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Abstract

Compression is a crucial solution for data reduction in modern
scientific applications due to the exponential growth of data from
simulations, experiments, and observations. Compression with pro-
gressive retrieval capability allows users to quickly access coarse
approximations of data and then incrementally refine these ap-
proximations to higher fidelity. Existing progressive compression
solutions suffer from low reduction ratios or high operation costs,
effectively undermining the approach’s benefits. In this paper, we
propose our interpolation-based progressive lossy compression so-
lution that has both high reduction ratios and low operation costs.
The interpolation-based algorithm has been verified as one of the
best for scientific data reduction, but previously, no effort exists to
make it support progressive retrieval. Our contributions are three-
fold: (1) We thoroughly analyze the error characteristics of the
interpolation algorithm and propose our solution, IPComp, with
multi-level bitplane and predictive coding. (2) We derive optimized
strategies toward minimum data retrieval under different fidelity
levels indicated by users through error bounds and bitrates. (3)
We evaluate the proposed solution using six real-world datasets
from four diverse domains. Experimental results demonstrate our
solution archives up to 487% higher compression ratios and 698%
faster speed than other state-of-the-art progressive compressors,
and reduces the data volume for retrieval by up to 83% compared
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to baselines under the same error bound, and reduces the error by
up to 99% under the same bitrate.
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1 Introduction

The increasing volume of scientific data generated by simulations,
instruments, and observations has outpaced the data processing,
storage, and transfer capabilities of modern computer systems,
including both workstations and supercomputers. For example,
in climate research, the Coupled Model Intercomparison Project
(CMIP) [8] aims to advance our understanding of the climate sys-
tem by coordinating standardized experiments with Earth System
Models (ESMs) and thus enabling comprehensive comparisons of
how different models represent past, present, and future climate
conditions. Thanks to the rapid evolution of leading HPC systems,
each successive phase of CMIP has seen significant increases in
data volume — CMIP3 generated around 40 TB [1, 3], CMIP5 about 2
PB [3], and CMIP6 [9] exceeding 28 PB. Such an increase in volume
poses unprecedented challenges to store, process, and analyze the
data.
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Data compression, particularly lossy compression, has emerged
as a critical tool to mitigate these challenges for scientific applica-
tions [2, 4, 10, 11, 16, 17, 20-25, 27, 30, 38, 40], enabling scientists to
fully harness the ever-increasing performance of new computing
systems. Lossy compression reduces data size by approximating
original information and discarding less critical details. This process
results in smaller file sizes with an acceptable loss of fidelity. Unlike
domains such as natural images and videos, lossy compression de-
signed for scientific scenarios often includes the ability to restrict
the maximum point-wise error, which is essential for preserving
the accuracy of scientific computations. For example, the SZ lossy
compressors [41] can reach 10~100 times higher compression ratios
than lossless alternatives while keeping the maximum error within
a predefined bound [42].

Motivation: Although many scientific lossy compression solu-
tions have been proposed in the recent decade, most of them only
support decompression to a single fidelity level once the data is
compressed, which restricts their broad utilization. On the one hand,
scientific analyses often require different data fidelity levels as the
subject of the study or the stage of investigation has diverse toler-
ance for data precision. For example, in hydrodynamic simulation,
reconstructing viscosity may require a 27> finer precision compared
with reconstructing vorticity from the same data field [35]. As a
result, without progressive capability, researchers must compress
data conservatively at the highest possible fidelity — even though
only a handful of analyses truly require it — ultimately diminishing
the overall effectiveness of data reduction. On the other hand, when
analyzing multiple snapshots, fields, or regions, researchers often
first identify patterns or areas of interest at a coarse level before
committing resources to detailed analysis [28, 35, 39]. Without the
ability of progressive retrieval, scientists have to always load the
entire compressed data and decompress it at full precision. This not
only increases the time and resources required for data loading and
decompression but also delays subsequent analyses and scientific
discoveries.

Limitation of state-of-art approaches: Despite the necessity of pro-
gressive retrieval in scientific compression, as highlighted in the
above scenarios, supporting this functionality is challenging due to
several factors. First, achieving both high fidelity and high compres-
sion ratios simultaneously is challenging, as these objectives often
depend on fundamentally different algorithms, where optimizing
one may come at the expense of the other. Second, straightforward
progressive techniques often introduce significant operational over-
head, requiring multiple passes of decompression and reprocessing
- contradicting the goal of progressive decompression, which is to
save time and resources. Third, it is already non-trivial to guaran-
tee error bounds for partial decompression, not alone to say the
progressive technique which requires the data accumulated from
multiple levels to be within acceptable error margins. Consequen-
tially, few such progressive solutions exist, and they often fall short
due to low compression ratios, high operational costs, and a lack of
stringent error restrictions. These limitations hinder their adoption
in scientific applications.

Key insights and contributions: In this paper, we propose the first

high ratio, fast, and error-bounded progressive lossy compression
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solution based on the interpolation algorithm. Our contributions
are three-fold:

e We thoroughly analyze the error characteristics to build a
progressive compressor based on the interpolation algorithm
and propose our progressive solution, IPComp, based on the
prediction model with multi-level bitplane and predictive
coding. Besides having high effectiveness on retrieval, our
solution supports retrieval under arbitrary error-bound set-
tings, and it only executes decompression once for each
retrieval request, compared with residual-based alternatives,
which support a limited number of error bounds and require
multiple passes of decompression for a single request.

e We derive optimized strategies towards minimum data re-
trieval under different fidelity levels indicated by users through
error bounds and bit rate. Our strategies are highly effective
while being extremely lightweight with negligible overhead
to the scientific workflow.

o Experimental methodology and artifact availability: We eval-
uate the proposed solution using six real-world datasets from
four diverse domains over four state-of-the-art compressors.
Experimental results demonstrate our solution archives up to
487% higher compression ratios and 698% faster speed than
other state-of-the-art progressive compressors and reduces
the data volume for retrieval by up to 83% compared to base-
lines under the same error bound and reduces the error by
up to 99% under the same bitrate. The source code of IPComp
is available at https://github.com/szcompressor/IPComp.

Limitations of the proposed approach: The primary focus of our

solution in this paper is to design an effective progressive approach
that is universally applicable across different hardware platforms.
As a result, our method does not include hardware-specific opti-
mizations yet, such as speed acceleration using tensor cores. In-
corporating such optimizations will be part of our future work to
further boost the speed of data retrieval by at least 10 time under
similar reconstruction quality.

The remaining of the paper is structured as follows. In Section 2,
we provide an overview of related work. Section 3 formulates the
research problem and the overview of our design. Our developed
progressive compressor is detailed in Section 4 to Section 5. Section
6 presents and discusses the evaluation results. Finally, we draw
conclusions in Section 7.

2 Related Work

In this section, we survey existing approaches to scientific lossy
compression and discuss methods that apply progressive retrieval
to enhance these compression techniques.

Scientific lossy compressors aim to reduce data size while guar-
anteeing that the loss or error remains under a specified threshold
required by the applications. Many scientific lossy compressors
apply statistical models, including linear regression [38], interpo-
lation [33, 34, 41], and neural networks [14, 31, 32] to predict the
value of the variable based on the value of the coordinates. The
statistical model will be stored to reconstruct the value such that
the storage of original data could be eliminated. To bound the error,
the difference between prediction and real value is quantized and
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stored together with the model. On the other hand, instead of find-
ing prediction models, some compressors choose to transform data
to another domain that is more compressible, and then keep par-
tial of the transformed data based on the error bound. Examples of
transformation methods include wavelet transform [27], orthogonal
discrete transform [30], and singular value decomposition [4].

Progressive techniques for compression have evolved along two
main directions: multi-resolution approaches, which produce out-
put in various sizes, and multi-precision approaches, which gener-
ate output in various precisions.

For multi-resolution approaches, researchers have employed
tree structures [17, 18], adaptive meshes [5], and wavelet trans-
forms [26] to partition the spatial domain hierarchically, which
enables gradual refinement of data resolution. Such techniques are
primarily designed for space partitioning and visualization tasks.
Although they can support a variety of compression algorithms
by applying them to each partitioned block, these methods often
suffer from low compression ratios and slower speeds due to the
storage and computational overhead introduced by the hierarchical
structures. More importantly, they could not bound the error in
each data point since the output is smaller than the original.

On the other hand, in the direction of multi-precision retrieval,
one straightforward solution is to progressively refine the lossy
compression error [35]. Specifically, this involves executing com-
pression multiple times, with each pass compressing the residual
error from the previous pass but with a smaller error bound. This
progressive strategy is orthogonal to the underlying compression
method and offers versatility. However, it does not fully exploit
the strengths of the base algorithm, and it incurs high operational
costs as decompression must be executed multiple times to achieve
a given fidelity level. As a result, researchers also aim to exploit
progressive characteristics inherent in specific compression algo-
rithms. PMGARD [28, 39], for instance, is a progressive solution
based on the MGARD compressor. Such a solution may lead to sub-
optimal performance, as shown in Section 6, because its underlying
MGARD algorithm has lower compression ratios and speed than
other state-of-the-art in many datasets [33, 34, 41].

3 Overview

In this section, we first discuss the problems we are targeting, and
then propose our solution for such problems.

3.1 Problem Formulation

3.1.1  Definitions. Here we list five commonly adopted metrics for
evaluating scientific lossy compression. The scientific dataset [42] is
denoted as x. All symbols used in the paper are explained in Table 1.

Compression Ratio (CR) and Bitrate: CR compares the original
size(original data)
size(compressed data) *
Bitrate is reverse proportional to CR. It measures the average num-

ber of bits for storing each scalar value in the compression format.
A higher compression ratio or lower bit rate indicates more efficient
compression in terms of storage space.

Decompression Error describes the deviation between the origi-
nal and decompressed data. There are many ways to quantify the
deviation, while the Lo, norm, defined as the maximum point-wise

data size with compressed data size by CR =
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difference between original and decompressed data, is the most

widely used one.

Error Bound (eb) is a user-defined parameter that specifies the

maximum allowable error produced by lossy compressors.

Peak Signal-to-Noise Ratio (PSNR) assesses the fidelity of the

max(x)—min(x)
VMSE ) F)

where MSE(x, %) denotes the mean squared error between the orig-

inal dataset x and the decompressed dataset X. A higher PSNR value

indicates better data fidelity.

data with lossy error. The definition is 20 - log;, (

Table 1: Definition of symbols

Symbol | Description
n Numbers of elements of the input
x The input dataset
X The decompressed output with lossy error
[ The decorrelated data and its lossy version
q The quantized data
eb The bound of maximum lossy error
T,P The transform and prediction function
Q The quantization function
[ oo Lo, norm - the maximum absolute value of the input
Vi The sublinear space of the I-th level.
V; and V,,, are orthogonal to each other when [ # m
I1; The L, norm projection operator of V;
Xi, Yi The subscript i denotes the i-th component of the vector.
X1 the vector is projected to V;. x; = II;x, which
applies to any vector with subscription /
T or P Q encode
x ) y . q
decorrelation quantization l
bit-stream
~ T~ orp™* Q! ‘
Hverse dequantization decode
decorrelation

Figure 1: A typical lossy compression workflow. T/P repre-
sents decorrelation and Q means quantization. The quantiza-
tion stage is lossy thus 7 is the lossy version of y. Definitions
for x, y, etc can be found in Table 1

3.1.2  Objectives. The primary objective of this work is to develop
a progressive lossy compression framework tailored for scientific
data that meets the following four key goals.

e High compression ratio: We aim to reach compression
ratios higher than or equal to all other SOTAs, as a high
compression ratio (CR) is essential for compressors to be
effectively utilized in the scientific field. Some progressive
designs, such as SZ3-M shown in Section 6, sacrifice com-
pression ratio for progressiveness, but we argue that the low
compression ratio will prevent the adoption of such solutions
and thus make their progressive capability useless.
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e Progressive retrieval: We aim to support users to retrieve
the output at a lower fidelity level F; and incrementally
refine it to higher fidelity levels Fy, . .., F, without the need
for multiple decompression passes.

o Fast speed: Our speed of compression and decompression
should be equal to or faster than all other SOTAs, and the
decompression process should require only a single pass to
retrieve data at any specified fidelity level F;.

e Error guarantee: We guarantee that for each fidelity level
F;, if F; has error bound restriction of €;, the reconstruction
error E; satisfies E; < ¢;. This ensures that the compressed
data remains within acceptable accuracy limits for scientific
computations.

To the best of our knowledge, no compressor simultaneously
achieves all these objectives yet.

3.2 Overview of IPComp

'Y . 10101
| 4 - ‘ 1
] [1)2)3/4]5
& RPN
Original Data Interpolation Predictive Compressed
Predictor Coder Blocks
Compression workflow of our solution
I .
| S ‘,:QJ
a2 >
Request #1 Low, 7 ik ;‘2 o
(EB=1E-2) <
[1[2  Interpolation //,V‘,
Optimized Predictor Mid [
(Rg_tguetst ig Data Loader '3 A
itrate= °7]
10101 -
4“
Request #3 - y
(Load All) High &

Retrival Data
with Precision

Predictive Coder

Data retrieval workflow of our solution

Request #1 1 Decompress 2’ Decompress 3 Decompress
(EB=1E-2)

Low-precision -
Retrieval Data
Data retrieval workflow of residual-based SOTA

Figure 2: Overall design of our solution IPComp (the com-
pressed data contains multiple decompressible blocks, repre-
sented as 1-5 in the diagram)

We introduce IPComp, a progressive lossy compressor designed
to efficiently meet the diverse precision and fidelity requirements
of scientific applications. IPComp is based on the interpolation al-
gorithm which has been verified as the leading non-progressive
reduction method, and we are the first to make it progressive. IP-
Comp mainly has three innovative modules, shown in Figure 2.

o The interpolation predictor can reconstruct data to multi-
ple fidelity levels progressively, and only needs a single pass
of decompression for each retrieval request.

o The predictive coder can compress the interpolation output
to independent bitplanes with high compression ratios.
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o The optimized data loader can determine the minimum
set of data for reconstruction to satisfy various fidelity re-
quirements.

We demonstrate the compression and decompression workflow
of IPComp in Figure 2. For comparison, we also highlight the dif-
ferences between IPComp and residual-based SOTAs.

The compression workflow begins with the original dataset,
which is processed by an Interpolation Predictor to decorrelate
the dataset based on spatial and numerical relationships, and quan-
tize the output from floating point format to integers based on the
error bound. Following this, the Predictive coder encodes the pre-
diction integers by bitplanes into multiple independent blocks, each
contributing incrementally to the accuracy of the decompressed
data.

The data retrieval workflow is designed to support multi-fidelity
retrieval requests efficiently, leveraging an Optimized Data Loader
that extracts only the required blocks for a given query. Figure 2
demonstrates how the workflow works using three requests in
increasing fidelity orders. Requests 1 asks for an error bound of
1E-2, so the data loader retrieves the first few precision blocks (e.g.,
blocks 1, 2) and passes them to the Interpolation Predictor and
Progressive coder. These blocks are processed together at one
single pass to generate low-precision output, suitable for quick ex-
ploration or coarse analyses. For the second request which indicates
a targeting bitrate of 2, the data loader determines one additional
block (e.g., block 3) is optimal for such a request. As a result, the
predictor and coder reconstruct this mid-precision representation
using block 3 on top of the low-precision result. Finally, the last
request asks to retrieve all blocks, so blocks 4 and 5 are loaded
consequently to build the high-precision reconstruction.

In contrast, residual-based SOTA approaches involve signifi-
cant computational overhead and redundant operations. Those
approaches will first compress in a large bound, then compress
the residual from the last time using a smaller bound, and repeat
such residual compression until a targeted bound is reached. As a
result, they require multiple decompression passes to fulfill a single
retrieval request. For example, in the SOTA workflow of Figure 2,
the error bound for blocks 17, 2, 3’ are 1, le-1, and 1e-2, respec-
tively. For a single request of 1e-2, those approaches need to load
three blocks and execute the decompression three times to apply
the result on top of each block.

In terms of implementation, our solution is developed using
the FZ framework [13], a premier solution for developing scien-
tific compressors. FZ is a comprehensive code platform providing
various existing compression-related techniques wrapped in ready-
to-use modules, such as the tool to compute lossy error metrics,
and the function to parse compression settings from the command
line and configure files. Moreover, to help developers with testing
and integration, FZ provides a universal and robust API in many
languages, including C, C++, Python, and Fortran, as well as seam-
less integration with I/O libraries like HDF5 [15]. In conclusion, FZ
significantly reduces our need to re-implement existing techniques
or tools, allowing us to concentrate on designing and implementing
innovative progressive compression features.
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Figure 3: Illustration of how the none-progressive interpolation algorithm works for a 2d input - target points (in red color) are
predicted from nearby known points (in green color), indicated by arrows

4 Progressive design of IPComp

In this section, we first analyze the interpolation-based algorithm,
which is the leading non-progressive scientific compression strat-
egy, and then we propose our solution to make it progressive by
the prediction model and predictive coder.

4.1 Introduction to none-progressive
interpolation algorithm

Most scientific lossy compression workflows are composed of three
key steps — decorrelation, quantization, and encoding [2, 27, 30, 41].
As shown in Figure 1, the input data is defined as a vector x in a
linear space R", where n represents the total elements in the dataset.
In the decorrelation step, a transform T or prediction function P
is applied to x, resolving a decorrelated vector y. After a lossy
quantization Q on y, the quantized integers are further lossless
coded to bitstream as the final compressed data. Accordingly, the
decompression process executes the three steps reversely.

One critical aspect of designing an effective lossy compressor
is to construct the best-suit decorrelation algorithm. Our solution
IPComp uses interpolation-based decorrelation, which has been
proven to be the leading solution in the scientific domain [2, 33, 34,
41]. Its core idea is to estimate unknown data points at fixed relative
indices using interpolation formulas, such as linear interpolation
and cubic spline interpolation. Unlike many other predictors (such
as regression-base ones) that store coefficients for reconstruction,
the interpolation approach eliminates such storage overhead by
relying on predefined prediction formulas for fixed indices. As a
result, this approach achieves much higher compression ratios than
many alternatives [41].

In a plain example, consider four data points located equidis-
tantly, with indices i — 3, i — 1, i + 1, and i + 3. Their corresponding
values are denoted as x;_3, X;j—1, xi+1, and x;43. The goal is to esti-
mate x; using interpolation formulas.

For linear interpolation [41], the estimation is computed as the
average of the neighboring points x;_1 and x;41, given by:

1

For cubic spline interpolation [41], which takes into account all
four points to achieve higher accuracy, the estimation can be:

1 + 9 + 9 1 @)
——Xj_3+ —Xi—1+ —Xiy1 — —Xis3.

16 i-3 16 i-1 16 i+1 16 i+3
Both of the interpolation formulas predict values using neighbor-

ing data points in fixed relative positions, such that the coefficients

1
y; = E(xi—l + Xit1).

Yyi =

are always the same (e.g., % in the linear case) and there is no need to
save them during compression. Figure 3 shows how to extend the in-
terpolation algorithm from one scalar value to a multi-dimensional
dataset. The stride separates the data points by distance (the data
distance in stride i is 2%). In each stride, the algorithm operates
recursively along each dimension of the dataset.

4.2 Transform vs. prediction models for
progressive design

The interpolation-based decorrelation discussed in Section 4.1 can
be employed either as a transform model or a prediction model
in lossy compression. In this section, we discuss our rationale for
using it as a prediction model in IPComp.

Because we aim to build a progressive lossy compressor, it is
crucial to account for the distortion introduced by any lossy op-
eration, as such distortion can accumulate over successive data
retrievals. Toward this, we first highlight the differences between
the transform and prediction approaches, then provide a theoretical
analysis of their respective distortion behaviors, and finally explain
why IPComp adopts interpolation as its prediction model.

4.2.1 Transform models. Transform models can be viewed as a
linear mapping between original data and decorrelate data. Many
transform models, including Fourier transform and wavelet trans-
form, have been adopted in lossy compression. For example, ZFP [30]
uses nearly orthogonal block transform, and SPERR [27] is based
on the cdf97 wavelet.

Deriving the distortion between input data x and decompressed
data x in such solutions is relatively straightforward. If measured
by Lo norm, the distortion can be computed as:

llx = #lloo = I~y = T glleo < T loolly = Glleo

The value of Lo (T 1) depends on the specific transformation
function. Taking the basic but widely used transform function x; =
X;j — xj—1 as an example, its corresponding transform and inverse
transform formulas are:

-1 1 --- 0 1 1 -+ 0
T=\|. . . | T'=

In this case, the Lo, norm of (T~1) equals the maximum sum of
the rows in the matrix T, which equals the input size n. As a result,
any distortion in the transformed domain will be amplified in the
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original domain, and the maximum error could become n times
the maximum error in the transformed domain. Given that n in
most scientific datasets is at least 107, such a degree of distortion
amplification may be unacceptable for progressive compression.

llx = %llco < Loo(T Y Leo(§ = y) = nl|7 = ylloo ®3)

4.2.2  Prediction models. Prediction models are more complex than
transform models, as they tightly couple the decorrelation function
P with quantization Q. For transform models, the whole dataset is
first transformed by T before applying quantization Q. However, in
prediction models, the data usually is split into orthogonal layers or
groups, and the prediction P and quantization Q are applied layer by
layer [2, 12] on % (data with lossy error) instead of x (original data).
As a result, the prediction model can be viewed as a non-linear
mapping between input and decorrelate data.

Figure 3 shows how to divide the whole linear space into mul-
tiple orthogonal levels by setting a shrinking stride distance. We
represent level as the sublinear spaces V; € R™. The total number
of levels is defined as L. The prediction P; will be executed L — 1
times, covering from the top level L to level 1.

For each level I, we process y; which is the difference between
the original data x; and its prediction. The prediction P; is based on
interpolation from %7, (the previous level’s data with lossy error).

y; = x; — P

The prediction difference y; will be quantized to integers, and de-
quantized back to floating point g;. The quantization guarantees
that the point-wise error between y and g is less than the pre-
defined global error bound eb. Note that in decompression we do
not have the original prediction difference y since it is lossy quan-
tized here.

Y= =¢p lleglleo < eb

In decompression, which is the reverse process, we first recover the
prediction data P;x;,, then compute the output X by adding § (the
prediction difference with error) on top of the prediction.

R =PiXp + 0

By simplifying the three formulas above, we can get the conclusion
that for each level, x; only differs with original data x; within the
point-wise error bound eb.

xp =X +ep, |legllo < eb

Then for the whole dataset, the maximum point-wise error could
be bounded by

Il = &lloo = maxlx; = %lloo = maxe; < eb (4)

Compared with this Equation (4), the error in transform models
(shown in Equation (3)) is proportional to the data size, which means
it will be very difficult to bound the error in transform models if
the input data is large. Since progressive may cause the error to
accumulate across retrievals, we want to have an error control as
tight as possible. As a result, we choose to use interpolation as a
prediction model for our progressive solution.
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Figure 4: Our progressive solution splits the quantization
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4.3 Progressive interpolation algorithm

In this section, we present our solution to support progressive re-
trieval utilizing the interpolation-based prediction model discussed
in Section 4.1 and Section 4.2.

The foundation of our progressive design is to load a partial of the
information of §j according to the bitplane. As illustrated in Figure 4,
in our approach, the quantized data (denoted as q; at level I) are
32-bit integers. The bits from the same position across multiple
quantized integers form a bitplane (represented by small rectangular
boxes in the figure). We independently encode the 32 bitplanes at the
same level, which allows lower-fidelity outputs to be reconstructed
by loading only some of the bits rather than all of them. When
retrieving data, our optimizer discussed in Section 5 will determine
the optimal loading strategy — the minimum bitplanes to load from
each level to meet the retrieval requirement.

Algorithm 1 describes the reconstruction process of our solution.
As shown in Figure 4, the reconstruction starts from the top level,
where the loaded data is decoded into the reconstructed diff §j. We
then use the ¢ from each level, in sequential order, to progressively
reconstruct the original data. The parameter L, indicating in which
level we start progressive compression. The first step from line 3
to 7 is to retrieve data of non-progressive levels. Then the second
part is to load the bitplanes we are requiring, and decoded them in
addition to the vector we get in the first step.

Algorithm 1 is designed for cases where data is reconstructed
from scratch. On the other hand, when users find the current preci-
sion is insufficient, Algorithm 2 shows how to update the output
from lower precision to higher precision by loading incremental
bitplanes. By combining these newly loaded bitplanes with the pre-
viously loaded data, our solution can reconstruct a higher fidelity
output without reloading all the compressed data.
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Al

gorithm 1 Reconstruction Algorithm

Require: bitplaneList[L]

1:

X« 0

: I x « Pr(0)

: for] < L — 1 downto L, +1do
q; < decode(bitplaneList[l])
7; < dequantizition(q;)
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Table 2: Our predictive bitplane coding strategy reduces the
entropy in quantized integers (lower entropy indicates better

compressibility)

Fields Original | 1-bit prefix | 2-bits prefix | 3-bits prefix
Density | 0.358505 0.352111 0.34732 0.350525
SpeedX | 0.868908 0.861458 0.855473 0.859443

Wave 0.440292 0.433391 0.427993 0.431599

x; < Predict(%, 9;)

: end for

A0

: for | < L, downto 1 do

T N RS L I S O I X

10: q; < decode(bitplaneList[l])
1 J; < dequantizition(q;)

12: x; < Predict(A, ;)

13: A; < Predict(A, §)

14: end for

15: return X

Algorithm 2 Incremental Reconstruction Algorithm

Require: 29 bitplaneList[L]

1: )Ac(new) P )Ac(old)

2 A0
3: for =L, to1do
4 q; < decode(bitplaneList[l])
5 J; = dequantization(q;)
x;new) «— Predict(A, §;)

A « Predict(A, )

end for
return #(neW)

4.4 Predictive negabinary Coding

In this section, we propose a novel coding method that addresses
two key challenges in progressive coding: preserving data correla-
tion across bitplanes and handling sign bits. Our solution achieves
high compression ratios by capturing cross-bitplane correlations
using predictive coding and encoding sign bits using negabinary
coding.

4.4.1 Predictive Bitplane Coding. We propose a predict-based strat-
egy to exploit the correlation between bitgroups. To support pro-
gressive retrieval, each quantized integer is split into bitplanes,
which means that the bits of a single integer are encoded separately.
As a result, the correlation between bits from the same integer is
totally ignored. We observe that during decompression when re-
trieving a certain bitplane at a specific level, the previously loaded
bitplanes are already known. This observation allows us to leverage
the correlation between bitplanes by predicting the bit value based
on previous bits from the same integer, and encode the results of
the prediction instead of raw bits. For example, if the prefix bit is
0, we predict that the current bit b will also be 0. This prediction
mechanism is equivalent to applying an XOR operation between
the prefix bit and b as encoded bit = prefix bit @ b.

We can further extend this method by utilizing more prefix bits
- we perform an XOR operation on all the preceding bits and then
XOR the result with the target bit b to obtain the encoded bit. The

process can be mathematically expressed as:
encoded_bit = (prefix_bit; @ prefix_bit, @ ... ® prefix_bit,)) ® b

We observe from Table 2 that using 1-bit, 2-bit, or 3-bit prefix
bits for prediction consistently reduces the entropy compared to
the original data. Among these, 2-bit prediction generally achieves
the best entropy drop. As a result, our approach leverages the two
prefix bits to predict the next bit.

4.4.2 Negabinary coding. Unlike their non-progressive counter-
parts, progressive compression schemes must efficiently handle
sign bits, since loading them is a prerequisite for reconstructing
values, but storing sign bits separately and loading them first before
all other bits incurs significant overhead. To address this issue, we
evaluate the suitability of three widely used methods for encoding
sign bits in a progressive setting — two’s complement [36], sign-
magnitude [36], and negabinary [19, 30], and select negabinary
encoding as the preferred approach for two reasons.

First, negabinary encoding may lead to better compressibility
than other methods for values that fluctuate around zero (which
is predominant in the last layer of quantized integers). In two’s
complement, the higher-order bits often contain many 1s for values
near zero, making the corresponding high-order bitplanes difficult
to compress. For example, the 8-bit representations of 1 and -1
are 00000001 and 11111111 in two’s complement, 00000001 and
10000001 in sign-magnitude, and 00000001 and 00000011 in negabi-
nary. As a result, negabinary encoding keeps the higher-order bits
as 0, which leads to more compressible high-order bitplanes com-
pared to the dense 1s in two’s complement. Second, compared to
sign-magnitude encoding, negabinary encoding is more balanced.
When the least significant bits are set to zero (due to quantization or
truncation), the resulting error uncertainty is smaller in negabinary
encoding. This leads to more predictable error behavior, which is
beneficial for data compression and reconstruction. The uncertainty
could be formulated by

ainty ( bi ) = %xzd—%, when d is odd
uncertainty (negabinary) = % wod _ % when d is even
uncertainty (sign-magnitude) = 24 1

where d represents the number of bits discarded. As d increases,
the uncertainty of negabinary is only around two-thirds of sign-
magnitude encoding.

5 Optimized data loading

In this section, we present our optimized data load strategy that can
minimize the volume of data loaded under the retrieval constraints.
Our optimizer supports both error-bound mode and bitrate mode
which represents most of the scenarios in scientific data retrieval.
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e Error bound mode: in this mode, users specify the required
precision and the optimizer selects the optimal strategy to
ensure that the reconstructed data’s error remains strictly
within the given bound while minimizing the amount of data
loaded.

o Fixed rate/size mode: in this mode, the user specifies a max-
imum allowable bitrate or size, typically constrained by
1/0 bandwidth. The optimizer then ensures that the recon-
structed data has the smallest possible error while staying
within the specified bitrate limit. Since the total data size
n is constant for the input, requiring a specific bitrate is
equivalent to requiring a fixed retrieval size.

We first discuss the upper bound theory which both modes rely on,
then show how the optimizer makes the best decisions on bitplane
selection based on dynamic programming.

5.1 Fundamental theory for our optimizer

In this section, we discuss the fundamental theory for our optimizer
which measures the error caused by only a partial of bitplanes being

loaded.

THEOREM 1. The Lo, error in progressive retrieval can be bounded
based on the information loss due to the unloaded bitplanes.

L-1
e = #lloo < 37 P16yt lloo + b )
1=0
In this equation, p = 1 for linear interpolation, and p = 1.25 for
cubic interpolation. 8y; describes the information loss in level | caused
by the unloaded bitplanes, and its value can be pre-computed during
compression.

ProOF. As illustrated in Algorithm 1, the retrieval process pro-
ceeds iteratively through all levels, with each level relying on the
preceding level’s output to inform its predictions. This introduces
a significant hurdle for error analysis, as uncertainty can propa-
gate from one level to the next. To address this, we conceptualize
the error in level i as being comprised of three components. The
first component, dy;, represents the information loss resulting from
not loading certain bitplanes at this level. The second component,
8Yprop,1» accounts for information loss carried over from the prior
level. The third component, ¢;, captures the error introduced by
lossy quantization.

xp = X = 8Y; + 8Yprop,1 + €1 (6)

The information loss propagated until the previous level [ + 1 is
8Yprop,i+1- It will be first combined with the information loss in the
current level dy;,1, and then transfered by prediction and passed
to the next level as 8yrop,1-

5yprop,l = Pl(5yprap,l+l + 5yl+1) (7)
Combine the two equations, we can have:
X=X =0y + Z PiPpyy - PlamOYLemat + €1 ®
m=0

In our approach, the L of interpolation P; is greater or equal
to 1, which implies the information loss would be amplified to the
lower level. In other words, lower levels have larger errors, and the
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maximum error of the dataset is in the first level. As a result, we
can quantify the error of the dataset with Equation (8) by:

llx = £lleo = [lx = £1leo

= [16y1 + > P1Pre1... P8y + 1o
1=0

< Z IP1llcol1Pzlloo--- I Prllool10Y 41 lloo + €b (9)

Now we simplify Equation (9) to Equation (5). The value of Lo (P)
depends on the prediction method. Liner interpolation, as shown
in Equation (1), has two coefficients both at 0.5. Such that Lo (P) =
0.5+0.5 = 1. Similarly, cubic interpolation, as shown in Equation (2),
has four coefficients, and Lo (P) = 2 X 11—6 +2X % = 1.25. With the
derived value of L (P), Equation (9) is converted to Equation (5).

5.2 Optimized loading based on error-bounds

The goal of error-bound mode is to generate a loading strategy
specifying the minimum number of bitplanes to load in each layer,
in order to let all point-wise lossy errors be less or equal to the
user-defined bound (denoted as E). Finding such bitplanes can be
formalized as an optimization problem.

max SavedSize(l, by),
bl,l€{1,2,...L}Zl: (L&)

subject to Z err(l,b;) +eb <E.
1

by indicates the number of bitplanes discarded at the level I.
SavedSize(l, by) denotes the amount of data saved by discarding b,
bitplanes at level I. err(l, by) denotes the error at level I by discard-
ing b; bitplanes. As stated in Section 4.4.2, err (1, b;) = p'~ (|6l co,
where p = 1 for linear interpolation, p = 1.25 for cubic interpola-
tion, and Jy; is a function of b;.

By such definitions, we essentially reformulate this optimiza-
tion problem as the classical knapsack problem, enabling it to be
efficiently solved using dynamic programming (DP) with minimal
computational overhead. Let DP(, e) be the maximum total saved
size when the last layer is [ and the maximum error is e. Then
DP(L, E) would be our best solution to load data for the given error
bound E, and its value can be derived recursively by the following
DP transition function:

DP(l,e) = max
bys.t.err(Lb;)<e

{DP(l-1,e—err(l,b;))+SavedSize(l, b;)}

The time complexity of such a DP process is O(#level X #bitplane x
#discrete error values). The number of levels is log, n where n is
the input size, and the number of bitplanes is 32. The discrete
error values fall within the range of [128,1023] by normalized
retrieval bound E by compression bound eb. If comparing the time

of the DP to the time of simply traversing the input, the ratio

1023—128+1)*32+log, 3+10* log,
would be ( )x32ogyn 3 nOg‘n ~ 3% for datasets

n
listed in Table 3. Since compression takes much more computation
than just traversing the input, the overhead of the DP relative to
compression is totally negligible.
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5.3 Optimized loading based on bitrates

In the fixed bitrate mode, the user specifies a maximum allowed
retrieval size S (or equivalently, a maximum allowable bitrate). The
optimizer then seeks to minimize the reconstruction error while
ensuring that the loaded data does not exceed S.

With LoadedSize(l, b;) representing the loaded size of level [,
this problem can be formalized as follows:

i Lb b,
b,,ler{nll,rzl,...L} Zl:err( 1) +e

subject to Z LoadedSize(l,b;) < S.
I

Similar with Section 5.2, we effectively convert this problem to
the knapsack dynamic programming problem, so that it can be
solved similarly as in the error bound mode, also with negligible
overhead.

6 Experimental Evaluation

In this section, we describe the experimental setup and evaluate
our solution on six datasets against four state-of-the-art baseline
compressors.

6.1 Experimental Setting

6.1.1 Execution Environment. The experiments are performed on
the Purdue Anvil supercomputer [37] through NSF ACCESS [6].
Each computing node in Anvil features two AMD EPYC 7763 CPUs
with 64 cores at a 2.45GHz clock rate and 256 GB DDR4-3200 RAM.

Table 3: Data in our experiments

Name Explanation Precision Shape
Density [42] mass per unit volume in turbulence 64 256 X 384 X 384
Pressure [42] | thermodynamic pressure in turbulence 64 256 X 384 X 384

VelocityX [42] x-direction velocity in turbulence 64 256 X 384 x 384
Wave [41] wavefield evolution in seismic 64 1008 x 1008 X 352

SpeedX [42] x-direction wind speed in weather 64 100 X 500 X 500

CH4 [42] mass fraction of CH4 in combustion 64 500 x 500 x 500

6.1.2 Datasets. The experiments are evaluated on six datasets
across four diverse scientific domains, as listed in Table 3.

6.1.3  State-of-the-Art lossy compressors in our evaluation. The ex-
periments include four SOTA scientific lossy compressors as base-
lines — SZ3-M, SZ3-R, ZFP-R, and PMGARD.

SZ3-M [39]: SZ3-M (where "M" stands for multi-fidelity) is the
straightforward multi fidelity version of SZ3 based on multiple out-
puts. SZ3 is the leading non-progressive scientific lossy compressor.
SZ3 uses interpolation as prediction, together with linear-scale
quantization, Huffman coding, and zstd lossless coding [7]. SZ3 has
excellent compression ratio and fidelity over others while its speed
may not be as fast as ZFP. SZ3-M compresses the input with differ-
ent error bounds independently and groups those compressed data
all together as output. Such a solution supports multi-fidelity re-
trieval but is not progressive yet, as it cannot reuse the low-fidelity
data to build high-fidelity results.

SZ3-R [35, 39]: SZ3-R (where "R" stands for residual) is the pro-
gressive version of SZ3 based on residuals. It first compresses the
input with a large bound, then compresses the lossy error (residual)
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from the last time using a smaller bound, and repeats such residual
compression until a targeted bound is reached.

ZFP-R [35]: ZFP-R is the progressive version of ZFP based on resid-
uals. It handles residuals the same way as SZ3-R. ZFP [30] is the
leading transform-based lossy compressor based on orthogonal
transformation. ZFP is usually the fastest scientific lossy compres-
sor because of its highly efficient transform function, although its
compression ratio may not be as high as others.

PMGARD (28, 39]: PMGARD (where "P" stands for progressive) is
the progressive version of the MGARD [28] compressor. MGARD [2,
29] is a multigrid-based lossy compressor that uses hierarchical
decomposition to remove redundancy in scientific data while pre-
serving error bounds.

We note that the residual-based approaches (SZ3-R and ZFP-R)
have drawbacks that affect our evaluation. First, they have limited
error-bound flexibility. More specifically, the retrieval is only pos-
sible at a few predefined error bounds. This creates a trade-off —
setting too many error bounds reduces the overall compression ratio
and significantly degrades compression/decompression through-
put, while setting too few nodes limits flexibility in selecting error
bounds during decompression. For the experiments, we configure
five error bounds for them, where each successive one is a factor of
22 (4x) apart. Specifically, the error bounds are set to 216¢p, 214ep,
212¢p 2106p 28¢h, 26eb, 24eb, 22eb, and eb. Second, those methods
are not well-suited for retrievals based on pre-defined bitrates, as
the residuals are compressed by error bounds, and their size is not
aligned with the bitrate of the retrieval requests. As a result, we
select the largest residual that fits within the user-specified bitrate
constraint for SZ3-R and ZFP-R in the experiments.

6.2 Evaluation Results and Analysis

The evaluation covers four aspects — compression ratio, progres-
sive retrieval effectiveness under error-bound or bitrate constraints,
compression and decompression/retrieval speed, and retrieval qual-
ity. To be more specific, the compression ratio comparison demon-
strates our solution IPComp leads to the smallest compressed data
size. The progressive retrieval evaluation shows that IPComp re-
quires the lowest data volume to reconstruct to the same fidelity
compared with others, and IPComp leads to the highest reconstruc-
tion fidelity under the same bit rate budget. The speed test con-
firms IPComp’s high compression efficiency, especially compared to
residual-based alternatives (SZ3-R and ZFP-R) whose speed drops
significantly when the number of residual compressions increases.

6.2.1 Compression ratios. CR is a key metric for evaluating any
compressor, regardless of whether it is progressive or not. As dis-
cussed in Section 1, the fundamental goal of compression is to
reduce data size, as smaller data sizes alleviate the burden of stor-
age, transfer, and processing on applications.

Figure 5 presents the compression ratios of all solutions under
the same error-bound settings. We select two error bounds which
are le-6 and le-9 to cover both high precision (cr<10) and high
ratio (cr up to 50) cases. As this figure shows, our solution IPComp
achieves a compression ratio advantage of around 20% to 500%
over other progressive compressors across the vast majority of
datasets. This allows users to perform progressive decompression
while utilizing the least possible storage space.
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Figure 5: Our compressor IPComp leads the compression
ratio among all baselines
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Figure 6: Our compressor IPComp takes the smallest amount
of data to reconstruct toward the same L, error compared
with all the baselines. Moreover, IPComp supports arbitrary
error bound, while SZ3-R and ZFP-R are limited to a few
pre-defined bounds

In fact, although not shown in the figure, IPComp achieves an
even higher compression ratio than the non-progressive SZ3 par-
ticularly in high-precision scenarios, despite both being based on
the interpolation prediction algorithm. The primary reason for this
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improvement lies in the encoding process. The non-progressive SZ3
uses Huffman entropy encoding, which is then further compressed
using zstd. Since Huffman coding assigns variable-length codes
based on frequency, it may disrupt certain repetitive patterns in
the byte or word level after encoding. This, in turn, reduces the
effectiveness of zstd’s lossless compression, as zstd relies on de-
tecting and exploiting repetitive patterns at the byte/word level to
achieve higher compression efficiency. [7] In contrast, our solution
IPComp employs a customized predictive encoding method, dis-
cussed in Section 4.4, followed by zstd for entropy encoding and
pattern extraction. By avoiding the disruption caused by Huffman
and preserving more repetitive structures, our method enhances
the final compression ratio.

= |PComp SZ3-R = SZ3-M — ZFP-R = PMGARD
104 ] 104
g 10-5 ] g 1075 4
w w .
E 1077 4 E 1077 4
= £
& 10784 & 1078
1079 4 10-9 4
5 10 15 5 10 15
Bitrate Bound Bitrate Bound
(a) Density (b) Pressure
1074 4 1074
2 1054 2 1054
w w
E 1077 4 E 1077 4
£ £
& 107 4 & 10 4
107 5 107 4
5 10 15 5 10 15
Bitrate Bound Bitrate Bound
(c) VelocityX (d) Wave
-2
e 10 1075 4
S 107 5
W 104 4 & 1079
9 3
é’ 1075 4 z 1077 4
4 10764 =
E . é 10—5 -
g 1077 4
10-8 : . . 1079 5
5 10 15 5 10 15
Bitrate Bound Bitrate Bound
(e) SpeedX (f) CH4

Figure 7: Under given bitrate budget, our solution IPComp
reconstructs the highest fidelity output than all the baselines
(alower lossy error indicates a high fidelity)

6.2.2  Progressive retrieval efficiency. After checking the compres-
sion ratio, next we evaluate the decompression or retrieval effi-
ciency. Since users may want retrieval by fidelity (specified as error
bounds) or size (specified as bitrate), our evaluation is split into two
figures for those two scenarios.

Figure 6 demonstrate the evaluation results of the error bound
mode. Compressors with higher efficiency should result in smaller
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data retrieval size under the error restrictions. The retrieval size is
shown as bitrate in Figure 6, so lower lines in the figure indicate
better results.

Figure 7 presents the results in fixed bitrate mode. Compressors
with higher efficiency should result in higher fidelity (indicated by
lower error) with the same retrieval size, still lower lines in the fig-
ure indicate better results. Since our solution is the only progressive
compressor that directly supports the fixed bitrate mode, manual
efforts are needed to test other baselines. We enable fix bitrate mode
for residual-based compressors by selecting the largest anchor point
that fits within the user-specified bitrate constraint. Similarly, for
PMGARD, we manually define anchor points ranging from 2'¢eb,
215¢p, 21%eb down to eb, to allow for bitrate-based decompression.

As shown in both Figure 6 and Figure 7, our compressor IPComp
demonstrates its superior compression efficiency by consistently
achieving the smallest data load size under the same max error,
and the lowest max error under the same bitrate budget. This ad-
vantage primarily comes from the predictive coding method dis-
cussed in Section 4.4 and the optimized loading strategy discussed
in Section 5. The residual-based solutions SZ3-R and ZFP-R have
a staircase line in both of the figures because the fidelity of such
solutions is limited to a few pre-defined residual levels. In compari-
son, our solution provides higher flexibility as it supports retrieval
on arbitrary fidelity and bitrate.
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Figure 8: Our solution IPComp has the fastest speed in both
compression and decompression than all others except for
$Z3-M which is multi fidelity but not progressive

6.2.3 Speed. We evaluate the compression and retrieval speed
of all the compressors. To ensure a fair comparison, we use eb =
10~ xRange(dataset) to compress and retrieve the data for all com-
pressors, except for PMGARD as it is a lossless compress with lossy
retrieval by design. To reach the target eb, residual-based compres-
sors need to compress and decompress in multiple iterations. The
speed tests are shown in Figure 8. It confirms our solution IPComp
is up to around 300% faster than other approaches in most cases,
except for SZ3-M. SZ3-M supports multi fidelity by compressing in-
put in different error bounds and storing all those outputs together.
Such a solution is not progressive since the retrieval cannot use
previous passes of data. As a result, its compression ratio and re-
trieval efficiency are both extremely limited in the experiments. We
include one additional compressor SPERR-R in this figure. SPERR-R
is the residual progressive implementation of the wavelet-based
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Figure 9: The speed of residual-based progressive solutions
(SZ3-R, ZFP-R, etc) will drop significantly when the setting
of residual count increases

lossy compressor SPERR [27]. The speed of SPERR-R is extremely
slow — less than 50 MB/s in more than half of the cases. Such a
slow speed will offset the savings of reduced data size for I/O, and
potentially slow down the scientific workflow. As a result, we do
not include SPERR-R as one of our baselines in the full evaluation.

Another evaluation in this section is the speed of residual-based
compressors. As discussed in Section 6.1.3, residual-based ones must
compress and decompress multiple times based on the number of
pre-defined error bounds. More pre-defined error bounds would
provide more flexibility in retrieval, however, as Figure 9 shows, this
will instead reduce their speed significantly. We also observe from
Figure 9 that the residual results are curved instead of straight lines.
The reason is that although having more predefined error bounds
increases the number of iterations, each iteration takes less time
because the looser bounds result in a smaller range of quantized
integers. However, the total time still increases significantly due to
the cumulative effect of all iterations. This drawback of residual-
based compressors highlights the advantages of our solution which
can deliver highly flexible retrieval at high speed.

6.2.4 Retrieval quality. The quality of retrieved data can be as-
sessed in various metrics, including Lo, norm, PSNR, error correla-
tion, and visualization. Section 6.2.2 covers the Lo norm, and this
section focuses on the rest three metrics.

PSNR is mathematically related to the Ly norm of error. Although
our design primarily targets the Lo, norm and we do not explicitly
optimize for PSNR, Figure 10 shows our approach still maintains
competitive or superior PSNR compared to other baselines.

Table 4: Comparison of retrieval error’s correlation lengths
across compressors. A shorter length indicates less correlated
errors thus better quality. (ZFP cannot achieve ratio below
1.0% on the Density data)

Retrived Ratio | 0.1% 03% | 1.0% | 3.0%
IPComp 2.586 | 2.174 | 1.311 | 1.131
SZ3 7.5669 | 3.030 | 1.439 | 1.160

ZFP - - 1.316 | 1.172
SPERR 1.542 1.162 | 1.189 | 1.150
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Figure 10: Our solution leads to higher PSNR under the same
bitrate retrieved in most of the cases compared with other
solutions

Error correlation measures the coherence of errors introduced
by lossy retrieval — lower correlation implies more localized, less
structured errors and thus better retrieval quality. We capture this
via the correlation length defined as the radial distance at which
the linearly interpolated autocorrelation of the retrieval error first
falls below a threshold. Consequently, a shorter correlation length
denotes fewer correlated errors and superior retrieval quality. As
Table 4 shows, increasing the volume of retrieved data reduces
the correlation length, and IPComp achieves consistently shorter
lengths than the non-progressive interpolation-based SZ3.

The visualization results of our solution are shown in Figure 11.
We load 0.1%, 0.3%, and 1.0% from the same data, and assess the
impact on visualization of Curl and Laplacian operations. While
loading 0.3% of data is enough for Curl in terms of visualization,
1% of data is needed for Laplacian. This confirms the necessity of
progressive retrieval in scientific applications.

7 Conclusions and Future Work

In this work, we present IPComp, an interpolation-based progres-
sive lossy compression solution designed to address the growing
need for efficient scientific data storage and retrieval. Our approach
accomplishes progressiveness effectively with an interpolation pre-
diction model, multi-level bitplanes, and predictive coding tech-
niques. It is equipped with an optimizer to minimize the data volume
during retrieval under given error bound or bitrate targets.
Experimental evaluations conducted on six real-world scientific
datasets demonstrate the effectiveness of our solution. IPComp
consistently achieves the fastest speed, the highest compression
ratios, the lowest data retrieval volume, and the highest data fidelity
compared to state-of-the-art alternatives. Additionally, compared
with residual-based solutions that only support limited retrieval
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Figure 11: The visualization of two post-analysis metrics Curl
and Laplace on the same Density data. Loading 0.3% is fine for
Curl but Laplace requires 1% — demonstrating the necessity
of progressive retrieval

options, our approach is very flexible on fidelity control as it takes
arbitrary error bounds and bitrates as retrieval options.

Our findings suggest that IPComp represents a significant ad-
vancement in progressive lossy compression and is a practical
choice for scientific applications. The future work will focus on opti-
mizing hardware acceleration (e.g., GPU and tensor cores), integrat-
ing with scientific workflows like HDF5, and expanding large-scale
HPC evaluations. These improvements will further refine IPComp
for broader application scenarios.
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