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Abstract

Minimax optimization is fundamental and impor-
tant for enormous machine learning applications
such as generative adversarial network, adversar-
ial training, and robust optimization. Recently,
a variety of minimax algorithms with theoretical
guarantees based on Lipschitz smoothness have
been proposed. However, these algorithms could
fail to converge in practice because the requisite
Lipschitz smooth condition may not hold even in
some classic minimax problems. We will present
some counterexamples to reveal this divergence
issue. Thus, to fill this gap, we are motivated to
delve into the convergence analysis of minimax
algorithms under a relaxed Lipschitz smoothness
condition, i.e., generalized smoothness. We prove
that variants of basic minimax optimization algo-
rithms GDA, SGDA, GDmax and SGDmax can
still converge in generalized smooth problems,
and hence their theoretical guarantees can be ex-
tended to a wider range of applications. We also
conduct a numerical experiment to validate the
performance of our proposed algorithms.

1. Introduction

The minimax problem is attracting growing attention due
to its widespread practical applications in machine learning
such as Generative Adversarial Net (GAN) (Goodfellow
etal., 2014), adversarial training (Madry et al., 2017), robust
optimization (Chen et al., 2017) and AUC maximization
(Gao et al., 2013). In minimax optimization, variable x aims
to minimize a pay-off loss function f(x,y) : R4 x R —
R while variable y tries to maximize the loss, which can be
formulated as
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where ) C R? is a convex domain. In this paper we
consider the nonconvex strongly-concave problem where
f(x,y) in nonconvex in x and strongly-concave in y. In this
case, the maximizer y*(x) = argmaxycy f(x,y) is unique
and the primal objective function ®(z) = f(x,y*(x)) can
be well defined. The convergence criterion is to find a first-
order stationary point of ®(x) such that ||[V®(z)|| < e for
some tolerance e. When considering stochastic problems,
function f(z, y) takes the form f(z,y) = EcupF (2, ;&)
where F'(z,y; ) is the component loss function regarding
sample £ and D is the data distribution.

In recent years, minimax optimization problem is studied
in a variety of research fields. Many deterministic and
stochastic gradient-based methods with non-asymptotic con-
vergence analysis for nonconvex strongly-concave mini-
max problems have been developed. Among these meth-
ods, some algorithms adopt the single-loop structure that
updates = and y at the same frequency, such as Gradient
Descent Ascent (GDA) and Stochastic Gradient Descent
Ascent (SGDA) (Lin et al., 2020a). Some algorithms update
z and y at different frequencies which involves a nested loop
to search the optimal value of the maximizer y for the given
x. Classic examples of double-loop minimax algorithms
are GDmax and SGDmax (Jin et al., 2020). Some methods
adopt more sophisticated structures to pursue better theoret-
ical results (Lin et al., 2020b; Yang et al., 2020). Besides,
some works also investigate the lower bound estimation
of minimax problems (Li et al., 2021; Zhang et al., 2021)
and some algorithms have been proven to be optimal or
near-optimal (Lin et al., 2020b).

Although gradient-based minimax optimization algorithms
have achieved huge success in theoretical region, most of
the analysis frameworks are based on the requirement of
Lipschitz smoothness. Some works conduct the conver-
gence analysis without the Lipschitz smooth assumption for
convex or weakly-convex problems (Rafique et al., 2022)
and achieve competitive results, but the investigation for
nonconvex generalized smooth minimax optimization is
still limited. This drawback will restrict the applications
of minimax optimization algorithms because in some cases
the minimax structure breaks the Lipschitz smooth condi-
tion such as distributionally robust optimization (Yan et al.,
2019; Levy et al., 2020; Jin et al., 2021), and in some ma-
chine learning tasks the objective function itself does not
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satisfy the Lipschitz smoothness such as phase retrieval
(Drenth, 2007; Miao et al., 1999). Counterexamples will be
demonstrated in Section 2 to illustrate the divergence issue.
Therefore, to fill this gap, we are motivated to investigate
the convergence analysis of minimax algorithms under the
relaxation of Lipschitz smooth assumption so that these al-
gorithms can be theoretically guaranteed to work for a wider
range of applications.

‘We summarize our contribution as follows.

¢ In this paper we study the convergence analysis of min-
imax optimization algorithms without the assumption
of Lipschitz smoothness. We provide some counterex-
amples to reveal the divergence issue and propose the
strategy to solve this problem.

* We prove that generalizations of classic minimax opti-
mization algorithms (including single-loop algorithms
GDA, SGDA and double-loop algorithms GDmax,
SGDmax) can still converge under the generalized
smooth condition and the gradient complexity matches
the Lipschitz smooth counterparts. We conduct a nu-
merical experiment of robust logistic regression task to
validate the practical performance of our method.

2. Preliminary
2.1. Minimax Optimization Algorithms

In recent years, many algorithms were proposed to solve the
optimization of minimax, and many of them were studied
under the nonconvex-strongly-concave condition. GDmax
and its stochastic variant SGDmax (Jin et al., 2020) are
representatives of double-loop minimax algorithms. In
each iteration they compute the estimation of the maxi-
mizer y;+1 ~ y*(x;) via a nested loop and then update
ZTi41 = ¢ — N2 Vo f (24, ye+1). GDmax can reach a first-
order stationary point with O(k?e~21log(1/€)) iterations,
where k = L/ is the condition number, L is the Lipschitz
constant and y is the strong concavity constant. SGDmax
achieves the stochastic first-order oracle (SFO) complex-
ity of O(k3e~*1log(1/e€)) to achieve a first-order stationary
point. GDA and its stochastic variant SGDA (Lin et al.,
2020a) are representatives of single-loop minimax algo-
rithms. In each iteration, they compute the partial deriva-
tives with respect to x and y, respectively. Then variables
x and y are updated by x;11 = x; — 10, V. f(2,y:) and
Yir1 = Yt + 0y Vyf(2e,y:). GDA reaches a first-order
stationary point with O(x2e~2) iterations, SGDA achieves
the SFO complexity of O(k3¢~%) to achieve a first-order
stationary point. These algorithms are fundamental opti-
mizers to solve minimax optimization problem and hence
we will conduct convergence analysis based on these algo-
rithms. More recently, some algorithms have been proposed
to to accelerate the convergence rate and reduce the gradient

complexity of minimax optimization by variance reduction,
such as SREDA ((Luo et al., 2020)) and Acc-MDA ((Huang
et al., 2022)). Moreover, on deterministic setting some re-
cently proposed algorithms ((Lin et al., 2020b)) have already
matched the optimal lower bound ((Zhang et al., 2021)).

2.2. Counterexamples in Minimax Problems

In this section we will provide some counterexamples to
illustrate the non-Lipschitz smoothness and divergence issue
in minimax optimization. First we will introduce some basic
definitions about Lipschitz smoothness.

Definition 2.1. A real-value function f is Lipschitz smooth
if there exists a constant L such that

IVf(x) = VIl <Lz -yl 2

Definition 2.2. A real-value function f is Lipschitz contin-
uous if there exists a constant M such that

1f(2) = f(y)ll < Mz -y ©)

Example 1. We will take distributionally robust optimiza-
tion as our first example, which is a classic application of
minimax optimization. Distributionally robust optimization
aims to make the training result of the original optimization
problem more robust by introducing a perturbation and solv-
ing a minimax problem. In (Yan et al., 2019), an example
of this task is formulated as

min max f(z,y) = Zyzlz(x) - V(y) “4)
i=1

T yeA,

where n is the number of samples and [;(x) is the original
loss function. A,, is the simplex in n-dimensional Euclidean
space and V' (y) denotes a divergence measure between two
distributions, which could be chosen as >-" | (y; — +)2. In
this case, we can see Problem (4) is a nonconvex-strongly-
concave minimax problem. We assume that original loss
functions /;(x) are Lipschitz smooth but not Lipschitz con-
tinuous. Then we have

n

IVyf(z,y) = Vyf (@ )lP =D (lile) —l@)? )

i=1

If function f is Lipschitz smooth, we should have
IVyf(z,y) = Vyf (@, 9)|? < Lz —2'|*  (6)

which implies each [;(x) is Lipschitz continuous and con-
flicts with our assumption. Hence the objective function f is
not Lipschitz smooth even the original loss functions [; are
Lipschitz smooth, which shows that the minimax structure
can probably break the condition of Lipschitz smoothness.

The convergence analysis of most current existing minimax
algorithms is based on the Lipschitz smoothness assumption.
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However, this condition is not satisfied in many classic
examples such as robust optimization. This result motivates
us to study the convergence of minimax algorithms without
the requirement of Lipschitz smoothness.

Example 2. Next we will provide a simple example to
reveal the divergence issue when Lipschitz smoothness is
not satisfied. We define a minimax problem

mxin m3X fz,y) = yz? — 0.5y @)
where = and y are scalars. It is easy to check y*(z) = 22
and ®(z) = 0.52%. Thus, we have V®(z) = 22:3. For any
fixed stepsize n > 0, if we choose initial value xy > %
and apply a gradient descent algorithm, then we can prove
[NV ()| > |z¢| and |zs41]| > 2|z for all ¢ > 0. It
implies that |x;| > 2¢|z¢| and the algorithm will diverge. In
this paper, we will some generalized minimax algorithms to
tackle the divergence issue.

2.3. Generalized Smoothness

Previous works studying nonconvex nonsmooth minimax
optimization can be categorized into following branches.
Some minimax algorithms adopt the zeroth-order strategy
(Liu et al., 2019; Wang et al., 2020; Huang et al., 2022) to
address issue where the objective function is not differen-
tiable or the gradient cannot be accessed. However, if the
objective function is still differentiable, just not Lipschitz
smooth, gradient-based methods are more efficient and ef-
fective than gradient-free methods. Some other works focus
on nonconvex nonsmooth minimax problems with certain
special structures. As an example, (Huang et al., 2021) con-
siders the problem that is a nonconvex Lipschitz smooth
loss function adding a convex nonsmooth regularization,
which can be solved by proximal gradient. (Li et al., 2022)
considers a nonsmooth composite minimax problem where
f(-,y) is the composition of a Lipschitz smooth function
and Lipschitz continuous function. In this paper, we do not
assume any specific structures for the objective function.

In a concurrent work (Hao et al., 2024), the convergence
analysis of a bilevel optimization algorithm under the con-
dition of unbounded smoothness is provided, which is also
applicable to minimax optimization. In (Hao et al., 2024),
the lower level function that is used to calculate y*(x) is
assumed to be Lipschitz smooth and the upper level func-
tion is assumed to be (Lg, L1)-smooth (Zhang et al., 2019),
which is defined as follows:

Definition 2.3. A real-value function f is (Lo, L1)-smooth
if there exist constants Ly and L such that

IVf(@) = VWl < (Lo + Li|[Vf(@) DIz =yl (8)

We can see Lipschitz smoothness is a special case of
(Lo, L1)-smoothness where L; = 0. Recently, a variety

Algorithm 1 Generalized GDA or SGDA
Input: initial value zy and yq
Parameter: learning rate 7 and 7,,, maximum iteration 7.
1: fort=0,1,...,T —1do
2:  Compute vy = V, f (x4, y¢) (deterministic)
or vy = V F(xy, ys; &) (stochastic).
3:  Compute u; = V,, f(x¢,y:) (deterministic)
or uy = VyF(x, ys; &) (stochastic).
4:  Compute suitable stepsize parameter S;.
5: Update Ti41 = Tt — (n/St)Ut.
6.
7

: Update yi41 = Oy (yr + nyuy).
: end for

of works are proposed to study and generalize the require-
ment of Lipschitz smoothness (Chen et al., 2023; Li et al.,
2023). In (Li et al., 2023), the definition of [-smoothness is
proposed as follows:

Definition 2.4. A real-value function f is [-smooth if there
exists a non-decreasing continuous function /() such that

IV (1) =V f(z2)|| UV (@)[[+G) - [ler =2l ()

for any x; and x5 in B(x, W) for any G > 0.

In (Li et al., 2023), it is proven that Definition 9 is equiv-
alent to ||V2f(z)|]| < I(||[Vf(x)|) almost everywhere.
For nonconvex optimization problems, function [ is re-
quired to be sub-quadratic but (L, L )-smoothness still
can be regarded as a special case of [-smoothness where
l(u) = Lo + Liu. A common example of sub-quadratic
function is [(u) = Lo+ L,u” where 0 < p < 2, which con-
tain the case of p = 1. In this paper, we extend the concept
of [-smoothness to minimax optimization and propose the
definition of /,-I,-smoothness in Definition 2.5. Therefore,
the smoothness condition used in this paper is more general
than the assumption used in (Hao et al., 2024).

Definition 2.5. A real-value function f(x,y) : R4 x ) —
R is called [.-l,-smooth for non-decreasing continuous
functions I, and [, if we have

[Vaf(21)=Vaf(22)| < L(IVaf(20)l[+G1)-[l21 — 22|
[Vyf(21)=Vy f(z2)| < L(IVyf(20)|+G2) (|21 =22

for any z; and z2 in B(z9,7(20)) and any zo = [20; 0],
_ G G
where 7(20) = v rGoTren T LAV FGoTTGs OF

any given G; > 0 and G > 0.

Moreover, it can be proven that the two counterexamples
belong to the category of our I,-I,,-smoothness.

3. Algorithms

As revealed in our counterexample, vanilla gradient based
algorithm fails to converge in minimax optimization when
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Algorithm 2 Generalized GDmax or SGDmax
Input: initial value zy and yq
Parameter: learning rate 7 and 7,, nested loop size K,
maximum iteration 7.
1: fort=0,1,..., 7T —1do
2:  Compute v; = V, f(x¢,y:) (deterministic)
or vy = VF(xy, ys; &) (stochastic).

3:  Compute suitable stepsize parameter S;.
4:  Update ;11 = x¢ — (n/St)vs.

5: Let Yt,0 = Yt-

6: fork=0,1,..., K —1do

7:

Compute ¢, = Vy f(Ti41, Yrk) (deterministic)
or g = VyF (2441, Y.x; & k) (stochastic).

8: Update y¢ g+1 = Hy (ye, i + nytie ).

9: end for

10:  Update yir1 = Yt k.

11: end for

the Lipschitz smooth assumption does not hold. The reason
for divergence is credit to the large gradient. Therefore,
we will generalize these algorithms to tackle this issue by
adopting an suitable stepsize strategy to control the moving
distance in each iteration. We will apply this strategy to
standard minimax optimizers GDA, SGDA, GDmax and
SGDmax. The description of single-loop algorithm Gen-
eralized GDA (or SGDA) is shown in Algorithm 1. The
description of double-loop algorithm Generalized GDmax
(or SGDmax) is shown in Algorithm 2.

Let x( and y, be the initial values in Algorithm 1 and Al-
gorithm 2. In our convergence analysis, we need to run an
additional initialization process to obtain an approximation
of the maximizer yo ~ y*(x¢) for the given initial value xg
before the algorithms start. The specific conditions that g
needs to satisfy will also be discussed in the convergence
analysis This subproblem can be converted to a strongly-
convex generalized Lipschitz smooth minimization problem
and solved by optimizers such as GD, SGD or SPIDER
(Chen et al., 2023; Li et al., 2023; Fang et al., 2018).

In Algorithm 1, we adopt a suitable stepsize based on the
norm of gradient to single-loop minimax algorithms GDA
and SGDA. In each iteration, we compute the gradients
Vaf(ze,yt), Vyf(ze,ye) or the corresponding stochastic
gradients with respect to x and y, respectively. Then we
update z; and y; by gradient descent ascent. When we
update x4, we adopt the suitable stepsize strategy to control
the moving distance. We have multiple options to compute
the suitable stepsize parameter .S;. It could be:

(1) Sy =Jlvell. () S =max{e, 37 > lvell}-
3) S:=S8. 4)S; =max{e, (1 — B)||vt|| + BSt—1}-

When we choose option (1), the suitable stepsize strategy is

turned out to be the gradient normalization method. When
we choose option (2), we calculate the average of historical
gradient norm. When we choose option (3), the suitable
stepsize will be a constant. Notice that it is different from
the conventional constant stepsize because .S probably has
dependence on the initial value and it is calculated after the
algorithm starts. When we choose option (4), we calculate
the exponential average of historical gradient norm. When
we update y,, we adopt a constant stepsize such that ;41 =
ITy (y: + myue). with a projection onto ).

In Algorithm 2, we apply the suitable stepsize strategy to
double-loop minimax algorithms GDmax and SGDmax. In
each iteration, we first compute the gradient V. f (¢, y¢)
with respect to x (or the corresponding stochastic gradi-
ent). We update z;y; = xz; — (n/St)v: by an suitable
stepsize 7/S;, where the options to compute S; are the
same as Algorithm 1. Then we run a nested loop to
search an estimation of the maximizer y;+1 ~ y*(T¢41).
Specifically, we apply an iterative gradient ascent algorithm
Yek+1 = Hy(ye i + My i) where uy i is the deterministic
or stochastic gradient estimator to solve the maximization
subproblem max,, f(z¢+1,%).

4. Convergence Analysis
4.1. Main Theorems

In this section, we will show the main theorems of our
convergence analysis. The theoretical results indicate that
our generalized GDA, SGDA, GDmax or SGDmax algo-
rithms can converge under the generalized Lipschitz smooth
condition and the gradient complexities to reach first-order
stationary point are the same as Lipschitz smooth counter-
parts. First we will introduce the following assumptions.

Assumption 4.1. The primal function ® is lower bounded,
ie,inf, &(z) = &* > —o0.

Assumption 4.2. The loss function f(x,y) is u-strongly-
concave w.r.t. y, i.e., there exists a constant p > 0 such that
for any x, y and ¢, we have

Fy) < fay) + (Vyf )y —y') = Sy = y/I

Assumption 4.3. The loss function f(x,y) is [;-l,-smooth
and function [, is sub-quadratic.

These assumptions are basic prerequisites for the conver-
gence analysis of nonconvex strongly-concave minimax op-
timization. In nonconvex minimization problems (Li et al.,
2023), the function [ is also required to be sub-quadratic.

We conduct our convergence analysis based on two cases.
The first case is ) = R which results in an unconstrained
optimization with respect to y. The second case is that ) is
bounded, which implies f is Lipschitz smooth with respect



Delving into the Convergence of Generalized Smooth Minimax Optimization

to y, i.e., there exists a constant L, such that [,(-) = L.
We need these requirements because otherwise the value of
Ly(||Vy f(z,y*(2))|) is hard to estimate, which can lead to
poor smoothness even approaching the maximizer y*.

We provide the following essential definitions of notations
that are frequently used in our analysis.

G, = max{u > 0ju? < 8kl,(2u) - (P(xg) — @*)}
Gy =Vyf(®o,90), yi =y (2t) (10)

4.1.1. ANALYSIS RESULTS OF GDA

Similar to Lipschitz smooth minimax problems, we can
define the condition number as x = 1, (4G, )/p. With As-
sumption 4.1 to 4.3, we can obtain the following Theorem
for the generalized GDA algorithm.

Theorem 4.4. Assume Assumption 4.1, 4.2 and 4.3 are
satisfied. Let parameters Sit < #‘@) for all t,

Ny = @%) and initial value ||yo — y§|| < % where
constant Cy = min{1, 12(?):76):(;} Then for the general-

ized GDA algorithm, we have

T-1 2 *
LS Tl st -9,

When S; is constant (option (3)), we can achieve the follow-
ing Corollary 4.5 for generalized GDA, which indicates that
under the condition of generalized Lipschitz smoothness our
generalized GDA algorithm can achieve the same gradient
complexity to find first-order stationary point as GDA does
with Lipschitz smoothness.

Corollary 4.5. When S; is computed by option (3), let
n= O(,;zlm(lggz))) Ny = O(ly(glgy)): T = O(k*¢"?) and
other conditions are the same as Theorem 4.4. Then the gen-
eralized GDA algorithm can find an e-first-order stationary
point with O(k*e=?2) gradient oracles.

When we choose other options to compute S;, we can obtain
the following theoretical results.

Corollary 4.6. When S, is computed by option (1) or (4),
letﬂ = O(m), T]y = O(m), T = O(H2€72)
and other conditions are the same as Theorem 4.4. Then
the generalized GDA algorithm can find an e-first-order
stationary point with O(k?e~?) gradient oracles.

Corollary 4.7. When S; is computed by option (2), let n =
O(Nle(EQGm) ) my = O(zy(zlcj) ), T = O(r?? log(%))
and other conditions are the same as Theorem 4.4. Then
the generalized GDA algorithm can find an e-first-order
stationary point with O(k?e~*log(1)) gradient oracles.

We can see the gradient oracle complexity to achieve first-
order stationary points is the same as GDA when the suitable

stepsize parameter .S; is computed by gradient norm or
exponential moving average of historical gradient norm.
When S; is computed by averaged historical gradient norm,
there will be an additional logarithm term. However, our
analysis is conducted under the condition of generalized
Lipschitz smoothness, while the original analysis of GDA
is based on Lipschitz smoothness.

4.1.2. ANALYSIS RESULTS OF GDMAX

For double-loop deterministic algorithm Generalized
GDmax, we have the following Theorem 4.8.

Theorem 4.8. Assume Assumption 4.1, 4.2 and 4.3 are sat-
isﬁed Let parameters sit < #&G) forall t, n, =

T (4G 5 K> rlog(3) and initial value |lyo — 5|l <

Coce. . 1+ (2G4
lx(%Gx) where constant Cy = Inln{laléci)cy} and

0 = min{1, %} Then for the generalized GDmax
algorithm, we have

T-1 2 _ H*
LR v s w) g

Similar to generalized GDA, we can prove under the condi-
tion of generalized Lipschitz smoothness, GDmax algorithm
can achieve the same gradient complexity to find first-order
stationary point as GDmax does with Lipschitz smoothness.

Corollary 4.9. When S; is computed by option (3), let n =
Olamgay ) v = Oy K = O(k). T = O(ke ™)
and other conditions are the same as Theorem 4.8. Then
the generalized GDmax algorithm can find an e-first-order

stationary point with O(k?e~?) gradient oracles.
Corollary 4.10. When S; is computed by option (1) or (4),
letn = O(m) Ny = O(%) K =0(k),T=
O(re=2) and other conditions are the same as Theorem 4.8.
Then the generalized GDmax algorithm can find an e-first-
order stationary point with O(k?e~?2) gradient oracles.

Corollary 4.11. When S, is computed by option (2), let
n = O(M) My = O( 4G)) = O(m),T =
O(ke?1og(1)) and other condltlons are the same as The-
orem 4.8. Then Generalized GDmax algorithm can find an
e-first-order stationary point with O(k?e =2 log(%)) gradi-
ent oracles.

4.1.3. ANALYSIS RESULTS OF SGDA

For generalized stochastic algorithms SGDA and SGDmax,
we assume the stochastic gradient oracle is unbiased, i.e.,
EcVF(z,y;€) = Vf(x,y). We also need the following
bounded variance assumption, which is a common assump-
tion in the convergence analysis of stochastic gradient-based
optimization algorithms.

Assumption 4.12. The stochastic gradient oracle satisfies
E¢||VF(z,y;€) — Vf(z,y)||* < o2 for some constant o.
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Generalized GDA / SGDA Generalized GDmax / SGDmax
(1) n=0(%),T =0(k*?),SFO = O(k*¢ %) n=0(£), T =0(ke?),SFO = O(r%*)
2 7n=0(5%),T=0(k*"2),SFO =01 n=0(%),T=0(ke?),SFO = O(r 1)
3) n=0(%),T =0(k%2),SFO = O(r%*) n=0(%),T =0(rke?),SFO = O(r* 1)
4) n=0(%),T =0(k*?),SFO = O(k*¢ %) n=0(£), T =0(ke ?),SFO = O(r%*)

Table 1. A summary of the stepsize 7, total iterations 1" with respect to Generalized GDA, SGDA, GDmax and SGDmax algorithms and
different choices of S;. Column one refers to different options to compute S, which is defined in Section 3. SFO refers to the stochastic
first-order oracle for stochastic algorithms SGDA and SGDmax. Notation O(-) hides the logarithm term.

In stochastic algorithms, let b, and b, denote the batchsize
of stochastic gradient with respect to = and y, respectively.
Due to the noise of stochastic gradient, there is no guar-
antee for the upper bound of gradient or function value.
Thus, we cannot apply mathematical induction to estimate
the upper bound along the trajectory, as what we do in the
deterministic case (see the sketch of proof in next subsec-
tion). However, we can still prove that generalized SGDA
and SGDmax will converge with a high probability. In the
stochastic case, we need to re-define the constant

G, =max{u > 0|u? < 32kl (2u)-(®(z0) —P* +0?)/5}

For Generalized SGDA, we have the following Theorem.

Theorem 4.13. Assume Assumption 4.1, 4.2, 4.3 and

: n 6Co
4.12 are satisfied. Let parameters 3 < P cTem] for
2
K
>

_ 1 _ . o?
allt,ny—m,T—W,szW’byf

19260212 (2G,)  klg (2G, N
5G212 (IQG )w ) 52[21((2G I))Eg} and initial value ||y0 —

5Co G, (2G2)G,
woll < 51 (%G y where constant Co = mm{l,l mere =tk

Then for the generalized SGDA algorithm, we have

max{

(13)

Z ||V‘I> (2) ||2 10(® (o) — ®* +0°)
onT

with probability at least 1 — 0.

When S; is constant (S; = 5), we can obtain the following
Corollary for Generalized SGDA, which results in the same
stochastic first-order oracle complexity under the condition
of relaxed Lipschitz smoothness as SGDA does with the
requirement of Lipschitz smoothness.

Corollary 4.14. When S, is computed by option (3), let
n=0(m),ny=0(l (2@)) w = 0(?), b y =
O(ke™2), T = O(k*e2) and other conditions are the same
as Theorem 4.13. Then the generalized SGDA algorithm can
find an e-first-order stationary point with SFO of O(rk3e™*).

When S is computed by option (1) or (4), we can reach
the following conclusion which also achieves the same SFO
complexity as SGDA does in the Lipschitz smooth case.

Corollary 4.15. When S, is computed by option (1) or (4),
let n = O(zrzay ) v = O(m)’ by = O(e?),
by = O(ke™?), T = O(k*e¢ %) and other conditions are
the same as Theorem 4.13. Then the generalized SGDA
algorithm can find an e-first-order stationary point with
SFO of O(rk3e™%).

When S; is computed by option (4), we can obtain the
following theoretical result, which causes an additional log-
arithm term in the SFO complexity.

Corollary 4.16. When S, is computed by option (2), let
n:O(m)yny:O(@) by = O(e7?), by =
O(ke™2), T = O(k%e %log(1)) and other conditions are
the same as Theorem 4.13. Then the generalized SGDA

algorithm can find an e-first-order stationary point with
SFO of O(k%¢*log(1)).

4.1.4. ANALYSIS RESULTS OF SGDMAX

For the stochastic double-loop algorithm Generalized
SGDmax, we have the following conclusions.

Theorem 4.17. Assume Assumption 4.1, 4.2, 4.3 and

4.12 are satisfied. Let parameters - < Tl (200)

racy K = rklog(p) T = s,
24k0%12(2G)  KlL(2G, )
3GI2(4G,) * 712 (4G,)

tial value |lyo — y5| < 7952

8L, (2G2)
. 1.(2G.)G, -
min{1, ﬁ} and 0 = min{%, l2(2G )} Then for

for all t, ny

by > o by > max{

and ini-
- GiGQy }

where constant Cy =

the generalized SGDmax algorithm, we have

Z IIV‘P w)|? _ 10(®(z0) — ®* +0?)
- onT

(14)

with probability at least 1 — 0.

Corollary 4.18. When S; is computed by option (3), letn =
O(iasy) My = Oragyy). K = O(x). T = O(ke?)
and other conditions are the same as Theorem 4.17. Then
the generalized SGDmax algorithm can find an e-first-order
stationary point with SFO of O(k3¢~%).

Corollary 4.19. When S; is computed by option (1) or (4),
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Name a%a covtype  diabetes german  gisette ijennl mushrooms  phishing w8a
Samples 32561 581012 768 1000 6000 141691 8124 11055 49749
Features 123 54 8 24 5000 22 112 68 300

Table 2. Descriptions of the LIBSVM binary classification datasets used in our experiment

O(ke~2) and other conditions are the same as Theorem
4.17. Then the generalized SGDmax algorithm can find an
efirst-order stationary point with SFO of O(k3e~%).

Corollary 4.20. When S; is computed by option (2),
let 1 = O(5ay) y = O(%) K = O(k),
T = O(ke2log(1)) and other conditions are the same
as Theorem 4.17. Then the generalized SGDmax algo-

rithm can find an e-first-order stationary point with SFO of
O(r*e*log(1)).

These theoretical results indicate that under the general-
ized Lipschitz smooth condition, our generalized SGDmax
method can still converge and achieve the same SFO com-
plexity as SGDmax does in the Lipschitz smooth case.

4.2. Sketch of Proof

In this subsection, we will provide the outline of our proof
to illustrate the insight of our analysis. The completed proof
is left to the Appendix. Due to the space limit, we will only
demonstrate the sketch of proof for the generalized GDA
and SGDA algorithms. First, we can prove the smoothness
for functions y* (z) and ®(x) (described in Lemma A.1 and
Lemma A.2) such that |y*(z) — y*(2')]| < k||l — 2’| and

Ve (x) = VO(2')|| < 26l ([VO(2)]| + G) - [l — 2

if o’ — 2l <

G
: Ve G @0 f(.)r some G > 0. Then
we can obtain Lemma A.3, which indicates that
IVO(2)||* < 4kl (2| VO(2)]]) - (®(z) — @)  (15)
for V. When function [, is sub-quadratic, Eq. (15) provides

an upper bound for ||[V®(z)|| that has dependence on the
function value gap (®(z) — ®*).

Next, we want to prove that ||V®(x,)|| < G, forallt > 0
in Generalized GDA, which means the gradient is bounded
along the trajectory ;. With this conclusion, the values of
l.(+) that occur along the trajectory in the analysis can be
bounded by [, (2G,.), and hence the rest part of the proof
will be simplified and relatively easy. In minimization opti-
mization, this conclusion can be directly achieved by math-
ematical induction. However, in mimimax optimization the
exact value of V®(z) is not available. It is estimated by
V. f (x4, yt), which yields an error term caused by ||y —y; |-
The original proof framework of minimization problem
does not work in this case due to the existence of the error

term. Besides, the error term will lead to an additional term
that also has dependence on GG, when bounding the func-
tion value gap (®(z) — ®*). To solve this issue, we need
to apply mathematical induction to V®(x;), V. f(xt, yt),
Vyf(xe,ye) and ||y, — y7|| simultaneously to estimate the
bound for these terms. This is one of the most challenging
technical difficulties in our analysis. We can prove

G2
B(z)) — B* < B(xg) — B* + z

selLGy) 19

which will eventually finalize the mathematical induction.

In the stochastic case, the framework of mathematical induc-
tion in GDA does not work because the neither the gradient
norm nor the function value can be bounded when gradient
noise exists. However, under these conditions we can still
prove the convergence of our Generalized SGDA with a
probability at least 1 — §. For Generalized SGDA, we define

G, =max{u > 0[u? < 32kl (2u)-(®(xo)—P*+0?)/5}
To = min{t|®(xy) — D" > For |ly; —yl| >YIAT
where F' = 8(®(z¢) — ®* + 02)/5, Y = liggi)
A denotes the minimum operation. We want to prove the
probability of Ty < T'is small. Notice that in minimization
optimization we do not need to consider the upper bound
of |ly; — ¢, which is exclusive in minimax optimization.
Based on the proof of the deterministic case we can prove
when ¢ < T all induction assumptions in the analysis of
GDA are satisfied. Hence we can obtain the estimations
of expectations E®(x;) — ®* and E||y; — y|| at iteration
t = Tp. By Markov’s inequality and union bound, we can
prove the probability of event Ty < T is smaller than %.
Furthermore, by union bound and the estimation of E®(x;)

we can achieve the result in Theorem 4.13.

and

4.3. Discussion

In this subsection, we will discuss the dependence of con-
stants used in our convergence analysis. Since we run an
additional initialization process to ensure ||y — yg|| < C
for some threshold C, we can obtain G, < % if there is no
constraint with respect to y, i.e., J = R, Thus, we have
K < M. If f is Lipschitz smooth with respect to y, we

n
also have k < # Hence the condition number & is a con-
stant only depending on the function [, (-). Insert k < #
into the definition of G, we can see GG, is a constant only
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Figure 1. Experimental results of the loss function value of ®(z) with respect to the number of iterations in the robust logistic regression
task on dataset a9a, covtype, diabetes, german, gisette, ijcnnl, mushrooms, phishing, and w8a. SGDA-1 and SGDA-2 are the results of
SGDA with two largest learning rates that make it converge. G-SGDA is the result of our Generalized SGDA Algorithm.

depending on functions [,;(-), I, (-), ®(-) and the initial value
zo. Besides, the initialization process can be regarded as
a strongly-convex minimization subproblem, which aims
to find an initial value satisfying ||yo — yg|| smaller than a
constant tolerance. The complexity of this subproblem is
proved to be within O(£EIVu/ 050y where g is the
raw input of variable y. Therefore, the complexity of the ini-
tialization process is dominated by the complexity to solve
the entire minimax problem and thus can be neglected.

Next, we will discuss the relation between parameters 7 and
S¢. n can be regarded as a fixed stepsize parameter which
is passed to the algorithm before it starts. S; is the scale of

suitable stepsize in iteration ¢ which is computed during the
runtime of the algorithm. The ratio of ’7 should be bounded
by a certain threshold according to our analysis. When S,
is chosen as a constant, parameter 7 can also be a constant
that has no dependence on e. When S, is the gradient norm,
averaged historical gradient norm or exponential moving
averaged historical gradient norm, parameter 1 should be
as small as O(e€) with respect to € because S; will become
as small as O(e) gradually. A summary of the stepsize
parameter 7, total iterations 7" and stochastic first-order
oracle complexity with respect to different algorithms and
choices of S; is shown in Table 1.
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5. Experiments

In this section, we will conduct an experiment of the robust
logistic regression task to validate the performance of our
generalized minimax optimization methods with the suitable
stepsize strategy. Recall the examples we have mentioned
in Section 2, the problem can be formulated as

;rel]iR% ;reli): flz,y) = ;yzlz(x) = V(y) +g(z) A7)

where [;(x) is the logistic loss function defined by ;(x) =
log(1 + exp(—b;al x)). V(y) is a divergence measure de-
fined by V(y) = 2 A1[|ny — 1]|%. Notation A,, represents
the simplex in R™, that is

Ap={yeR"0<y; <1,) yi=1} (8

i=1

Function g(z) is the regularization term that takes the form
) . .

g(z) = A 20 Tty Following the experimental set-

tings in (Yan et al., 2019), we set A\; = #, Ao = 0.001 and
a = 10 in our experiment.

We run the experiment and verify our method on 9
real-world datasets a9a, covtype, diabetes, german,
gisette, ijennl, mushrooms, phishing, and w8a, which
can be downloaded from the LIBSVM repository
at https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets. These datasets are fre-
quently used in binary classification tasks. The description
of these datasets is listed in Table 2.

We compare our generalized SGDA algorithm with suitable
stepsize to the conventional constant stepsize SGDA. We
choose option (1) to compute the suitable stepsize parameter
S, which adopts the gradient normalization. The mini-batch
size is set to 50. For each algorithm, we choose the best
learning rates 7 and 7, from {0.1, 0.01,0.001, 0.0001, 1e —
5,1e — 6} by grid search. We report the results of two
largest learning rates that can make SGDA converge. We
compare the value of ®(z) with respect to the number of
iterations in the training process. The value of ®(z) can be
calculated because y*(x) has a closed form in this problem
and the projection operation onto a simplex is also available

to compute. The code is available at https://github.

com/WH-XIAN/AS—-SGDA.

The experimental results are shown in Figure 1. SGDA-1
and SGDA-2 are the results of SGDA with two largest learn-
ing rates from {0.1, 0.01,0.001,0.0001, 1e—5, le— 6} that
make it converge. G-SGDA is the result of our Generalized
SGDA method with the suitable stepsize strategy. From the
results in Figure 1 we can see our suitable stepsize strat-
egy improves the convergence speed or stability of SGDA
algorithm significantly on all datasets, which validates the
effectiveness of our Generalized SGDA method.

6. Conclusion

In this paper we investigate the convergence analysis of
minimax optimization algorithms under the relaxation of
Lipschitz smooth condition. We provide some counterexam-
ples to reveal that non-Lipschitz smoothness and divergence
issues could occur in minimax problems. We propose some
generalized minimax algorithms with the suitable stepsize
strategy to tackle this issue. We prove that variants of fun-
damental minimax optimization algorithms GDA, SGDA,
GDmax and SGDmax can still converge under the gener-
alized Lipschitz smooth conditions and achieve the same
gradient complexity or SFO complexity as their counterparts
do in the Lipschitz smooth case. We conduct a numerical
experiment of robust logistic regression task to validate the
practical performance of our methods.
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A. Convergence Analysis of Generalized GDA

First, we will provide the proof for the following essential Lemmas.

Lemma A.1. For any v and z' that satisfy ||z’ — x| < lz(I\me(xC;*(x))\|+G) for some G > 0, we have
ly™(2) =y (@)l < &llz — 27|

Proof. Since y* () is the maximizer, for Vy € ) we have

(y—y"(x), Vy f(x,y" () <0, (y —y"(2"), Vy f (', 5" (")) <0

Sum these two inequalities together and we can obtain
(y"(z) —y*(@"), Vy [,y () = Vy fla,y"(2))) <0

As function f is strongly concave with respect to y, we have

plly* (@) =y (@)? < (" (2) — y" (@), Vy f (', y" (2)) = Vy f (2 57 (2)))

Combine above two inequalities and we achieve
plly* (@) =y @)|I* < (" (@) —y* (@), Vo f (2,57 (2) = Vy f (2,57 (2)))

When |2/ — z| < lm(\lvmf(z,(;*(z))lHG) for some G > 0, by Assumption 4.3 we have

IVyf @y () = Vy f @ g™ @)l < 1([Vyf (g™ (@) - 2 — 2]

(19)

(20)

2

(22)

(23)

(24)

When Y = R%, we have ||V, f(z,y*(z))|| = 0. As function [, (-) is non-decreasing, we have /,,(0) < ,,(4G,). When f is
Lipschitz smooth with respect to y, function I, (-) is constant L,, and we still have {,,(2G,) = L,;. Combine Eq. (23) and

(24), we can reach the conclusion in Lemma A.1.

Lemma A.2. For any x and x' that satisfy |z’ — z|| < m for some G > 0, we have

IVO(z) = V()| < 26l([VO(2) + G) - [lo — 2|
®(2') < B(x) + (VO(2), 2" — 2) + Kl (|VO(@)[| + G) - [|lz — 2|
®(2') > ®(x) + (VO(2), 2" — 2) = klo(|VO(2)[| + G) - ||l — 2’|
Proof. By Lemma A.1 and Assumption 4.3 we have

IVe(2') = VO(z)[| = Vo f (@', y" () = Vaf (@, y" ()]
<L([Ve@)l +G) - (2" = 2l + [ly* (") = y*()])
< 26l ([VO(2)]| + G) - [l — |

Hence for any z(t) = x + t(2’ — x), we have
IVB(=(t)) — VO@)| < 2L (IVE@)] +G) - ' — 2]
Since we have the equation
O(z') = &(z) + (VO(2),2" —z) + /Ol(Vé(z(t)) — ®(z),2’ — x)dt
we can obtain

[®(2') — ®(2) — (VO(2), 2" — 2)|| < 21, ([|VO(2)]| + G) - [|l2" — z]? - /0 tdt
< Kl (|Ve(2)] + G) - [l — 2|

which leads to the last two inequalities in Lemma A.2.
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(25)
(26)
27)

(28)

(29)

(30)
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Lemma A.3. For any x, we have

IVO(@)|* < 4hl: (2| VE(2)]]) - (B(2) — &) (32)
— V()
Proof. Letx' = x — Ve BY Lemma A.2 we have
V()|
O < P(2') < () — H— (33)
il 2V (@)])
which implies the conclusion of Lemma A.3. O
Lemma A.4. For Yz and y, we have
IV f () < 21,21V f @) - (f(,y"(2) = flz.9) (34)
Proof. By Assumption 4.3 and the definition of maximizer y*(-) we have
Vyf(z,y)
f,y* (@) = flo,y + = )
lylIVy f(z, )
1 1
> fla,y) + IVyfz,y)lI* ~ IV f (2, 9)|”
LIV f(yl) " 2-1,2[Vyfl@ )" 7
1
= f(zy) + IVy f ()] (35)
2-0,2[Vyf(y)l) 7
which implies the conclusion in Lemma A 4.
Lemma A.5. Letn, = 4 < #((’QG), Ny = % and |lyo — y§|| < lc('Qg 5- When Y = R%, we have ||V®(x;)|| <
Ga, ||Vaf(ze,ue)l| < 2Go, ||Vyf(ze,w)l| < Gy and ||y: — yi|| < I 2G )for all t > 0, where constant Cy =
mln{l 1.(2G, )GU}
' 1,(2G,) G

Proof. We apply mathematical induction to prove the conclusions in Lemma A.5. According to Lemma A.3 and the
definition o'f Gy, we have ||[V®(z)|| < Gu. As ||yo — 5]l < lmg&w) < lx(\\Végcz)\HGm)’ by Assumption 4.3 we can
further obtain

IVaf(z0,y0) = VO(z0)|| < 12(2G2) - lyo — yoll < G (36)

which implies |V f (20, yo)|| < 2G,. Hence the conditions of case ¢ = 0 are satisfied.

Assume that the conclusions are satisfied for case t < 7. When t = 7 4 1, by the requirement of 7; we have

G, G
| Vaf(zr,yr)|| < 2n,G, <

< 37
LG = LN+ Cs) &7

where we have used the induction assumption ||V f(z,,y.)|| < 2G, and ||V®(z,)|| < G.. Then we can apply Lemma
A.1 and Lemma A.2 to achieve

941 =il < Allares | (38)
and
D(@r11) € (@7) + (VO(@r), Tt = 37) + Al (2Ga) - 2741 — o
= D(ar) = 0 (VB(r), Vil (7, 5r)) + AL (2Ga) 72V f ()
= O(z,) = TIVO(@)|? + T Vaf @r,yr) = V()2 = B-(1 = 26bs(2Go) - 1) [V f (2, )
< @(a,) = TNV |? + T Vet (. yr) — V()| (39)

12
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where the last inequality is obtained by the condition of 7),. Next we will prove ||y, 41 — y5 [ < 1(62:7&) According to
the update rule of y and the non-expansion property of projection, we have

vz = yraal® = v — Dy (yr + 0y Vo f(zr, y:) I

< ||y;t —Yr — nyvyf(xﬁ yT)HQ
= llyi = ye > = 20y (Vy f (27, 97), ys — y2) + 0l IV f (2, y0) |1 (40)

As function f is strongly-concave with respect to y, we have
* 1 * *
(Vyf(@rye) v = o) 2 Slv7 = ye 1+ Flarsu7) = flar,yr) (41)
Combine Eq. (40), (41) and Lemma A.4, we have

ly7 = yraall® < (1= pmy)llyy — yfll2*277y(1*77y~ v(2Gy)(f(27,y7) = f(2r,y7))

< (1= pmy)lly; —y-l?> < (1 - *)HyT y-? (42)

where we have used the induction assumption IVyf(zr,y-)| < Gyand i, = % Combine Eq. (38), (42), the
Y Y
induction assumption ||y, — ;|| < - 2G y and IVof(zr,yr)| < 2G, we have

lyri1 = yrall < vy = vrsall + lyr e — vl

1 1 G, G,
<(1— )|y -y AV f (@ y )l < (1= 26, Gy < 43
< (U= g lyr = yell + mne Ve f (@7, yo )l < € ZK)Z(G)+ K1) LG (43)
where we have used the reguirement of 7 in the last inequality. As [ly; — y7| < (géx) < lw(‘lvégﬁ)u ey by
Assumption 4.3 we can obtain
IVef(r,yr) — V(I)(xr)HQ < li(QGw) Nlyr = y:HQ (44)
By Young’s inequality we have
* (12 1 2 * * 2
lyr = 21" < (U 5—)llyr—1 =y lI” + 26llyz — gzl
2K K— .
S5, -1 7“9771 —yrall? + 260 Ve f(zr—1, 90|
1 *
< (1= o AR B G et — vl + 452 [V ()
1
< (A= pollyr—1 — w7 8 Ve = [ Tyl [ (45)

where the second inequality is derived by the same way as Eq. (42) and (38); the third inequality is derived by Cauchy-
Schwartz inequality and Assumption 4.3; the last inequality is derived by the condition of 7;. Let v = 1 — ;-. Applying
recursion to Eq. (45), we can obtain

T—1
ly- = w5l < v llyo — wpll* + 462 Y " A7 02 |V ()| (46)
s=0
Inserting Eq. (44) and (46) into (39), we have
J2(2G,) /- . S
Dar01) < D)~ V()| + TG (e g e Yy e ) @)

s=0

13
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Applying recursion to above inequality, we can achieve

12(2G,) - lyo — vil1? <
D(2,41) < B(z0) — th( — 4RP22(2G,) Zv )HV(I) )2+ ( )gy" voll S At

t=0 t=0

< @(z0) — Z é (1 - 16“477752592@(2Gw)) V@ ()| + 32:21, (2G) oa
t=0 z 7 =0
159 G?
< B(wp) - Z 7 IVe@)I + g (48)
t=0

where we have used the setup of n; and ||yo — yg||. According to the definition of G, we have

157’],5

D(2741) — @ < (P(z0) — @) — Z IV@(@e)[* + (P(z0) — @) < 2(®(0) — ©7) (49)

t=0

Combining Eq. (49), Lemma A.3 and the definition of G, we can reach the conclusion that | V®(z,41)| < Gy. As
lyre1 — vl < lzgéw) < lx(HV@(ijil)HJer)’ by Assumption 4.3 we can obtain

Hvzf(xﬂ-l,yrﬂ) - V‘I)(l”rﬂ)” < lr(QGz) : ||.%-+1 - y:“H <G, (50)

which implies |V, f (@41, Yr+1)|| < 2G. Finally, we need to estimate |V, f (2,11, Y-+1)|. We have

Hvyf(xrﬂayrﬂ)” = ||Vyf(ffr+17yr+1) - vyf(xTthy:Jrl)”

Coly(0)G,
< 1,(0) - |yry1 — Y < =Lt <q 51
which is obtained by the definition of constant Cy. O
Lemma A.6. Let 1y = o < #(&Gr) = % and |lyo — y§| < % When 1,(-) = L,, we have

2+ (2G.)Gy

(IVO(xy)|| < Ga [V f (2, ye)|| < 2G4 and ||yt yr|| < lCOG forall t > 0, where constant Cy = min{1, m

Proof. Different from the case ) = R%, we do not need the upper bound for Vyf(xe,yi). In Lemma A.5 the only place
that needs the condition is Eq. (42), which requires [, (2||V, f(z+,y-)) < l,(2G,). However, when f is Lipschitz smooth
with respect to y, this condition is always satisfied since I,,(-) = L,. The rest part of proof is the same as Lemma A.5. [J

With Lemma A.5, Lemma A.6 and Eq. (49), we can reach the conclusion in Theorem 4.4. When S; = .S, the result of
Corollary 4.5 can be directly achieved by Theorem 4.4. Next, we will prove other corollaries using different options to
compute S;. By Cauchy-Schwartz inequality, we have the following conclusion based on Theorem 4.4.

Lemma A.7. Suppose the conditions in Theorem 4.4 are satisfied. Then we have

T-1 * T-1
(3 (Ve < 22 = @nx ) (52)

We also need the following Lemma A.8

Lemma A.8. Suppose the conditions in Theorem 4.4 are satisfied. Then we have

T—1 T-1
N IVaf @yl 237 190 + 466, (53)
t=0 t=0

Proof. By the proof of Lemma A.5 we have

IVaf (e, ye) = V(x| < 1 (2G2) - [y — w7 | (54)

14
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By Eq. (42) we have

* * * * 1 *
lye — vl < llyimy —vell + lvf — vl < (0= 52) - llye—1 — yioall + w1 Va f(@e-1, ye—1) ||

2K
1 *
<(1- ot Ke-112(2G2)) - lye—1 — yi—1 || + £ne—1[[VO(z—1)|
1 *
< (U= o) lye-1 = viall + w1 [V @ (-1l (55)
Lety=1— i. Applying recursion to above inequality and we can obtain
t—1
lye = w7l <M lyo = w5l + £ D7~ ns[VO(,)| (56)
s=0

Summing Eq. (54) and combining with Eq. (56), we achieve

T—1 T-1 T—1
S Vet (@) = VOl < 4612(2G2) - llyo — y5ll + 6le(2G2) Y el VOl - >+
t=0 t=0 s=t
=
<4kGy + 1 V()] (57
t=0
Hence we can reach the conclusion of Lemma A.8. O

When S; is computed by option (1) or (4), we have th:ol Sy < ZtT;Ol Vo f(xe, ye)| + Teand

(B(z0) — ®*)  4kGo(P(z0) — B*)

N T—1
M(% Z IV®(4)) + € - + P (58)
t=0

1= 10
— P 2 <
(7 ; [V®(2:)]])? < T

The first term on the right side is the dominant term when we have = O(-%) and T = O(k?¢~?). We have

(®(z0) — @)

1= 20
= g Vo <

which implies the result in Corollary 4.6. When S; is computed by option (2), we have we have ZtT:_Ol Sy <

og(T) Y= IV f (24, y1)|| + Te. Mimic above steps and we can achieve Corollary 4.7. Therefore, we have com-
pleted the convergence analysis of the Generalized GDA algorithm.

B. Convergence Analysis of Generalized GDmax

Lemma B.1. Letn, = - < W&Gm)’ Ny = m, K = rlog(3) and ||lyo — yg|| < % When Y = R, we have
IVO(ze)|| < Ga [[Vaf(ze,ye)l| < 2Gs, [|Vyf(e,ye)|| < Gy and |lys — yf|| < %for all t > 0, where constant

. 1:(2G )Gy — mi
Co = min{1, W} and 6 = min{3, m}

Proof. 1t is easy to check that the following result in Lemma A.5 are still satisfied.

Nr N
Bar 1) < D) — V() + [T, o) — VO P

Nr nTli 2G,
< (ar) = T |VD(a,)|? + Tle(3Ce)

*||12
. — 60
5 5 lyr — il (60)

The difference is the way to estimate ||y, — y*||. As we have

(61)

G, G,
N lIVaf(zr,yr)|| < 2n0:Ge < <
Vet (@ vl LG = LN+ C.)
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by Assumption 4.3 we can achieve

||Vyf<x7'+lvy7')|| < Hvuf(xv'-&-la Yr) — Vyf(xﬂy‘r)n + ||Vyf($-r, yo) |l
<l ( y) NV f (27, y7) | + Gy <2G, (62)

where we have used the definition of 7, and constant Cj in the last inequality. y,11 is computed via a nested loop,
which can be regarded as a strongly-convex minimization subproblem starting at —f(@rg1,Yr). According to the result in
minimization problem (theorem 4.3 in (Li et al., 2023)), when we set n,, = ImeTem] 4G " and K =k log( ), we have

Y1 — yi I < Ollyr — yi 1> < 200lyiy — vk l? + 2601y — il
0262
12(2G,)

< 2065°07 |V f (w7, yo) 7 + 20|lyr — yr|* < (63)

where the last inequality is achieved when 6 < i. From Eq. (63) we can also obtain

lyr1 = yia P < (260 + 40520212(2G.)) ly, — 2|2 + 40k2202(2G,) [V @ e, )|

< 30lly- —wrl* + allV@(xT)H? (64)

where we have used the setup of 7, to simplify the inequality. Applying recursion to Eq. (60) and (64), we can obtain

2
Do) < 0(an) - > 2 (1= PGy g g
t=0 z
2
< 0a0) = 3 PV + g (65)

t=0

where we have used 0 < min{%, 12; R According to the definition of G,

Gy
Sh vo — w5l < G&y and e < gy
and Lemma A.3,, we can obtain ||[V®(x,1)|| < Gu. As [|yr41 — ¥4 < lzgéx) < lz(I\V<I>(zCii1)H+GI)’ by Assumption

4.3 we can obtain

vaf(xT-‘r]J yT-i-l) - V(D(xr-i-l)” < lx(2Gw) . ||yT+1 - y:+1H < Gm (66)

which implies |V, f (2741, Yr+1)|| < 2G. Finally, we need to estimate ||V, f (2741, y-+1)|. We have

Hvyf('rT-‘rl? y7'+1)|| = ||Vyf(xr+1vyr+1) - Vyf(zf—s-l,yiﬂ)”

Col,(0)G,
<l Nyre1 —yr <2< 67
<3y0)  yrs1 — yriall < LG Gy (67)
which is obtained by the definition of constant Cjy. Hence we have finished the mathematical induction. O

Lemma B.2. Letn; = ¢~ < #(02(;,) Ny = % K = rlog($) and |lyo—yg|l < % Whenl,(-) = L, we have
V@ (@) < G IV (w0, 0) | < 2Gir and |lye — 7 | < G35 for all t = 0, where constant Co = min{1, p=Ge=g*

and 6 = min{%, m}

Proof. Different from Lemma B.1, in this case we do not need to estimate an upper bound for V,, f(x¢,y,). In the case of
Lemma B.1, the upper bound of V,, f(x¢, y.) is required because when solving the [,,-smooth strongly-convex subproblem,
the stepsize and complexity are affected by the initial gradient norm. But when the function is Lipschitz smooth, the
requirement is unnecessary and we can set the stepsize to 1, = L%, O

Based on Lemma B.1, Lemma B.2 and Eq. (65), we can reach the conclusions of Theorem 4.8 and Corollary 4.9. Mimic the
steps of Lemma A.7 and Lemma A.8, we can prove the results in Corollary 4.10 and Corollary 4.11.
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C. Convergence Analysis of Generalized SGDA

In stochastic algorithms, we need the following auxiliary Lemmas.

Lemma C.1. Let vector X be a stochastic variable. Then we have

0 <E|X —EX|* =E|X]|* - |EX|* < E|X]|? (68)
Lemma C.2. Let X1, Xo, -, X,, be n independent stochastic variables of which the means are 0. Then we have
B> Xl =) ElX|? (69)
i=1 i=1

Next, we will provide the proof for Theorem 4.13. Here we will only consider the case of )) = R because the operations
for the case () = L, is similar to deterministic algorithms. For convenience, we denote 7, = Sl, Recall that in the
stochastic case constant (=, is re-defined as follows:

G, = max{u > 0|u? < 32kl,(2u) - (®(xg) — ®* 4+ 0?)/6}

Proof. First, we define

_ H* 2
8(®(xg) — D* 4 07) or g -y > ZC('O )} T} (70)

To = min{ min{t | &(z;) — &* > 5

We will prove that the probability of 7y < T is small. According to the definition of G, and Tj, we know when
t < Ty, we have ||[VP®(z;)|| < Gy and |ly: — yi| < ng - From the proof of Lemma A.5, it can also be checked that

IVof(zy, y)ll < 2G, and |V, f(zy, y1)|| < Gy. By the update rule of y we have
17 = v |1 = llyf — Ty (ye + myue) |1
< lyi — ye — nywe|?
= llyi = well® = 20y (ur — Vo f (@, 91), 07 = ye — 0y Vo f (@0, 90)) = 20y (Vo f (@0, 92), y7 — ye)
F IV f (@, yo) |12 4 my llwe = Vo f (@0, 90| (71)

When t < Tp, taking expectation on &, by Eq. (41), Lemma A.4 and Lemma C.2 we have

* 2 1 * 2 7720—2
Elly; —yerall” < (1= =)Ellyy —well” + (72)
K by
Hence by Young’s inequality we have
Bl — vl < (1+ 5—)Bly; — vesall® + 26B |y — o7 )
. n2o?
<(1- T)El\y? = yell* + 2627l v |* + =
K by
1 § 630202 n2o?
< (1= o= + 65°07 15 (2G2))Elly; — yell* + 65 7Bl V@(2e) |* + ——"— + =
2K by by
1 . 6k3n202 n2o?
< (1= By — vl + 65702 G2 + 1 4+ (73)
4k bs by
Applying recursion and the setup of 7;, we can achieve
1 6CEG2 8C3a? dknyo® _ 5C2G?
Elly* — 2 < (1 - — ti,* 2 0Max 0 Y < 0Max 74
loe = vl < (0= g llws =woll™ + Gez 56,3 + sezas, 5, = 16226 7

2 22 ..
for ¢ < Ty where we have used by > &z, by > %&%ﬁ)’”) and the condition of ||y — yo||-

17



Delving into the Convergence of Generalized Smooth Minimax Optimization

Mimic the steps in Eq. (39), we can also obtain

D(z441) < B(we) + (VO(0), Tep1 — @) + Klo(2G2) - [[Ter1 — 2|
= ®(z;) — 0 (VO(2), ve) + Ko (2G2) - 17 [[0e|? (75)

for t < Tj. Taking expectation on &;, by Lemma C.2 we have
E®(z141) < E®(x) — *EHWP( DI + %E\\me(wt,yt) = VO(a)|* + £lo(2Gz) - niElvr — Vo f (2t yo)|”

— (1= 261,(2G,) - m)E Ve f e, 1) |

Kl (2G,) - n2o?
< E0(x) — LEIVO()|? + LEIV. £ (e m) - V(| TeEE)

by
122G, . kly(2G,) - 2o
<E(z) ~ LEIVa()|? + MG gy e g WG i 76)
From Eq. (73) we can also achieve
. 1 GHBT]QO'Q 1720-2
Elly —yell” < (1= Yy = gl + 667 B[ V(@) |* + —5—+ = (77)
z Y
Lety=1-— % and apply recursion to Eq. (77), then we can obtain
t—1 2 2
§2C3 > dkn, o
Ellvy* — 2< ty, % 2 6 3 t—1—s QE P s 2 0 Y 78
ly; = yel* <+ llys — woll* + 6w ;7 BEIVEE)I + Sam g, T, (78)
Insert Eq. (78) into Eq. (76) and summing over . We have
s 52 CO 5 0CHL(2Gy) \, 9 §2C202(t+ 1)
Ed <o (1 - )]E o 00 e )y
(@e41) < @lwo) - 2:30 2 IVe @)™+ = | I”+ 2304131, (2G 1) by
BC3o2(t+1) 1iL(2G.)o*(t+1) 9
9216k21,(2G )b, 24kb,
K,O'z 2 x K
AsT = 6’322, by > G2 5, by > max{ 1%203151{’2%?)' ), 52;2 ((225 = }, we have
=2 957 6G2
Ed < ®(x0) — "BV (2)|]? + sl + 02 80
(we41) < ®(0) Z:; To3 EIVe@)I + gm0 (80)
According to the definition of G, for all ¢ < Tj; we have
Ed(z;) — ®* < 2(®(20) — ®* + 02) (81)

If Ty < T, then we have @ () — &% > MPEZ040D o 1y, — g > GG gt = T According to Markov's
inequality and Eq. (74), we have

N C2G? C2G? )

Prle vl > iyl =T0) < Bl —ul®/(5e) < 3 (82)

According to Markov’s inequality and Eq. (81), we have

. 8(®(xg) — ®* +0? o 8(P(xg) — D + 02 )
Pr(®(z) — 0" > (®(o) 5 )|t:TO) < (E®(zy) — %)/ (®(z0) 5 ) < 1 (83)
By union bound we have
. C2G? . 8(®(z0) — ®* + 02 )

Pr(Ty < T) < Pr(||lye — yi |* > ZQ(OG it =T0) + Pr(®(a;) - 2" > (®(20) 5 it =) < 3 (89

18
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If Ty =T, by Eq. (80) we have

LTZ“ E|VE()[* _ 5(®(ro) ~ 8" +0%)

(85)
T —o St 77T
By Markov’s inequality, we have
r-1 2 & 2
1 Z [V (z)| < 10(®(2o) — ®* 4 07) (86)
T =0 St 57’]T
with probability at least 1 — g. By union bound, we can finish the proof of Theorem 4.13. O
When S; = S, we can set 1y = WC&G”. By Theorem 4.13, we have
1= 5 480(®(z) — " + 02)e?
72 Vet < e (87)
t=0

which reaches the conclusion of Corollary 4.14. Mimic the steps in Lemma A.7 and Lemma A.8, we can prove the results in
Corollary 4.15 and Corollary 4.16.
D. Convergence Analysis of Generalized SGDmax

In this section we will provide the proof for Theorem 4.17. Here we will only consider the case of ) = R92 because the
operations for the case I, (-) = L,, is similar to deterministic algorithms. For convenience, we denote 7; = Sit

Proof. Similar to the analysis of SGDA, we define

. . . 8(P — ®* + o2 . CoGy
To = min{ min{t | &(z;) — &* > (®(zo) 5 o) or |lys — yf || > ; (;G )},T} (88)

We will prove that the probability of Ty < 7" is small. When ¢ < T, according the proof of Lemma B.1 it can be checked
that all induction assumptions still hold. Hence we still have

) . Kkl.(2G,) - n?o?
2 ply; — yel? + 2 ECe) B

b (89)

E®(we11) < E(a) — TEI|VE(a)|” +
as what we have done in Eq. (76). According to the update rule of y, we have

llvi — yt—l,k+1||2
= |y — Ty (ye—1.6 + nyre—1.8)]?
<N = =16 — ytie—1,]?
=y = ye—1kll® = 20y (wi—1.k — Vy f (@, Yem1.k), Y5 — Y16 — My Vi F (T, Y—1,5))
=20y (Vy f (6, Ye—1)s Ui — Ye—1.k) + 77§Hvyf($t7yt—1,k)||2 + 77§||Ut—1,k - Vyf(37t7yt—1,k)||2 (90)

Taking expectation and we achieve

2 2

* 1 * yo
Elly; = ye-rpaal® < (1= 2)Elyf —yerul* + = (01)
y
Apply recursion to above inequality and we can obtain
1417502

* 1 *
Elly; = well* < (1= ) Elly} —yall* + (92)

by
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As K = rlog(5), we have

2 2
. . KN, o
Elly; = vell” < 0Elly; — yea® + —
y
2 2
* * * K1, 0
< 20Eyi_y — yer|® + 20E|ly; — i1 + by
y
x 2 2 2 2, MO
< 20E|ly_y = ye-1ll” + 20571 Eflopa || + —
y
; 60K2n?_0%  Knlo?
< (20 + 60701 15 (2G2) Elly;_y = yeal|” + 605" B[ V(w1 [[* + — — + )
:v y
Since we have 7; < W@Gm’ by > ‘C’;T b, > % 9 < Land||V®(z,)|| < G, whent < Tp, we can obtain

" PCRGE | BPCRGE | SCRGE _ 0CRGE

Elyr —vell> < llys — 94
It =wel” < llvo =wl™+ ey + wEea,) T ozea,) = 120a.) ©4)
for t < Tp. Besides, from Eq. (93) we can also obtain
3 9520 = 2 062C202  4rnlo>
Elly* — 2 < (2 til, % 2 VYo e t 175]E P ’ 2 0 Y 95
Combining with Eq. (89) and summing over ¢, we achieve
-1 212 2,12 2
Ns 0°C§ 5 0CHl.(2G,) 9 0°Cgo-t
E® <o — —(1— E|V®(x, _— — _
530302t 21.(2G,)o%t
+ 07 | le(2Cs) (96)
9216kl (2G; )b, 24b,
fort < Tp. AsT = sz, by > s, by > max{ Zaggpsias), S 6.5 )+ we have
2 957 5G2
E® < ®(z9) — B VO(x,)|]? + o + 07 97
(@es2) < Oan) =3 GBIV + g +o ©7)
According to the definition of G, for all ¢ < Tj; we have
Ed®(x;) — ®* < 2(D(xg) — O 4 0?) (98)

If To < T, then we have ®(z;) — &* > w or [ly: — vyl > (’E ¢y att = To. According to Markov’s
inequality and Eq. (94), we have

2 s C2G2 c2G2

1)

According to Markov’s inequality and Eq. (98), we have

— P* _ dH* 2
Pr(@(n) — o* > S(2E0) 5‘1’ ) 1= Ty) < (Eb(a) — o), 2 EE) 5@ +o7) - g (100)
By union bound we have
. CRG2 . 8(®(zo) — ®* + 02 5
Pr(Ty < T) < Pr(|lye — v; |” > Bac | =To) + Pr(®(@) —@" > (2 (o) 5 Tt =) < 5 (10D
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If Ty =T, by Eq. (97) we have

lTZ* E||V®(xy)|? _ 5(P(x0) — 8" +0?)
T i—o St - 77T

By Markov’s inequality, we have

in V@2 _ 10(S(x0) — &* + 0?)
T —o St B 577T

with probability at least 1 — g By union bound, we can finish the proof of Theorem 4.17.

(102)

(103)

O

The rest proof for Corollary 4.18, Corollary 4.19 and Corollary 4.20 is similar to the analysis of SGDA. Hence we will omit

that part of proof to avoid redundancy.
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