffPruning (50%) 0.5M 0.34M | 0.84M [10.48G 6.28 10.89
OMS-DPM [37] 0 ~6M | >6M - 6.4 13.7
DiffPruning (30%) 0.5M 0.335M | 0.835M |6.35G 6.87 11.39

30 A. Ganjdanesh et al.

3.3 Errors in MACs Calculation

We mentioned in the caption of Tab. (1) as well as Sec. (4.1) of the paper that
the MACs values reported by SP [12] for the LDM [50] models for the ImageNet
experiments are inaccurate. We describe the reason in the following. SP [12] adopts
the ‘flops-counter.pytorch’ package® to measure models’ MACs. This package
defines a hook for each of the standard PyTorch [49] layers like nn.Conv2d and
keeps a mapping dictionary between standard PyTorch layers and their hooks. The
package calculates the MACs of the model by performing the forward pass of the
model with a random input and counting the layers” MACs using the defined
hooks. Now, SP [12] implements the Attention layer in the U-Net architecture
of LDM manually, and the defined Attention module is not an element of the
mapping dictionary for the MACs calculation hooks. Thus, the package does
not count the number of MACs for the scaled dot product attention operation
as it is not a native PyTorch layer. For instance, SP reports that (Tab. (3) in
SP [12]) the LDM model for ImageNet has 99.8G MACs. However, we manually
implemented counting the MACs for the attention layers and found that the
model actually has 108.78G MACs.

We found a similar problem in the numbers reported by SD [64] . For instance,
SD reports that the LDM for LSUN-Church has 18.7G MACs. We could reproduce
the same number when directly using the ‘flops-counter.pytorch’ package. Yet,
we found that the model actually has 20.96G MACs after adding the attention
layers” MACs.

4 Related Work

Mixture of Experts (MoE) Diffusion Models: MoE methods cluster de-
noising time-steps of DPMs into intervals and train a separate expert model
for each. eDiff-I [1] supports developing MoE for DPMs by showing that differ-
ent denoising time-steps have distinct roles. Yet, how to cluster time-steps is
non-trivial. eDiff-I employs a complex tree-based-branching scheme to divide the
denoising path into two intervals sequentially and initializes a child model by
its parent. ERNIE-VILG [13] and MEME [34] uniformly cluster the denoising
time-steps. Yet, these heuristic schemes do not necessarily transfer to other
tasks. Different from these methods, we propose to cluster the denoising time-
steps by measuring the alignment between their training objectives. We emphasize
that although a recent work [19] has explored the time-steps’ alignment scores in
the course of training, our paper is the first one to leverage them to cluster the
time-steps for MoE DPMs.

Efficient DPMs. The majority of ideas for improving DPMs’ efficiency reduce
their denoising steps by faster samplers [42, 63, 69], distillation [22,45,54], better
noise schedules [2,32,47,56,70, 73], learning denoising timesteps to use [60,61], and
caching [43]. We explore an orthogonal direction, compressing the architecture
of DPMs. LSGM [58] and LDM [50] perform the diffusion process in a lower

5 https://github.com /sovrasov /flops-counter.pytorch

https://github.com/VainF/Diff-Pruning/blob/da894a301a5c0f7aaaec727c32e098001627dd60/exp_code/torch_pruning/utils/op_counter.py#L248
https://github.com/VainF/Diff-Pruning/blob/da894a301a5c0f7aaaec727c32e098001627dd60/diffusers/models/attention_processor.py#L36
https://github.com/VainF/Diff-Pruning/blob/da894a301a5c0f7aaaec727c32e098001627dd60/exp_code/torch_pruning/utils/op_counter.py#L248
https://github.com/VainF/Diff-Pruning/blob/da894a301a5c0f7aaaec727c32e098001627dd60/diffusers/models/attention_processor.py#L729
https://github.com/sovrasov/flops-counter.pytorch

Supplementary Materials for DiffPruning 31

dimensional latent space of an encoder-decoder pair [11, 32], thereby enjoying
significantly faster sampling than pixel-space DPMs.

A few ideas have recently addressed compressing DPMs’ architectures having
two main categories. Single-model methods develop a single efficient model for
all denoising timesteps. Structural Pruning (SP) [12] approximates weights’ im-
portance using the Taylor expansion and removes structures with low scores. Yet,
SP’s performance has been mainly verified on pixel space DPMs, and its pruned
models on datasets like LSUN-Church [66] still have more than 6 x MACs than the
full-size LDM [50]. MobileDiffusion |[72] introduces heuristics to enhance DPMs’
efficiency and develops two efficient architectures. Nevertheless, it is highly non-
trivial how to generalize the heuristics for different compute budgets. Spectral
Diffusion (SD) [64] introduces a wavelet gating operator and performs frequency
domain distillation from a teacher model into a small LDM. However, the main
weakness of single-model methods is that they use the same model for all denois-
ing steps, which is shown to be sub-optimal [1,19]. Mixture of expert methods
employ a separate model for different stages of the denoising process. OMS-
DPM [37] trains a model zoo with various sizes and searches for a proper model
schedule given a desired compute budget. Yet, gathering a model zoo is very costly
on large-scale datasets, making OMS-DPM impractical for them. T-Stich [48]
stitches several models with different sizes, each performing a part of the denoising
process. But, similar to OMS-DPM [37], it requires several pretrained models of
various sizes, making it costly for practical scenarios. MEME [34] and TMDA [67]
cluster denoising timesteps and design a distinct expert for each. However, they
need to manually allocate the compute budget between experts and re-design
the experts for a new budget, which makes them cumbersome in practice. We
propose to prune an LDM into a mixture of efficient experts. We cluster de-
noising timesteps into intervals using their alignment scores. Then, we fine-tune
the pre-trained model with elastic dimensions on each interval to obtain our
experts. Thus, our method gathers an implicit model zoo within each expert with
much lower training iterations than OMS-DPM. Finally, we prune all experts
simultaneously using our expert routing agent to obtain our mixture of efficient
experts. By doing so, in contrast with MEME [34] and TMDA [67], our method
automatically allocates the compute resource (e.g., MACs) between experts.
Model pruning and architecture search. Our work is also related to model
pruning [14,15,17,23,26,36,46] and Neural Architecture Search (NAS) [6,16,29,38,
65, 74] methods that prune the pretrained models and design novel architectures
given a set of computational constraints. These ideas mainly focus on developing
new architectures for image classification tasks, while we aim to design a novel
pruning method for latent diffusion models [50]. We refer to recent surveys [7, 25,
62] for a detailed reviewing of pruning and NAS methods.

	Mixture of Efficient Diffusion Experts Through Automatic Interval and Sub-Network Selection
	Supplementary Materials for Mixture of Efficient Diffusion Experts Through Automatic Interval and Sub-Network Selection

