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Abstract— The paper describes the development of a speech 

recognition system to classify Navajo (Diné) words using Low 

Resource Language (LRL) datasets. There are presently no known 

high-quality open-sourced datasets for the Diné language that are 

needed to train models for speech Recognition. A small dataset was 

designed to train several models. To overcome the scarcity of the 

LRL dataset, the audio recordings were augmented to account for 

time-stretching, amplitude variations, time shifts, and small 

amounts of white Gaussian noise.  

Several models were trained using different optimization 

methods. The models included a Recurrent Neural Network 

(RNN), a Convolutional Neural Network (CNN), and a Long 

Short-Term Memory (LSTM) model. The results compare nine 

methods: SGD, Momentum, Nesterov, AdaGrad, RMSProp, 

Adam, Adamax, Nadam, and AdamW. For the best model, we 

report a family of different training/validation curves. The results 

demonstrate excellent classification performance on LRL models 

for Navajo Speech Recognition.  

Keywords—Diné, Navajo Speech Recognition, Low Resource 

Language Datasets 

I. INTRODUCTION 

Automatic speech recognition systems are commonly 
deployed for use with many IOT devices. The languages 
supported in these devices are based on large datasets for which 
mature automatic speech recognition systems have been 
developed. For this paper, we consider the development of an 
automated speech recognition system for Diné Bizaad, which 
does not have a large, high-quality dataset for training.   

The lack of high-quality curated digital resources can be 
attributed to several factors. One is, it would cost a lot of money 
to record and digitize Navajo language audio and written 
materials. It would also take a team of skilled people to get a 
significant amount of work done for this. Finding people with 
the rights skill set or training others to learn the skills is costly. 
Thus, it will take a significant amount of funding. 

Additionally, the Navajo language was classified by the U.S. 
military until 1968 [4]. This was due to the success of the 
language as an unbreakable code during World War II. Today, 
the Diné language is classified as endangered with few 
monolingual speakers. Also, the written form of the language 
was not created by the Diné people. Robert Young and William 
Morgan Sr. developed the Navajo orthography using Romanized 

letters [6]. The Navajo writing system, developed for the Diné 
people, was forced upon them to use by making it the only 
available writing system. The written form of the language 
began to gain popularity sometime after the U.S. military 
declassified it. Navajo people began to realize that the written 
form could be a useful tool [4]. Essentially, one could take an 
entire English sentence and create a single complex words to 
express the same concept in Diné Bizaad. This was 
accomplished through multiple morphemes usage. 

The Diné people speak a Polysynthetic language with a rich 
verbal morphological system. Developing an automatic speech 
recognition system (ASR) is particularly challenging due to the 
number of inflections in the language. The number of inflections 
causes a simple word to take on a new meaning and adds to the 
complexity of translation, as discussed in [7]. The difficulty with 
training an ASR with a LRL has been discussed in [8]. 

For this paper, we were interested in developing an ASR 
system for the Diné language that can also be used for STEM+C 
education. Thus, we designed a small dataset of 12 vocabulary 
words that can be used to control a small robot (see Table I). Our 
work was motivated and funded through the NSF ESTRELLA 
project that focuses on the development of STEM+C curriculum 
for bilingual children (eg. See [9-16]). 

We investigate the successful training of three deep-learning 
architectures based on RNN, CNN, and LSTM. Overall, we 
have found that the LSTM architecture performed the best. We 
hope that the lessons learned from our study will inform groups 
working on ASR system for Native American languages with 
limited resources. Thus, we provide detailed information on 
dataset collection and LSTM model optimization using various 
optimization methods. 

The rest of the paper is organized into four sections. In 
section II, we provide more details on our dataset. In section III, 
we describe the deep learning architectures that were developed 
to recognize our limited vocabulary. Section IV provides 
detailed results based on extensive optimization of our proposed 
deep learning architectures. We provide concluding remarks in 
section V. 

II. DATASET 

 This section provides more details of how we constructed 
our dataset. 
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A. Diné Word Selection 

As mentioned earlier, our goal was to construct a limited 
vocabulary for STEM+C education. Our chosen words in Table 
I contain common greetings and commands for controlling a 
rover. In addition, we restricted our attention to words that can 
be uttered in less than a second. The words were chosen by Dr. 
Chee, our co-author, and Director of the Navajo Language 
Program at the University of New Mexico. 

 Since the Diné language is Polysynthetic, some of the 
potential rover commands were difficult to say and required  
more than one second to pronounce. The rover command to turn 
right in Diné is nish’náájígo which translates to English as “on 
the right side.” Dr. Chee suggested removing the prefix and 
suffix leaving the root direction, right. It would sound weird in 
Diné because directions are stated of who or what is to the right 
of the object, but the direction is still present. As a result, our 
initial vocabulary of twenty-five potential words was narrowed 
down to twelve words. 

B. Word Collection 

Each word was repeated twenty times by ten Native 
American volunteers. The volunteers for the Diné recordings 
determined how many times each word would be repeated. 
Sampling words were recorded from six males and four females. 
Thus, we created a fully balanced dataset based on twenty 
utterances of 12 words, repeated by ten speakers.  

Early in our experiments, we found that repeating each word 
twenty times resulted in speaker fatigue. As a result, 
pronunciation, as well as annunciation, began to fade. Based on 
earlier work in [18], to reduce speaker fatigue, we decided to 
record the twenty utterances using multiple recordings of a small 
number of utterances. 

C. Word Collection 

Our primary goal was to develop an ASR system that can 

be applied to new student speakers without retraining. Thus, for 

training and testing our system we selected words by different 

speakers. We randomly selected three speakers for testing. 

Then, we created three training-testing datasets based on testing 

each one of the speakers while training using the remaining nine 

speakers. 

TABLE I.  12 DINÉ VOCABULARY WORDS 

Diné word English equivalent 

yá’át’ééh hello 

hágoónee’ farewell 

ádin nothing (zero) 

náás forward 

k'adí enough (stop) 
tł'ahjí left side 

náájí right side 

saad Language/word 
tʼááłáʼí one 

naaki two 

táá’ three 
dįį́́ʼ four 

 

III. METHODOLOGY 

We summarize our proposed approach using three steps. 
First, we applied data augmentation. Second, we performed 
feature extraction for each word. Third, we processed the 
extracted features using three different deep-learning 
architectures. For training, we considered using nine different 
optimization methods, as summarized in Table II. In what 
follows, we provide more details for each step. 

For data augmentation, we considered several different 
transformations. Specifically, we applied time-stretching, 
amplitude variations, time shifts, small amounts of white 
Gaussian noise, and their combinations. Using data 
augmentation, we doubled each training dataset. We did not 
apply any data augmentation to our testing dataset. Instead, we 
report results on our raw dataset extracted from a speaker who 
was not part of our training dataset. 

For feature extraction, we first applied a lowpass filter that 
removed frequencies above 8Khz. Then, we computed 63x63 
Mel-Spectrograms from each audio recording. 

The extracted features were then classified using deep-
learning architectures based on CNN, RNN, and LSTM. As 
summarized in Table II, for training, we investigated the use of 
RMSProp, Adam, AdamW, Adamax, Nadam, Nesterov, 
AdaGrad, Momentum, and SGD. 

We provide system diagrams for three deep-learning 
architectures in Fig. 1. The three final networks of Fig. 1 
represent our optimized models based on our extensive 
experimentation with the size of the Mel-Spectrogram image, 
the number of layers, the number of neurons used in each layer, 
dropout rates, and the activation functions. 

To improve system performance, changes were made to the 
following: layers, neurons, batch size, optimizer values, 
activation, dropout, and mel count. After experimentation, some 
models did not improve after changes were made. For each 
network, we used the optimization settings given in Table II and 
also considered different batch sizes. A batch size of 32 was 
considered optimal. 

TABLE II.  OPTIMIZERS 

Optimizer Values 

RMSProp lr = 0.001 

Adam lr = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 

AdamW lr = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 

AdaGrad lr = 0.01 

Adamax lr = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 

Nadam lr = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 

Nesterov lr = 0.01, p = 0.9 

Momentum lr = 0.01, p = 0.9 

SGD lr = 0.01, p = 0.9 
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Fig. 1. Training models. 

IV. RESULTS 

We begin with a summary of our results using the RNN, 
CNN, and the LSTM networks. In terms of performance, RNN 
performed the worst. CNN did better than RNN but performed 
significantly worse than the LSTM network. 

We were not able to get the RNN to converge to anything 
meaningful. We could not get the training and validation losses 
to converge with additional epochs. The overall accuracy was 
around 9.0%. 

We performed extensive experimentation with the CNN 
models. Initially, we tested our CNN model with four words. 
However, we saw a significant drop in performance when we 
tested the network on twelve words. The validation loss 
remained above 0.03 for all optimization methods. Furthermore, 
we could not improve the results by varying our models. 
Overall, the CNN system gave accuracy scores ranging from 
70% to 90%. Training loss approached very low values while 
validation losses converged around 0.04. In terms of overall 
performance, the CNN performed reasonably well. Confusion 
matrices did not show any significant biases in the model. Total 
training time was about 20 minutes to train using a single 
optimizer on an Intel i5 8600 processor with 16 GB of RAM. 

The LSTM models gave the best results. Our training loss 
approached low values as shown in Fig. 2. Our validation loss 
approached very low values as shown in Fig. 3. In terms of 
optimization methods, AdamW, Adam, Nadam, and RMSProp 
consistently outperformed all other methods. However, it is 
important to note that all optimization methods performed 
relatively well with the LSTM network. It took about 10 minutes 
to train using a single optimizer.  

For the LSTM network, we present confusion matrix results 
for two of the three speakers. Overall, the network gave more 
than 90% accuracy for all three speakers in our leave-one-out 
validation test. As shown in Fig. 4, LSTM gave perfect results 
for one of the speakers. For this example, LSTM was trained 
using RMSProp. The worst results are shown in Fig. 5. For this 

example, the network was trained using Momentum. From the 
example, it is clear that the error is due to the misclassification 
of three words. For the rest of the words, the system achieved 
perfect classification results.  

The misclassification of the words yá'át'ééh and saad was 
due to speaker pronunciation as seen in Fig 5. The speaker 
frequently did not emphasize the “t” sound in yá'át'ééh and 
would often end the word with an “i” sound like the ending of 
naaki. This is why some of the testing set for yá'át'ééh were 
misclassified. A similar circumstance is seen with saad. The 
speaker did not emphasize the “d” at the end of the word causing 
a confusion with the classification. 

V. CONCLUSIONS 

We have found that LSTM networks provided the best 
results for automatic speech recognition of the Diné language. It 
produced consistently better results no matter which optimizer 
was used. It also took the least amount of time to train this 
model. We were also able to get good results with the CNN 
architecture. We are currently working on expanding our 
vocabulary and increasing our number of speakers. 
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Fig. 2. LSTM Training Loss. 

 

Fig. 3. LSTM Validation Loss 

 

Fig. 4. LSTM model best result. 

 

Fig. 5. LSTM model worst result 
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