
A High-Resolution Dataset for Instance Detection with
Multi-View Instance Capture

Qianqian Shen1 Yuhan Zhao2 Nahyun Kwon3 Jeeeun Kim3 Yanan Li1 Shu Kong3
1Zhejiang Lab 2UC-Irvine 3Texas A&M University

Dataset and open-source code in webpage

Abstract

Instance detection (InsDet) is a long-lasting problem in robotics and computer1

vision, aiming to detect object instances (predefined by some visual examples) in a2

cluttered scene. Despite its practical significance, its advancement is overshadowed3

by Object Detection, which aims to detect objects belonging to some predefined4

classes. One major reason is that current InsDet datasets are too small in scale5

by today’s standards. For example, the popular InsDet dataset GMU (published6

in 2016) has only 23 instances, far less than COCO (80 classes), a well-known7

object detection dataset published in 2014. We are motivated to introduce a new8

InsDet dataset and protocol. First, we define a realistic setup for InsDet: training9

data consists of multi-view instance captures, along with diverse scene images10

allowing synthesizing training images by pasting instance images on them with11

free box annotations. Second, we release a real-world database, which contains12

multi-view capture of 100 object instances, and high-resolution (6k×8k) testing13

images. Third, we extensively study baseline methods for InsDet on our dataset,14

analyze their performance and suggest future work. Somewhat surprisingly, using15

the off-the-shelf class-agnostic segmentation model (Segment Anything Model,16

SAM) and the self-supervised feature representation DINOv2 performs the best,17

achieving >10 AP better than end-to-end trained InsDet models that repurpose18

object detectors (e.g., FasterRCNN and RetinaNet).19

1 Introduction20

Instance detection (InsDet) requires detecting specific object instances (defined by some visual21

examples) from a scene image [12]. It is practically important in robotics, e.g., elderly-assistant22

robots need to fetch specific items (my-cup vs. your-cup) from a cluttered kitchen [41], micro-23

fulfillment robots for the retail need to pick items from mixed boxes or shelves [4].24

Motivation. InsDet receives much less attention than the related problem of Object Detection25

(ObjDet), which aims to detect all objects belonging to some predefined classes [29, 38, 30, 49].26

Fig. 1 compares the two problems. One major reason is that there are not large-enough InsDet27

datasets by today’s standards. For example, the popular InsDet dataset GMU (published in 2016) [15]28

has only 23 object instances while the popular ObjDet dataset COCO has 80 object classes (published29

in 2014) [29]. Moreover, there are no unified protocols in the literature of InsDet. The current InsDet30

literature mixes multiple datasets to simulate training images and testing scenarios [12]. Note that the31

training protocol of InsDet does not follow that of ObjDet, which has training images annotated with32

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets
and Benchmarks. Do not distribute.

https://github.com/insdet


coffee-beanbottle

coffee-bean
coffee-bean

coffee-bean
bottle

geo-coffee-bean (mocha)

Illy-coffee-beanthermos-flask (white small)

geo-coffee-bean (dark-roast)

coffee-bean, 
bottle, 
cup,
...

Instance Detection (InsDet): detecting instances with 
these visual examples:

Object detection (ObjDet): detecting objects belonging to 
these classes:

Figure 1: Object detection (ObjDet) vs. instance detection (InsDet). ObjDet aims to detect all objects
belonging to some predefined classes, whereas InsDet requires detecting specific object instances defined by
some visual examples. Loosely speaking, InsDet treats a single object instance as a class compared to ObjDet.
Please refer to Fig. 2-right for the challenge of InsDet, which is the focus of our work.

bounding boxes. Differently, for InsDet,1 its setup should have profile images of instances (cf. right33

in Fig. 1) and optionally diverse background images not containing such instances [12]. We release a34

new dataset and present a unified protocol to foster the InsDet research.35

Overview of our dataset is presented in Fig. 2. In our dataset, profile images (3072x3072) of object36

instances and testing images (6144x8192) are high-resolution captured by a Leica camera (commonly37

used in today’s cellphones). This inexpensive camera is deployable in current or future robot devices.38

Hence, our dataset simulates real-world scenarios, e.g., robotic navigation in indoor scenes. Even39

with high-resolution images, objects in testing images appear small, taking only a tiny region in the40

high-res images. This demonstrates a clear challenge of InsDet in our dataset. Therefore, our dataset41

allows studying InsDet methods towards real-time operation on high-res (as future work).42

Preview of technical insights. On our dataset, we revisit existing InsDet methods [27, 12, 17].43

Perhaps the only InsDet framework is cut-paste-learn [12], which cuts instances from their profile44

images, pastes them on random background images (so being able to derive “free” bounding boxes45

annotations), and trains InsDet detectors on such data by following that of ObjDet (e.g., Faster-46

RCNN [38]). We study this framework, train different detectors, and confirm that the state-of-the-art47

transformer-based detector DINO [49] performs the best, achieving 27.99 AP, significantly better48

than CNN-based detector FasterRCNN (19.52 AP). Further, we present a non-learned method that49

runs off-the-shelf proposal detectors (SAM [24] in our work) to generate object proposals and use50

self-supervised learned features (DINOf [8]2 and DINOv2f [34]) to find matched proposals to51

instances’ profile images. Perhaps surprisingly, this non-learned method resoundingly outperforms52

end-to-end learning methods, i.e., SAM+DINOv2f achieves 41.61 AP, much better than DINO (27.9953

AP) [49].54

Contributions. We make three major contributions.55

1. We formulate the InsDet problem with a unified protocol and release a challenging dataset56

consisting of both high-resolution profile images and high-res testing images.57

2. We conduct extensive experiments on our dataset and benchmark representative methods58

following the cut-paste-learn framework [12], showing that stronger detectors perform better.59

3. We present a non-learned method that uses an off-the-shelf proposal detector (i.e., SAM [24])60

to produce proposals, and self-supervised learned features (e.g., DINOv2f [34]) to find61

instances (which are well matched to their profile images). This simple method significantly62

outperforms the end-to-end InsDet models.63

2 Related Work64

Instance Detection (InsDet) is a long-lasting problem in computer vision and robotics [50, 12, 33, 3,65

16, 22, 4], referring to detecting specific object instances in a scene image. Traditional InsDet methods66

use keypoint matching [35] or template matching [20]; more recent ones train deep neural networks67

1In real-world applications (e.g., robot learning), it is infeasible to place objects in diverse scenes, take scene
photos, then annotate instances using boxes towards training images (cf. training data in object detection).

2We add subscript f to indicate that DINOf [8] is the self-supervised learned feature extractor; distinguishing
it from a well-known object detector DINO [49].

2



ID-002 ID-099 ID-100ID-001
testing data: zoom-in regions with box annotationstraining data: object instances

vi
ew

-2
vi

ew
-2

4
vi

ew
-1

training data: diverse background images

ha
rd

 sc
en

es
ea

sy
 s

ce
ne

s

Figure 2: Overview of our instance detection dataset. Left: It contains 100 distinct object instances. For
each of them, we capture 24 profile photos from multiple views. We paste QR code images beneath objects
to allow relative camera estimation (e.g., by COLMAP [42]), just like other existing datasets [21, 5]. Middle:
We take photos in random scenes (which do not contain any of the 100 instances) as background images. The
background images can be optionally used to synthesize training data, e.g., pasting the foreground instances on
them towards box-annotated training images [27, 12, 17] as used in the object detection literature [29]. Right:
high-resolution (6k×8k) testing images of clutter scenes contain diverse instances, including some of the 100
predefined instances and other uninterested ones. The goal of InsDet is to detect the predefined instances in these
testing images. From the zoom-in regions, we see the scene clutters make InsDet a rather challenging problem.

to approach InsDet [33]. Some others focus on obtaining more training samples by rendering realistic68

instance examples [23, 22], data augmentation [12], and synthesizing training images by cutting69

instances as foregrounds and pasting them to background images [27, 12, 17]. Speaking of InsDet70

datasets, [15] collects scene images from 9 kitchen scenes with RGB-D cameras and defines 2371

instances of interest to annotate with 2D boxes on scene images; [22] creates 3D models of 2972

instances from 6 indoor scenes, and uses them to synthesize training and testing data; [4] creates 3D73

mesh models of 100 grocery store objects, renders 80 views of images for each instance, and uses74

them to synthesize training data.75

As for benchmarking protocol of InsDet, [12] synthesizes training data from BigBird [44] and76

UW Scenes [26] and tests on the GMU dataset [15]; [22] trains on their in-house data and test on77

LM-O [5] and Rutgers APC [39] datasets. Moreover, some works require hardware-demanding78

setups [4], some synthesize both training and testing data [22, 27], while others mix existing datasets79

for benchmarking [12]. Given that the modern literature on InsDet lacks a unified benchmarking80

protocol (till now!), we introduce a more realistic unified protocol along with our InsDet dataset,81

allowing fairly benchmarking methods and fostering research of InsDet.82

Object Detection (ObjDet) is a fundamental computer vision problem [13, 29, 38], requiring83

detecting all objects belonging to some predefined categories. The prevalent ObjDet detectors adopt84

convolutional neural networks (CNNs) as a backbone and a detector-head for proposal detection and85

classification, typically using bounding box regression and a softmax-classifier. Approaches can be86

grouped into two categories: one-stage detectors [37, 31, 36, 47] and two-stage detectors [18, 6].87

One-stage detectors predict candidate detection proposals using bounding boxes and labels at regular88

spatial positions over feature maps; two-stage detectors first produce detection proposals, then89

perform classification and bounding box regression for each proposal. Recently, the transformer-90

based detectors transcend CNN-based detectors [7, 52, 49], yielding much better performance on91

various ObjDet benchmarks. Different from ObjDet, InsDet requires distinguishing individual object92

instances within a class. Nevertheless, to approach InsDet, the common practice is to repurpose93

ObjDet detectors by treating unique instances as individual classes. We follow this practice and94

benchmark various ObjDet methods on our InsDet dataset.95

Pretrained Models. Pretraining is an effective way to learn features from diverse data. For example,96

training on the large-scale ImageNet dataset for image classification [10], a neural network can97

serve as a powerful feature extractor for various vision tasks [11, 43]. Object detectors trained on98

the COCO dataset [29] can serve as a backbone allowing finetuning on a target domain to improve99

detection performance [28]. Such pretraining requires human annotations which can be costly.100

Therefore, self-supervised pretraining has attracted increasing attention and achieved remarkable101

progress [9, 19, 8, 34]. Moreover, the recent literature shows that pretraining on much larger-scale102

data can serve as a foundation model for being able to perform well across domains and tasks.103

For example, the Segment Anything Model (SAM) pretrains a class-agnostic proposal detector on104

3



web-scale data and shows an impressive ability to detect and segment diverse objects in the wild [24].105

In this work, with our high-res InsDet dataset, we explore a non-learned method by using publicly106

available pretrained models. We show that such a simple method significantly outperforms end-to-end107

learned InsDet detectors.108

3 Instance Detection: Protocol and Dataset109

In this section, we formulate a realistic unified InsDet protocol and introduce the new dataset. We110

release our dataset under the MIT License, hoping to contribute to the broader research community.111

3.1 The Protocol112

Our InsDet protocol is motivated by real-world indoor robotic applications. In particular, we consider113

the scenario that assistive robots must locate and recognize instances to fetch them in a cluttered114

indoor scene [41], where InsDet is a crucial component. Realistically, for a given object instance,115

the robots should see it only from a few views (at the training stage), and then accurately detect it116

in a distance in any scenes (at the testing stage). Therefore, we suggest the protocol specifying the117

training and testing setups below. We refer the readers to Fig. 2 for an illustration of this protocol.118

• Training. There are profile images of each instance captured at different views and diverse119

background images. The background images can be used to synthesize training images with120

free 2D-box annotations, as done by the cut-paste-learn methods [27, 12, 17].121

• Testing. InsDet algorithms are required to precisely detect all predefined instances from122

real-world images of cluttered scenes.123

Evaluation metrics. The InsDet literature commonly uses average precision (AP) at IoU=0.5 [12, 2,124

33]; others use different metrics, e.g., AP at IoU=0.75 [22], mean AP [3, 16], and F1 score [4]. As a125

single metric appears to be insufficient to benchmark methods, we follow the literature of ObjDet126

that uses multiple metrics altogether [29].127

• AP averages the precision at IoU thresholds from 0.5 to 0.95 with the step size 0.05. It is128

the primary metric in the most well-known COCO Object Detection dataset [29].129

• AP50 and AP75 are the precision averaged over all instances with IoU threshold as 0.5 and130

0.75, respectively. In particular, AP50 is the widely used metric in the literature of InsDet.131

• AR (average recall) averages the proposal recall at IoU threshold from 0.5 to 1.0 with132

the step size 0.05, regardless of the classification accuracy. AR measures the localization133

performance (excluding classification accuracy) of an InsDet model.134

Moreover, we tag hard and easy scenes in the testing images based on the level of clutter and135

occlusion, as shown by the right panel of Fig. 2. Following the COCO dataset [29], we further tag136

testing object instances as small, medium, and large according to their bounding box area (cf. details137

in the supplement). These tags allow a breakdown analysis to better analyze methods.138

3.2 The Dataset139

sorted object instance id
10
20
30
40
50
60
70
80

#c
ou

nt
s

sorted object instance id
175
200
225
250
275
300
325
350

#c
ou

nt
s

Figure 3: Imbalanced distribution of instances in
test-set. Yet, instances have the same number of
profile images in training and the metrics average
over all instances. So, the evaluation is unbiased.

We introduce a challenging real-world dataset of in-140

door scenes (motivated by indoor assistive robots),141

including high-resolution photos of 100 distinct ob-142

ject instances, and high-resolution testing images cap-143

tured from 14 indoor scenes where there are such 100144

instances defined for InsDet. Table 1 summarizes the145

statistics compared with existing datasets, showing146

that our dataset is larger in scale and more challeng-147

ing than existing InsDet datasets. Importantly, object148

instances are located far from the camera in cluttered149

scenes; this is realistic because robots must detect150

4



Table 1: Comparison of our dataset to existing ones. Several datasets are used in the InsDet literature
although they are designed for different tasks. For example, BigBird and LM are designed to study algorithms of
object recognition and object pose estimation, hence they contain instances that are close to the camera. Naively
repurposing them for InsDet leads to saturated performance, impoverishing the exploration space of InsDet.
Instead, ours is more challenging as instances are placed far from the camera, simulating realistic scenarios
where robots must detect instances at a distance. Importantly, our dataset contains far more instances than other
publicly available InsDet datasets.

for what task publicly available #instances #scenes published year resolution

BigBird [44] recognition ✓ 100 N/A 2014 1280x1024
RGBD [27] scene label. ✓ 300 14 2017 N/A
LM [21] 6D pose est. ✓ 15 1 2012 480x640
LM-O [5] 6D pose est. ✓ 20 1 2017 480x640
RU-APC [39] 3D pose est. ✓ 14 1 2016 480x640

GMU [15] InsDet ✓ 23 9 2016 1080x1920
AVD [1] InsDet ✓ 33 9 2017 1080x1920
Grocery [4] InsDet ✗ 100 10 2021 unknown

Ours InsDet ✓ 100 14 2023 6144x8192

objects in a distance before approaching them [1]. Perhaps surprisingly, only a few InsDet datasets151

exist in the literature. Among them, Grocery [4], which is the latest and has the most instances like152

our dataset, is not publicly available.153

Our InsDet dataset contains 100 object instances. When capturing photos for each instance, inspired154

by prior arts [44, 21, 5], we paste a QR code on the tabletop, which enables pose estimation, e.g.,155

using COLMAP [42]. Yet, we note more realistic scenarios can be hand-holding instances for156

capturing [25], which we think of as future work. Each instance photo is of 3072×3072 pixel157

resolution. For each instance, we capture 24 photos from multiple views. The left panel of Fig. 2158

shows some random photos for some instances. For the testing set, we capture high-resolution images159

(6144×8192) in cluttered scenes, where some instances are placed in reasonable locations, as shown160

in the right panel of Fig. 2. We tag these images as easy or hard based on scene clutter and object161

occlusion levels. When objects are placed sparsely, we tag the testing images as easy; otherwise,162

we tag them as hard. Our InsDet dataset also contains 200 high-res background images of indoor163

scenes (cf. Fig. 2-middle). These indoor scenes are not included in testing images. They allow using164

the cut-paste-learn framework to synthesize training images [27, 12, 17]. Following this framework,165

we segment foreground instances using GrabCut [40] to paste them on background images. It is166

worth noting that the recent vision foundation model SAM [24] makes interactive segmentation much167

more efficient. Yet, this work is made public after we collected our dataset. In Fig. 3, we plot the168

per-instance frequency in the testing set.169

4 Methodology170

4.1 The Strong Baseline: Cut-Paste-Learn171

Cut-Paste-Learn serves as a strong baseline that synthesizes training images with 2D-box anno-172

tations [12]. This allows one to train InsDet detectors in the same way as training normal ObjDet173

detectors, by simply treating the K unique instances as K distinct classes. It cuts and pastes fore-174

ground instances at various aspect ratios and scales on diverse background images, yielding synthetic175

training images, as shown in Fig. 4. Cut-paste-learn is model-agnostic, allowing one to adopt any176

state-of-the-art detector architecture. In this work, we study five popular detectors, covering the two-177

stage detector FasterRCNN [38], and one-stage anchor-based detector RetinaNet [30], and one-stage178

anchor-free detectors CenterNet [50], and FCOS [46]; and the transformer-based detector DINO [49].179

There are multiple factors in the cut-paste-learn framework, such as the number of inserted objects in180

each background image, their relative size, the number of generated training images and blending181

methods. We conduct comprehensive ablation studies and report results using the best-tuned choices.182

We refer interested readers to the supplement for the ablation studies.183

5



(a) box (b) Gaussian blurring (c) Motion (d) naive pasting

Figure 4: Synthetic training images for cut-paste-learn methods. We use different blending methods to paste
object instances on the same background. We recommend that interested readers refer to the supplement for an
ablation study using different blending methods.

4.2 The Simple, Non-Learned Method184

We introduce a simple, non-learned InsDet method by exploiting publicly available pretrained models.185

This method consists of three main steps: (1) proposal generation on testing images, (2) matching186

proposals and profile images, (3) selecting the best-matched proposals as the detected instances.187

Proposal generation. We use the recently released Segment Anything Model (SAM) [24] to generate188

proposals. For a proposal, we define a minimum bounding square box encapsulating the masked189

instance, and then crop the region from the high-resolution testing image. SAM not only achieves190

high recall (Table 3) on our InsDet dataset but detects objects not belonging to the instances of191

interest. So the next step is to find interested instances from the proposals.192

Feature representation of proposals and profile images. Intuitively, among the pool of proposals,193

we are interested in those that are well-matched to any profile images of any instance. The well-194

matched ones are more likely to be predefined instances. To match proposals and profile images,195

we use off-the-shelf features to represent them. In this work, we study two self-supervised learned196

models as feature extractors, i.e. DINOf [8], and DINOv2f [34]. We feed a square crop (of a197

proposal) or a profile image to the feature extractor to obtain its feature representation. We use cosine198

similarity over the features as the similarity measure between a proposal and a profile image.199

Proposal matching and selection. As each instance has multiple profile images, we need to design200

the similarity between a proposal and an instance. For a proposal, we compute the cosine similarities201

of its feature to all the profile images of an instance and use the maximum as its final similarity202

to this instance. We then filter out proposals and instances if they have similarities lower than a203

threshold, indicating that they are not matched to any instances or proposals. Finally, we obtain a204

similarity matrix between all remaining proposals and all remaining instances. Over this matrix, we205

study two matching algorithms to find the best match (hence the final InsDet results), i.e. Rank &206

Select, and Stable Matching [14, 32]. The former is a greedy algorithm that iteratively selects the best207

match (highest cosine similarity) between a proposal and an instance and removes the corresponding208

proposal until no proposal/instance is left. The latter produces an optimal list of matched proposals209

and instances, such that there exist no pair of instances and proposals which both prefer each other to210

their current correspondence under the matching.211

5 Experiments212

Synthesizing training images for cut-paste-learn baselines. Our baseline method trains state-of-213

the-art ObjDet detectors on data synthesized using the cut-paste-learn strategy [12]. For evaluating214

on our InsDet dataset, we generate 19k training examples and 6k validation examples. For each215

example, various numbers of foreground objects ranging from 25 to 35 are pasted to a randomly216

selected background image. The objects are randomly resized with a scale from 0.15 to 0.5. We use217

four blending options [12], including Gaussian blurring, motion blurring, box blurring, and naive218

pasting. Fig. 4 shows some random synthetic images. The above factors have a notable impact on the219

final performance of trained models, and we have conducted a comprehensive ablation study. We220

refer interested readers to the supplement for the study.221

6



Table 2: Benchmarking results on our dataset. We summarize three salient conclusions. (1) End-to-end
trained detectors perform better with stronger detector architectures, e.g., the transformer DINO (27.99 AP)
outperforms FasterRCNN (19.54 AP). (2) Interestingly, the non-learned method SAM+DINOv2f performs
the best (41.61 AP), significantly better than end-to-end learned detectors including DINO (27.99 AP). (3) All
methods have much lower AP on hard testing images or small objects (e.g., SAM+DINOv2f yields 28.03 AP
on hard vs. 47.57 AP on easy), showing that future work should focus on hard situations or small instances.

AP AP50 AP75

avg hard easy small medium large

FasterRCNN [38] 19.54 10.26 23.75 5.03 22.20 37.97 29.21 23.26
RetinaNet [30] 22.22 14.92 26.49 5.48 25.80 42.71 31.19 24.98
CenterNet [50] 21.12 11.85 25.70 5.90 24.15 40.38 32.72 23.60
FCOS [46] 22.40 13.22 28.68 6.17 26.46 38.13 32.80 25.47
DINO [49] 27.99 17.89 32.65 11.51 31.60 48.35 39.62 32.19
SAM + DINOf 36.97 22.38 43.88 11.93 40.85 62.67 44.13 40.42
SAM + DINOv2f 41.61 28.03 47.57 14.58 45.83 69.14 49.10 45.95

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

FasterRCNN: 29.21
RetinaNet: 31.19
CenterNet: 32.72
FCOS: 32.80
DINO: 39.62
SAM+DINO: 44.13
SAM+DINOv2: 49.10

Figure 5: Precision-recall curves with IoU=0.5
(AP50 in the legend) on our InsDet dataset.
Stronger detectors perform better, e.g., DINO,
a transformer-based detector significantly outper-
forms FasterRCNN. Furthermore, even with a
simple non-learned method, leveraging pretrained
models, e.g., SAM+DINOv2f , outperforms end-
to-end learned methods.

Implementation details. We conduct all the experiments based on open-source implementations,222

such as Detectron2 [48] (for FasterRCNN and RetinaNet), CenterNet [51], FCOS [45] and DINO [49].223

The CNN-based end-to-end detectors are initialized with pretrained weights on COCO [29]. We224

fine-tune CNN-based models using SGD and the transformer-based model using AdamW with a225

learning rate of 1e-3 and a batch size of 16. We fine-tune all the models for 5 epochs (which are226

enough for training to converge) and evaluate checkpoints after each epoch for model selection. The227

models are trained on a single Tesla V100 GPU with 32G memory.228

If applied, we preprocess object instance profile images and proposals. Specifically, for a profile229

image, we remove the background pixels (e.g., pixels of QR code) using foreground segmentation230

(i.e., GrabCut). For each proposal, we crop its minimum bounding square box. We also study whether231

removing background pixels by using SAM’s mask output performs better. We use DINOf and232

DINOv2f to compute feature representations.233

5.1 Benchmarking Results234

Quantitative results. To evaluate the proposed InsDet protocol and dataset, we first train detec-235

tors from a COCO-pretrained backbone following the cut-past-learn baseline. Table 2 lists detailed236

comparisons and Fig. 5 plots the precision-recall curves for the compared methods. We can see that de-237

tectors with stronger architectures perform better, e.g. DINO (27.99% AP) vs. FasterRCNN (19.54%238

AP). Second, non-learned methods outperform end-to-end trained models, e.g., SAM+DINOv2f239

(41.61% AP) vs. DINO (27.99% AP). Third, all the methods perform poorly on hard and small240

instances, suggesting future work focusing on such cases.241

Table 3 compares methods w.r.t the average recall (AR) metric. “AR@max10” means AR within the242

top-10 ranked detections. In computing AR, we rank detections by using the detection confidence243

scores of the learning-based methods (e.g., FasterRCNN) or similarity scores in the non-learned244

methods (e.g., SAM+DINOf ). ARs, ARm, and ARl are breakdowns of AR for small, medium, and245

large testing object instances. Results show that (1) the non-learned methods that use SAM generally246

recall more instances than others, and (2) all methods suffer from small instances. In sum, results247

show that methods yielding higher recall achieve higher AP metrics (cf. Table 2).248

7



Table 3: Benchmarking results w.r.t average recall (AR). “AR@max10” means AR within the top-10 ranked
detections. In computing AR, we rank detections by using the detection confidence scores of the learning-based
methods (e.g., FasterRCNN) or similarity scores in the non-learned methods (e.g., SAM+DINOf ). ARs, ARm,
and ARl are breakdowns of AR for small, medium and large testing object instances. Results show that (1) the
non-learned methods that use SAM generally recall more instances than others, and (2) all methods suffer from
small instances. In sum, results show that methods yielding higher recall achieve higher AP metrics (cf. Table 2).

AR@max10 AR@max100 ARs@max100 ARm@max100 ARl@max100

FasterRCNN [38] 26.24 39.24 14.83 44.87 60.05
RetinaNet [30] 26.33 49.38 22.04 56.76 69.69
CenterNet [50] 23.55 44.72 17.84 52.03 64.58
FCOS [46] 25.82 46.28 22.09 52.85 64.11
DINO [49] 29.84 54.22 32.00 59.43 72.92
SAM + DINOf 31.25 63.05 31.65 70.01 90.63
SAM + DINOv2f 40.02 63.06 31.11 70.40 90.36

Figure 6: Visual results of FasterRCNN, DINO, and SAM+DINOv2f on our InsDet dataset. The top row
illustrates the sparse placement of instances (i.e., easy scenario), while the bottom contains more cluttered
instances (i.e., hard scenario). We drop predicted instance names for brevity. SAM helps localize instances
with more precise bounding boxes, e.g., as arrows labeled in the upper row. DINOv2f provides more precise
recognition of localized instances, e.g., five instances in the right of the bottom row. Compared with DINO,
SAM+DINOv2f is better at locating occluded instances.

Qualitative results. Fig. 6 visualizes qualitative results on two testing examples from the InsDet249

dataset. Stronger detectors, e.g., the non-learned method SAM+DINOv2f , produce fewer false250

negatives. Even so, all detectors still struggle to detect instances with presented barriers such as251

heavy occlusion, instance size being too small, etc. As shown in Fig. 5, the non-learned method252

SAM+DINOv2f outperforms end-to-end learned methods in a wide range of recall thresholds.253

5.2 Ablation Study254

Due to the space limit, we ablate the instance crop and stable matching in the main paper and put255

more (including ablation studies for the cut-paste-learn methods) in the supplement.256

Proposal feature extraction in the non-learned method. Given a box crop (encapsulating the257

proposal) generated by SAM in the non-learned method, we study how to process the crop to improve258

InsDet performance. Here, we can either crop and feed its minimum bounding box to compute259

DINOv2f features, or we can use the mask to remove the background in the box. Table 4 shows the260

comparison. Clearly, the latter performs remarkably better in both “hard” and “easy” scenarios.261

Proposal-instance match in the non-learned method. After generating proposals by SAM, we262

need to compare them with instance profile images to get the final detection results. We study the263

InsDet performance of the two matching algorithms. Rank & Select is a greedy algorithm that264

iteratively finds the best match between any proposals and instances until no instances/proposals265

8



Table 4: Ablation study: whether to remove background in crops for feature computation. Based on a
proposal given by SAM, we can crop and feed its minimum bounding square to compute DINOv2f feature, or
we can use the mask to remove the background in the square before computing the feature. Clearly, the latter
performs remarkably better.

strategy AP AP50 AP75

avg hard easy avg hard easy avg hard easy

w/o background removal 36.04 23.04 42.37 43.84 29.12 51.00 39.59 25.74 46.13
w/ background removal 39.12 24.00 47.17 46.72 30.81 54.66 42.86 26.40 51.58

Table 5: Ablation study: whether to generate unique proposal-instance match. In contrast to Rank&Select,
Stable Matching produces a unique match to proposal/instance for each instance/proposal, yielding better
performance than Rank&Select.

strategy AP AP50 AP75

avg hard easy avg hard easy avg hard easy

Rank & Select 38.62 23.95 46.31 46.04 30.77 53.64 42.37 26.39 50.61
Stable Matching 39.12 24.00 47.17 46.72 30.81 54.66 42.86 26.40 51.58

are left unmatched; stable matching produces an optimal list of matched proposals and instances266

such that there does not exist a pair in which both prefer other proposals/instances to their current267

correspondence under the matching. Table 5 compares these two methods, clearly showing that stable268

matching works better.269

5.3 Discussions270

Societal Impact. InsDet is a crucial component in various robotic applications such as elderly-271

assistive agents. Hence, releasing a unified benchmarking protocol contributes to broader commu-272

nities. While our dataset enables InsDet research to move forward, similar to other works, directly273

applying algorithms brought by our dataset is risky in real-world applications.274

Limitations. We note several limitations in our current work. First, while our work uses normal275

cameras to collect datasets, we expect to use better and cheaper hardware (e.g., depth camera and IMU)276

for data collection. Second, while the cut-paste-learn method we adopt does not consider geometric277

cues when synthesizing training images, we hope to incorporate such information to generate better278

and more realistic training images, e.g., pasting instances only on up-surfaces like tables, desks,279

and floors. Third, while SAM+DINOv2f performs the best, this method is time-consuming (see a280

run-time study in the supplement); real-world applications should consider real-time requirements.281

Future work. In view of the above limitations, the future work includes: (1) Exploring high-282

resolution images for more precise detection on hard situations, e.g., one can combine proposals283

generated from multi-scale and multi-resolution images. (2) Developing faster algorithms, e.g., one284

can use multi-scale detectors to attend to regions of interest for progressive detection. (3) Bridging285

end-to-end fast models and powerful yet slow pretrained models, e.g., one can train lightweight286

adaptors atop pretrained models for better InsDet.287

6 Conclusion288

We explore the problem of Instance Detection (InsDet) by introducing a new dataset consisting289

of high-resolution images and formulating a realistic unified protocol. We revisit representative290

InsDet methods in the cut-paste-learn framework and design a non-learned method by leveraging291

publicly-available pretrained models. Extensive experiments show that the non-learned method292

significantly outperforms end-to-end InsDet models. Yet, the non-learned method is slow because293

running large pretrained models takes more time than end-to-end trained models. Moreover, all294

methods struggle in hard situations (e.g., in front of heavy occlusions and a high level of clutter in the295

scene). This shows that our dataset serves as a challenging venue for the community to study InsDet.296

9



References297

[1] Phil Ammirato, Patrick Poirson, Eunbyung Park, Jana Kosecka, and Alexander C. Berg. A298

dataset for developing and benchmarking active vision. In IEEE International Conference on299

Robotics and Automation (ICRA), 2017.300

[2] Phil Ammirato, Cheng-Yang Fu, Mykhailo Shvets, Jana Kosecka, and Alexander C Berg. Target301

driven instance detection. arXiv:1803.04610, 2018.302

[3] Siddharth Ancha, Junyu Nan, and David Held. Combining deep learning and verification for303

precise object instance detection. arXiv:1912.12270, 2019.304

[4] Richard Bormann, Xinjie Wang, Markus Völk, Kilian Kleeberger, and Jochen Lindermayr.305

Real-time instance detection with fast incremental learning. In IEEE International Conference306

on Robotics and Automation (ICRA), 2021.307

[5] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and Carsten308

Rother. Learning 6d object pose estimation using 3d object coordinates. In ECCV, 2014.309

[6] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection.310

In CVPR, 2018.311

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and312

Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.313

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,314

and Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.315

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework316

for contrastive learning of visual representations. In International conference on machine317

learning, pages 1597–1607. PMLR, 2020.318

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale319

hierarchical image database. In CVPR, 2009.320

[11] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor321

Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In322

International conference on machine learning, pages 647–655. PMLR, 2014.323

[12] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut, paste and learn: Surprisingly easy324

synthesis for instance detection. In ICCV, 2017.325

[13] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection326

with discriminatively trained part-based models. IEEE transactions on pattern analysis and327

machine intelligence, 32(9):1627–1645, 2009.328

[14] David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The329

American Mathematical Monthly, 69(1):9–15, 1962.330

[15] Georgios Georgakis, Md. Alimoor Reza, Arsalan Mousavian, Phi Hung Le, and Jana Kosecka.331

Multiview rgb-d dataset for object instance detection. International Conference on 3D Vision332

(3DV), 2016.333

[16] Georgios Georgakis, Md Alimoor Reza, Arsalan Mousavian, Phi-Hung Le, and Jana Kovsecká.334

Multiview rgb-d dataset for object instance detection. In International Conference on 3D Vision335

(3DV), 2016.336

[17] Georgios Georgakis, Arsalan Mousavian, Alexander C Berg, and Jana Kosecka. Synthesizing337

training data for object detection in indoor scenes. Robotics: Science and Systems (RSS), 2017.338

10



[18] Ross Girshick. Fast r-cnn. In ICCV, 2015.339

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for340

unsupervised visual representation learning. In CVPR, 2020.341

[20] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter Sturm, Nassir Navab, Pascal Fua,342

and Vincent Lepetit. Gradient response maps for real-time detection of textureless objects.343

IEEE transactions on pattern analysis and machine intelligence, 34(5):876–888, 2011.344

[21] Stefan Hinterstoißer, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary R. Bradski, Kurt345

Konolige, and Nassir Navab. Model based training, detection and pose estimation of texture-less346

3d objects in heavily cluttered scenes. In Asian Conference on Computer Vision, 2012.347

[22] Tomávs Hodavn, Vibhav Vineet, Ran Gal, Emanuel Shalev, Jon Hanzelka, Treb Connell, Pedro348

Urbina, Sudipta N Sinha, and Brian Guenter. Photorealistic image synthesis for object instance349

detection. In IEEE international conference on image processing (ICIP), 2019.350

[23] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir Navab. Ssd-6d:351

Making rgb-based 3d detection and 6d pose estimation great again. In ICCV, 2017.352

[24] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,353

Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything.354

arXiv:2304.02643, 2023.355

[25] Ikki Kishida, Hong Chen, Masaki Baba, Jiren Jin, Ayako Amma, and Hideki Nakayama. Object356

recognition with continual open set domain adaptation for home robot. In WACV, 2021.357

[26] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-view358

rgb-d object dataset. In IEEE International Conference on Robotics and Automation (ICRA),359

2011.360

[27] Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised feature learning for 3d scene labeling.361

IEEE International Conference on Robotics and Automation (ICRA), 2014.362

[28] Hengduo Li, Bharat Singh, Mahyar Najibi, Zuxuan Wu, and Larry S Davis. An analysis of363

pre-training on object detection. arXiv:1904.05871, 2019.364

[29] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan,365

Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV,366

2014.367

[30] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense368

object detection. In ICCV, 2017.369

[31] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,370

and Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, 2016.371

[32] David G McVitie and Leslie B Wilson. The stable marriage problem. Communications of the372

ACM, 14(7):486–490, 1971.373

[33] Jean-Philippe Mercier, Mathieu Garon, Philippe Giguere, and Jean-Francois Lalonde. Deep374

template-based object instance detection. In WACV, 2021.375

[34] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,376

Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning377

robust visual features without supervision. arXiv:2304.07193, 2023.378

[35] A Quadros, James Patrick Underwood, and Bertrand Douillard. An occlusion-aware feature for379

range images. In IEEE International Conference on Robotics and Automation (ICRA), 2012.380

11



[36] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv:1804.02767,381

2018.382

[37] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,383

real-time object detection. In CVPR, 2016.384

[38] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time385

object detection with region proposal networks. In Advances in Neural Information Processing386

Systems, 2015.387

[39] Colin Rennie, Rahul Shome, Kostas E Bekris, and Alberto F De Souza. A dataset for improved388

rgbd-based object detection and pose estimation for warehouse pick-and-place. IEEE Robotics389

and Automation Letters, 1(2):1179–1185, 2016.390

[40] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. " grabcut" interactive foreground391

extraction using iterated graph cuts. ACM transactions on graphics (TOG), 23(3):309–314,392

2004.393

[41] Neil Savage et al. Robots rise to meet the challenge of caring for old people. Nature, 601(7893):394

8–10, 2022.395

[42] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In CVPR,396

2016.397

[43] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features398

off-the-shelf: an astounding baseline for recognition. In CVPR Workshops, 2014.399

[44] Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, and P. Abbeel. Bigbird: A400

large-scale 3d database of object instances. IEEE International Conference on Robotics and401

Automation (ICRA), 2014.402

[45] Zhi Tian, Hao Chen, Xinlong Wang, Yuliang Liu, and Chunhua Shen. AdelaiDet: A toolbox for403

instance-level recognition tasks. https://git.io/adelaidet, 2019.404

[46] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object405

detection. In ICCV, 2019.406

[47] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-407

freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696, 2022.408

[48] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.409

https://github.com/facebookresearch/detectron2, 2019.410

[49] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel Ni, and Harry411

Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. In412

International Conference on Learning Representations, 2022.413

[50] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. In arXiv:1904.07850,414

2019.415

[51] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Probabilistic two-stage detection. In416

arXiv:2103.07461, 2021.417

[52] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:418

Deformable transformers for end-to-end object detection. arXiv:2010.04159, 2020.419

12

https://git.io/adelaidet
https://github.com/facebookresearch/detectron2


Checklist420

The checklist follows the references. Please read the checklist guidelines carefully for information on421

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or422

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing423

the appropriate section of your paper or providing a brief inline description. For example:424

• Did you include the license to the code and datasets? [Yes] See Section 3.425

1. For all authors...426

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s427

contributions and scope? [Yes] See the last paragraph in Section 1.428

(b) Did you describe the limitations of your work? [Yes] See the second paragraph in429

Section 5.3430

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the431

first paragraph in Section 5.3432

(d) Have you read the ethics review guidelines and ensured that your paper conforms to433

them? [Yes]434

2. If you are including theoretical results...435

(a) Did you state the full set of assumptions of all theoretical results? [N/A]436

(b) Did you include complete proofs of all theoretical results? [N/A]437

3. If you ran experiments (e.g. for benchmarks)...438

(a) Did you include the code, data, and instructions needed to reproduce the main ex-439

perimental results (either in the supplemental material or as a URL)? [Yes] We are440

constructing a website for this work, and will release open-source code.441

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were442

chosen)? [Yes] See Implementation details in Section 5. We (will) release open-source443

code for further details and reproduction.444

(c) Did you report error bars (e.g., with respect to the random seed after running experi-445

ments multiple times)? [N/A]446

(d) Did you include the total amount of compute and the type of resources used (e.g., type447

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.448

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...449

(a) If your work uses existing assets, did you cite the creators? [Yes] See implementations450

in Section 5451

(b) Did you mention the license of the assets? [No] We use multiple open-source GitHub452

repositories which have different licenes but are free to use for non-commercial and453

research perposes.454

(c) Did you include any new assets either in the supplemental material or as a URL? [No]455

(d) Did you discuss whether and how consent was obtained from people whose data you’re456

using/curating? [N/A]457

(e) Did you discuss whether the data you are using/curating contains personally identifiable458

information or offensive content? [N/A]459

5. If you used crowdsourcing or conducted research with human subjects...460

(a) Did you include the full text of instructions given to participants and screenshots, if461

applicable? [N/A]462

(b) Did you describe any potential participant risks, with links to Institutional Review463

Board (IRB) approvals, if applicable? [N/A]464

(c) Did you include the estimated hourly wage paid to participants and the total amount465

spent on participant compensation? [N/A]466

13


	Introduction
	Related Work
	Instance Detection: Protocol and Dataset
	The Protocol
	The Dataset

	Methodology
	The Strong Baseline: Cut-Paste-Learn
	The Simple, Non-Learned Method

	Experiments
	Benchmarking Results
	Ablation Study
	Discussions

	Conclusion

