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Abstract

Structural model pruning is a prominent approach used

for reducing the computational cost of Convolutional Neu-

ral Networks (CNNs) before their deployment on resource-

constrained devices. Yet, the majority of proposed ideas re-

quire a pretrained model before pruning, which is costly to

secure. In this paper, we propose a novel structural prun-

ing approach to jointly learn the weights and structurally

prune architectures of CNN models. The core element of

our method is a Reinforcement Learning (RL) agent whose

actions determine the pruning ratios of the CNN model’s

layers, and the resulting model’s accuracy serves as its re-

ward. We conduct the joint training and pruning by itera-

tively training the model’s weights and the agent’s policy,

and we regularize the model’s weights to align with the se-

lected structure by the agent. The evolving model’s weights

result in a dynamic reward function for the agent, which

prevents using prominent episodic RL methods with station-

ary environment assumption for our purpose. We address

this challenge by designing a mechanism to model the com-

plex changing dynamics of the reward function and provide

a representation of it to the RL agent. To do so, we take

a learnable embedding for each training epoch and em-

ploy a recurrent model to calculate a representation of the

changing environment. We train the recurrent model and

embeddings using a decoder model to reconstruct observed

rewards. Such a design empowers our agent to effectively

leverage episodic observations along with the environment

representations to learn a proper policy to determine per-

formant sub-networks of the CNN model. Our extensive ex-

periments on CIFAR-10 and ImageNet using ResNets and

MobileNets demonstrate the effectiveness of our method.
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2348159, 2348169, DBI 2405416, CCF 2348306, CNS 2347617.
*These authors contributed equally to this work.

1. Introduction

Convolutional Neural Networks (CNNs) have enabled un-

precedented achievements in the last decade in different do-

mains [33, 67, 68, 78]. They have shown a trend for bet-

ter performance when benefiting from deeper and wider ar-

chitectures, larger dataset sizes, and longer training times

with modern hardware [11, 57, 59, 85]. Despite their ac-

complishments, the tremendous memory and computational

requirements of CNNs prohibit deploying them on edge

devices with limited battery and compute resources, mak-

ing CNN compression a crucial step before their deploy-

ment. The goal is to reduce the size and computational bur-

den of CNNs while preserving their performance. Model

pruning (removing weights [31] or structures [50] like chan-

nels and layers), weight quantization [66], knowledge dis-

tillation [40], Neural Architecture Search (NAS) [41, 95],

and lightweight architecture designs [42, 69] are common

categories of ideas for CNN compression.

Structural pruning which removes redundant channels of

a CNN is the main focus of this paper. It is more prac-

tically plausible than weight pruning as it can effectively

reduce the inference cost of a model on established hard-

ware like GPUs without requiring special libraries [32]

or post-processing steps. Further, it demands far less de-

sign efforts than NAS [30] and architecture design meth-

ods [60, 74]. The proposed structural pruning methods de-

termine the importance of each channel using metrics such

as resource loss [22], norm [50], and accuracy [58] and

prune a model with techniques like greedy search [87] as

well as evolutionary algorithms [8]. Thanks to the advances

of Reinforcement Learning (RL) methods in complex de-

cision making tasks [3, 16, 71], leveraging RL methods to

determine proper sub-networks of a CNN given a desired

budget has been explored in recent years [1, 36, 45, 86,

89, 92]. AMC [36] trains a DDPG agent [55] to prune lay-

ers of a pretrained CNN. LFP [45] trains an agent to get

weights of a CNN’s filters and determine keeping or pruning
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them. N2N [1] uses two agents to perform layer removal and

layer shrinkage respectively. Finally, GNNRL [89] utilizes

graph neural networks to identify CNN topologies and em-

ploy RL to find a proper compression policy. Despite their

promising results, these models require a pretrained CNN

model for training their RL agent for pruning as the promi-

nent RL algorithms, like DDPG [55] used in AMC [36],

cannot perform well in dynamic environments [47] if one

trains model’s weights along with the agent’s policy.

We propose a novel model pruning method to jointly

learn a CNN’s weights and structurally prune its architec-

ture using an RL agent. As training the weights and pruning

them cannot happen simultaneously, we apply a soft reg-

ularization term to the model’s weights during training to

align with the sub-structure chosen by the best agent’s pol-

icy. We iteratively train the model’s weights for one epoch

and perform several RL trajectories observations on the

most recent model to update the policy of the RL agent. We

design our RL agent so that in each of its episodic tra-

jectories, its actions determine the pruning ratio for each

layer of the model. After pruning all layers, we take the re-

sulting model’s accuracy as our agent’s reward. However,

as the model’s weights get updated in each epoch, the re-

ward function of the RL agent changes dynamically be-

tween epochs. Accordingly, the training episodes of our

agent are drawn from a non-stationary distribution. There-

fore, one cannot simply employ prominent RL methods

like DDPG [55] and Soft Actor-Critic (SAC) [29] in our

framework to prune the model because their core assump-

tion which is the environment being stationary [47] is not

fulfilled. To overcome this challenge, we design a mech-

anism to model the evolving dynamics of the agent’s envi-

ronment. We take an embedding for each epoch of the train-

ing and employ a recurrent model to determine a represen-

tation of the current state of the environment for the agent

given the embeddings of the epochs so far. We train the re-

current model along with a decoder model in an unsuper-

vised fashion to reconstruct the reward values observed in

the agent’s trajectories. Finally, we augment each episodic

trajectory of the agent with the representations of the state

of the environment (provided by the recurrent model) at the

time of the trajectory. By doing so, our RL agent has access

to all information regarding the dynamic environment, and

we employ SAC [29] to train the agent using the augmented

trajectories. In addition, our soft regularization scheme for

alignment of weights and the selected structure by the agent

enables our pruned model to readily recover its performance

in fine-tuning. We summarize our contributions as follows:

• We propose a novel channel pruning method that jointly

learns the weights and prunes the architecture of a CNN

model using an RL agent. In contrast with previous meth-

ods using RL for pruning, our method does not need a

pretrained model before pruning.

• We perform joint training and pruning by iteratively train-

ing the model’s weights and the agent’s policy. We utilize

a soft regularization technique to the model’s weights dur-

ing training, encouraging them to align with the structure

determined by the agent. By doing so, our method can

identify a high-performing base model with weights that

closely match the structure selected by the agent. Con-

sequently, the pruned model can readily recover its high

performance in fine-tuning.

• We design a mechanism to model the dynamics of our

evolving pruning environment. To do so, we use a recur-

rent model that provides a representation of the state of

the environment to the agent. We augment the trajectories

observed by the agent using the provided representations

to train the agent.

2. Related Work

Model Pruning: Model compression ideas [26, 61] can be

categorized as structural pruning [20, 23–25, 50, 63, 64, 72,

83, 88, 94], weight quantization [6, 66, 80], weight prun-

ing [18, 31, 91], Neural Architecture Search (NAS) [21,

84, 95], knowledge distillation [27], and lightweight archi-

tecture design [30, 74]. Structural pruning focusing on re-

moving redundant channels (filters) of a CNN is the direc-

tion related to this paper. The proposed methods have ap-

proached this problem from various directions like pruning

filters with smaller norms [50], applying group regulariza-

tion [34] like LASSO [76] during training, ranking filters’

importance using low-rank decomposition [56], estimating

influence of a filter on loss [62] using the Taylor decom-

position, and meta-learning [58]. Recently, several ideas

have employed Reinforcement Learning (RL) for prun-

ing [1, 36, 45, 86, 89, 92]. LSEDN [92] trains an RL agent to

perform layer-wise pruning on DenseNet [44]. N2N [1] pro-

posed a two-stage process that employs two recurrent RL

agents in which one agent removes layers of a pretrained

CNN, and then, the other agent shrinks each remaining

layer. LFP [45] introduces ‘try-and-learn’ scheme in which

RL agents learn to take layers’ weights and predict binary

masks for pruning or preserving layers’ filters. AMC [36]

takes a pretrained CNN and trains a DDPG [55] to prune its

convolution layers. Yet, these models can only prune pre-

trained models and cannot jointly train and prune the mod-

els. The main reason is that they employ off-the-shelf RL

methods [29, 55] that assume stationary training environ-

ments, but if the model’s weights change during pruning,

the environment will not be stationary. We develop a novel

channel pruning method that jointly learns a CNN’s weights

and prunes its architecture using an RL agent in an itera-

tive manner. We design a procedure to model the changing

dynamics of the reward function of our RL agent using a

recurrent model that provides a representation of the cur-

rent state of the environment. In addition, we regularize the
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Figure 1. Overview of our method. We jointly train and prune a CNN model using an RL agent by iteratively training the agent’s policy and

model’s weights. In each iteration, we train the model’s weights for one epoch and perform several episodic observations of the agent. Left:

Each action of our agent prunes one layer of the model, and the procedure of pruning the l-th layer is shown. The agent’s actions on the

previous layers and the remaining layers’ FLOPs determine its state, and we take the resulting model’s accuracy as its reward (Sec. 3.2). As

the model’s weights change between iterations, the reward fnction also changes accordingly. Thus, we map each epoch to an embedding

and employ a recurrent model to provide a state of the environment z to the agent. (Sec. 3.2.1) Right: Given a sub-network selected by the

agent, we train the model’s weights while softly regularizing them to align with the selected structure (Sec. 3.2.3).

model’s weights to align with the structure determined by

the agent. Thanks to such designs, our method can train a

base model and select a perfromant sub-network of it that

can easily recover its performance in fine-tuning.

Reinforcement Learning: RL methods [43, 81] have

achieved outstanding results in complex tasks [3, 16, 71]

using techniques like Q-learning [82] and policy optimiza-

tion [73]. Yet, it has been shown that they cannot generalize

to new variations of their primary task [2, 47]. Continual RL

methods [47] are related to this paper as our agent’s environ-

ment is non-stationary. The proposed ideas address different

non-stationarity conditions. For example, multi-task learn-

ing [90] and meta-learning methods [14, 17, 79] assume that

sequential tasks presented to the agent have an unknown sta-

tionary distribution. Curriculum learning ideas [5, 65, 70]

aim to learn the agent’s own curriculum in single or multi-

agent dynamic environments. Finally, a group of meth-

ods [7, 12, 77] make assumptions on the variation budget

of the reward function to improve learning of the agent. We

refer to [47] for a comprehensive review on continual RL

methods. Different from the mentioned ideas, we employ a

recurrent model to model the changing dynamics of the en-

vironment of our agent and augment its observations with it

to enable using episodic RL methods to train our agent.

3. Method

We propose a new channel pruning method for CNNs to

jointly learn the weights of a CNN model and prune its fil-

ters using an RL agent. To do so, we iteratively train the

model’s weights and the agent’s policy. We design the agent

such that its actions determine the compression rate of the

model’s layers, and we take the accuracy of the pruned

model as the reward function for the agent. Nevertheless,

as we update the model’s weights iteratively, the reward

associated with a certain action changes in consecutive it-

erations, which results in a non-stationary environment for

the agent and prevents using episodic RL methods for our

purpose as they assume the environment is stationary. We

develop a mechanism in which a recurrent network models

the changing dynamics of the reward function and provides

a representation of the changing state of the environment

to the agent to alleviate this challenge. Finally, as we can-

not both train and prune the weights simultaneously during

training, we propose a regularization to align the model’s

weights with the selected sub-network by the agent. Fig. 1

shows the overall scheme of our method.

3.1. Notations

We denote the number of layers in a CNN with L and

the weights of its l-th convolution layer with Wl ∈
RCl+1×Cl×Wl×Hl . Cl+1, Cl represent the number of out-

put and input channels of the layer, and Wl as well as Hl

are the spatial dimensions of its kernel. We show the stride

of the l-th layer with stridel, and FLOPs[l] is its FLOPs

value. Finally, we show the floor function with +·,

3.2. Iterative Weight Training and Compression

We iteratively train a CNN’s weights and optimize the pol-

icy of an RL agent to jointly train and prune it. Specifically,

in each iteration, we first train the model’s weights for one

epoch on our training dataset while the agent is fixed. Then,

we keep the model’s weights frozen and our agent observes
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several episodic trajectories by performing its actions on the

CNN’s layers. To employ an RL agent to prune our model,

we need to define three main components for the agent:

States that it visits in the environment, the actions that it

can perform, and the reward function given states and ac-

tions. We describe our choices for each one in the follow-

ing, and we denote the desired FLOPs budget for the pruned

model with FLOPsdesire.

States of the Agent: We design our RL agent to perform

actions that determine the pruning rate for consecutive lay-

ers of the CNN model. Thus, the agent’s states depend on

the index of the layer that the agent is currently pruning; the

layer’s characteristics like its kernel size and FLOPs; and

the number of FLOPs that the agent has already pruned as

well as the amount it has to prune from the remaining lay-

ers. Formally, given that the agent is currently pruning the

l-th layer, we define the state of the environment as follows:

Sl =[l, Cl, Cl+1, stridel, kl,

FLOPs[l], FLOPs1:l−1, FLOPsl+1:L, al−1]
(1)

where kl is the layer’s kernel size. FLOPs1:l−1 denotes the

number of previous layers’ FLOPs given the actions that

the model has done so far on them. FLOPsl+1:L shows the

next layers’ FLOPs that are not pruned yet, and al−1 is the

agent’s action on the previous layer.

Actions of the Agent: Based on the state Sl for the l-th
layer, our agent determines its pruning rate al such that al ∈
[0, 1). Given the predicted pruning rate al, we remove +al×
cl, channels of the layer. In addition, we calculate the min-

imum and maximum actual feasible pruning rates for the

current layer based on FLOPs1:l−1, FLOPs[l], FLOPsl+1:L,

and the desired budget FLOPsdesire. Then, we bound the

predicted action al to lie in the range [al,min, al,max]. We

refer to supplementary materials for more details. In our ex-

periments, we found that ranking the importance of filters

using the norm criteria [50] and pruning the ones with the

lowest rank works well in our framework, but one may em-

ploy more sophisticated approaches [56] as well.

Reward Function: We set our reward function to be the

pruned model’s accuracy on a small held-out subset of the

training dataset as a proxy for its final performance. As our

agent prunes one layer of the model at a time, it will be

extremely time-consuming to calculate the proxy value after

each action of the agent. Thus, we take one pass of the agent

on all layers of the model as one episodic trajectory for it.

Then, we calculate the final pruned model’s accuracy on the

subset at the end of the trajectory and take it as the reward

value for all state-action pairs seen during the trajectory.

3.2.1 Modeling the Dynamic Nature of Rewards

As we iteratively train the model’s weights and the agent’s

policy, the weights of the convolution layers that the agent

performs its actions on them are not static in our frame-

work. Thus, our reward function is dynamic in the course

of training, which prohibits directly applying prominent RL

methods [29, 55] that leverage episodic trajectories to train

the agent’s policy in our framework. The reason is that the

optimization procedure of these models is biased to only

optimize the agent’s policy w.r.t the current episode’s dis-

tribution and disregards the changing dynamics of the envi-

ronment, resulting in a sub-optimal policy [47].

We design a new mechanism to overcome this chal-

lenge by providing a representation of the dynamic envi-

ronment to the agent. To do so, first, we map the index

of each epoch for training the model’s weights to an em-

bedding. Then, we employ a recurrent GRU model [9] that

takes a sequence of the embeddings corresponding to the

epochs that have been passed so far and outputs a represen-

tation of the current state of the model’s weights. Formally,

if we train the model’s weights for total T epochs, we de-

note the epoch embeddings corresponding to epoch indexes

E = [e1, e2, · · · , eT ] with Ψ1:T = [ψ1, ψ2, · · · , ψT ] (ψ1 =

Emb(e1), Emb is a learnable embedding layer). We calcu-

late the representation of the state of the model’s weights at

the epoch ek as follows:

zk = fEnv(Ψ1:k, h0; θEnv) (2)

fEnv denotes the recurrent model. Ψ1:k are the embeddings

of epochs until the epoch ek. h0 is the initial hidden state

of the GRU that we set it to a zero vector, and θEnv are the

parameters of the GRU. We show in section 3.2.2 that we

use the representations z provided by the GRU for training

our RL agent.

We propose to train the recurrent model using another

model that we call it ‘decoder.’ The decoder model takes 1)

the state-action pairs (S, a) and 2) the representation z of

the state of the environment when the agent observes (S, a)
and predicts the agent’s reward r. Our intuition is that the

representation z is informative of the state of the environ-

ment when the decoder can use it to accurately predict r. We

train both the recurrent model’s weights and the ones for the

decoder using the following objective:

min
θEnv,θD

Lrecons = E(s,a,r,e)∼B [(r̂ − r)2] (3)

r̂ = fD(S, a, z; θD) (4)

z = fEnv(Ψ, h0; θEnv) (5)

In practice, we approximate the expectation in Eq. 3 using

the agent’s episodic observations during training. fD is our

decoder model, and θD represents its parameters.

3.2.2 RL Agent Training

We employ our recurrent model and the Soft Actor-Critic

(SAC) [29] method to train our RL agent. We augment the

states S with the representations of the environment’s state
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z and design our agent’s policy function so that it predicts a

distribution over actions conditioned on both of them:

a ∼ π(·|S, z ; θA) (6)

Similarly, we deploy the representations z when calculating

the predicted Q-values by the critic networks in SAC. We

train them using the mean squared Bellman error objective:

L(φi) = E(s,a,r,s′,d,e)∼B [(Qφi
(s, a, z)− y(r, s′, d, z))2] (7)

y(r, s′, d, z) = r + γ(1− d)[ min
j=1,2

Qφtarg,j
(s′, a′, z) −

α log(π(a′|s′, z; θA))];

a′ ∼ π(·|s′, z; θA); z = fEnv(Ψ, h0)
(8)

Qφi
represents the critic models, and Qφtarg,i

shows their

target models obtained using Polyak averaging. B is a re-

play buffer containing previous episodic trajectories ob-

served. (s, a) are state-action pairs from B. d indicates

whether the state s is a terminal state. s′ represents the state

that the model gets in after taking the action a when be-

ing in the state s. a′ is an action chosen using the most

recent policy π(·; θA) conditioned on the state s′ and envi-

ronment representation z. γ is the discount factor for future

rewards. α determines the strength of the entropy regular-

ization term, which is a hyperparameter. Finally, we train

the agent’s policy using the following objective:

max
θA

E(s,e)∼B [ min
j=1,2

Qφj
(s, a)− α log π(a|s, z; θA)]

a ∼ π(a|s, z; θA)
(9)

3.2.3 Soft Regularization of the Model’s Weights

As mentioned in the section 3.2, we iteratively train and

prune the model’s weights in our framework. One approach

to do so can be actually pruning the model’s architecture

by removing the redundant channels selected by the agent

and only training the remaining ones in the weight training

phase. However, doing so can make the training procedure

unstable because it can significantly drop the model’s ac-

curacy. Accordingly, we propose an alternative approach to

softly regularize the model’s weights to align with the se-

lected sub-network by the agent. Given binary architecture

vectors [v1, v2, · · · , vL] denoting the channels selected by

the current best agent for each layer, we use the following

regularization term to train the model’s weights:

Lalign =

L∑

l=1

||(1− vl)»Wl||2 (10)

Here, » means element-wise product and the proposed ob-

jective applies the Group Lasso regularization on the chan-

nels removed by the agent. Finally we combine the standard

Cross Entropy Loss (Lclass) with proposed Lalign to train

the model’s weights:

Algorithm 1 Our Joint Training and Pruning Algorithm

Input: Training dataset D = {(xi, yi)}; replay buffer B; CNN

model fc(·; W ) with L layers; Agent π(·; θA); Two Critics

Qφi
(·) and their target models Qφtarg,i

(i ∈ {1, 2}); recurrent

model fEnv and epoch embeddings Ψ; regularization parameters

α, β; discount factor γ; number of iterations T; number of prun-

ing episodes per iteration P; a subset Ds of D for calculating the

agent’s reward.

for t := 1 to T do

/* Representation of Environment */

1. Calculate zt using fEnv and embeddings Ψ in Eq. (2).

/* RL Agent Exploration and Training */

for p := 1 to P do

2. Prune the L layers of the CNN fc one at a time by

calculating states Sl,p,t and actions al,p,t using zt and

Eqs. (1,6).

3. Calculate the reward rp,k using the final pruned model

and Ds.

4. Add the experiences (Sl,p,t, al,p,t, Sl+1,p,t, et, rp,k) to

the replay buffer B.

end

5. Sample a batch of previous experiences B from B and use

them to calculate the loss value for the recurrent model, de-

coder, and epoch embeddings using Eq. (3). Then, update their

parameters using the Adam optimizer.

6. Use the samples in B to calculate the loss values of the

critics Qφi
(·) and the agent π(·; θA) using Eqs. (7, 9).

7. Backpropagate the gradients of the calculated losses and

update the parameters of the two critic models and the agent

using the Adam optimizer.

/* Training the CNN’s Weights */

8. Use the policy π(·) with the highest reward so far to deter-

mine the binary architecture vectors [v1, v2, · · · , vL].

9. Calculate the loss Lw for the model’s weights using

Eqs. (10, 11). Backpropagate its gradients and update the

model’s parameters using SGD.

end

return Trained CNN model and agent.

Lw = Lclass + βLalign (11)

In practice, we apply Lalign using the version of the policy

with the highest reward until the current training iteration to

make the training more stable. We summarize our training

algorithm for training the model’s weights and optimizing

the agent’s policy in Alg. 1.

4. Experiments

We conduct experiments on ImageNet [10] and CIFAR-

10 [49] to analyze the performance of our method. For

all experiments, we use fully connected models with two

hidden layers of size 300 for the architecture of the ac-
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Table 1. Comparison results on CIFAR-10 for pruning ResNet-56 and MobileNet-V2.

Model Method Baseline Acc Pruned Acc ∆-Acc Pruned FLOPs

ResNet-56

DCP-Adapt [94] 93.80% 93.81% +0.01% 47.0%
SCP [46] 93.69% 93.23% −0.46% 51.5%

FPGM [37] 93.59% 92.93% −0.66% 52.6%
SFP [35] 93.59% 92.26% −1.33% 52.6%

AMC [36] 92.80% 91.90% −0.90% 50.0%
FPC [38] 93.59% 93.24% −0.25% 52.9%

HRank [56] 93.26% 92.17% −0.09% 50.0%
DTP [53] 93.36% 93.46% +0.10% 50.0%

RLAL (ours) 93.41% 93.86% + 0.45% 50.0%

MobileNet-V2

Uniform [94] 94.47% 94.17% −0.30% 26.0%
SCOP [75] 94.48% 94.24% −0.24% 26.0%
MDP [28] 95.02% 95.14% +0.12% 28.7%
DCP [94] 94.47% 94.69% +0.22% 40.3%

DDNP [23] 94.58% 94.81% + 0.23% 43.0%
RLAL (ours) 94.48% 94.85% + 0.37% 49.4%

tor, two critics, and two target models of the critic mod-

els. We train the agent and critic models using the Adam

optimizer [48] with learning rate of 1e−4 and 1e−3 re-

spectively. We use exponential decay rates of (β1, β2) =
(0.9, 0.999) for all of them. For our recurrent model, we

use a GRU [9] model with the input size of 128. We also

take embeddings of size 128 for all epochs (Sec. 3.2.1). We

employ a fully connected model we two hidden layers of

size 300 as our decoder model. We train the GRU model,

epoch embeddings, and the decoder model using the Adam

optimizer with learning rate of 1e−3 and decay parame-

ters of (β1, β2) = (0.9, 0.999). We set the entropy reg-

ularization coefficient α to 0.1 and β for soft regulariza-

tion to 1e−4 for all models. Finally, we choose the num-

ber of episodic observations per epoch for our agent to be

P = 10 (see Alg. 1). In all experiments, as we jointly train

and prune our model by using Reinforcement Learning and

softly ALigning the weights of the model with the selected

sub-networks, we call our method RLAL. We refer to sup-

plementary materials for more details of our experiments.

4.1. CIFAR­10 Results

Tab. 1 summarizes comparison results on the CIFAR-10

dataset. As can be seen, for ResNet-56, RLAL can achieve

the best accuracy vs. computational efficiency trade-off

compared to the baseline methods. One the one hand, it

is able to prune FLOPs with a rate comparable to (< 3%
lower) FPC [38] while achieving +0.70 higher ∆-Acc. On

the other hand, only RLAL, DTP [53], and DCP-Adapt are

able to outperform their baseline methods. RLAL can both

prune 3% more FLOPs and accomplish 0.44% better ∆-

Acc than DCP-Adapt. It also has 0.44% higher ∆-Acc than

DTP with the same FLOPs reduction ratio. Finally, with the

same FLOPs pruning rate, RLAL significantly outperforms

AMC [36] with 1.35% higher ∆-Acc. For MobileNet-V2,

RLAL can attain the highest ∆-Acc while having the largest

pruning rate at the same time. It remarkably prunes 6.4%
more FLOPs than DDNP [23] while obtaining 0.14% higher

∆-Acc. In summary, these results demonstrate the effective-

ness of our method for finding efficient yet accurate models.

4.2. ImageNet Results

We present the experimental results on ImageNet in

Tab. 2. For ResNet-18, RLAL shows the best ∆-Acc Top-

1/5 while showing a competitive pruning rate. It has a

similar pruning rate (only 1% lower) to GNNRL [89] and

achieves 0.30% higher ∆-Acc Top-1. For pruning ResNet-

34, RLAL is able to find a proper balance between accu-

racy and efficiency of the model. For instance, with a sim-

ilar computation budget to GP [39] (only 1.1% FLOPs dif-

ference), RLAL’s pruned model has 1%/0.46% higher ∆-

Acc Top-1/5. Moreover, RLAL shows better final accura-

cies than ISP [19] while significantly pruning more FLOPs

with a 6% margin. Pruning MobileNet-V2 is more chal-

lenging compared to ResNets because MobileNets [42, 69]

are primarily designed for efficient inference. Accordingly,

improvements in metrics are more difficult to secure than

ResNet cases. We can observe that all methods have close

FLOPs pruning rates in a relatively small range from 28.3%
to 30.7%. RLAL can achieve 0.5% higher ∆-Acc Top-1
while pruning only 0.6% lower FLOPs compared to AMC,

and it has the best ∆-Acc Top-1 among baselines. These

results illustrate the capability of our method to effectively

prune both large and small size models. Further, we high-

light the advantages of our method compared to baseline

RL-based pruning methods, GNNRL [89] and AMC [36],

as it can obtain more accurate pruned models while not re-

quiring a pretrained model for pruning.

4.3. Ablation Studies

We conduct ablation experiments to explore our method’s

behavior by studying 1) the effect of changing the num-

16063



Table 2. Comparison results on ImageNet for pruning ResNet-18/34 and MobileNet-V2.

Model Method Baseline Top-1 Acc Baseline Top-5 Acc ∆-Acc Top-1 ∆-Acc Top-5 Pruned FLOPs

ResNet-18

MIL [13] 70.28% 89.63% −3.18% −1.85% 41.8%
SFP [35] 70.28% 89.63% −3.18% −1.85% 41.8%

FPGM [37] 70.28% 89.63% −1.87% −1.15% 41.8%
PFP [54] 69.74% 89.07% −2.36% −1.16% 29.3%

SCOP [75] 69.76% 89.08% −1.14% −0.93% 45.0%
GNNRL [89] 69.76% - −1.10% - 51.0%

GP [39] 70.28% 89.63% −1.40% −0.97% 43.9%
PGMPF [4] 70.23% 89.51% −3.56% −2.15% 53.5%
FTWT [15] 69.76% - −2.27% - 51.5%
EEMC [93] 70.28% 89.63% −2.01% −1.19% 46.6%

RLAL (Ours) 69.80% 89.10% −0.80% −0.42% 50.0%

ResNet-34

SFP [35] 73.92% 91.62% −2.09% −1.29% 56.0%
FPGM [37] 73.92% 91.62% −1.29% −0.54% 41.1%
Taylor [63] 73.31% - −0.48% - 24.2%
SCOP [75] 73.31% 91.42% −0.69% −0.44% 44.8%

GP [39] 73.92% 91.62% −1.14% −0.69% 51.1%
DMC [22] 73.30% 91.42% −0.73% −0.31% 43.4%

PGMPF [4] 73.27% 91.43% −1.68% −0.98% 52.7%
FTWT [15] 73.30% - −1.59% - 52.2%
GFS [87] 73.31% - −0.40% - 43.8%
ISP [19] 73.31% 91.42% −0.45% −0.40% 44.0%

RLAL (Ours) 73.45% 91.48% − 0.14% − 0.23% 50.0%

MobileNet-V2

Uniform [69] 71.80% 91.00% −2.00% −1.40% 30.0%
AMC [36] 71.80% - −1.00% - 30.0%

Random [52] 71.88% - −0.98% - 28.9%
CC [51] 71.88% - −0.97% - 28.3%

MetaPruning [58] 72.00% - −0.80% - 30.7%
RLAL (ours) 71.82% 90.26% − 0.50% − 0.33% 29.4%

Table 3. Ablation Results of our method for pruning ResNet-56 on

the CIFAR-10 dataset. EE represents the Epoch Embeddings. SR

represents the Soft Regularization in Eq. 10.

Setting
Baseline

Acc

Pruned

Acc
∆-Acc

Pruned

FLOPs

w/o EE 93.47% 93.44% −0.03%
50%w/o EE + w/o SR 93.33% 93.12% −0.21%

Ours 93.41% 93.86% +0.45%

ber of episodic observations of the agent in each epoch

and 2) the advantage of using our soft regularization, epoch

embeddings, and the recurrent environment model in our

framework. We refer to supplementary materials for details

of experimental settings.

Changing the Number of Episodes: We experiment using

a ResNet-56 [33] model on CIFAR-10 with three different

pruning rates in {35%, 50%, 65%}, and we set the number

of episodic observations for our agent in each epoch from

{5, 10, 15}. For each pruning ratio, we visualize the best

reward that the agent achieves during the training vs. the

epoch numbers. The results are shown in Fig. 2 (a-c). We

can observe a common trend in all cases that increasing the

number of episodes results in a higher final reward, espe-

cially, the higher number of episodes benefits more when

the desired compression ratio is larger at the cost of longer

training time. However, if the number of episodes is large

enough, our method can attain a decent final reward value

in a reasonable time.

Benefit of the Recurrent Environment Model: In our

second experiment, we prune and finetune ResNet-56

and MobileNet-V2 [69] with three pruning rates in

{35%, 50%, 65%} while using/dropping our mechanism to

provide a representation of the environment to the agent

using the epoch embeddings and our recurrent model. We

visualize the best reward of the agent in the course of

training. The results for ResNet-56 and MobileNet-V2 are

shown in Fig. 2 (d-f) and Fig. 2 (g-i), respectively. The

cases using/not using our mechanism are shown with ‘w

Emb’/‘w/o Emb.’ The results clearly demonstrate the ben-

efit of our design that provides a representation of the

environment to the agent. We can find that ‘w/o Emb’

cases commonly reach to a relatively high reward but can-

not properly deal with the dynamic reward function for

their agent to further improve their policy. In contrast, our

method can consistently enhance its policy to reach higher

reward values during training.

In our third experiment, we prune ResNet-56 on CIFAR-

10 with two settings: 1) not using the recurrent model and

epoch embeddings to provide representations of the envi-

ronment to the agent 2) neither using the recurrent model

and epoch embeddings nor the soft regularization. We

present the results in Tab. 3. One can notice that removing

each component of our method degrades its performance,

especially not using the recurrent model and epoch em-

beddings severely degrades our method’s accuracy, which

is inline with the results presented in Fig. 2 and discussed
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Figure 2. Results of ablation experiments on CIFAR-10. (a-c) Best reward of our agent when using a different number of episodes per

epoch for three pruning rates when pruning ResNet-56. (d-f) Best reward with/without using our mechanism to provide representations of

the environment to our agent during training for three pruning rates for ResNet-56. (g-i) Same results of (d-f) for MobileNet-V2.

above. In summary, our ablation studies illustrate the ef-

fectiveness of our design choices in our method for jointly

training and pruning a CNN model.

5. Conclusion

We proposed a method for structural pruning of a CNN

model that jointly trains its weights and prunes its chan-

nels using an RL agent. Our method iteratively updates the

model’s weights and allows the agent to observe several

episodic pruning trajectories that it performs on the model

to update its policy. Our agent’s actions determine the prun-

ing ratios for the layers of the model, and we set the result-

ing model’s accuracy to be the agent’s reward. Such a design

brings about a dynamic reward function for the agent. Thus,

we developed a mechanism to model the complex dynamics

of the reward function and yield a representation of it to the

agent. To do so, we mapped the index of each epoch of the

training to an embedding. Then, we employed a recurrent

model that takes the embeddings and provides a representa-

tion of the evolving environment’s state to the agent. We

train the recurrent model and embeddings by utilizing a

decoder model that predicts the agent’s rewards given ob-

served states, actions, and environment representations pre-

dicted by the recurrent model. Finally, we regularized the

model’s weights to align with the sub-network selected by

the agent’s policy with the highest reward during train-

ing. Our designs enable the agent to effectively leverage the

environment representations along with its episodic obser-

vations to learn a proper policy for pruning the model while

interacting in our non-stationary pruning environment. Our

experiments on ImageNet and CIFAR-10 demonstrate that

our method can achieve competitive results with prior meth-

ods, especially the ones that use RL for pruning, while not

requiring a pretrained model before pruning like them.
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Decebal Constantin Mocanu, and Zhangyang Wang. More

convnets in the 2020s: Scaling up kernels beyond 51x51 us-

ing sparsity. In International Conference on Learning Rep-

resentations, 2023. 1

[58] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta

learning for automatic neural network channel pruning. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3296–3305, 2019. 1, 2, 7

[59] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-

enhofer, Trevor Darrell, and Saining Xie. A convnet for the

2020s. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 11976–11986,

2022. 1

[60] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European conference on

computer vision (ECCV), pages 116–131, 2018. 1
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