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Abstract

Compression is a crucial solution for data reduction in modern

scienti�c applications due to the exponential growth of data from

simulations, experiments, and observations. Compression with pro-

gressive retrieval capability allows users to quickly access coarse

approximations of data and then incrementally re�ne these ap-

proximations to higher �delity. Existing progressive compression

solutions su�er from low reduction ratios or high operation costs,

e�ectively undermining the approach’s bene�ts. In this paper, we

propose our interpolation-based progressive lossy compression so-

lution that has both high reduction ratios and low operation costs.

The interpolation-based algorithm has been veri�ed as one of the

best for scienti�c data reduction, but previously, no e�ort exists to

make it support progressive retrieval. Our contributions are three-

fold: (1) We thoroughly analyze the error characteristics of the

interpolation algorithm and propose our solution, IPComp, with

multi-level bitplane and predictive coding. (2) We derive optimized

strategies toward minimum data retrieval under di�erent �delity

levels indicated by users through error bounds and bitrates. (3)

We evaluate the proposed solution using six real-world datasets

from four diverse domains. Experimental results demonstrate our

solution archives up to 487% higher compression ratios and 698%

faster speed than other state-of-the-art progressive compressors,

and reduces the data volume for retrieval by up to 83% compared
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to baselines under the same error bound, and reduces the error by

up to 99% under the same bitrate.
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1 Introduction

The increasing volume of scienti�c data generated by simulations,

instruments, and observations has outpaced the data processing,

storage, and transfer capabilities of modern computer systems,

including both workstations and supercomputers. For example,

in climate research, the Coupled Model Intercomparison Project

(CMIP) [8] aims to advance our understanding of the climate sys-

tem by coordinating standardized experiments with Earth System

Models (ESMs) and thus enabling comprehensive comparisons of

how di�erent models represent past, present, and future climate

conditions. Thanks to the rapid evolution of leading HPC systems,

each successive phase of CMIP has seen signi�cant increases in

data volume – CMIP3 generated around 40 TB [1, 3], CMIP5 about 2

PB [3], and CMIP6 [9] exceeding 28 PB. Such an increase in volume

poses unprecedented challenges to store, process, and analyze the

data.
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Data compression, particularly lossy compression, has emerged

as a critical tool to mitigate these challenges for scienti�c applica-

tions [2, 4, 10, 11, 16, 17, 20–25, 27, 30, 38, 40], enabling scientists to

fully harness the ever-increasing performance of new computing

systems. Lossy compression reduces data size by approximating

original information and discarding less critical details. This process

results in smaller �le sizes with an acceptable loss of �delity. Unlike

domains such as natural images and videos, lossy compression de-

signed for scienti�c scenarios often includes the ability to restrict

the maximum point-wise error, which is essential for preserving

the accuracy of scienti�c computations. For example, the SZ lossy

compressors [41] can reach 10∼100 times higher compression ratios

than lossless alternatives while keeping the maximum error within

a prede�ned bound [42].

Motivation: Although many scienti�c lossy compression solu-

tions have been proposed in the recent decade, most of them only

support decompression to a single �delity level once the data is

compressed, which restricts their broad utilization. On the one hand,

scienti�c analyses often require di�erent data �delity levels as the

subject of the study or the stage of investigation has diverse toler-

ance for data precision. For example, in hydrodynamic simulation,

reconstructing viscosity may require a 2−5 �ner precision compared

with reconstructing vorticity from the same data �eld [35]. As a

result, without progressive capability, researchers must compress

data conservatively at the highest possible �delity – even though

only a handful of analyses truly require it – ultimately diminishing

the overall e�ectiveness of data reduction. On the other hand, when

analyzing multiple snapshots, �elds, or regions, researchers often

�rst identify patterns or areas of interest at a coarse level before

committing resources to detailed analysis [28, 35, 39]. Without the

ability of progressive retrieval, scientists have to always load the

entire compressed data and decompress it at full precision. This not

only increases the time and resources required for data loading and

decompression but also delays subsequent analyses and scienti�c

discoveries.

Limitation of state-of-art approaches:Despite the necessity of pro-

gressive retrieval in scienti�c compression, as highlighted in the

above scenarios, supporting this functionality is challenging due to

several factors. First, achieving both high �delity and high compres-

sion ratios simultaneously is challenging, as these objectives often

depend on fundamentally di�erent algorithms, where optimizing

one may come at the expense of the other. Second, straightforward

progressive techniques often introduce signi�cant operational over-

head, requiring multiple passes of decompression and reprocessing

– contradicting the goal of progressive decompression, which is to

save time and resources. Third, it is already non-trivial to guaran-

tee error bounds for partial decompression, not alone to say the

progressive technique which requires the data accumulated from

multiple levels to be within acceptable error margins. Consequen-

tially, few such progressive solutions exist, and they often fall short

due to low compression ratios, high operational costs, and a lack of

stringent error restrictions. These limitations hinder their adoption

in scienti�c applications.

Key insights and contributions: In this paper, we propose the �rst

high ratio, fast, and error-bounded progressive lossy compression

solution based on the interpolation algorithm. Our contributions

are three-fold:

• We thoroughly analyze the error characteristics to build a

progressive compressor based on the interpolation algorithm

and propose our progressive solution, IPComp, based on the

prediction model with multi-level bitplane and predictive

coding. Besides having high e�ectiveness on retrieval, our

solution supports retrieval under arbitrary error-bound set-

tings, and it only executes decompression once for each

retrieval request, compared with residual-based alternatives,

which support a limited number of error bounds and require

multiple passes of decompression for a single request.

• We derive optimized strategies towards minimum data re-

trieval under di�erent �delity levels indicated by users through

error bounds and bit rate. Our strategies are highly e�ective

while being extremely lightweight with negligible overhead

to the scienti�c work�ow.

• Experimental methodology and artifact availability:We eval-

uate the proposed solution using six real-world datasets from

four diverse domains over four state-of-the-art compressors.

Experimental results demonstrate our solution archives up to

487% higher compression ratios and 698% faster speed than

other state-of-the-art progressive compressors and reduces

the data volume for retrieval by up to 83% compared to base-

lines under the same error bound and reduces the error by

up to 99% under the same bitrate. The source code of IPComp

is available at https://github.com/szcompressor/IPComp.

Limitations of the proposed approach: The primary focus of our

solution in this paper is to design an e�ective progressive approach

that is universally applicable across di�erent hardware platforms.

As a result, our method does not include hardware-speci�c opti-

mizations yet, such as speed acceleration using tensor cores. In-

corporating such optimizations will be part of our future work to

further boost the speed of data retrieval by at least 10 time under

similar reconstruction quality.

The remaining of the paper is structured as follows. In Section 2,

we provide an overview of related work. Section 3 formulates the

research problem and the overview of our design. Our developed

progressive compressor is detailed in Section 4 to Section 5. Section

6 presents and discusses the evaluation results. Finally, we draw

conclusions in Section 7.

2 Related Work

In this section, we survey existing approaches to scienti�c lossy

compression and discuss methods that apply progressive retrieval

to enhance these compression techniques.

Scienti�c lossy compressors aim to reduce data size while guar-

anteeing that the loss or error remains under a speci�ed threshold

required by the applications. Many scienti�c lossy compressors

apply statistical models, including linear regression [38], interpo-

lation [33, 34, 41], and neural networks [14, 31, 32] to predict the

value of the variable based on the value of the coordinates. The

statistical model will be stored to reconstruct the value such that

the storage of original data could be eliminated. To bound the error,

the di�erence between prediction and real value is quantized and
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• Progressive retrieval: We aim to support users to retrieve

the output at a lower �delity level �1 and incrementally

re�ne it to higher �delity levels �2, . . . , �= without the need

for multiple decompression passes.

• Fast speed: Our speed of compression and decompression

should be equal to or faster than all other SOTAs, and the

decompression process should require only a single pass to

retrieve data at any speci�ed �delity level �8 .

• Error guarantee: We guarantee that for each �delity level

�8 , if �8 has error bound restriction of n8 , the reconstruction

error �8 satis�es �8 ≤ n8 . This ensures that the compressed

data remains within acceptable accuracy limits for scienti�c

computations.

To the best of our knowledge, no compressor simultaneously

achieves all these objectives yet.

3.2 Overview of IPComp

Figure 2: Overall design of our solution IPComp (the com-

pressed data contains multiple decompressible blocks, repre-

sented as 1-5 in the diagram)

We introduce IPComp, a progressive lossy compressor designed

to e�ciently meet the diverse precision and �delity requirements

of scienti�c applications. IPComp is based on the interpolation al-

gorithm which has been veri�ed as the leading non-progressive

reduction method, and we are the �rst to make it progressive. IP-

Comp mainly has three innovative modules, shown in Figure 2.

• The interpolation predictor can reconstruct data to multi-

ple �delity levels progressively, and only needs a single pass

of decompression for each retrieval request.

• The predictive coder can compress the interpolation output

to independent bitplanes with high compression ratios.

• The optimized data loader can determine the minimum

set of data for reconstruction to satisfy various �delity re-

quirements.

We demonstrate the compression and decompression work�ow

of IPComp in Figure 2. For comparison, we also highlight the dif-

ferences between IPComp and residual-based SOTAs.

The compression work�ow begins with the original dataset,

which is processed by an Interpolation Predictor to decorrelate

the dataset based on spatial and numerical relationships, and quan-

tize the output from �oating point format to integers based on the

error bound. Following this, the Predictive coder encodes the pre-

diction integers by bitplanes into multiple independent blocks, each

contributing incrementally to the accuracy of the decompressed

data.

The data retrieval work�ow is designed to support multi-�delity

retrieval requests e�ciently, leveraging anOptimizedData Loader

that extracts only the required blocks for a given query. Figure 2

demonstrates how the work�ow works using three requests in

increasing �delity orders. Requests 1 asks for an error bound of

1E-2, so the data loader retrieves the �rst few precision blocks (e.g.,

blocks 1, 2) and passes them to the Interpolation Predictor and

Progressive coder. These blocks are processed together at one

single pass to generate low-precision output, suitable for quick ex-

ploration or coarse analyses. For the second request which indicates

a targeting bitrate of 2, the data loader determines one additional

block (e.g., block 3) is optimal for such a request. As a result, the

predictor and coder reconstruct this mid-precision representation

using block 3 on top of the low-precision result. Finally, the last

request asks to retrieve all blocks, so blocks 4 and 5 are loaded

consequently to build the high-precision reconstruction.

In contrast, residual-based SOTA approaches involve signi�-

cant computational overhead and redundant operations. Those

approaches will �rst compress in a large bound, then compress

the residual from the last time using a smaller bound, and repeat

such residual compression until a targeted bound is reached. As a

result, they require multiple decompression passes to ful�ll a single

retrieval request. For example, in the SOTA work�ow of Figure 2,

the error bound for blocks 1′, 2′, 3′ are 1, 1e-1, and 1e-2, respec-

tively. For a single request of 1e-2, those approaches need to load

three blocks and execute the decompression three times to apply

the result on top of each block.

In terms of implementation, our solution is developed using

the FZ framework [13], a premier solution for developing scien-

ti�c compressors. FZ is a comprehensive code platform providing

various existing compression-related techniques wrapped in ready-

to-use modules, such as the tool to compute lossy error metrics,

and the function to parse compression settings from the command

line and con�gure �les. Moreover, to help developers with testing

and integration, FZ provides a universal and robust API in many

languages, including C, C++, Python, and Fortran, as well as seam-

less integration with I/O libraries like HDF5 [15]. In conclusion, FZ

signi�cantly reduces our need to re-implement existing techniques

or tools, allowing us to concentrate on designing and implementing

innovative progressive compression features.
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Figure 3: Illustration of how the none-progressive interpolation algorithm works for a 2d input – target points (in red color) are

predicted from nearby known points (in green color), indicated by arrows

4 Progressive design of IPComp

In this section, we �rst analyze the interpolation-based algorithm,

which is the leading non-progressive scienti�c compression strat-

egy, and then we propose our solution to make it progressive by

the prediction model and predictive coder.

4.1 Introduction to none-progressive
interpolation algorithm

Most scienti�c lossy compression work�ows are composed of three

key steps – decorrelation, quantization, and encoding [2, 27, 30, 41].

As shown in Figure 1, the input data is de�ned as a vector G in a

linear spaceR= , where= represents the total elements in the dataset.

In the decorrelation step, a transform ) or prediction function %

is applied to G , resolving a decorrelated vector ~. After a lossy

quantization & on ~, the quantized integers are further lossless

coded to bitstream as the �nal compressed data. Accordingly, the

decompression process executes the three steps reversely.

One critical aspect of designing an e�ective lossy compressor

is to construct the best-suit decorrelation algorithm. Our solution

IPComp uses interpolation-based decorrelation, which has been

proven to be the leading solution in the scienti�c domain [2, 33, 34,

41]. Its core idea is to estimate unknown data points at �xed relative

indices using interpolation formulas, such as linear interpolation

and cubic spline interpolation. Unlike many other predictors (such

as regression-base ones) that store coe�cients for reconstruction,

the interpolation approach eliminates such storage overhead by

relying on prede�ned prediction formulas for �xed indices. As a

result, this approach achieves much higher compression ratios than

many alternatives [41].

In a plain example, consider four data points located equidis-

tantly, with indices 8 − 3, 8 − 1, 8 + 1, and 8 + 3. Their corresponding

values are denoted as G8−3, G8−1, G8+1, and G8+3. The goal is to esti-

mate G8 using interpolation formulas.

For linear interpolation [41], the estimation is computed as the

average of the neighboring points G8−1 and G8+1, given by:

~8 =
1

2
(G8−1 + G8+1) . (1)

For cubic spline interpolation [41], which takes into account all

four points to achieve higher accuracy, the estimation can be:

~8 = −
1

16
G8−3 +

9

16
G8−1 +

9

16
G8+1 −

1

16
G8+3 . (2)

Both of the interpolation formulas predict values using neighbor-

ing data points in �xed relative positions, such that the coe�cients

are always the same (e.g., 12 in the linear case) and there is no need to

save them during compression. Figure 3 shows how to extend the in-

terpolation algorithm from one scalar value to a multi-dimensional

dataset. The stride separates the data points by distance (the data

distance in stride i is 28 ). In each stride, the algorithm operates

recursively along each dimension of the dataset.

4.2 Transform vs. prediction models for
progressive design

The interpolation-based decorrelation discussed in Section 4.1 can

be employed either as a transform model or a prediction model

in lossy compression. In this section, we discuss our rationale for

using it as a prediction model in IPComp.

Because we aim to build a progressive lossy compressor, it is

crucial to account for the distortion introduced by any lossy op-

eration, as such distortion can accumulate over successive data

retrievals. Toward this, we �rst highlight the di�erences between

the transform and prediction approaches, then provide a theoretical

analysis of their respective distortion behaviors, and �nally explain

why IPComp adopts interpolation as its prediction model.

4.2.1 Transform models. Transform models can be viewed as a

linear mapping between original data and decorrelate data. Many

transform models, including Fourier transform and wavelet trans-

form, have been adopted in lossy compression. For example, ZFP [30]

uses nearly orthogonal block transform, and SPERR [27] is based

on the cdf97 wavelet.

Deriving the distortion between input data G and decompressed

data Ĝ in such solutions is relatively straightforward. If measured

by !∞ norm, the distortion can be computed as:

∥G − Ĝ ∥∞ = ∥) −1~ −) −1~̂∥∞ ≤ ∥)
−1∥∞∥~ − ~̂∥∞

The value of !∞ ()
−1) depends on the speci�c transformation

function. Taking the basic but widely used transform function G8 =

G8 − G8−1 as an example, its corresponding transform and inverse

transform formulas are:

) =



1 0 · · · 0

−1 1 · · · 0
...

...
. . .

...

0 0 · · · 1



, ) −1 =



1 0 · · · 0

1 1 · · · 0
...

...
. . .

...

1 1 · · · 1



In this case, the !∞ norm of () −1) equals the maximum sum of

the rows in the matrix ) , which equals the input size =. As a result,

any distortion in the transformed domain will be ampli�ed in the
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Algorithm 1 Reconstruction Algorithm

Require: 18C?;0=4!8BC [!]

1: Ĝ ← 0

2: Π!Ĝ ← %! (0)

3: for ; ← ! − 1 downto !? + 1 do

4: @; ← decode(18C?;0=4!8BC [;])

5: ~̂; ← dequantizition(@; )

6: Ĝ; ← Predict(Ĝ, ~̂; )

7: end for

8: Δ← 0

9: for ; ← !? downto 1 do

10: @; ← decode(18C?;0=4!8BC [;])

11: ~̂; ← dequantizition(@; )

12: Ĝ; ← Predict(Δ, ~̂; )

13: Δ; ← Predict(Δ, ~̂; )

14: end for

15: return Ĝ

Algorithm 2 Incremental Reconstruction Algorithm

Require: Ĝ (old), 18C?;0=4!8BC [!]

1: Ĝ (new) ← Ĝ (old)

2: Δ← 0

3: for ; = !? to 1 do

4: @; ← decode(18C?;0=4!8BC [;])

5: ~̂; = dequantization(@; )

6: G
(new)

;
← Predict(Δ, ~̂; )

7: Δ; ← Predict(Δ, ~̂; )

8: end for

9: return Ĝ (new)

4.4 Predictive negabinary Coding

In this section, we propose a novel coding method that addresses

two key challenges in progressive coding: preserving data correla-

tion across bitplanes and handling sign bits. Our solution achieves

high compression ratios by capturing cross-bitplane correlations

using predictive coding and encoding sign bits using negabinary

coding.

4.4.1 Predictive Bitplane Coding. We propose a predict-based strat-

egy to exploit the correlation between bitgroups. To support pro-

gressive retrieval, each quantized integer is split into bitplanes,

which means that the bits of a single integer are encoded separately.

As a result, the correlation between bits from the same integer is

totally ignored. We observe that during decompression when re-

trieving a certain bitplane at a speci�c level, the previously loaded

bitplanes are already known. This observation allows us to leverage

the correlation between bitplanes by predicting the bit value based

on previous bits from the same integer, and encode the results of

the prediction instead of raw bits. For example, if the pre�x bit is

0, we predict that the current bit 1 will also be 0. This prediction

mechanism is equivalent to applying an XOR operation between

the pre�x bit and 1 as encoded bit = pre�x bit ⊕ 1.

We can further extend this method by utilizing more pre�x bits

– we perform an XOR operation on all the preceding bits and then

XOR the result with the target bit 1 to obtain the encoded bit. The

Table 2: Our predictive bitplane coding strategy reduces the

entropy in quantized integers (lower entropy indicates better

compressibility)

Fields Original 1-bit pre�x 2-bits pre�x 3-bits pre�x

Density 0.358505 0.352111 0.34732 0.350525
SpeedX 0.868908 0.861458 0.855473 0.859443
Wave 0.440292 0.433391 0.427993 0.431599

process can be mathematically expressed as:

encoded_bit = (pre�x_bit1 ⊕ pre�x_bit2 ⊕ ... ⊕ pre�x_bit=) ⊕ 1

We observe from Table 2 that using 1-bit, 2-bit, or 3-bit pre�x

bits for prediction consistently reduces the entropy compared to

the original data. Among these, 2-bit prediction generally achieves

the best entropy drop. As a result, our approach leverages the two

pre�x bits to predict the next bit.

4.4.2 Negabinary coding. Unlike their non-progressive counter-

parts, progressive compression schemes must e�ciently handle

sign bits, since loading them is a prerequisite for reconstructing

values, but storing sign bits separately and loading them �rst before

all other bits incurs signi�cant overhead. To address this issue, we

evaluate the suitability of three widely used methods for encoding

sign bits in a progressive setting – two’s complement [36], sign-

magnitude [36], and negabinary [19, 30], and select negabinary

encoding as the preferred approach for two reasons.

First, negabinary encoding may lead to better compressibility

than other methods for values that �uctuate around zero (which

is predominant in the last layer of quantized integers). In two’s

complement, the higher-order bits often contain many 1s for values

near zero, making the corresponding high-order bitplanes di�cult

to compress. For example, the 8-bit representations of 1 and -1

are 00000001 and 11111111 in two’s complement, 00000001 and

10000001 in sign-magnitude, and 00000001 and 00000011 in negabi-

nary. As a result, negabinary encoding keeps the higher-order bits

as 0, which leads to more compressible high-order bitplanes com-

pared to the dense 1s in two’s complement. Second, compared to

sign-magnitude encoding, negabinary encoding is more balanced.

When the least signi�cant bits are set to zero (due to quantization or

truncation), the resulting error uncertainty is smaller in negabinary

encoding. This leads to more predictable error behavior, which is

bene�cial for data compression and reconstruction. The uncertainty

could be formulated by

uncertainty (negabinary) =

{
2
3 × 2

3 − 1
3 , when 3 is odd

2
3 × 2

3 − 2
3 , when 3 is even

uncertainty (sign-magnitude) = 23 − 1

where d represents the number of bits discarded. As d increases,

the uncertainty of negabinary is only around two-thirds of sign-

magnitude encoding.

5 Optimized data loading

In this section, we present our optimized data load strategy that can

minimize the volume of data loaded under the retrieval constraints.

Our optimizer supports both error-bound mode and bitrate mode

which represents most of the scenarios in scienti�c data retrieval.
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• Error bound mode: in this mode, users specify the required

precision and the optimizer selects the optimal strategy to

ensure that the reconstructed data’s error remains strictly

within the given bound while minimizing the amount of data

loaded.

• Fixed rate/size mode: in this mode, the user speci�es a max-

imum allowable bitrate or size, typically constrained by

I/O bandwidth. The optimizer then ensures that the recon-

structed data has the smallest possible error while staying

within the speci�ed bitrate limit. Since the total data size

= is constant for the input, requiring a speci�c bitrate is

equivalent to requiring a �xed retrieval size.

We �rst discuss the upper bound theory which both modes rely on,

then show how the optimizer makes the best decisions on bitplane

selection based on dynamic programming.

5.1 Fundamental theory for our optimizer

In this section, we discuss the fundamental theory for our optimizer

which measures the error caused by only a partial of bitplanes being

loaded.

Theorem 1. The !∞ error in progressive retrieval can be bounded

based on the information loss due to the unloaded bitplanes.

∥G − Ĝ ∥∞ ≤

!−1∑

;=0

?; ∥X~;+1∥∞ + 41 (5)

In this equation, ? = 1 for linear interpolation, and ? = 1.25 for

cubic interpolation. X~; describes the information loss in level ; caused

by the unloaded bitplanes, and its value can be pre-computed during

compression.

Proof. As illustrated in Algorithm 1, the retrieval process pro-

ceeds iteratively through all levels, with each level relying on the

preceding level’s output to inform its predictions. This introduces

a signi�cant hurdle for error analysis, as uncertainty can propa-

gate from one level to the next. To address this, we conceptualize

the error in level 8 as being comprised of three components. The

�rst component, X~; , represents the information loss resulting from

not loading certain bitplanes at this level. The second component,

X~?A>?,; , accounts for information loss carried over from the prior

level. The third component, Y; , captures the error introduced by

lossy quantization.

G; − Ĝ; = X~; + X~?A>?,; + Y; (6)

The information loss propagated until the previous level ; + 1 is

X~?A>?,;+1. It will be �rst combined with the information loss in the

current level X~;+1, and then transfered by prediction and passed

to the next level as X~?A>?,; .

X~?A>?,; = %; (X~?A>?,;+1 + X~;+1) (7)

Combine the two equations, we can have:

G; − Ĝ; = X~; +
∑

<=0

%;%;+1 ...%;+<X~;+<+1 + Y; (8)

In our approach, the !∞ of interpolation %; is greater or equal

to 1, which implies the information loss would be ampli�ed to the

lower level. In other words, lower levels have larger errors, and the

maximum error of the dataset is in the �rst level. As a result, we

can quantify the error of the dataset with Equation (8) by:

∥G − Ĝ ∥∞ = ∥G − Ĝ1∥∞

= ∥X~1 +
∑

;=0

%1%1+1 ...%;X~;+1 + Y1∥∞

≤
∑
∥%1∥∞∥%2∥∞ ...∥%; ∥∞∥X~;+1∥∞ + 41 (9)

Nowwe simplify Equation (9) to Equation (5). The value of !∞ (%)

depends on the prediction method. Liner interpolation, as shown

in Equation (1), has two coe�cients both at 0.5. Such that !∞ (%) =

0.5+0.5 = 1. Similarly, cubic interpolation, as shown in Equation (2),

has four coe�cients, and !∞ (%) = 2 × 1
16 + 2 ×

9
16 = 1.25. With the

derived value of !∞ (%), Equation (9) is converted to Equation (5).

5.2 Optimized loading based on error-bounds

The goal of error-bound mode is to generate a loading strategy

specifying the minimum number of bitplanes to load in each layer,

in order to let all point-wise lossy errors be less or equal to the

user-de�ned bound (denoted as E). Finding such bitplanes can be

formalized as an optimization problem.

max
1; ,;∈{1,2,...!}

∑

;

(0E43(8I4 (;, 1; ),

subject to
∑

;

4AA (;, 1; ) + 41 ≤ E.

1; indicates the number of bitplanes discarded at the level ; .

(0E43(8I4 (;, 1; ) denotes the amount of data saved by discarding 1;
bitplanes at level ; . 4AA (;, 1; ) denotes the error at level ; by discard-

ing 1; bitplanes. As stated in Section 4.4.2, 4AA (;, 1; ) = ?;−1∥X~; ∥∞,

where ? = 1 for linear interpolation, ? = 1.25 for cubic interpola-

tion, and X~; is a function of 1; .

By such de�nitions, we essentially reformulate this optimiza-

tion problem as the classical knapsack problem, enabling it to be

e�ciently solved using dynamic programming (DP) with minimal

computational overhead. Let �% (;, 4) be the maximum total saved

size when the last layer is ; and the maximum error is 4 . Then

�% (!, �) would be our best solution to load data for the given error

bound E, and its value can be derived recursively by the following

DP transition function:

�% (;, 4) = max
1; ,B .C .4AA (;,1; )≤4

{�% (;−1, 4−4AA (;, 1; ))+(0E43(8I4 (;, 1; )}

The time complexity of such a DP process is$ (#level× #bitplane×

#discrete error values). The number of levels is log2 = where n is

the input size, and the number of bitplanes is 32. The discrete

error values fall within the range of [128, 1023] by normalized

retrieval bound � by compression bound 41. If comparing the time

of the DP to the time of simply traversing the input, the ratio

would be
(1023−128+1)∗32∗log2 =

= ≈
3∗104 log2 =

= ≈ 3% for datasets

listed in Table 3. Since compression takes much more computation

than just traversing the input, the overhead of the DP relative to

compression is totally negligible.
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5.3 Optimized loading based on bitrates

In the �xed bitrate mode, the user speci�es a maximum allowed

retrieval size ( (or equivalently, a maximum allowable bitrate). The

optimizer then seeks to minimize the reconstruction error while

ensuring that the loaded data does not exceed ( .

With !>0343(8I4 (;, 1; ) representing the loaded size of level ; ,

this problem can be formalized as follows:

min
1; ,;∈{1,2,...!}

∑

;

4AA (;, 1; ) + 41,

subject to
∑

;

!>0343(8I4 (;, 1; ) ≤ (.

Similar with Section 5.2, we e�ectively convert this problem to

the knapsack dynamic programming problem, so that it can be

solved similarly as in the error bound mode, also with negligible

overhead.

6 Experimental Evaluation

In this section, we describe the experimental setup and evaluate

our solution on six datasets against four state-of-the-art baseline

compressors.

6.1 Experimental Setting

6.1.1 Execution Environment. The experiments are performed on

the Purdue Anvil supercomputer [37] through NSF ACCESS [6].

Each computing node in Anvil features two AMD EPYC 7763 CPUs

with 64 cores at a 2.45GHz clock rate and 256 GB DDR4-3200 RAM.

Table 3: Data in our experiments

Name Explanation Precision Shape

Density [42] mass per unit volume in turbulence 64 256 × 384 × 384

Pressure [42] thermodynamic pressure in turbulence 64 256 × 384 × 384

VelocityX [42] x-direction velocity in turbulence 64 256 × 384 × 384

Wave [41] wave�eld evolution in seismic 64 1008 × 1008 × 352

SpeedX [42] x-direction wind speed in weather 64 100 × 500 × 500

CH4 [42] mass fraction of CH4 in combustion 64 500 × 500 × 500

6.1.2 Datasets. The experiments are evaluated on six datasets

across four diverse scienti�c domains, as listed in Table 3.

6.1.3 State-of-the-Art lossy compressors in our evaluation. The ex-

periments include four SOTA scienti�c lossy compressors as base-

lines – SZ3-M, SZ3-R, ZFP-R, and PMGARD.

SZ3-M [39]: SZ3-M (where "M" stands for multi-�delity) is the

straightforward multi �delity version of SZ3 based on multiple out-

puts. SZ3 is the leading non-progressive scienti�c lossy compressor.

SZ3 uses interpolation as prediction, together with linear-scale

quantization, Hu�man coding, and zstd lossless coding [7]. SZ3 has

excellent compression ratio and �delity over others while its speed

may not be as fast as ZFP. SZ3-M compresses the input with di�er-

ent error bounds independently and groups those compressed data

all together as output. Such a solution supports multi-�delity re-

trieval but is not progressive yet, as it cannot reuse the low-�delity

data to build high-�delity results.

SZ3-R [35, 39]: SZ3-R (where "R" stands for residual) is the pro-

gressive version of SZ3 based on residuals. It �rst compresses the

input with a large bound, then compresses the lossy error (residual)

from the last time using a smaller bound, and repeats such residual

compression until a targeted bound is reached.

ZFP-R [35]: ZFP-R is the progressive version of ZFP based on resid-

uals. It handles residuals the same way as SZ3-R. ZFP [30] is the

leading transform-based lossy compressor based on orthogonal

transformation. ZFP is usually the fastest scienti�c lossy compres-

sor because of its highly e�cient transform function, although its

compression ratio may not be as high as others.

PMGARD [28, 39]: PMGARD (where "P" stands for progressive) is

the progressive version of theMGARD [28] compressor. MGARD [2,

29] is a multigrid-based lossy compressor that uses hierarchical

decomposition to remove redundancy in scienti�c data while pre-

serving error bounds.

We note that the residual-based approaches (SZ3-R and ZFP-R)

have drawbacks that a�ect our evaluation. First, they have limited

error-bound �exibility. More speci�cally, the retrieval is only pos-

sible at a few prede�ned error bounds. This creates a trade-o� –

setting toomany error bounds reduces the overall compression ratio

and signi�cantly degrades compression/decompression through-

put, while setting too few nodes limits �exibility in selecting error

bounds during decompression. For the experiments, we con�gure

�ve error bounds for them, where each successive one is a factor of

22 (4×) apart. Speci�cally, the error bounds are set to 21641, 21441,

21241, 21041, 2841, 2641, 2441, 2241, and 41. Second, those methods

are not well-suited for retrievals based on pre-de�ned bitrates, as

the residuals are compressed by error bounds, and their size is not

aligned with the bitrate of the retrieval requests. As a result, we

select the largest residual that �ts within the user-speci�ed bitrate

constraint for SZ3-R and ZFP-R in the experiments.

6.2 Evaluation Results and Analysis

The evaluation covers four aspects – compression ratio, progres-

sive retrieval e�ectiveness under error-bound or bitrate constraints,

compression and decompression/retrieval speed, and retrieval qual-

ity. To be more speci�c, the compression ratio comparison demon-

strates our solution IPComp leads to the smallest compressed data

size. The progressive retrieval evaluation shows that IPComp re-

quires the lowest data volume to reconstruct to the same �delity

compared with others, and IPComp leads to the highest reconstruc-

tion �delity under the same bit rate budget. The speed test con-

�rms IPComp’s high compression e�ciency, especially compared to

residual-based alternatives (SZ3-R and ZFP-R) whose speed drops

signi�cantly when the number of residual compressions increases.

6.2.1 Compression ratios. CR is a key metric for evaluating any

compressor, regardless of whether it is progressive or not. As dis-

cussed in Section 1, the fundamental goal of compression is to

reduce data size, as smaller data sizes alleviate the burden of stor-

age, transfer, and processing on applications.

Figure 5 presents the compression ratios of all solutions under

the same error-bound settings. We select two error bounds which

are 1e-6 and 1e-9 to cover both high precision (cr<10) and high

ratio (cr up to 50) cases. As this �gure shows, our solution IPComp

achieves a compression ratio advantage of around 20% to 500%

over other progressive compressors across the vast majority of

datasets. This allows users to perform progressive decompression

while utilizing the least possible storage space.
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