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Abstract. We introduce a hyperbolic closure for the Grad moment expansion of the Bhatnagar–
Gross–Krook (BGK) kinetic model using a neural network (NN) trained on BGK’s moment data.
This closure is motivated by the exact closure for the free streaming limit that we derived in our
paper on closures in transport [J. Huang et al., J. Comput. Phys., 453 (2022), 110941]. The exact
closure relates the gradient of the highest moment to the gradient of four lower moments. As with
our past work, the model presented here learns the gradient of the highest moment in terms of the
coe!cients of gradients for all lower ones. By necessity, this means that the resulting hyperbolic
system is not conservative in the highest moment. For stability, the output layers of the NN are
designed to enforce hyperbolicity and Galilean invariance. This ensures the model can be run outside
of the training window of the NN. Unlike our previous work on radiation transport that dealt with
linear models, the BGK model’s nonlinearity demanded advanced training tools. These comprised
an optimal learning rate discovery, one-cycle training, batch normalization in each neural layer, and
the use of the AdamW optimizer. To address the nonconservative structure of the hyperbolic model,
we adopt the FORCE numerical method to achieve robust solutions. This results in a comprehensive
computing model combining learned closures with methods for solving hyperbolic models. The
proposed model generalizes beyond the training time window for low to moderate Knudsen numbers.
Our paper details the multiscale model construction and is run on a range of test problems.

Key words. BGK equation, moment closure, machine learning, neural network, hyperbolicity,
moment approximation
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1. Introduction. Kinetic models are important in many of the physical sciences
and engineering applications when a physical system is far away from a local equilib-
rium; such is the case in microelectromechanical system (MEMS) [34], atmospheric re-
entry [46], and controlled nuclear fusion [42], to name a few. When describing systems
of interest, these models are plagued by the so-called “curse of dimensionality”: in
one spatial dimension, one velocity dimension, and time evolution, we have a problem
in R3, and in three spatial dimensions, this associated model is in R7 phase space for
each particle. This leads to the use of distributions, which are further complicated by
their multiscale nature, where the behavior of solutions is dependent on the character-
istic length of collisions involved. Resolving features in detail on realistic applications
can quickly reach resource limits in computation with respect to discretization.
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188 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

The method of moments is an approach to reduce the dimensionality in kinetic
models. The first such technique was by Chapman–Enskog and Hilbert expansion,
which su!ered from singular moments after the first few. The “modern” example is
due to Grad [13], where the distribution function in kinetic equations is expanded
by a finite number of moments by integrating over velocity. Expanding to a fixed
number of moments, say, the kth moment, we require information of the next highest
moment, the (k+1)th moment, which results in an unclosed system. This leads to the
so-called moment closure problem, which addresses how to handle moments beyond
the fixed number desired. However, Grad’s moment system and closure su!er from
a loss of hyperbolicity. This deficiency drew renewed attention by Levermore [28]
and has driven contributions to moment closures in kinetic problems too numerous
to properly exposition here. We highlight some recent work focused on closures that
preserve properties of the moment system, such as hyperbolicity. One such approach
is the hyperbolic moment equations (HMEs) [4, 5], where Cai et al. utilize inde-
pendence between moment expansion coe""cients and the Jacobian’s characteristic
polynomial from Grad’s moment system, leading to a regularization that gives global
hyperbolicity. Another is the quadrature-based moment equations [23, 24, 26], where
hyperbolicity is preserved through the use of quadrature-based projection methods.

Recent e!orts in solving the closure problem employ machine learning (ML) tech-
niques that preserve desirable qualities of the kinetic and transport systems. The
pioneering work by Han et al. [14] demonstrated the utility of trained neural net-
works on high-fidelity kinetic data to learn closures over a wide range of Knudsen
numbers, with many subsequent works that preserve symmetries and invariances. Li
et al. [29] also employed neural networks, specifically the U-net architecture, to train
closure models that preserve Galilean, reflecting, and scaling invariance. Charalam-
popoulos et al. applied recurrent neural networks to correct the quadrature-based
moment methods to improve accuracy in the unclosed moment [7].

ML methods have also been applied to kinetic models in other ways than the
moment closure problem. Miller et al. applied neural networks to approximate the
collision operator of the Boltzmann equation [33]. Neural networks have also been
used to represent the Boltzmann equation in a sparse manner by Li et al. [30].

Hyperbolicity-preserving neural networks have been developed and applied to the
closure problem. In the radiative transfer equation (RTE), the work of Huang et al.
[15, 17, 16], combined the structure of the closure system with a neural network,
learning coe""cients on the gradients of the moments. A key feature of RTE work is
that the model is a local closure, while previous works were global. This is useful in
large-scale, distributed computing. Schotthöfer et al. [37, 38, 36] use neural network
learned closures that embed entropy convexity while preserving minimum entropy and
hyperbolicity for the Boltzmann equation.

By using neural networks trained on kinetic model data, there is a potential to
achieve closures that are more accurate by incorporating kinetic e!ects instead of
relying on the strong assumption of local equilibrium, where one can use periodic, mi-
croscopic simulations to derive local equations of state (as in the case of the SESAME
database [20, 32]). Our work builds on the RTE neural network closure e!orts of
Huang et al. [15, 17, 16] and applies it to the Bhatnagar–Gross–Krook (BGK) model
of the Boltzmann kinetic equation. An analytical closure was developed for the free
streaming limit in the first e!ort [15]. This closure relates the gradient of the highest
moment to the next four lower moments. The follow-up RTE e!orts [17, 16] develop
provably hyperbolic closures relating many gradients of lower moments to the gra-
dient of the highest moment. Our current work follows in that progression, and by
necessity, while the system is hyperbolic, it is not conservative in the highest moment.
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HYPERBOLIC MACHINE LEARNING MOMENT CLOSURES 189

Hence, for nonlinear problems such as the BGK model, we develop path-conservative
numerical methods for solving the fluid ML closure [6]. In the numerical examples,
we test two sets of ML moment closures. The first set is to recover the HME model
using neural networks. To be more specific, we train the neural network using the
data generated from the HME model. The purpose is to validate the correctness of
the algorithm and code. The numerical results show good agreement between HMEs
and our trained closures for smooth and discontinuous initial conditions across Knud-
sen number regimes. The second set is to train the neural network using the data
from the kinetic model. The goal is to capture the kinetic e!ects in the ML closure.
We have promising results for a kinetic-trained closure on smooth data up to transi-
tional and free streaming (Knudsen numbers between 0.1 and 10). Our contribution is
demonstrating hyperbolicity-preserving, local closures from neural networks that have
predictive power beyond the training time window across a range of Knudsen numbers.

Although the current work is limited to one spatial dimension and one veloc-
ity dimension (1D1V), our proposed approach to moment closure applies to current
problems in inertial confinement fusion, which use Vlasov–Fokker–Planck equation in
1D2V [45, 44]. Surrogate models are needed for these Vlasov–Fokker–Planck models
in order to perform sensitivity studies ahead high-fidelity computations. Future work
could focus on extending our methods beyond 1D1V models.

The rest of the paper is organized as follows. In section 2, we outline the moment
expansion and closure system for the BGK equations. Then, in section 3, we outline
the neural network structure, training data, and training method. In section 4, we
discuss path-conservative solvers used in our calculations with the closures. Finally,
in section 5, we present results using our trained closures.

2. Moment closure for the BGK equation. In this section, we review the
moment expansion and closure problem for the BGK model and develop the necessary
structure for a neural network closure.

The BGK model [2] is a simplification of the Boltzmann kinetic equation, which
deals specifically with the collision term. The BGK model assumes that the distribu-
tion, f , tends to a local Maxwellian distribution and has several collision invariants
that recover conservation laws [43]. The BGK equation is given by

\omega f

\omega t
+ v

\omega f

\omega x
=

1

\varepsilon 
(fM \rightarrow f) ,(2.1)

where the unknown function f = f(x, v, t) is the distribution (also called the phase
density), v is the microscopic velocity, \varepsilon > 0 is a relaxation time related to the Knudsen
number, and fM is the Maxwellian distribution given by

fM =
\vargamma \uparrow 
2\varpi \varrho 

exp

\Biggr) 
\rightarrow (v\rightarrow u)2

2\varrho 

\Biggl[ 
.(2.2)

Physical density, temperature, and macroscopic velocity are given by \vargamma , \varrho , and u,
respectively [4].

The BGK model has several collision invariant quantities. Let !(v) =
\Biggr] 
1, v, 1

2
v
2
\Biggl\lfloor 
;

we have the following relationships [4, 43]:

\Biggr\rfloor 
f!(v)dv=

\Biggl\lceil 

\Biggr\rceil 
\vargamma 

\vargamma u
1

2
\vargamma \varrho + 1

2
\vargamma u

2

\Biggl\{ 

\Biggr\} .(2.3)

Applying ! to both sides of (2.1) and integrating over velocity, we recover the con-
servation laws:
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190 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

\omega \vargamma 

\omega t
+

\omega 

\omega x
(\vargamma u) = 0,(2.4)

\omega 

\omega t
(\vargamma u) +

\omega 

\omega x

\Biggr] 
\vargamma \varrho + \vargamma u

2
\Biggl\lfloor 
= 0,(2.5)

\omega 

\omega t

\Biggr) 
1

2
\vargamma \varrho +

1

2
\vargamma u

2

\Biggl[ 
+

\omega 

\omega x

\Biggr) 
q+

3

2
\vargamma u\varrho +

1

2
\vargamma u

3

\Biggl[ 
= 0,(2.6)

where q is the heat flux.

2.1. Moment method. A common method to solve for the distribution of a
kinetic model is the so-called moment method, where the distribution is expanded
by a finite number of moments. Due to the finite expansion and relationship of the
moments, the system of equations developed by the moment expansion is not closed,
and the system requires a closure in the highest-order moment.

In the seminal paper [13], Grad proposed a moment expansion using Hermite
polynomials in the following manner:

f(x, v, t) =
\rightarrow \Biggl\langle 

k=0

1\uparrow 
2\varpi 

\varrho 
\uparrow k+1

2 Hek(z) exp

\Biggr) 
\rightarrow z

2

2

\Biggl[ 
fk(x, t),(2.7)

where z := v\uparrow u\downarrow 
\omega 
, Hek is the kth-order Hermite polynomial, and fk = fk(x, t) is called

the kth-order moment. It is easy to show that the first four moments in the expansion
(2.7) satisfy f0 = \vargamma , f1 = f2 = 0, and 3f3 = q. Continuing for k > 3, the evolution of
the moment can be derived using the properties of Hermite polynomials [13]:

\omega fk

\omega t
\rightarrow 1

\vargamma 
fk\uparrow 2

\omega q

\omega x
\rightarrow fk\uparrow 1

\varrho 

\vargamma 

\omega \vargamma 

\omega x
+

\omega \varrho 

\omega x

\Biggr) 
k\rightarrow 1

2
fk\uparrow 1 +

\varrho 

2
fk\uparrow 3

\Biggl[ 
+ (k+ 1)fk

\omega u

\omega x

+ u
\omega fk

\omega x
+ \varrho 

\omega fk\uparrow 1

\omega x
+ (k+ 1)

\omega fk+1

\omega x
=\rightarrow 1

\varepsilon 
fk.

(2.8)

This relation reveals the closure problem since the time evolution of fk has a depen-
dence on the next-order moment fk+1.

Truncating the moment hierarchy up to order M and setting fM+1 = 0 yields
the so-called Grad’s moment closure system. Formulating the moment system from
(2.4)–(2.6) and (2.8) in primitive variables w = (\vargamma , u,\varrho , f3, f4, . . . , fM )T , we arrive at
the Grad’s moment system in nonconservative form [13, 4]:

\omega w

\omega t
+A

Grad
\omega w

\omega x
=Q,(2.9)

where A
Grad is a matrix of the form

\Biggl\lceil 

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rceil 

u \omega 0 0 0 0 0 · · · 0
\omega 
\varepsilon u 1 0 0 0 0 · · · 0
0 2\varepsilon u 6

\varepsilon 0 0 0 · · · 0
0 4f3 1

2\omega \varepsilon u 4 0 0 · · · 0
\rightarrow \omega 

\varepsilon f3 5f4 3
2f3 \varepsilon u 5 0 · · · 0

\rightarrow \omega 
\varepsilon f4 6f5 2f4 \rightarrow 3

\varepsilon f3 \varepsilon u 6 · · · 0

\rightarrow \omega 
\varepsilon f5 7f6 \omega 

2f3 +
5
2f5 \rightarrow 3

\varepsilon f4 0 \varepsilon u · · · 0
...

...
...

...
...

. . .
. . .

. . . 0
\rightarrow \omega 

\varepsilon fM\uparrow 2 MfM\uparrow 1
\omega 
2fM\uparrow 4 + M\uparrow 2

2 fM\uparrow 2 \rightarrow 3
\varepsilon fM\uparrow 3 0 · · · 0 \varepsilon u M

\rightarrow \omega 
\varepsilon fM\uparrow 1 (M + 1)fM \omega 

2fM\uparrow 3 + M\uparrow 1
2 fM\uparrow 1 \rightarrow 3

\varepsilon fM\uparrow 2 0 · · · 0 \varepsilon u

\Biggl\{ 

\Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Bigg/ \Biggr\} 

(2.10)
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HYPERBOLIC MACHINE LEARNING MOMENT CLOSURES 191

and Q is the collision term

Q=

\Biggr) 
0,0,0,\rightarrow 1

\varepsilon 
f3,\rightarrow 

1

\varepsilon 
f4, . . . ,\rightarrow 

1

\varepsilon 
fM

\Biggl[ T

.

However, the Grad’s moment system (2.9) is not globally hyperbolic; i.e., AGrad is
not generally real diagonalizable. To fix this problem, Cai et al. utilize independence
between moment expansion coe""cients and the Jacobian’s characteristic polynomial
from Grad’s moment system, leading to a regularization that gives global hyperbolicity
[4]. This is the so-called HMEs. The change in HMEs occurs in the last row of matrix
(2.10) for the second and third entries, which now become

\Bigg\backslash 
\rightarrow \omega 

\varepsilon fM\uparrow 1 0 \rightarrow fM\uparrow 1 +
\omega 
2
fM\uparrow 3 \rightarrow 3

\varepsilon fM\uparrow 2 0 · · · 0 \varrho u

\Big/ 
.(2.11)

In this paper, our goal is to replace the last row of this matrix with a relationship
trained by deep learning methods in a way that captures the kinetic e!ects of the
BGK equation but with a relatively small number of moments.

2.2. Deep learning moment closure. We approach the closure problem fol-
lowing our recent work on the RTE [15]. This work di!ers from the approaches in
[14, 29] by learning the gradients of the moments instead of the moments directly and
in follow-up e!orts [17, 16] preserving the hyperbolicity of the system.

2.2.1. Learning the gradient of moments and hyperbolicity. As shown
in the RTE work [15], in the free streaming limit, where the scattering and absorp-
tion cross sections vanish, with isotropic initial data, an exact moment closure can be
derived. Motivated by this, Huang et al. proposed to directly learn the gradient of
the unclosed moment [15]. Generalizing the same idea to the BGK model, we seek a
closure relation

\omega fM+1

\omega x
=

M\Biggl\langle 

i=0

Ni(\vargamma , u,\varrho , f3, . . . , fM )
\omega fi

\omega x
,(2.12)

where Ni is the ith output from the neural network and is a nonlinear function de-
pending on the lower-order moments, (\vargamma , u,\varrho , f3, . . . , fM ). Substituting (2.12) into
(2.8), we have

\omega fM

\omega t
\rightarrow 1

\vargamma 
fM\uparrow 2

\omega q

\omega x
\rightarrow fM\uparrow 1

\varrho 

\vargamma 

\omega \vargamma 

\omega x
+

\omega \varrho 

\omega x

\Biggr) 
M \rightarrow 1

2
fM\uparrow 1 +

\varrho 

2
fM\uparrow 3

\Biggl[ 
+ (M + 1)fM

\omega u

\omega x

+ u
\omega fM

\omega x
+ \varrho 

\omega fM\uparrow 1

\omega x
+ (M + 1)

M\Biggl\langle 

i=0

Ni(\vargamma , u,\varrho , f3, . . . , fM )
\omega fi

\omega x
= 0.

Thus, the moment system (2.9) is now changed with the last row of matrix (2.10)
given by

\Biggr] 
a0 a1 a2 a3 · · · aM\uparrow 1 aM

\Biggl\lfloor 
,(2.13)
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192 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

where

ai =

\Big\backslash 
\left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \right) 

\left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left[ 

\rightarrow \varrho 

\vargamma 
fM\uparrow 1 + (M + 1)N0, i= 0,

(M + 1)fM + (M + 1)N1, i= 1,
\varrho 

\vargamma 
fM\uparrow 3 +

M \rightarrow 1

2
fM\uparrow 1 + (M + 1)N2, i= 2,

\rightarrow 3

\vargamma 
fM\uparrow 2 + (M + 1)N3, i= 3,

\varrho + (M + 1)NM\uparrow 1, i=M \rightarrow 1,

u+ (M + 1)NM , i=M,

(M + 1)Ni, otherwise.

(2.14)

We denote this ML moment closure system by

\omega w

\omega t
+A

ML
\omega w

\omega x
=Q,(2.15)

where A
ML is a matrix which only di!ers from A

Grad in the last row. Next, we will
derive some constraints on the neural networks Ni for 0\downarrow i\downarrow M in (2.12) such that
the system (2.15) satisfies Galilean invariance and hyperbolicity.

2.2.2. Galilean invariance. Our moment closure should preserve Galilean in-
variance. We prove a condition for Galilean invariance.

Theorem 2.1. Consider the following moment closure system without collision

terms:

\omega w

\omega t
+A(w)

\omega w

\omega x
= 0,(2.16)

where w = (\vargamma , u,\varrho , f3, f4, . . . , fM )T \updownarrow RM+1
. The system is Galilean invariant if and

only if (A(w)\rightarrow uI) is independent of u, where I is the identity matrix.

Proof. Consider two inertial (nonaccelerating) frames of reference given by (x, t)
and (x\updownarrow 

, t
\updownarrow ). The frames are equivalent at an initial time, and the second frame is

moving at a constant velocity, c, with respect to the other frame. That is, we have
t
\updownarrow = t and x

\updownarrow = x\rightarrow ct.
The Galilean invariance means that, if w(x, t) satisfies (2.16), then w\updownarrow (x\updownarrow 

, t
\updownarrow ) =

(\vargamma \updownarrow , u\updownarrow 
,\varrho 

\updownarrow 
, f

\updownarrow 
3
, . . . , f

\updownarrow 
M )T with \vargamma = \vargamma 

\updownarrow , u\updownarrow = u\rightarrow c, \varrho \updownarrow = \varrho , and f
\updownarrow 
k = fk for all k such that

3\downarrow k\downarrow M , also satisfies (2.16).
Applying the chain rule, we have

\omega 

\omega t
=

\omega t
\updownarrow 

\omega t

\omega 

\omega t\updownarrow 
+

\omega x
\updownarrow 

\omega t

\omega 

\omega x\updownarrow =
\omega 

\omega t\updownarrow 
\rightarrow c

\omega 

\omega x\updownarrow 

and

\omega 

\omega x
=

\omega t
\updownarrow 

\omega x

\omega 

\omega t\updownarrow 
+

\omega x
\updownarrow 

\omega x

\omega 

\omega x\updownarrow =
\omega 

\omega x\updownarrow .

Proving ( \nearrow = ): Suppose that w = w(x, t) solves (2.16). Then, w = w(x\updownarrow 
, t

\updownarrow )
solves

\omega w

\omega t\updownarrow 
\rightarrow c

\omega w

\omega x\updownarrow +A(w)
\omega w

\omega x\updownarrow = 0,
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HYPERBOLIC MACHINE LEARNING MOMENT CLOSURES 193

rearranging

\omega w

\omega t\updownarrow 
+ (A(w)\rightarrow cI)

\omega w

\omega x\updownarrow = 0.

Since A(w)\rightarrow uI is independent of u,

A(w)\rightarrow uI =A(w\updownarrow )\rightarrow u
\updownarrow 
I =A(w\updownarrow )\rightarrow (u\rightarrow c)I

or

A(w\updownarrow ) =A(w)\rightarrow cI.

Thus, w\updownarrow (x\updownarrow 
, t

\updownarrow ) satisfies \vargamma w\rightarrow 

\vargamma t\rightarrow +A(w\updownarrow )\vargamma w
\rightarrow 

\vargamma x\rightarrow = 0.
Proving ( =\searrow ): Comparing equations involving w and w\updownarrow , we have

A(w\updownarrow ) =A(w)\rightarrow cI.

Di!erentiating with respect to c,

\rightarrow \omega A(w\updownarrow )

\omega c
=\rightarrow I,

and thus,

\omega 

\omega u
(A(w\updownarrow )\rightarrow uI) = 0.

From Theorem 2.1, it is easy to show the corollary 2.1.

Corollary 2.1. Consider the ML moment closure system (2.15). Denote the

eigenvalues of A
ML

by rk for 0 \downarrow k \downarrow M . The system is Galilean invariant if and

only if either of the two conditions is satisfied:

1. ak for 0\downarrow k\downarrow M \rightarrow 1 and (am \rightarrow u) are independent of u.

2. (rk \rightarrow u) for 0\downarrow k\downarrow M are independent of u.

From corollary 2.1, to guarantee the Galilean invariance, the eigenvalues of AML

in (2.15) must have the form rk = u+ r̃k, where r̃k is independent of u.

2.2.3. Provable hyperbolic structure. By taking advantage of the moment
system structure, we will develop the framework for the neural network to maintain
hyperbolicity by relating the coe""cients of gradients to the eigenvalues of the moment
system. First, we recall some definitions and theorems in [16].

Definition 2.1 (lower Hessenberg matrix [16]). The matrix H = (hij)n\nearrow n is

called a lower Hessenberg matrix if hij=0 for j>i+1. If hi,i+1 \simeq =0 for i=1,2, . . . , n\rightarrow 1,
it is called an unreduced lower Hessenberg matrix.

Definition 2.2 (associated polynomial sequence [10, 16]). Let H = (hij)n\nearrow n be

an unreduced lower Hessenberg matrix. The associated polynomial sequence {qi}0\searrow i\searrow n

with H is defined as q0 = 1 and

qi(x) =
1

hi,i+1

\Biggl\lceil 

\Biggr\rceil xqi\uparrow 1(x)\rightarrow 
i\Biggl\langle 

j=1

hijqj\uparrow 1(x)

\Biggl\{ 

\Biggr\} , 1\downarrow i\downarrow n(2.17)

with hn,n+1 = 1.
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194 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

Theorem 2.3 ([10, 16]). Let H = (hij)n\nearrow n be an unreduced lower Hessenberg

matrix and {qi}0\searrow i\searrow n be the associated polynomial sequence with H. The following

are true:

1. If \varsigma is a root of qn, then \varsigma is an eigenvalue of H, and a corresponding eigen-

vector is (q0(\varsigma ), q1(\varsigma ), . . . , qn\uparrow 1(\varsigma ))T .
2. If all the roots of qn are simple, then the characteristic polynomial of H is

µqn, where µ=
\right] n\uparrow 1

i=1
hi,i+1; that is,

det(xI \rightarrow H) = µqn(x),(2.18)

where I is the identity matrix.

Theorem 2.4 ([16]). Let H = (hij)n\nearrow n be an unreduced lower Hessenberg ma-

trix and {qi}0\searrow i\searrow n be the associated polynomial sequence with H. The following are

equivalent:

1. H is real diagonalizable,

2. all eigenvalues of H are distinct and real, and

3. all roots of qn are simple and real.

Theorem 2.5 provide a method to ensure hyperbolicity of the moment system
when training a neural network–based closure. We derive the associated polynomial
sequence for the matrix of the ML moment system (2.15).

Theorem 2.5. The associated polynomial sequence {qk(x)}, where 0\downarrow k\downarrow M+1
for A

ML
in (2.15), satisfies the following relationship:

q0(x) =He0, q1(x) =
\varrho 

1

2

\vargamma 
He1, q2(x) =

\varrho 

\vargamma 
He2, q3(x) =

\varrho 
3

2

6
He3,

qk(x) =
\varrho 

k
2

k!
Hek\rightarrow 

\varrho fk\uparrow 2

2\vargamma 
He2\rightarrow 

\varrho 
1

2 fk\uparrow 1

\vargamma 
He1, 4\downarrow k\downarrow M,

qM+1(x) =
\varrho 

M+1

2

M !
HeM+1\rightarrow (aM \rightarrow u)

\varrho 
M
2

M !
HeM

+

 
\varrho 

M+1

2

(M \rightarrow 1)!
\rightarrow aM\uparrow 1

\varrho 
M\uparrow 1

2

(M \rightarrow 1)!

 
HeM\uparrow 1

\rightarrow 
M\uparrow 2\Biggl\langle 

k=4

ak
\varrho 

k
2

k!
Hek+

 
\rightarrow \varrho 

3

2 fM\uparrow 2

2\vargamma 
\rightarrow a3

\varrho 
3

2

6

 
He3

+

 
\rightarrow \varrho fM\uparrow 1

\vargamma 
+ (aM \rightarrow u)

\varrho fM\uparrow 2

2\vargamma 
+

M\Biggl\langle 

k=6

ak\uparrow 1

\varrho fk\uparrow 3

2\vargamma 
\rightarrow a2

\varrho 

\vargamma 

 
He2

+

 
\rightarrow \varrho 

3

2 fM\uparrow 2

\vargamma 
+ (aM \rightarrow u)

\varrho 
1

2 fM\uparrow 1

\vargamma 
+

M\Biggl\langle 

k=5

ak\uparrow 1

\varrho 
1

2 fk\uparrow 2

\vargamma 
\rightarrow a1

\varrho 
1

2

\vargamma 

 
He1

+

\Biggr) 
\rightarrow \varrho fM\uparrow 1

\vargamma 
\rightarrow a0

\Biggl[ 
He0,

where the argument \varphi = x\uparrow u\downarrow 
\omega 

in the Hermite polynomials is omitted. If further assum-

ing that all the roots of qM+1 are simple, the eigenpolynomial of A
ML

satisfies

pM+1(x) =M !qM+1(x).(2.19)
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HYPERBOLIC MACHINE LEARNING MOMENT CLOSURES 195

Proof. Using Definition 2.2, qi(x) for 0\downarrow i\downarrow 3 can be directly calculated, and the
details are omitted here.

Next, we assume that the relationship holds for k = n\rightarrow 1 with 4 \downarrow n \downarrow M , and
we would like to prove that it also holds for k= n. By definition (2.17), we have

nqn(x) = (x\rightarrow u)qn\uparrow 1(x) +
\varrho fn\uparrow 2

\vargamma 
q0(x)\rightarrow nfn\uparrow 1q1(x)

\rightarrow 1

2
((n\rightarrow 2)fn\uparrow 2 + \varrho fn\uparrow 4)q2(x) +

3fn\uparrow 3

\vargamma 
q3(x)\rightarrow \varrho qn\uparrow 2

= (x\rightarrow u)

 
\varrho 

n\uparrow 1

2

(n\rightarrow 1)!
Hen\uparrow 1(\varphi )\rightarrow 

\varrho fn\uparrow 3

2\vargamma 
He2(\varphi )\rightarrow 

\varrho 
1

2 fk\uparrow 2

\vargamma 
He1(\varphi )

 

+
\varrho fn\uparrow 2

\vargamma 
He0(\varphi )\rightarrow nfn\uparrow 1

\varrho 
1

2

\vargamma 
He1(\varphi )\rightarrow 

1

2
((n\rightarrow 2)fn\uparrow 2 + \varrho fn\uparrow 4)

\varrho 

\vargamma 
He2(\varphi )

+
3fn\uparrow 3

\vargamma 

\varrho 
3

2

6
He3(\varphi )

\rightarrow \varrho 

 
\varrho 

n\uparrow 2

2

(n\rightarrow 2)!
Hen\uparrow 2(\varphi )\rightarrow 

\varrho fn\uparrow 4

2\vargamma 
He2(\varphi )\rightarrow 

\varrho 
1

2 fk\uparrow 3

\vargamma 
He1(\varphi )

 

= \varrho 
1

2 \varphi 

 
\varrho 

n\uparrow 1

2

(n\rightarrow 1)!
Hen\uparrow 1(\varphi )\rightarrow 

\varrho fn\uparrow 3

2\vargamma 
He2(\varphi )\rightarrow 

\varrho 
1

2 fk\uparrow 2

\vargamma 
He1(\varphi )

 

+
\varrho fn\uparrow 2

\vargamma 
He0(\varphi )\rightarrow nfn\uparrow 1

\varrho 
1

2

\vargamma 
He1(\varphi )\rightarrow 

1

2
((n\rightarrow 2)fn\uparrow 2 + \varrho fn\uparrow 4)

\varrho 

\vargamma 
He2(\varphi )

+
3fn\uparrow 3

\vargamma 

\varrho 
3

2

6
He3(\varphi )

\rightarrow \varrho 

 
\varrho 

n\uparrow 2

2

(n\rightarrow 2)!
Hen\uparrow 2(\varphi )\rightarrow 

\varrho fn\uparrow 4

2\vargamma 
He2(\varphi )\rightarrow 

\varrho 
1

2 fn\uparrow 3

\vargamma 
He1(\varphi )

 

=
\varrho 

n
2

(n\rightarrow 1)!
Hen(\varphi )\rightarrow n

\varrho fn\uparrow 2

2\vargamma 
He2(\varphi )\rightarrow n

\varrho 
1

2 fn\uparrow 1

\vargamma 
He1(\varphi ),

where we use x\rightarrow u= \varrho 
1

2 \varphi and the recurrence relation \varphi Hek(\varphi ) =Hek+1(\varphi )+kHek\uparrow 1(\varphi ).
Thus, we have

qn(x) =
\varrho 

n
2

n!
Hen(\varphi )\rightarrow 

\varrho fn\uparrow 2

2\vargamma 
He2(\varphi )\rightarrow 

\varrho 
1

2 fn\uparrow 1

\vargamma 
He1(\varphi ).

For k=M + 1, we have

qM+1(x) = (x\rightarrow aM )

 
\varrho 

M
2

M !
HeM \rightarrow \varrho fM\uparrow 2

2\vargamma 
He2\rightarrow 

\varrho 
1

2 fM\uparrow 1

\vargamma 
He1

 

\rightarrow aM\uparrow 1

 
\varrho 

M\uparrow 1

2

(M \rightarrow 1)!
HeM\uparrow 1\rightarrow 

\varrho fM\uparrow 3

2\vargamma 
He2\rightarrow 

\varrho 
1

2 fM\uparrow 2

\vargamma 
He1

 

· · ·

\rightarrow a5

 
\varrho 

5

2

5!
He5\rightarrow 

\varrho f3

2\vargamma 
He2\rightarrow 

\varrho 
1

2 f4

\vargamma 
He1
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196 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

\rightarrow a4

 
\varrho 

4

2

4!
He4\rightarrow 

\varrho 
1

2 f3

\vargamma 
He1

 

\rightarrow a3
\varrho 

3

2

6
He3\rightarrow a2

\varrho 

\vargamma 
He2\rightarrow a1

\varrho 
1

2

\vargamma 
He1\rightarrow a0He0,

where we omit the argument in the Hermite polynomials. The first term can be
simplified using the recurrence relation:

(x\rightarrow aM )

 
\varrho 

M
2

M !
HeM \rightarrow \varrho fM\uparrow 2

2\vargamma 
He2\rightarrow 

\varrho 
1

2 fM\uparrow 1

\vargamma 
He1

 

= (x\rightarrow u)

 
\varrho 

M
2

M !
HeM \rightarrow \varrho fM\uparrow 2

2\vargamma 
He2\rightarrow 

\varrho 
1

2 fM\uparrow 1

\vargamma 
He1

 

\rightarrow (aM \rightarrow u)

 
\varrho 

M
2

M !
HeM \rightarrow \varrho fM\uparrow 2

2\vargamma 
He2\rightarrow 

\varrho 
1

2 fM\uparrow 1

\vargamma 
He1

 
n

=
\varrho 

M
2

M !
(\varrho 

1

2 HeM+1+M\varrho 
1

2 HeM\uparrow 1)\rightarrow 
\varrho fM\uparrow 2

2\vargamma 
(\varrho 

1

2 He3+2\varrho 
1

2 He1)

\rightarrow \varrho 
1

2 fM\uparrow 1

\vargamma 
(\varrho 

1

2 He2+\varrho 
1

2 He0)

\rightarrow (aM \rightarrow u)

 
\varrho 

M
2

M !
HeM \rightarrow \varrho fM\uparrow 2

2\vargamma 
He2\rightarrow 

\varrho 
1

2 fM\uparrow 1

\vargamma 
He1

 
.

Then,

qM+1(x) =
\varrho 

M
2

M !
(\varrho 

1

2 HeM+1+M\varrho 
1

2 HeM\uparrow 1)\rightarrow 
\varrho fM\uparrow 2

2\vargamma 
(\varrho 

1

2 He3+2\varrho 
1

2 He1)

\rightarrow \varrho 
1

2 fM\uparrow 1

\vargamma 
(\varrho 

1

2 He2+\varrho 
1

2 He0)

\rightarrow (aM \rightarrow u)

 
\varrho 

M
2

M !
HeM \rightarrow \varrho fM\uparrow 2

2\vargamma 
He2\rightarrow 

\varrho 
1

2 fM\uparrow 1

\vargamma 
He1

 

\rightarrow aM\uparrow 1

 
\varrho 

M\uparrow 1

2

(M \rightarrow 1)!
HeM\uparrow 1\rightarrow 

\varrho fM\uparrow 3

2\vargamma 
He2\rightarrow 

\varrho 
1

2 fM\uparrow 2

\vargamma 
He1

 

· · ·

\rightarrow a5

 
\varrho 

5

2

5!
He5\rightarrow 

\varrho f3

2\vargamma 
He2\rightarrow 

\varrho 
1

2 f4

\vargamma 
He1

 

\rightarrow a4

 
\varrho 

4

2

4!
He4\rightarrow 

\varrho 
1

2 f3

\vargamma 
He1

 

\rightarrow a3
\varrho 

3

2

6
He3\rightarrow a2

\varrho 

\vargamma 
He2\rightarrow a1

\varrho 
1

2

\vargamma 
He1\rightarrow a0He0

=
\varrho 

M+1

2

M !
HeM+1\rightarrow (aM \rightarrow u)

\varrho 
M
2

M !
HeM

+

 
\varrho 

M+1

2

(M \rightarrow 1)!
\rightarrow aM\uparrow 1

\varrho 
M\uparrow 1

2

(M \rightarrow 1)!

 
HeM\uparrow 1
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\rightarrow 
M\uparrow 2\Biggl\langle 

k=4

ak
\varrho 

k
2

k!
Hek+

 
\rightarrow \varrho 

3

2 fM\uparrow 2

2\vargamma 
\rightarrow a3

\varrho 
3

2

6

 
He3

+

 
\rightarrow \varrho fM\uparrow 1

\vargamma 
+ (aM \rightarrow u)

\varrho fM\uparrow 2

2\vargamma 
+

M\Biggl\langle 

k=6

ak\uparrow 1

\varrho fk\uparrow 3

2\vargamma 
\rightarrow a2

\varrho 

\vargamma 

 
He2

+

 
\rightarrow \varrho 

3

2 fM\uparrow 2

\vargamma 
+ (aM \rightarrow u)

\varrho 
1

2 fM\uparrow 1

\vargamma 
+

M\Biggl\langle 

k=5

ak\uparrow 1

\varrho 
1

2 fk\uparrow 2

\vargamma 
\rightarrow a1

\varrho 
1

2

\vargamma 

 
He1

+

\Biggr) 
\rightarrow \varrho fM\uparrow 1

\vargamma 
\rightarrow a0

\Biggl[ 
He0 .

From Theorem 2.3, we see that the characteristic polynomial is given by pM+1(x) =
M !qM+1(x).

2.2.4. Translating eigenvalues to coe""cients of gradients. Proceeding as
in the RTE e!ort [16], we can derive a relationship between the eigenvalues and the
weights of the gradient-based closure using Vieta’s formula as well as a transformation
between monomial coe""cients and the Hermite polynomials.

The relation between monomials and the Hermite polynomials is [9]

x
m =

\simeq m
2
\Leftarrow \Biggl\langle 

k=0

F (m,k)Hem\uparrow 2k(x),(2.20)

where F (m,k) = m!

2kk!(m\uparrow 2k)! . We can rewrite this into an equivalent form

x
m =

m\Biggl\langle 

k=0

bmkHek(x), m\Leftarrow 0(2.21)

with

bmk =

 
F (m,

1

2
(m\rightarrow k)) if m\Rightarrow k (mod 2),

0, otherwise.
(2.22)

From this formula, we can expand any polynomials in terms of Hermite polynomials.

n\Biggl\langle 

i=0

cix
i =

n\Biggl\langle 

i=0

ci

 
i\Biggl\langle 

k=0

bikHek(x)

 
=

n\Biggl\langle 

i=0

 
n\Biggl\langle 

i=k

cibik

 
Hek(x) =

n\Biggl\langle 

k=0

\leftharpoonup kHek(x),

where ci are polynomials coe""cients and the coe""cients of Hermite polynomials are
determined by

\leftharpoonup k =
n\Biggl\langle 

i=k

cibik.(2.23)

Now, we proceed to derive a relationship between the eigenvalues of AML in (2.15)
and the last row of learned coe""cients. Let rk = u+ r̃k for k= 0,1, . . . ,M , and let us
write the eigenpolynomial as

pM+1 = c0 + c1(x\rightarrow u) + · · ·+ cM (x\rightarrow u)M + (x\rightarrow u)M+1;(2.24)
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198 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

then, we have that

(x\rightarrow u\rightarrow r̃0)(x\rightarrow u\rightarrow r̃1) · · · (x\rightarrow u\rightarrow r̃M )(2.25)

= c0 + c1(x\rightarrow u) + · · ·+ cM (x\rightarrow u)M + (x\rightarrow u)M+1
.

Applying Vieta’s formula, we can relate the coe""cients ck to sums and products of
r̃k in the following manner:

r̃0 + r̃1 + · · · r̃M\uparrow 1 + r̃M =\rightarrow cM

(r̃0r̃1 + r̃0r̃2 + · · · r̃0r̃M ) + (r̃1r̃2 + r̃1r̃3 + · · ·+ r̃1r̃M ) + · · ·+ r̃M\uparrow 1r̃M = cM\uparrow 1

.

.

.

r̃0r̃1 · · · r̃M\uparrow 1r̃M = (\rightarrow 1)M+1
c0,

or equivalently,

\Biggl\langle 

0\searrow i1<i2<···<ik\searrow M

\Biggl\lceil 

\Biggr\rceil 
k 

j=1

r̃ij = (\rightarrow 1)kcM+1\uparrow k

\Biggl\{ 

\Biggr\} ,(2.26)

where the indices ik are sorted strictly increasing to ensure each product of k roots is
used once.

We then transform the basis (x\rightarrow u)k into the Hermite basis Hek(
x\uparrow u

\omega 
1

2

),

c0 + c1(x\rightarrow u) + · · ·+ cM (x\rightarrow u)M + (x\rightarrow u)M+1 = \leftharpoondown 0He0

\Biggr) 
x\rightarrow u

\varrho 
1

2

\Biggl[ 

+ \leftharpoondown 1\varrho 
1

2 He1

\Biggr) 
x\rightarrow u

\varrho 
1

2

\Biggl[ 
+ · · ·+ \leftharpoondown M\varrho 

M
2 HeM

\Biggr) 
x\rightarrow u

\varrho 
1

2

\Biggl[ 
+ \varrho 

M+1

2 HeM+1

\Biggr) 
x\rightarrow u

\varrho 
1

2

\Biggl[ 
.

Let s= x\uparrow u

\omega 
1

2

; then, we have

c0 + c1\varrho 
1

2 s+ · · ·+ cM\varrho 
M
2 s

M + \varrho 
M+1

2 s
M+1

= \leftharpoondown 0He0(s) + \leftharpoondown 1\varrho 
1

2 He1(s) + · · ·+ \leftharpoondown M\varrho 
M
2 sHeM (s) + \varrho 

M+1

2 HeM+1(s),

and thus, by (2.23),

\leftharpoondown k\varrho 
k
2 =

M+1\Biggl\langle 

i=k

ci\varrho 
i
2 bik, k= 0, . . . ,M + 1(2.27)

with cM+1 = 1. These \leftharpoondown k coe""cients can then be transformed to entries ak of (2.13)
using the equations of the eigenpolynomials for AML (2.19).

3. Training setup and neural network architecture. Our e!ort seeks to
apply the hyperbolicity-preserving deep learning closure methods developed for RTE
[16] and apply them to the BGK model. The goal is to capture kinetic e!ects in the
learned closure by generating high-fidelity training data solving the BGK equation
via discrete velocity methods (DVMs) with smooth and discontinuous initial data
[14] over a range of Knudsen numbers. During the course of the investigation, several
modifications were needed to the training methods and neural network architectures
originally used in RTE [16] to improve training errors for the BGK model. This
is likely due to the strong nonlinearity of the BGK model compared to RTE. We
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HYPERBOLIC MACHINE LEARNING MOMENT CLOSURES 199

discuss the machine learning aspects of our e!ort. All deep learning methods were
implemented using PyTorch [35].

In the numerical examples, we test two sets of ML moment closures. The first
set is to recover the HME model using neural networks. To be more specific, we train
the neural network using the data generated from the HME model. The purpose is to
validate the correctness of the algorithm and code. The second is to train the neural
network using the data from the kinetic model. The goal is to capture the kinetic
e!ects in the ML closure.

3.1. Training data preparation. We generate training data following [14].
When generating data from the HME model, we use the high-order path-conservative
numerical scheme in section 4.2. When generating the data from the kinetic model,
we use the fifth-order finite di!erence weighted essentially non-oscillatory (WENO)
scheme in physical space [19], DVM in velocity space [3], and third-order implicit-
explicit method in time [1]. In Table 1, we list the various parameters for the HME
and kinetic model training data.

Following [14], we have two sets of training data. The first set is generated from
smooth data as the initial condition, which is also called wave data. First, we generate
the following macroscopic variables:

U =

\Big\backslash 
\left( \left( \right) 

\left( \left( \left[ 

\vargamma (x,0) = a\varepsilon sin
\Bigg\backslash 

2k\omega \varpi x
L +\rightharpoonup \varepsilon 

\Big/ 
+ b\varepsilon ,

u(x,0) = 0,

\varrho (x,0) = a\omega sin
\Biggr] 
2k\varepsilon \varpi x

L +\rightharpoonup \omega 

\Biggl\lfloor 
+ b\omega ,

(3.1)

where the random variables are uniformly sampled in their associated ranges az \updownarrow 
[0.2,0.3], \rightharpoonup z \updownarrow [0,2\varpi ], bz \updownarrow [0.5,0.7], kz is a random integer sampled from the set
{1,2,3,4}, and z can be either \vargamma or \varrho . Then, two local Maxwellian distributions are
generated from the above macroscopic variables U1 and U2 and blended together to
form the wave data

fwave =
\leftharpoonup 1fM (v;U1) + \leftharpoonup 2fM (v;U2)

\leftharpoonup 1 + \leftharpoonup 2 + \rightharpoondown 
,(3.2)

where fM is the Maxwellian defined in (2.2) and \leftharpoonup 1 and \leftharpoonup 2 are uniformly random
variables in [0,1] with \rightharpoondown = 10\uparrow 6 preventing division zero.

The second set of training data is called the mixed initial conditions, which are
created by taking wave data fwave and superpositioning with shock data fshock.
The shock data are a Riemann problem where the interval [x1, x2] has discontinu-
ities at its endpoints, which are uniform random variables with x1 \updownarrow [0.2,0.4] and
x2 \updownarrow [0.6,0.8]. The primitive variables are given on the left side (\vargamma L, uL,\varrho L) and the
right side \vargamma R, uL,\varrho R) with uR = uL = 0, \vargamma L and \varrho L being two independent random

Table 1
Parameters used to generate the training data for the HME model and kinetic model.

Parameters HMEs Kinetic

Spatial domain x [\uparrow 0.5,\uparrow 0.5] [0,1]
Spatial mesh Nx 256 256
Time domain t [0,10] [0,1]
Time steps Nt 320 1000

Knudsen number log-uniform log-uniform
[10\uparrow 3,10] [10\uparrow 3,10]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

4/
25

 to
 2

16
.2

37
.9

8.
24

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



200 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

variables uniformly sampled from [1,2], and \vargamma R and \varrho R being two independent ran-
dom variables uniformly sampled from [0.55,0.9]. This shock condition is blended
with smooth data as follows:

fmix = \leftharpoonup fwave + (1\rightarrow \leftharpoonup )fshock,(3.3)

where \leftharpoonup is a random variable uniformly sampled from [0.2,0.4].
Following [14], we generate the training data to produce distribution functions

with both smooth and discontinuous initial conditions and trajectories. These are a
reasonable approximation to distributions of interest for the BGK equation with no ex-
ternal force. This method still limits the distributions seen in training by the frequency
limits on the parameter used to generate the sinusoidal data in (3.1). Any model with
external forces or associated fields, such as magneto-hydrodynamics, would need a
di!erent method to generate training data.

3.2. Neural network architecture. The networks we utilize have the following
structure, which is depicted in Figure 1. Moments from training data are input into
a fully connected, neural network. The network has a repeating structure of block
layers: linear layer, activation layer, and batch normalization layer. The output of the
network is the eigenvalues of matrix (2.10) with the last row as (2.13). This output
is then passed to an implementation of Vieta’s formula, which is passed to a linear
transform that matches the structure required in the last row of the matrix (2.14). It
is this final output that will be used in the nonconservative solver to close the system.

3.3. Training considerations and techniques. For the training data recov-
ering the HME closure, the training techniques and neural network structure followed
that of previous RTE work [15, 17, 16], with the modifications in section 2 for the
BGK model. Table 2 summarizes hyperparameters for the HME closure training.

For the kinetic training data, both the neural network architecture and training
methods were modified to overcome di""culties minimizing training and testing error:

Fig. 1. Neural network architecture from the left; the light blue fk are moments from the train-
ing data set. The boxed, gray circles with \omega represent the fully connected neural network; each column
should be thought of as a block of layers (linear, activation, batch normalization). The yellow block
applies Vieta’s formula, and the final green appropriately transforms the output to coe!cients for
the moment gradients.
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HYPERBOLIC MACHINE LEARNING MOMENT CLOSURES 201

Table 2
Summary of neural network training parameters for both HMEs and kinetic closures.

Parameters HMEs Kinetic

Training data 100 Initial Conditions (ICs) 800 ICs
Split train/test % 80/20 80/20
Activation function Rectified linear unit (ReLU) ReLU

Learning rate schedule: StepLR schedule: OneCycleLR
rate: 10\uparrow 7 varies with count of

decay factor: 0.5 moment input over epochs
step schedule: 100 epoch

Optimizer Adam AdamW

Loss term \uparrow fN\varepsilon xu\uparrow fN\uparrow 1

2 \varepsilon x\vargamma \varepsilon xmDVM
N+1 (xj , tn)

\varepsilon xmTrain
N+1 (xj , tn)

Table 3
Loss and errors, both in training and testing, for neural network of 9 layers, 128 neurons wide,

and ReLU activation at the end of training with 500 epoch on kinetic smooth data.

Moments Relative L2 error Relative L2 error
in input Loss (train) (test)

5 1.49E-06 1.72E-01 1.76E-01
6 4.38E-08 1.02E-01 1.05E-01
7 1.22E-09 6.42E-02 6.55E-02
8 1.56E-10 9.46E-02 9.52E-02

specifically, in the optimizer used to minimize the loss function, cycling the learning
rate to avoid local minimums and finally a change to the architecture with the inclusion
of batch normalization layers to avoid vanishing and exploding gradients. We discuss
each of these modifications individually. Table 2 summarizes hyperparameters for the
kinetic closure training. Table 3 shows the associated training and testing error in
the kinetic closure.

The loss function, L, for training the neural network follows previous RTE work
[15, 16] and has the form

L=
1

Ndata

\Biggl\langle 

j,n

|\omega xfTrain

N+1
(xj , tn)\rightarrow \omega xf

NN

N+1
(xj , tn)|2,(3.4)

where term \omega xf
Train

N+1
(xj , tn) is moment gradients from either the HME or kinetic

training data and \omega xf
NN

N+1
=

\left\{ N
i=0

Ni(\vargamma , u,\varrho , f3, . . . , fN )\omega xfi is the neural network
approximation on the associated training set, as in (2.12). In the HME model case,
\omega xf

Train

N+1
(xj , tn) = \omega xf

HME

N+1
=\rightarrow fN\omega xu\rightarrow fN\uparrow 1

2
\omega x\varrho and is computed from the generated

training data (u,\varrho , fN\uparrow 1, fN ). For the kinetic BGK case, \omega xfTrain

N+1
(xj , tn) = \omega xf

DVM

N+1
.

Achieving good training errors for HME data was straightforward. However,
several modifications were needed to achieve results with the kinetic data. These
modifications are discussed in subsection 3.3.1. We outline the general training process
in Algorithm 3.1 for both HME and kinetic training data.

3.3.1. Adam vs. AdamW. The RTE work [15, 17, 16] used the Adam [21] optimizer
in PyTorch. This optimizer uses adaptive estimates for lower-order moments (mean,
variance) of the gradient via exponential averaging and applying bias corrections.

The AdamW [31] optimizer, which has been also been used in recent moment closure
work [29], modifies the regularization that was implemented in Adam. In Loshchilov
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202 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

Algorithm 3.1. Train closure model.

Data: The M + 1 moments in primitive variables (ρ, u, θ, f3, f4, . . . , fM , fM+1) over
the training time interval for every initial condition.

Input: A set of M moments in primitive variables (ρ, u, θ, f3, f4, . . . , fM ).
Output: Coefficients on the gradient of the M moments, N0,N1, . . . ,NM

1 begin Prepare Training Set
2 for all time steps within training time range, in all training data do
3 Load: M + 1 moments, fM+1 from training data
4 Compute: M + 1 moment gradients, ∂xfM+1 from training data

5 return Prepared training set, W
Training

6 begin Training
7 while under number of training epoch do
8 Sample M moments, M gradients and ∂xfM+1 from W

Training

9 // Neural network defined in Subsection 3.2
10 Evaluate Neural Network: NN (ρ, u, θ, f3, f4, . . . , fM ) = (N0,N1, . . . ,NM )

11 Compute: ∂xfNN

M+1
= M

i=0
Ni(ρ, u, θ, f3, · · · , fM )∂xfi

12 Compute Loss: L(∂xfNN

M+1
, ∂xfM+1)

13 Back-propagation to optimize

Table 4
Comparison of relative training error using the Adam and AdamW optimizer in PyTorch for

a 9-layer, 128-neuron–wide, ReLU activated neural network with batch normalization. This is for
training a neural network closure on kinetic data and shows the improvement of switching optimizers.

Moments Adam relative AdamW relative
in input L2 error (train) L2 error (train)

6 1.23E-01 1.02E-01
7 1.17E-01 6.42E-02
8 1.06E-01 9.46E-02

and Hutter [31], it was argued that weight decay and L
2 regularization are not equiv-

alent for adaptive gradient descent methods but are equivalent for stochastic gradient
descent. AdamW separates moment estimates from the decay of the parameters, decou-
pling the optimization of the loss function from the weight decay. Empirically, AdamW
has shown improved performance over wider array of hyperparameter selection.

By using AdamW over Adam for training our neural network closure, we were able
to improve overall training error significantly, as shown in Table 4. This was needed
for the kinetic training data.

3.3.2. Adding batch normalization. To further improve training errors in the
neural network closure, a batch normalization layer was added in the hidden layers
between the linear and activation layers. Batch normalization [18] is a commonly
used method in deep learning. This process normalizes the batch input to the layer to
have mean-zero, variance-one by tracking running mean and variance over the course
of training. In Figure 1, the normalization layers can be thought of as being contained
in the layers with \lhook . Adding the batch normalization layer made optimal learning
rate ranges more uniform across the number of moments input, as seen in Figure 2(a),
as well as created a large region of decreasing loss that stays relatively consistent over
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HYPERBOLIC MACHINE LEARNING MOMENT CLOSURES 203

(a)

(b)

Fig. 2. Examples of learning rate range tests with the e""ects of batch normalization and a
sample one-cycle learning rate schedule. (a) Representative learning rate range for a 9-layer, 256-
neuron–wide network that is trained on kinetic smooth/wave initial conditions. The horizontal axes
are the learning rate, and the vertical axes are the loss. Each color represents the moment that is
being closed by the network. On the left, the networks have no batch normalization layer, and on
the right, the networks do. We can see that batch normalization (right) gave overlapping regions of
loss decrease that were spread over a wider range of learning rates compared to networks without.
(b) An example of the one cycle learning rate variation. The horizontal axis is the epoch of training,
and the vertical axis is the learning rate.

changing the number of moments that are input to the network. Also, this batch
normalization layer also improves training errors during training.

3.3.3. Learning rate cycling. During training, there was concern that the
neural network closure was settling in a local minimum rather than finding a global
minimum. The initial implementation followed the RTE work [16] with a halving
schedule for the learning rate hyperparameter over a fixed number of epochs.

For the BGK neural network closure, we implemented a one-cycle learning rate
schedule, where the learning rate is raised and then lowered in a cycle following a
cosine function [41]. The learning rate changes occurs over each iteration of the
optimizer, that is, after each batch of training data rather than over epoch, which
would be once through the entire training data set. A sample one-cycle learning rate
schedule is show in Figure 2(b).

This method requires finding optimal maximum learning rates that do not cause
the training to diverge in an unrecoverable way from the minimum. This is done
using the so-called learning rate range test (LRRT) [40, 11]. This process is useful for
finding reasonable learning rate values for training in general. The LRRT varies the
learning rate every training iteration over a range (orders of magnitude) of learning
rates and records the loss. Usually revealed is a plateau where the learning rate is too
small to approach the minimum and loss is nearly constant, followed by a region of
decreasing loss that ends with a steep jump in loss as the learning rate becomes too
large to resolve the minimum. By choosing a maximum learning rate that occurs at
the end of the decreasing loss region and a minimum learning rate that occurs before
the loss region, training will remain within this loss region while using a one-cycle
learning rate schedule.

There are drawbacks to using this method. The LRRT must be done prior to
training a given neural network with a given hyperparameter configuration. Also, if
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204 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

the maximum learning rate is chosen too far away from the end of the decrease, we
have observed a nonrecoverable divergence away from a global minimum. However,
this method does give a relatively good indication of where optimal learning rates are
located.

4. Numerical method. In this section, we briefly review the first-order and
high-order path-conservative numerical methods [6] for solving the nonconservative
hyperbolic moment system. We will show the formulation of the path-conservative
method. It is important to note that we make use of a partially conservative transfor-
mation. This change of variables places the first Mth moments in conservative form
and the last moment in a nonconservative form, as demonstrated in [25, 22]. The
transformation to partially conserved variables greatly improves the performance of
the path-conservative method.

For simplicity, we adopt a uniform spatial discretization of domain [xa, xb],

xa = x 1

2

<x 3

2

· · ·<xNx\uparrow 1

2

<xNx+
1

2

= xb,

where xj\uparrow 1

2

= xa + j\#x, j = 1,2, . . . ,Nx + 1 with mesh size \#x = xb\uparrow xa
Nx

. The cells
and the midpoints are denoted by

Ij = [xj\uparrow 1

2

, xj+ 1

2

], xj =
1

2
(xj\uparrow 1

2

+ xj+ 1

2

), j = 1,2, . . .Nx.

We denote wn
j = 1

!x

\right\} x
j+1

2

x
j\uparrow 1

2

w(x, tn) dx as the cell average value of w(x, t) at time

t
n = n\#t with \#t being the time stepping size.

4.1. First-order path-conservative scheme. In the case of systems of hyper-
bolic conservation laws, when A= \vargamma F

\vargamma w is a Jacobian matrix of a flux function F (w),
(2.9) can be written as

\omega w

\omega t
+

\omega F (w)

\omega x
= 0.(4.1)

Then, a first-order conservative wave propagation method [27] can be applied to (4.1),

wn+1

j =wn
j \rightarrow \#t

\#x

\Bigg\backslash 
A+

j\uparrow 1

2

\#wn
j\uparrow 1

2

+A\uparrow 
j+ 1

2

\#wn
j+ 1

2

\Big/ 
(4.2)

with jump\#wn
j± 1

2

=wn,+
j± 1

2

\rightarrow wn,\uparrow 
j± 1

2

. Here, wn,±
j± 1

2

are the left and right limits of solution

wn at the cell boundaries xj± 1

2

. In particular, wn,+
j\uparrow 1

2

can be approximated using the

cell average sequence from the neighboring cells {wn
j\uparrow q, . . . ,w

n
j\uparrow p} for q, p \Leftarrow 0. In

(4.2), it is su""cient for us to achieve first-order accuracy taking wn,+
j\uparrow 1

2

= wj and

wn,\uparrow 
j\uparrow 1

2

=wj\uparrow 1; thus, \#wn
j\uparrow 1

2

=wn
j \rightarrow wn

j\uparrow 1
and \#wn

j+ 1

2

=wn
j+1

\rightarrow wn
j in (4.2).

When F (w) =Aw is a linear function, A=A, we have A
±
j± 1

2

in (4.2) defined by

A
+

j± 1

2

=Rj± 1

2

\$+

j± 1

2

R
\uparrow 1

j± 1

2

, A
\uparrow 
j± 1

2

=Rj± 1

2

\$\uparrow 
j± 1

2

R
\uparrow 1

j± 1

2

,(4.3)

where Rj± 1

2

is a (M + 1) \Uparrow (M + 1) matrix storing the right eigenvectors of Aj± 1

2

,

\$±
j± 1

2

= diag((\varsigma 1

j+ 1

2

)±, (\varsigma 2

j+ 1

2

)±, . . . (\varsigma M+1

j+ 1

2

)±) with positive or negative eigenvalues of

Aj± 1

2

, respectively. When F (w) is nonlinear, the system shock speed at a disconti-
nuity is given by Rankine–Hugoniot conditions.
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Because A in (2.10) and (2.13) cannot be expressed as a Jacobian matrix, we
follow the definition of the nonconservative product A(w)wx in [8]. For the left and
right limits w\uparrow 

,w+ of w \updownarrow \% at the discontinuity, consider a family of Lipschitz
continuous path \rhook (s;w\uparrow 

,w+) : [0,1]\Uparrow \%\Uparrow \%\Downarrow \% such that

\rhook (0;w\uparrow 
,w+) =w\uparrow 

, \rhook (1;w\uparrow 
,w+) =w+

, \rhook (s;w,w) =w,

where \rhook (s;w\uparrow 
,w+) can be seen as a parameterization of the integral curve connecting

w\uparrow 
,w+. In [25], there exist many di!erent choices of paths \rhook connecting WL and

WR, such as a simple linear path

\rhook (s;w\uparrow 
,w+) =w\uparrow + s · (w+ \rightarrow w\uparrow ), s\updownarrow [0,1](4.4)

and polynomial paths \rhook N
\uparrow and \rhook 

N
+
:

\rhook 
N
\uparrow (s;w\uparrow 

,w+) =w\uparrow + s
N · (w+ \rightarrow w\uparrow ),(4.5)

\rhook 
N
+
(s;w\uparrow 

,w+) =w+ + (s\rightarrow 1)N · (w\uparrow \rightarrow w+).

In [6], given a family of paths \rhook , a numerical scheme is said to be \rhook -conservative if it
can be written under the form

wn+1

j =wn
j \rightarrow \#t

\#x

\Bigg\backslash 
D

+

j\uparrow 1

2

+D
\uparrow 
j+ 1

2

\Big/ 
,(4.6)

where D
±
j± 1

2

= D
±(wn,\uparrow 

j± 1

2

,wn,+
j± 1

2

) with D
\uparrow and D

+ being two continuous functions

satisfying

D
±(w,w) = 0 for all w \updownarrow \%(4.7)

and

D
\uparrow 
\Bigg\backslash 
wn,\uparrow 

j± 1

2

,wn,+
j± 1

2

\Big/ 
+D

+

\Bigg\backslash 
wn,\uparrow 

j± 1

2

,wn,+
j± 1

2

\Big/ 
(4.8)

=

\Biggr\rfloor 
1

0

A

\Bigg\backslash 
\rhook 

\Bigg\backslash 
s;wn,\uparrow 

j± 1

2

,wn,+
j± 1

2

\Big/ \Big/ 
\omega \rhook 

\omega s

\Bigg\backslash 
s;wn,\uparrow 

j± 1

2

,wn,+
j± 1

2

\Big/ 
ds.

Consider a Roe linearization A\varrho (w
\uparrow 
j± 1

2

,w+

j± 1

2

) satisfying

A\varrho 

\Bigg\backslash 
w\uparrow 

j± 1

2

,w+

j± 1

2

\Big/ 
\#wj± 1

2

=

\Biggr\rfloor 
1

0

A

\Bigg\backslash 
\rhook 

\Bigg\backslash 
s;w\uparrow 

j± 1

2

,w+

j± 1

2

\Big/ \Big/ 
\omega \rhook 

\omega s

\Bigg\backslash 
s;w\uparrow 

j± 1

2

,w+

j± 1

2

\Big/ \Biggl[ 
ds,

(4.9)

and let D
±(wn,\uparrow 

j± 1

2

,wn,+
j± 1

2

) = A±
\varrho \#wj± 1

2

, the first-order path-conservative scheme for

(2.9), be given as

wn+1

j =wn
j \rightarrow \#t

\#x

\Bigg\backslash 
A+

\varrho \#wj\uparrow 1

2

+A\uparrow 
\varrho \#wj+ 1

2

\Big/ 
.(4.10)

When using (4.4), (4.9) reduces to

A\varrho 

\Bigg\backslash 
w\uparrow 

j± 1

2

,w+

j± 1

2

\Big/ 
=

\Biggr\rfloor 
1

0

A

\Bigg\backslash 
\rhook 

\Bigg\backslash 
s;w\uparrow 

j± 1

2

,w+

j± 1

2

\Big/ \Big/ 
ds,(4.11)
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which could be computed via

A\varrho 

\Bigg\backslash 
w\uparrow 

j± 1

2

,w+

j± 1

2

\Big/ 
\leftrightarrow 

p\Biggl\langle 

i=1

 \triangleleft iA

\Bigg\backslash 
\rhook 

\Bigg\backslash 
si,w

\uparrow 
j± 1

2

,w+

j± 1

2

\Big/ \Big/ 
(4.12)

using the high-order quadrature rule with points {si} and the corresponding weights
{ \triangleleft i}. When using (4.5), A\varrho can be computed as

A\varrho 

\Bigg\backslash 
w\uparrow 

j± 1

2

,w+

j± 1

2

\Big/ 
=

\Biggr\rfloor 
1

0

A

\Bigg\backslash 
\rhook 

\Bigg\backslash 
s;w\uparrow 

j± 1

2

,w+

j± 1

2

\Big/ \Big/ 
· n · sn\uparrow 1

ds(4.13)

\leftrightarrow 
p\Biggl\langle 

i=1

 \triangleleft iA

\Bigg\backslash 
\rhook 

\Bigg\backslash 
si;w

\uparrow 
j± 1

2

,w+

j± 1

2

\Big/ \Big/ 
· n · sn\uparrow 1

i(4.14)

via high-order quadrature rules.

4.2. High-order path-conservative scheme. We again start from (4.1); a
conservative semidiscrete method is given as

w\Rightarrow 
j(t) =\rightarrow 1

\#x

\Bigg\backslash 
Gj+ 1

2

\Bigg\backslash 
w\uparrow 

j+ 1

2

(t),w+

j+ 1

2

(t)
\Big/ 
\rightarrow Gj\uparrow 1

2

\Bigg\backslash 
w\uparrow 

j\uparrow 1

2

(t),w+

j\uparrow 1

2

(t)
\Big/ \Big/ 

(4.15)

with the numerical flux

Gj± 1

2

\Bigg\backslash 
w\uparrow 

j± 1

2

(t),w+

j± 1

2

(t)
\Big/ 
= F

\Bigg\backslash 
w+

j± 1

2

(t)
\Big/ 
\rightarrow A+

j± 1

2

\#wj± 1

2

(t)(4.16a)

= F

\Bigg\backslash 
w\uparrow 

j± 1

2

(t)
\Big/ 
+A\uparrow 

j± 1

2

\#wj± 1

2

(t).(4.16b)

Note that (4.16a) and (4.16b) are obtained from

F

\Bigg\backslash 
w+

j± 1

2

(t)
\Big/ 
\rightarrow F

\Bigg\backslash 
w\uparrow 

j± 1

2

(t)
\Big/ 
=Aj± 1

2

\#wj± 1

2

(t).

Plug (4.16) into (4.15); we have

w\Rightarrow 
j(t) =\rightarrow 1

\#x

 
A+

j\uparrow 1

2

\#wj\uparrow 1

2

(t) +A\uparrow 
j+ 1

2

\#wj+ 1

2

(t) + F (w\uparrow 
j\uparrow 1

2

(t))\rightarrow F (w+

j\uparrow 1

2

(t))
 

(4.17a)

=\rightarrow 1

\#x

 

 A+

j\uparrow 1

2

\#wj\uparrow 1

2

(t) +A\uparrow 
j+ 1

2

\#wj+ 1

2

(t) +

\Biggr\rfloor x
j+1

2

x
j\uparrow 1

2

A(Pj(x))
d

dx
Pj(x) dx

 

 

(4.17b)

with smooth function Pj(x) on cell Ij satisfying

lim
x\Uparrow x+

j\uparrow 1

2

Pj(x) =w+

j\uparrow 1

2

(t) lim
x\Uparrow x\uparrow 

j+1

2

Pj(x) =w\uparrow 
j+ 1

2

(t).(4.18)

Equation (4.17) leads to a \rhook -conservative scheme for (2.9):

w\Rightarrow 
j(t) =\rightarrow 1

\#x

 

 A+

\varrho \#wj\uparrow 1

2

(t) +A\uparrow 
\varrho \#wj+ 1

2

(t) +

\Biggr\rfloor x
j+1

2

x
j\uparrow 1

2

A(Pj(x))
d

dx
Pj(x) dx

 

 ,

(4.19)
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which can be written as

w\Rightarrow 
j(t) =\rightarrow 1

\#x

\Bigg\backslash 
D

+

j\uparrow 1

2

+D
\uparrow 
j+ 1

2

\Big/ 

with

D
+

j\uparrow 1

2

=A+

\varrho \#wj\uparrow 1

2

(t) +

\Biggr\rfloor xj

x
j\uparrow 1

2

A(Pj(x))
d

dx
Pj(x) dx,(4.20)

D
\uparrow 
j+ 1

2

=A\uparrow 
\varrho \#wj+ 1

2

(t) +

\Biggr\rfloor x
j+1

2

xj

A(Pj(x))
d

dx
Pj(x) dx,(4.21)

and

D
\uparrow 
j+ 1

2

+D
+

j+ 1

2

=

\Biggr\rfloor x
j+1

2

xj

A(Pj(x))
d

dx
Pj(x) dx

+A\varrho \#wj+ 1

2

(t)

+

\Biggr\rfloor xj+1

x
j+1

2

A(Pj+1(x))
d

dx
Pj+1(x) dx

=

\Biggr\rfloor x
j+1

2

xj

A(Pj(x))
d

dx
Pj(x) dx

+

\Biggr\rfloor 
1

0

A(\rhook (s;w\uparrow 
j+ 1

2

(t),w+

j+ 1

2

(t)))
\omega \rhook 

\omega s
(s;w\uparrow 

j+ 1

2

(t),w+

j+ 1

2

(t)) ds

+

\Biggr\rfloor xj+1

x
j+1

2

A(Pj+1(x))
d

dx
Pj+1(x) dx.

In our implementation, the integral term
\right\} x

j+1

2

x
j\uparrow 1

2

A(Pj(x))
d
dxPj(x) dx in (4.19) is ap-

proximated via a sixth-order Gauss–Lobatto quadrature rule

\Biggr\rfloor x
j+1

2

x
j\uparrow 1

2

A(Pj(x))
d

dx
Pj(x) dx\leftrightarrow 

4\Biggl\langle 

i=1

wiA(Pj(si\#x+ xj))
d

dx
Pj(si\#x+ xj)(4.22)

with quadrature nodes {si}4i=1
\updownarrow [\rightarrow 1

2
,
1

2
] and their associated weights {wi}4i=1

. More
specifically, the approximated point values {w+

j\uparrow 1

2

= Pj(xj\uparrow 1

2

) = Pj(s1\#x + xj),

Pj(s2\#x + xj), Pj(s3\#x + xj),w
\uparrow 
j+ 1

2

= Pj(x
\uparrow 
j+ 1

2

) = Pj(s4\#x + xj)} over Ij can be

reconstructed using a fifth-order–accurate WENO method [39] from the cell averages
{wi, i = j \rightarrow 2, j, j + 2}. { d

dxPj(x)|x = si\#x + xj , i = 1, . . . ,4} can then be approxi-
mated by the derivative of polynomial interpolating through {Pj(x)|x= si\#x+xj , i=
1, . . . ,4} over Ij .

Note that (4.19) becomes a system of ODEs after the spatial discretization to the
right-hand side (rhs). For the time integration of (4.19) on the left-hand side, we use
a standard third-order strong stability preserving Runge–Kutta (RK3) method [12].

5. Numerical results. In this section, we present numerical calculations using
the neural network closures for both HME-trained and kinetic-trained models for the
moment system and associated errors.

For the kinetic-trained closure, we are making an assumption on the form of the
closure, which is an inherent model error. For HME-trained closure, the closure model
is exact, so the only error present is related to the ML errors of training and stochastic
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208 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

Algorithm 5.1. Computing with the trained closure model. Solve the nonconser-
vative moment system \vargamma w

\vargamma t + A
ML \vargamma w

\vargamma x = Q using trained neural network closure to
complete the last row of AML and using RK3 and the nonconservative schemes de-
scribed in section 4. The variables a,b, c are the coe""cients for the Runge–Kutta
scheme.

Input:
Moments in primitive variables: w0 = ρ

0
, u

0
, θ

0
, f

0

3
, f

0

4
, . . . , f

0

M at t = 0.
Trained Neural Network Closure: NN

Output: Moments in primitive variables: wTfinal = (ρ, u, θ, f3, f4, . . . , fM ) at t =
Tfinal.

1 Form A
ML with last row ← NN (w0) = a0 a1 a2 a3 · · · aM−1 aM Equa-

tion (2.13)
2 w∗ ← w0

3 while t < Tfinal do
4 // First Stage

5 Compute: AML using NN (w∗) for last row.
6 Compute: maximum wave speeds and CFL from A

ML

7 Compute: rhs1, the right-hand side of ∂w
∂t = −A

ML ∂w
∂x + Q for w∗ using non-

conservative methods in Section 4.
8 w1 ← w∗ −∆t · a1,0 · rhs1
9 t ← t+ c1 ·∆t

10 // Second stage

11 Compute: AML using NN (w1) for last row.
12 Compute: maximum wave speeds and CFL from A

ML

13 Compute: rhs2, the right-hand side of ∂w
∂t = −A

ML ∂w
∂x + Q for w1 using non-

conservative methods in Section 4.
14 w2 ← w∗ −∆t · a2,0 · rhs1 + a2,1 · rhs2
15 t ← t+ c2 ·∆t

16 // Third stage

17 Compute: AML using NN (w2) for last row.
18 Compute: maximum wave speeds and CFL from A

ML

19 Compute: rhs3, the right-hand side of ∂w
∂t = −A

ML ∂w
∂x + Q for w2 using non-

conservative methods in Section 4.
20 w3 ← w∗ −∆t · b0 · rhs1 + b1 · rhs2 + b2 · rhs3
21 t ← t+∆t

22 w∗ ← w3

randomness associated with it. The purpose of the presenting the HME results is to
demonstrate that the ML approach to the closure problem is viable.

An outline of process to compute solutions using the trained neural network clo-
sure is given in Algorithm 5.1.

5.1. Realization of HME model using neural network. The neural net-
work recovered the HME model as shown in Figure 3 for wave training data and in
Figure 4(b) for mix training data, with the data generated as described in subsection
3.3. For wave-trained HME closure, there was very good agreement during numerical
prediction with wave initial conditions, as seen in Figure 3. When mix initial condi-
tions were used for prediction with a closure trained on wave data, the closure had
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HYPERBOLIC MACHINE LEARNING MOMENT CLOSURES 209

Fig. 3. HME-trained closure: Sample of 5 moments (\varpi , u,\vargamma , f3, f4) for Knudsen number \varrho = 1
at t = 10 beyond the training data time range, trained on smooth, wave data, then used to predict
moments on smooth initial conditions.

di""culty recovering moments as seen in Figure 4(a). However, when using mix initial
conditions with a closure trained on 50% wave, 50% mix data, the HME model was
recovered well, as seen in Figure 4(b). The robust performance of the NN closure
trained on HME data, as demonstrated in Figure 3 and Figure 4(b), is universal and
representative of its e!ectiveness across various Knudsen number regimes.

Recovery of the HME model by the trained network occurred over the range of
Knudsen numbers tested for both smooth/wave and mix data as seen in Figure 5(a)
and (b).

5.2. Kinetic-trained neural network closure results. After training neural
networks on moment data generated as described in section 3, we then use this closure
in the solver, using the FORCE method [22, 6], to predict moments using initial
conditions that were not part of the training data set but generated in the same
manner. The results are at t= 0.3, which is beyond the training set time interval of
t = 0.05 to t = 0.15. Figure 6 shows individual samples of the first three moments
corresponding to the primitive variables of density, velocity, and temperature across
the range of Knudsen numbers at the various times. These compare the computed
moments using the neural network closure and the moment data at matching times
using the DVM in section 3. In addition, to ensure the reproducibility of numerical
experiments, in Table 5, we present the parameters for smooth, wave kinetic initial
conditions that are used in the numerical predictions shown in Figure 6. Figure 7
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210 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

(a) (b)

Fig. 4. HME-trained closure: Sample from 5-moment model (\varpi ,\vargamma , f4) for Knudsen number
\varrho = 1 at time t = 10 beyond the training data time range. (a) HME closure trained on smooth,
wave data, then used to predict moments on mixed initial conditions. (b) HME closure trained on a
training set consisting of 50% smooth data and 50% mix data.

(a) (b)

Fig. 5. HME-trained closure: Errors for Knudsen numbers at t= 10, beyond the training data
time range. (a) relative L2 error in \varpi , u,\vargamma , f3, f4 at t = 10, beyond the training data time range
for HME-trained NN closure on smooth/wave data. (b) absolute L2 error in \varpi , u,\vargamma , f3, f4 at t= 10,
beyond the training data time range for HME-trained NN closure on mix data.

shows the relative L
2 error in the primitive variables at the computed times for all

initial conditions in this test set.
Generally, we see that, within the training set time interval, we have good agree-

ment between between neural network closure moments and this test set for the highly
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HYPERBOLIC MACHINE LEARNING MOMENT CLOSURES 211

Fig. 6. Kinetic-trained closure: First three moments \varpi , u,\vargamma for various Knudsen numbers at
t= 0.3 beyond the training data time range from an NN of 9 layers, 128 neurons wide, using ReLU
with batch normalization for smooth initial conditions. Each column corresponds to a moment going
left to right: \varpi , u,\vargamma . Each row is a di""erent Knudsen number, going top to bottom: 0.002, 0.017,
0.144, 1.008.

collisional range of Knudsen numbers, [10\uparrow 3
,10\uparrow 1). When computing with trained

closures within the training time window, we have very good agreement across the
range of Knudsen numbers, with relative L

2 error not exceeding 10%. As we move
beyond the training window, results in the transition and free streaming range of
Knudsen numbers [10\uparrow 1

,101] vary greatly, as seen in Figure 7. There also appears
to be larger error in the macroscopic velocity, u, as well as clustering of moments of
di!erent order. This might be due to the parity of the moments, where \vargamma and \varrho are
even powered and u is odd powered. This could be an avenue of future investigation.

To demonstrate the advantage of our hyperbolic neural network (NN) closure, we
train a nonhyperbolic, kinetic NN closure that learns the gradient coe""cients as in
our previous work [15]. The prediction results with the Knudsen number 10\uparrow 3 and
t= 0.3 are shown in Figure 8. We observe that the profiles of the lower-order moments
\vargamma , u, and \varrho for the nonhyperbolic closure agree well with the kinetic data. At the
same time, the oscillations appear in the higher-order moments f3 and f4. This is
due to the loss of hyperbolicity in the ML model. As a comparison, the predictions
of our hyperbolic NN closure align well with the kinetic data for all the moments.
Additionally, it is worth noting that the oscillations increase over time and worsen
with increasing Knudsen numbers, although these results are omitted here due to the
page limit.

We also numerically test the Galilean invariance of our ML model. We train the
NN using the data set with the macroscopic velocity of u= 0. Then, we use the ML
model to predict the solution profiles with an initial condition with u = 0.1. The
profiles of density, velocity, and temperature at t= 0.3 are presented in Figure 9. The
results of the ML model agree well with those from the kinetic equation. This shows
that our NN generates closures, which preserves Galilean invariance.
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212 CHRISTLIEB, DING, HUANG, AND KRUPANSKY

Table 5
Parameters for smooth, wave kinetic initial conditions, described in subsection 3.1, that are

used in the numerical predictions shown in Figure 6.

Knudsen Density Temperature Mixing

number a\varepsilon b\varepsilon k\varepsilon \varsigma \varepsilon a\omega b\omega k\omega \varsigma \omega \varphi 

0.001554 0.261888 0.270198 4 0.347195 0.228545 0.665582 1 2.708624 0.438211
0.270198 0.627907 1 5.5624 0.223145 0.622083 4 1.573187 0.596517

0.016515 0.222878 0.655877 1 0.484743 0.213417 0.574442 3 3.280153 0.066066
0.229181 0.585005 2 4.482850 0.253143 0.639633 2 5.905965 0.981557

0.143742 0.246574 0.574064 3 3.953562 0.254433 0.253392 1 4.545444 0.589359
0.250002 0.686808 4 4.205230 0.253392 0.525255 3 4.694920 0.384366

1.008160 0.224907 0.614791 2 5.343272 0.251982 0.569712 2 0.829738 0.34663
0.219768 0.68036 1 1.102718 0.250576 0.514169 1 4.491626 0.639318

Fig. 7. Kinetic-trained closure: Relative L2 error in \varpi , u,\vargamma at t= 0.3, beyond the training data
time range from an NN of 9 layers, 128 neurons wide, using ReLU with batch normalization for
smooth initial conditions. Of the 100 initial conditions, 26 cases failed in the solver.

Predicting beyond the training set time interval with the kinetic-trained closure,
we see the highly collisional range of Knudsen numbers continue to have good agree-
ment with the test set moments for smooth initial conditons. However, in the transi-
tion and free streaming Knudsen regimes, we see wide variation in the quality of the
solutions, with a max relative L

2 error of approximately 5.0. But there are also solu-
tions that are very well behaved and with relative L2 error of approximately 0.02. This
can be seen in Figure 7. Preliminary investigation of the nonuniform performance at
intermediate Knudsen number (i.e., [0.1,1.0]) indicates evidence of overfitting within
the NN. Adding dropout and increasing L

2-regularization with builtin PyTorch mod-
ules and optimizer parameters show some improvement in error and eliminated solver
failures on some initial conditions. This will be explored in future work.

Investigating the computed kinetic-trained moment closures in the Knudsen num-
bers above 10\uparrow 1, we generally observe high-frequency oscillations develop beyond the
training set time interval. This was not observed in the HME NN closures nor in the
earlier RTE work, which both had good agreement over all collision regimes. These
oscillations did not occur for all initial conditions. During our investigation, we stud-
ied the maximum distance between eigenvalues computed from the NN closure, which
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Fig. 8. Moments calculated using a kinetic-trained NN without hyperbolic method and with the
hyperbolic method. This example has a Knudsen number of 0.001. This prediction is at t= 0.3.

Fig. 9. Galilean invariance using a kinetic-trained closure for the first three moments, \varpi , u,\vargamma ,
for Knudsen number of 0.063. The NN closure was trained with a macroscopic velocity of u= 0 and
was used to predict for an initial condition with u= 0.1. This prediction is at t= 0.3.

hints at the potential source of the oscillations. Comparing cases with similar Knud-
sen numbers, we observe that well-behaved predictions had well-separated eigenvalues
through time, while predictions that saw oscillations develop saw minimum separation
between eigenvalues shrink significantly before causing instability.

We compare both the time required for calculation and the relative errors in the
primitive variables for a kinetic-trained NN closure with 8 total moments and the
rational HME models with varying number of moments for a Knudsen number of
0.0466 in Table 6. The initial condition is sampled from smooth generated data. As
a base for comparison, we use a DVM calculation as the reference for time and as
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Table 6
Comparison of runtime and relative errors for HME models (no NN closure) with 6, 8, 10, and

12 moments and the kinetic-trained NN closure with 8 total moments. Runtimes and errors are
computed against the DVM model. The HME model and the kinetic NN closure models were run in
python, while the DVM model was run in MATLAB. Comparison made at t = 0.3 for a case with
Knudsen number of 0.0466 for smooth data.

Model DVM HME-6 HME-8 HME-10 HME-12 NN-8

Time (s) 198 86 107 174 237 149
Relative time 1.00 0.43 0.54 0.88 1.20 0.75

Relative L2 error: \varpi - 1.13% 0.51% 0.28% 0.15% 0.19%
Relative L2 error: u - 7.46% 3.18% 2.49% 1.94% 1.51%
Relative L2 error: \vargamma - 1.43% 0.60% 0.42% 0.26% 0.35%

the comparison for errors. The kinetic-trained NN closure is competitive with HMEs
in computational time while providing improved accuracy in the primitive variables.
The accuracy of the solution in the primitive variables fell between the 10- and 12-
moment HME models and had a time to solution comparable to 8- and 10-moment
HME models. This shows modest improvements for Knudsen value approaching the
transition regime. Our future work will focus on improving accuracy in the transition
and free streaming limit Knudsen regimes. This only accounts for the computation
time provided for a trained NN closure; the time to create training sets and train the
associated NN are much longer.

As a point of interest, we formulated and tested classic Riemann problems and
compared with kinetic NN closures trained on both smooth/wave and 50-50 smooth
and mixed data. For small Knudsen numbers, below 0.01, the ML model accurately
captures the appropriate dynamics, including how the initial discontinuity spreads.
Interestingly, the added mixed training data provided superior performance in re-
solving the higher moments. For the transition regime, where the Knudsen number
approaches 0.1, the model captures bulk dynamics but exhibits spurious oscillations.
Generalizations that accurately capture the dynamics in the transition regime and
beyond are subjects of our ongoing and future work.

6. Conclusion. We have developed and applied hyperbolicity-preserving NNs to
the moment closure of the Grad expansion of the BGK model. We have demonstrated
that, when a local NN moment closure is trained on data from the HME closure of
the Grad expansion, the model robustly recovers HMEs both inside and outside of the
training time window. Furthermore, when the model is trained on moments of the full
kinetic model using a DVM, the local NN moment closure captures kinetic e!ects over
a wider range of Knudsen numbers within the training window and beyond. We also
demonstrate the utility of introducing nonsmooth data into the training processes for
prediction beyond the training window.

For kinetic BGK training data, we have demonstrated NN closures for smooth
initial conditions over a range of Knudsen numbers. In the fluid regime (i.e., Knudsen
numbers between 10\uparrow 3 and 10\uparrow 1), we have good agreement within and beyond the
training time window. For transitional and free streaming regimes (i.e., Knudsen
numbers between 10\uparrow 1 and 10), we demonstrate good agreement within the training
time interval. Outside of the training time window, while relative error is small, we see
nonuniform performance in predictions. This may be due to our model not preserving
the asymptotic limit of long time dynamics, which was preserved in the symmetrizer
approach in earlier RTE work [17].
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Future work would be to improve and expand the kinetic BGK closures’ ability
to generalize beyond training data set, especially in the in and above the transition
regime. Possible approaches could include better NN regularization, greatly increasing
the training set size with respect to Knudsen numbers, using transfer learning from
HME NN closures to the kinetic closure, and implementing NN architectures that
have regularization through low-rank tensor decomposition. Another possibility is
the development of a symmetrizer for the system as in the earlier RTE work [17], but
this would be nontrivial for the BGK model compared to RTE.
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