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Abstract— The paper describes the development of a speech
recognition system to classify Navajo (Diné) words using Low
Resource Language (LRL) datasets. There are presently no known
high-quality open-sourced datasets for the Diné language that are
needed to train models for speech Recognition. A small dataset was
designed to train several models. To overcome the scarcity of the
LRL dataset, the audio recordings were augmented to account for
time-stretching, amplitude variations, time shifts, and small
amounts of white Gaussian noise.

Several models were trained using different optimization
methods. The models included a Recurrent Neural Network
(RNN), a Convolutional Neural Network (CNN), and a Long
Short-Term Memory (LSTM) model. The results compare nine
methods: SGD, Momentum, Nesterov, AdaGrad, RMSProp,
Adam, Adamax, Nadam, and AdamW. For the best model, we
report a family of different training/validation curves. The results
demonstrate excellent classification performance on LRL models
for Navajo Speech Recognition.

Keywords—Diné, Navajo Speech Recognition, Low Resource
Language Datasets

I. INTRODUCTION

Automatic speech recognition systems are commonly
deployed for use with many IOT devices. The languages
supported in these devices are based on large datasets for which
mature automatic speech recognition systems have been
developed. For this paper, we consider the development of an
automated speech recognition system for Diné Bizaad, which
does not have a large, high-quality dataset for training.

The lack of high-quality curated digital resources can be
attributed to several factors. One is, it would cost a lot of money
to record and digitize Navajo language audio and written
materials. It would also take a team of skilled people to get a
significant amount of work done for this. Finding people with
the rights skill set or training others to learn the skills is costly.
Thus, it will take a significant amount of funding.

Additionally, the Navajo language was classified by the U.S.
military until 1968 [4]. This was due to the success of the
language as an unbreakable code during World War II. Today,
the Diné language is classified as endangered with few
monolingual speakers. Also, the written form of the language
was not created by the Diné people. Robert Young and William
Morgan Sr. developed the Navajo orthography using Romanized
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letters [6]. The Navajo writing system, developed for the Diné
people, was forced upon them to use by making it the only
available writing system. The written form of the language
began to gain popularity sometime after the U.S. military
declassified it. Navajo people began to realize that the written
form could be a useful tool [4]. Essentially, one could take an
entire English sentence and create a single complex words to
express the same concept in Diné Bizaad. This was
accomplished through multiple morphemes usage.

The Diné people speak a Polysynthetic language with a rich
verbal morphological system. Developing an automatic speech
recognition system (ASR) is particularly challenging due to the
number of inflections in the language. The number of inflections
causes a simple word to take on a new meaning and adds to the
complexity of translation, as discussed in [7]. The difficulty with
training an ASR with a LRL has been discussed in [8].

For this paper, we were interested in developing an ASR
system for the Diné language that can also be used for STEM+C
education. Thus, we designed a small dataset of 12 vocabulary
words that can be used to control a small robot (see Table I). Our
work was motivated and funded through the NSF ESTRELLA
project that focuses on the development of STEM+C curriculum
for bilingual children (eg. See [9-16]).

We investigate the successful training of three deep-learning
architectures based on RNN, CNN, and LSTM. Overall, we
have found that the LSTM architecture performed the best. We
hope that the lessons learned from our study will inform groups
working on ASR system for Native American languages with
limited resources. Thus, we provide detailed information on
dataset collection and LSTM model optimization using various
optimization methods.

The rest of the paper is organized into four sections. In
section II, we provide more details on our dataset. In section III,
we describe the deep learning architectures that were developed
to recognize our limited vocabulary. Section IV provides
detailed results based on extensive optimization of our proposed
deep learning architectures. We provide concluding remarks in
section V.

II. DATASET

This section provides more details of how we constructed
our dataset.
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A. Diné Word Selection

As mentioned earlier, our goal was to construct a limited
vocabulary for STEM+C education. Our chosen words in Table
I contain common greetings and commands for controlling a
rover. In addition, we restricted our attention to words that can
be uttered in less than a second. The words were chosen by Dr.
Chee, our co-author, and Director of the Navajo Language
Program at the University of New Mexico.

Since the Diné language is Polysynthetic, some of the
potential rover commands were difficult to say and required
more than one second to pronounce. The rover command to turn
right in Diné is nish’nadjigo which translates to English as “on
the right side.” Dr. Chee suggested removing the prefix and
suffix leaving the root direction, right. It would sound weird in
Diné because directions are stated of who or what is to the right
of the object, but the direction is still present. As a result, our
initial vocabulary of twenty-five potential words was narrowed
down to twelve words.

B. Word Collection

Each word was repeated twenty times by ten Native
American volunteers. The volunteers for the Diné recordings
determined how many times each word would be repeated.
Sampling words were recorded from six males and four females.
Thus, we created a fully balanced dataset based on twenty
utterances of 12 words, repeated by ten speakers.

Early in our experiments, we found that repeating each word
twenty times resulted in speaker fatigue. As a result,
pronunciation, as well as annunciation, began to fade. Based on
earlier work in [18], to reduce speaker fatigue, we decided to
record the twenty utterances using multiple recordings of a small
number of utterances.

C. Word Collection

Our primary goal was to develop an ASR system that can
be applied to new student speakers without retraining. Thus, for
training and testing our system we selected words by different
speakers. We randomly selected three speakers for testing.
Then, we created three training-testing datasets based on testing
each one of the speakers while training using the remaining nine
speakers.

TABLE L 12 DINE VOCABULARY WORDS
Diné word English equivalent
ya’at’ééh hello

hagoonee’ farewell

adin nothing (zero)
naas forward

k'adi enough (stop)
th'ahji left side

naaji right side

saad Language/word
t’aatd’1 one

naaki two

taa’ three

dii’ four
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[II. METHODOLOGY

We summarize our proposed approach using three steps.
First, we applied data augmentation. Second, we performed
feature extraction for each word. Third, we processed the
extracted features using three different deep-learning
architectures. For training, we considered using nine different
optimization methods, as summarized in Table II. In what
follows, we provide more details for each step.

For data augmentation, we considered several different
transformations. Specifically, we applied time-stretching,
amplitude variations, time shifts, small amounts of white
Gaussian noise, and their combinations. Using data
augmentation, we doubled each training dataset. We did not
apply any data augmentation to our testing dataset. Instead, we
report results on our raw dataset extracted from a speaker who
was not part of our training dataset.

For feature extraction, we first applied a lowpass filter that
removed frequencies above 8Khz. Then, we computed 63x63
Mel-Spectrograms from each audio recording.

The extracted features were then classified using deep-
learning architectures based on CNN, RNN, and LSTM. As
summarized in Table II, for training, we investigated the use of
RMSProp, Adam, AdamW, Adamax, Nadam, Nesterov,
AdaGrad, Momentum, and SGD.

We provide system diagrams for three deep-learning
architectures in Fig. 1. The three final networks of Fig. 1
represent our optimized models based on our extensive
experimentation with the size of the Mel-Spectrogram image,
the number of layers, the number of neurons used in each layer,
dropout rates, and the activation functions.

To improve system performance, changes were made to the
following: layers, neurons, batch size, optimizer values,
activation, dropout, and mel count. After experimentation, some
models did not improve after changes were made. For each
network, we used the optimization settings given in Table I and
also considered different batch sizes. A batch size of 32 was
considered optimal.

TABLE II. OPTIMIZERS
Optimizer Values
RMSProp Ir=0.001
Adam Ir=10.001, g, = 0.9, B, =0.999
AdamW Ir=0.001, ; =0.9, , =0.999
AdaGrad Ir=0.01
Adamax Ir=10.001, B, = 0.9, B, =0.999
Nadam Ir=0.001, ; =0.9, , =0.999
Nesterov Ir=0.01,p=0.9
Momentum Ir=0.01,p=0.9
SGD Ir=0.01,p=0.9
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Fig. 1. Training models.
example, the network was trained using Momentum. From the
IV. RESULTS

We begin with a summary of our results using the RNN,
CNN, and the LSTM networks. In terms of performance, RNN
performed the worst. CNN did better than RNN but performed
significantly worse than the LSTM network.

We were not able to get the RNN to converge to anything
meaningful. We could not get the training and validation losses
to converge with additional epochs. The overall accuracy was
around 9.0%.

We performed extensive experimentation with the CNN
models. Initially, we tested our CNN model with four words.
However, we saw a significant drop in performance when we
tested the network on twelve words. The validation loss
remained above 0.03 for all optimization methods. Furthermore,
we could not improve the results by varying our models.
Overall, the CNN system gave accuracy scores ranging from
70% to 90%. Training loss approached very low values while
validation losses converged around 0.04. In terms of overall
performance, the CNN performed reasonably well. Confusion
matrices did not show any significant biases in the model. Total
training time was about 20 minutes to train using a single
optimizer on an Intel i5 8600 processor with 16 GB of RAM.

The LSTM models gave the best results. Our training loss
approached low values as shown in Fig. 2. Our validation loss
approached very low values as shown in Fig. 3. In terms of
optimization methods, AdamW, Adam, Nadam, and RMSProp
consistently outperformed all other methods. However, it is
important to note that all optimization methods performed
relatively well with the LSTM network. It took about 10 minutes
to train using a single optimizer.

For the LSTM network, we present confusion matrix results
for two of the three speakers. Overall, the network gave more
than 90% accuracy for all three speakers in our leave-one-out
validation test. As shown in Fig. 4, LSTM gave perfect results
for one of the speakers. For this example, LSTM was trained
using RMSProp. The worst results are shown in Fig. 5. For this
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example, it is clear that the error is due to the misclassification
of three words. For the rest of the words, the system achieved
perfect classification results.

The misclassification of the words ya'at'ééh and saad was
due to speaker pronunciation as seen in Fig 5. The speaker
frequently did not emphasize the “t” sound in ya'at'ééh and
would often end the word with an “i”” sound like the ending of
naaki. This is why some of the testing set for ya'at'ééh were
misclassified. A similar circumstance is seen with saad. The
speaker did not emphasize the “d” at the end of the word causing
a confusion with the classification.

V. CONCLUSIONS

We have found that LSTM networks provided the best
results for automatic speech recognition of the Diné language. It
produced consistently better results no matter which optimizer
was used. It also took the least amount of time to train this
model. We were also able to get good results with the CNN
architecture. We are currently working on expanding our
vocabulary and increasing our number of speakers.
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