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Abstract—The deep learning models (DL) are becoming bigger,
easily beyond the memory capacity of a single accelerator. The
recent progress in large DL training utilizes CPU memory as an
extension of accelerator memory and offloads tensors to CPU
memory to save accelerator memory. This solution transfers
tensors between the two memories, creating a major performance
bottleneck. We identify two problems during tensor transfers: (1)
the coarse-grained tensor transfer creating difficulty in hiding
transfer overhead, and (2) the redundant transfer that unneces-
sarily migrates value-unchanged bytes from CPU to accelerator.
We introduce a cache coherence interconnect based on Compute
Express Link (CXL) to build a cache coherence domain between
CPU memory and accelerator memory. By slightly extending
CXL to support an update cache-coherence protocol and avoiding
unnecessary data transfers, we reduce training time by 33.7%
(up to 55.4%) without changing model convergence and accuracy,
compared with the state-of-the-art work in DeepSpeed [62].

I. INTRODUCTION

The deep learning (DL) models are becoming larger. In the

last four years, the model size increases by at least 1,000x.

In 2018, Bert [24], a DL model with over 300M parame-

ters, was the largest model. Just within one year, Turing-

NLG [61], T5 [77], GPT-2 [12], and Megatron-LM [92],

a set of transformer-based models, increase the number of

parameters to tens of billions. In 2022, BLOOM, one of

the largest models, has 176B parameters [44]. Utilizing large

models leads to gains in model quality [10] and resource

utilization [35]. The momentum of using them may continue.
However, training those large models faces a memory

capacity wall. The model states (such as parameters, gra-

dients, and optimizer states) and intermediate results (such

as activation) can easily go beyond the memory capacity of

an accelerator (e.g., up to 180GB in a NVIDIA Blackwell

GPU [65]). Distributed model-training technologies, such as

pipeline model parallelism [32], tensor parallelism [92], and

ZeRO data parallelism [78], are able to split the model states

across multiple accelerators or reduce data redundancy across

accelerators, hence addressing the memory capacity problem

faced by a single accelerator. In practice, using a combination

of multiple distributed training technologies enables large

model training by leveraging aggregated accelerator memory

on multiple accelerators. However, the distributed training

relies on expensive hardware resources. For example, training

175B-parameter GPT-3 requires 112 NVIDIA A100 GPUs

(each with 80GB HBM) to accommodate memory consump-

tion, easily causing millions of dollars, which is not affordable

by many users. Even using half-precision and loss-scaling to

save memory and using eight V100 GPU on the cloud, it still

takes hundreds of thousands of dollars [82]. Large production

costs and pervasive usage of large DL models motivate various

hardware- and software-based solutions [9], [38], [47], [51],

[69], [104], [120].

Use of heterogeneous memory for model training breaks

the memory capacity wall without adding accelerators. By us-

ing the CPU memory as an extension of the accelerator mem-

ory, this technology offloads tensors (such as parameters [30],

[73], [74], [79], [85], [90], [103], optimizer states [79], [87],

and/or activation memory [79]) to the CPU memory.

Problems. Using heterogeneous memory (HM) introduces

data movement overhead: Tensors offloaded to the CPU mem-

ory must be transferred back to accelerator for model training,

and the transfer must be timely to avoid the reduction of

computation efficiency on accelerator. Existing efforts prefetch

tensors from the CPU memory to a GPU buffer and overlap

tensor transfers with computation [30], [31], [74], [85], [103]

based on the knowledge of the DL topology. To maximize the

saving of the accelerator memory, the recent effort [79], [87]

offloads optimizer computation to CPU to completely remove

optimizer states from GPU. However, to make those solutions

effective, one must use a large batch size or large layer-wise

computation in the DL model to provide overlapping oppor-

tunities, because of suboptimal data partitioning and limited

PCIe bandwidth. Given a model with billions of parameters

(or hundreds of millions of parameters per accelerator with

model parallelism), the existing efforts transfer hundreds of

MB or even a few GB tensors for each layer, easily taking
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∼10 or ∼100 of milliseconds on a PCIe 3.0 [71] (or PCIe

5.0 [72]) interconnect, which is typically longer than layer-

wise computation time. The mismatch between tensor transfer

time and computation time brings challenges to hide the

overhead of tensor transfers. Hiding or reducing this overhead

is the key to use HM for large model training.

Major insights. We identify two fundamental problems

during tensor transfers for large DL model training: the

coarse-grained tensor transfer and redundant tensor transfer.

Identifying the two problems provides a new angle to examine

how to hide or reduce the tensor transfer overhead.

The coarse-grained tensor transfer means that the tensor

transfer between CPU and accelerator occurs at the granularity

of a group of variables (e.g., a group of parameters aligned

with the block size in a transformer). Such a tensor transfer is

caused by software management that periodically transfers a

group of variables (instead of individual variables) to make the

best usage of interconnect bandwidth. However, this transfer

method leads to long transfer time per transfer, which is

difficult to be overlapped with computation.

The redundant tensor transfer means unnecessary data trans-

fer causing communication overhead. Our profiling on Bert

shows that 44.5% of parameters do not change values across

two consecutive training steps throughout some training steps;

80% of the updated parameters are modified only in the least

significant two bytes. This limited byte update is a common

phenomenon in most DL training. This phenomenon is more

common in large DL models using fine-tuning. During the

fine-tuning phase, the weights and parameters do not signifi-

cantly change to avoid catastrophic forgetting [41]. Since CPU

and accelerator hold the gradient and parameter tensors in a

former training step, the unmodified parts in these tensors

do not need to be transferred. The unmodified bytes con-

sume PCI-e bandwidth and significantly delay communication

(69.5% in our experiments in Section II).

Solution. To address the above problems, we introduce

Tensor-CXL-Offload (or TECO), an HM system based on a

cache-coherent interconnect — Compute Express Link (CXL),

aiming to hide the tensor transfer overhead to train large DL.

To address the problem of coarse-grained tensor transfer,

TECO puts the CPU cache and a part of the accelerator

memory into the same CXL coherent domain. That part of

the accelerator memory is used as a giant cache of the

CPU memory. We recognize the limitation of CXL to hide

communication time because of an invalidation-based cache-

coherence. This protocol best fits for large-scale communica-

tions where it is hard to keep track of all data sharers. For the

small-scale communications that have a clear data producer

and a consumer (e.g., CPU-GPU DL training), sending an

invalidation message and the updated data in separate CXL

packets only demands more PCI-e bandwidth and unnecessar-

ily delays the data transfer. Therefore, TECO extends CXL to

be configurable to support either update- or invalidation-based

coherence based on the execution scheme. Using the new

protocol, TECO decomposes coarse-grained tensor transfers

into cache line-grained ones to maximize the overlap between

tensor transfers and computation.

To address the problem of the redundant tensor transfer,

TECO excludes useless bytes from the transfer. Based on the

statistics of the number of bytes per data (e.g., DL parameters)

updated during application execution, we configure the CXL

host module to collect only the updated bytes from each

parameter and pack multiple (trimmed) parameters in a CXL

packet. The number of bytes to drop from each 4-byte unit

data is given by the user and is passed to the accelerator-side

CXL module via a special API. With this information, the

accelerator parses each CXL packet and merges the updated

data with the original 4-byte data residing in the accelerator

memory. We call this process, dirty-byte aggregation, and

design an aggregator (to encapsulate multiple data into one

CXL packet) on the sender device and a disaggregator (to

parse individual data from a packet) on the receiver device.

We summarize the major contributions as follows.

• We use a cache coherent HM consisting of the memories of

accelerator and CPU to train large DL, based on which we

provide a new method to reduce data movement overhead;

• We characterize tensor transfers during large model train-

ing with an industry-quality, HM-based training solution

(ZeRO-Offload [87] from DeepSpeed [62]), and identify two

problems that make tensor transfers the major performance

bottleneck for the HM-based training;

• We leverage and extend CXL to address the two tensor-

transfer problems by reducing tensor transfer granularity and

avoiding useless transfer;

• To our best knowledge, this is the first study demonstrating

the effectiveness of the extended CXL giant cache model.

• Evaluating with large transformers and a graphic neural

network, we show that compared with ZeRO-Offload, TECO

reduces training time by 33.7% on average (up to 55.4%)

without changing model convergence and accuracy; TECO

reduces communication overhead by 93.7% on average (up

to 100%).

II. BACKGROUND

A. Training Large Deep Learning Models on HM

Using the CPU memory as an extension to the accelera-

tor memory, the existing solutions use various strategies to

decide which tensors should be offloaded and how to hide

transfer overhead. We review a representative and state-of-the-

art effort, ZeRO-Offload. ZeRO-Offload represents a class of

work (including ZeRO-Infinity [79], [95]) selectively offload-

ing tensors to the CPU memory but stores all parameters on

accelerator. ZeRo-Offload performs better than Unified Virtual

Memory [74], [85].

ZeRO-Offload stores the gradients and optimizer states

in the CPU memory, and stores the parameters in the GPU

memory. GPU also has a small gradient buffer. There are five

phases in a training step in ZeRO-Offload (see Figure 1).

• Phase 1: Forward propagation on GPU using recently

updated parameters on the GPU memory. These parameters

are transferred from the CPU memory;
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Fig. 1: Overview of ZeRO-Offload.

• Phase 2: Backward propagation on GPU, generating gradi-

ents in the gradient buffer on the GPU memory.

• Phase 3: During the backward propagation, the gradient

buffer is periodically filled and flushed (i.e., transferring

gradients) from GPU to the CPU memory.

• Phases 4 and 5: After collecting all gradients at the end of a

training step, the gradients are clipped to be bounded within

a certain range on CPU. The new gradients are used in the

ADAM optimizer on CPU to generate new parameters on

the CPU memory. The new parameters are then transferred

from CPU to the GPU memory for the next training step.

In ZeRO-Offload, the gradients transfers from GPU to CPU

are partially exposed to the critical path. For the parameters,

ZeRO-Offload uses a double-buffer technique on CPU to hide

the transfer overhead: while CPU fills one buffer with new

parameters, the other is used for parameter transfers from

CPU to GPU. However, the buffer filling is much faster than

the parameter transfer. As a result, the parameter transfer

is largely exposed to the critical path. Although using the

“one-step delayed parameter update” technique (DPU) [87],

the parameter transfer can overlap with GPU computation,

the effectiveness of this technique requires significantly large

batch sizes to achieve enough arithmetic intensity on GPU.

However, the batch size per GPU is limited by the maximum

global batch size that can be used during the training without

sacrificing convergence efficiency [5], [36], [121]: since the

global batch size cannot be increased indefinitely without

slowing down model convergence, training on GPUs (espe-

cially in a large scale) often forces the batch size per GPU to be

very small [102], which invalidates DPU effectiveness. Also,

DPU itself raises the risk of changing DL model convergence.

B. Compute Express Link

CXL is proposed to be used as interconnect between pro-

cessors, memory expansion, and accelerators. CXL is built

on top of PCIe, and develops a custom higher-level protocol

stack. CXL intends to get lower latency of fine-grained mem-

ory accesses (i.e., cache line-level accesses), while provides

sufficient peak bandwidth (e.g., about 90% of the underlying

serial bus protocol bandwidth). CXL includes three sub-

protocols. One of them, CXL.cache, is related to this paper.

CXL.cache is an agent coherency protocol permitting device

caching of the host memory. CXL uses the MESI protocol

managed by hardware to ensure coherence for CXL.cache.

Giant cache model in CXL. The CXL specification in-

cludes a giant-cache model [21]. When the memory footprint

TABLE I: Percentage of training time used for communication.

We report the communication time exposed to the critical path.

Batch size 4 8 16 20
Overhead (ZeRO-Offload) 42.24% 37.87% 28.65% 25.95%

of a workload exceeds the capacity of accelerator memory,

this memory can work as a giant cache. In particular, the full

dataset resides in the CPU memory, but the subsets of the full

dataset are cycled through the giant cache as the computation

proceeds. The cache in the host system and the giant cache in

the accelerator are in the same coherence domain and work as

distributed caches for the CPU memory.

The recent surge of domain-specific accelerators (especially

for AI workloads) [25], [27]–[29], [52], [75], [80], [111],

makes the implementation of TECO highly feasible. This

feasibility is further enabled by the recent initiative from

NVIDIA for customization of AI chips to meet users’ growing

needs [48].

III. MOTIVATION

We study the training performance with ZeRO-Offload. We

use pre-trained Bert-large-cased [2], a large transformer model

with 334M parameters and 24 transformer blocks. We fine-

tune Bert-large-cased on the IMDB dataset [54]. We use a

system with Intel Xeon 6120 CPU, one Tesla V100 GPU with

32GB memory, PyTorch 1.10.0, and PCIe 3.0 for data transfer

between CPU and GPU. We use ZeRO-Offload 0.3.15. We

vary the batch size to study its impact on tensor offloading.

Quantification of communication time. We measure ten-

sor transfer time exposed to the critical path. See Table I.

Observation 1: the communication overhead takes a rather

large portion of total training time.

For example, when the batch size is 4, the communication

overhead takes 42.2% and 59.7% of total training time with

ZeRO-Offload. This large overhead comes from (1) some

gradient transfers from GPU to CPU are exposed to the critical

path and the CPU computation must wait for the gradient

transfers to finish before it starts, and (2) the parameter

transfers from CPU to GPU are largely exposed to the critical

path, because the double-buffer is not effective and DPU

partially fails because of low arithmetic intensity on GPU.

Furthermore, we notice that when the batch size becomes

larger, the communication overhead takes a smaller portion

of the training time. For example, for ZeRO-Offload, the

overhead reduces from 42% to 26% when the batch size

increases from 4 to 20. This is because GPU computation

complexity becomes larger while the communication time

remains the same, leading to smaller communication overhead.

Nevertheless, the communication overhead still takes a large

portion of training time. Note that increasing the batch size

increases memory consumption, hence limiting the model size

we can train and deteriorating the memory capacity problem.

Variance of parameter/gradient values across training

steps. We examine the values of parameters and gradients

in each training step. Each parameter or gradient is a 4-byte

floating point number. We study that in a training step i, among
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Fig. 3: Memory organization in TECO. The yellow-shadowed

components are in the same coherent domain.

the 4 bytes in a parameter (or a gradient) how many of them

change values, compared with the prior step i− 1. In other

words, we count the number of value-changed bytes in each

parameter (or each gradient) across two consecutive training

steps. Given four bytes in a parameter (or a gradient), we

classify the distribution of value-changed bytes in those four

bytes into three cases: (1) only the last byte changes the value,

(2) only the last two bytes change, and (3) other distributions.

We train (fine-tune) a pre-trained Bert-large-cased to converge

using 9,870 training steps. Figure 2.(a)-(b) show that among

those value-changed parameters (or gradients), how the above

three cases are distributed in training steps.

Observation 2: Across two consecutive training steps,

among those parameters that change values, most of them

change values only in the last two bytes.

Figure 2 (a) shows that about 80% of parameters belong

to Case (1) (i.e., only the last byte changes values). An FP32

parameter has 4 bytes where the 1st byte plus one bit are for

exponent and sign, and the remaining bits are for mantissa. For

most of the parameters, there is few value-change in exponent

and sign across training steps, but there are frequent value-

changes in mantissa, leading to frequent value-changes in the

last two bytes. Also, we notice that the first two cases become

more common when the training is close to converge. Figure 2

(b) shows the distribution of value-changed bytes in gradients.

Different from parameters, all bytes in gradients frequently

change values across training steps.

IV. TECO: TENSOR-CXL-OFFLOAD

A. Overall Architecture

1) Memory Organization: A part of the accelerator’s global

memory is a cache of CPU memory and is mapped to the

CXL coherent domain using the giant cache model in CXL.

This cache is used for parameters and gradients transferred

between CPU and accelerator. The other tensors are allocated

to the remaining accelerator memory which is used as the

traditional non-coherent memory. DL training on accelerator

is executed against both parts of the memory. See Figure 3.

The giant cache size is configured to be large enough

to accommodate tensors transferred between accelerator and

CPU, and there is no cache capacity (or conflict) miss during

accelerator computation.

Before starting the DL training, once the size of batch, DL

model, and training data are determined, the giant cache size

is configured by the user and does not change during the DL

training. For Zero-Offload, this size is the size of parameters

in the accelerator plus the size of the gradient buffer (the size

of the gradient buffer is a configurable parameter in Zero-

Offload).

There can be various ways to configure giant cache size.

We use resizable Base Address Register (BAR) [70], which

enables faster communication between host CPU and PCIe

devices by mapping configurable memory regions of the

devices to the system memory map. Once the size is set,

that amount of space is separately marked as the giant cache.

Then, the CXL controller and home agent handle the coherent

tensor movement between the giant cache and CPU memory

(Section IV-A2).

2) Coherence and Caching Mechanisms: Limitation of

CXL. CXL uses invalidation-based coherence protocol

(MESI). Upon every cache line update, only invalidation

message is sent to the shared opposite party (CPU cache for the

giant cache or vice versa). Later, when the shared party issues

a memory load for the data, the updated value is transferred via

PCIe. Thus, the expensive PCIe transfer time is included in the

critical path. According to our evaluation, this on-demand data

transfer increases training time by 56.6% on average (up to

99.7% in the case of T5-large model with 737M parameters),

compared to when the updated data is sent at the time of

invalidation. This motivates us to optimize the CXL coherence

protocol.

CXL extension. We extend CXL to use an update-based

cache coherence protocol. This means that cache lines are

transferred at the updating time between CPU cache and

accelerator’s giant cache by CXL.cache. As the CPU cache

is typically smaller than the giant cache, only the lines residing

in the CPU cache are updated by the update protocol. For

the other lines, the CPU cache simply ignores the update

messages. Our proposed extension enables cache line level

tensor transfer over time. Thus, we can support fine-grained

migration and better compute and data transfer overlapping.

Figure 4 illustrates the revised protocol transitions. This

figure is based on the state transition figure in the CXL spec-
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Fig. 4: Minor revision of the MESI state transition.

ification [23]. As highlighted with a red arrow, Modified

state can be immediately transitioned to Shared state upon

the CXL home agent’s approval. When a cache line is updated

on CPU, CPU sends a message to the home agent to see if

this cache line is in the giant cache domain (see the first

two red arrows in Figure 5). The above is the only change

to the invalidation protocol, and the other transitions remain

the same.

Figure 5 depicts the state transition in detail when a pa-

rameter cache line is updated. The accelerator’s giant cache

and CPU cache are treated as peer caches. The home agent,

as depicted in the CXL specification, manages the coherence

between the peer caches of CXL device. C S and G S

represent the state of CPU cache line and accelerator cache line

respectively. C is the cache line that CPU updates. When the

training starts, the giant cache has a copy of the parameters. At

the beginning, the CPU state of C (i.e., C S) is I, since C is not

in the CPU cache. The accelerator state of C (i.e., G S) is E.

When d happens, C S becomes E after sending a ReadOwn

CXL coherence message. When e happens, C S transits to

M from E, and then transits to S after receiving the Go-

Flush message. e has such a transition because of the revised

protocol: C is in the giant cache domain and updated by CPU.

d to f represents the process of updating the parameters. If

the CPU evicts C or flushes all the cache lines, C S transits

to I from S and G S transits to E from S. The flush happens

only once at each training iteration to guarantee all the updated

parameters are sent out. When the accelerator reads C, G S

remains E. The accelerator only reads the parameters and never

updates them, and this means that the CPU and accelerator

never concurrently update the parameters.

We introduce a function, CXLFENCE(), to ensure the com-

pletion of in-flight CXL cache coherent traffic. CXLFENCE

is used to enforce the memory consistency. CXLFENCE()

is implemented by extending accelerator synchronization API

such as cudaDeviceSynchronize() in GPU, which

is commonly used to check the completion of data trans-

fer or CUDA kernel call. cudaDeviceSynchronize()

is supported by the existing GPU driver to check the

DMA-based copy engine and detect if there is incom-

plete data transfer in PCIe. CXLFENCE() works similar

to cudaDeviceSynchronize() but it only guarantees
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the CXL coherence traffic by checking the status of CXL

controller and home agent.

One challenge to designing a giant cache is the large size of

snoop filter (or coherence directory) as the sharer information

of individual cache lines should be maintained in the filter.

TECO does not have the snoop filter design problem. As

the giant cache size is configured to afford gradients and

parameters, and CPU and accelerator have a clear producer-

consumer relationship for each data, it is not necessary to keep

track of data sharers and their coherence status with a snoop

filter. In particular, when CPU updates a tensor element cached

on the giant cache, based on the DL domain knowledge we

know that the tensor element must be a parameter, and the

parameter copy on the accelerator must be updated due to the

update protocol and hence in Shared state. Hence, there is

no need to apply the snoop filters. Therefore, TECO does not

maintain the snoop filters for the giant cache, which saves

memory space and avoids long snoop latency.

For the application that does not have a clear producer-

consumer relationship (e.g., having more than two sharers) or

multiple sharers updating the cache line concurrently, TECO

goes back to using the invalidation protocol and snoop filter.

This can be implemented by modifying the CXL home agent.

As shown in Figure 5, all the transitions are managed by the

home agent. By disabling the immediate FlushData transition

upon data update, the update-based transitions can be disabled.
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B. Applying TECO

Applying TECO to ZeRO-Offload. With TECO, param-

eters and gradients use the giant cache. Before training, the

CPU memory has a whole copy of parameters and gradients.

Figure 6 depicts the dataflow. TECO reduces the parameter

transfer overhead. With TECO, once any parameter is updated

on CPU, it is transferred to the GPU memory according

to MESI-update (w and x). There is no need to use the

double-buffer technique. Therefore, we can avoid the frequent

synchronization between the two buffers and reduce software

complexity. Also, with TECO, there is no need to explicitly

call parameter transfers. Only when all parameters are updated,

CXLFENCE() is called once to enforce the completion of

coherent parameter updates to the giant cache.

The above method does not increase the communication

volume. In particular, when multiple parameters fall into the

same cache line, any update to a parameter in the cache line

can cause a transfer of the cache line from CPU. This means a

cache line containing multiple parameters may be transferred

multiple times especially when there is a long time interval

between the updates of parameters, while the original ZeRO-

Offload transfers the whole cache line only once. However,

the computation for parameter update is commonly based on

vectorization. As a result, multiple parameters are updated at

the same time, causing only one transfer of the cache line.

TECO also reduces gradient transfer overheads. With

TECO, the gradient transfer does not need to wait for the

gradient buffer to be fully filled. Instead, the gradient transfer

is overlapped with the backward propagation (y). After the

buffer is full with gradients, CXLFENCE() must be called to

ensure in-flight data transfer is done.
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Fig. 8: Workflow of updating a cache line.

V. REDUCTION OF COMMUNICATION

This section discusses the dirty-byte aggregation (DBA)

in detail. We introduce two components, Aggregator and

Disaggregator, depicted in Figure 7. The figures illustrate

(a) how the updated least-significant two bytes of each 4-

byte parameter are aggregated from two cache lines into

a CXL packet in CPU, and (b) how the aggregated dirty

bytes are parsed from the CXL packet in the accelerator and

merged with the un-updated cache lines in the giant cache

to reconstruct the updated cache lines. Note that the un-

updated cache lines remain in the accelerator memory after

being used by the prior training step. The gradients transfers

from the accelerator to CPU cannot apply DBA, because there

is no common byte-update pattern in gradients as shown in

Section III.

A. Activation of Dirty-Byte Aggregation

The DBA is activated at runtime. TECO determines the

activation of DBA after a specific number of training steps

(specified with act a f t steps by the user in an AI model

configuration file). act a f t steps is a model dependent hyper-

parameter. Like other hyperparameters (such as the learning

rate, batch size, and number of steps delayed for parameter

update [87]), act a f t steps is determined by the user, while

the default value is 500 (Section VIII-E). act a f t steps can

be tuned using the Bayesian optimization [17], [94].

To indicate the dirty-byte length, we introduce another

model-dependent hyperparameter, dirty bytes. dirty bytes is

configured by the user. For DL training, it is set to 2, as the

parameter-value change happens mostly in the least significant

two bytes in consecutive training steps (Section III).

B. Aggregator

When CPU updates a cache line of parameters mapped

to the giant cache, the line is transferred to the accelerator

according to MESI-update. For each FP32 parameter in 64-

byte cache lines, the Aggregator takes the last N bytes (N =

dirty bytes), packs them into a CXL packet, and sends it to the

accelerator (Figure 7.(a)). The Aggregator and its configuration

registers are implemented in the CPU CXL module.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on July 25,2025 at 03:05:07 UTC from IEEE Xplore.  Restrictions apply. 



The DL framework (such as PyTorch) uses the configuration

register, DBA register, in the CXL module through a CXL

configuration interface to activate the DBA. The DBA register

has four bits: the most significant bit for indicating the

activation and the remaining three bits for setting the dirty

byte length (0 to 4 bytes). For example, suppose that this

register is set with dirty bytes as 2 bytes (i.e., the DBA register

is set to 10102). For each 64-byte cache line to be sent to

the accelerator, the Aggregator takes the least significant two

bytes of each 4-byte parameter, aggregates them into a 32-

byte payload, and passes it with the cache line address to

the CXL Link Layer to create a CXL packet. The CXL Link

Layer combines one or multiple 32-byte payloads into one

CXL packet depending on the CXL transfer size. We indicate

the size of payloads (32-byte aggregated cache lines or a 64-

byte unaggregated cache line) by reserving an unused bit in

the CXL packet header (the packet header has at least six

unused bits). When the DBA register is not set (i.e., the most

significant bit is 0), the Aggregator logic is bypassed and all

bytes in each cache line are sent through CXL.

Figure 8 shows the workflow of updating a cache line. When

the cache line is flushed or evicted from the last level cache

on CPU, the CXL home agent on CPU first checks if this

cache line is mapped in the giant cache. If not, this cache

line is directly written to CPU memory. If yes, this cache

line is sent to the transmission queue maintained by the CXL

root port. This queue is like the transmit buffer in PCIe [3].

Then, the CXL root port checks if DBA is activated, and sends

out the aggregated or full cache line through the CXL link

accordingly.

As the only function that the Aggregator does is collecting

dirty bytes from a given cache line, it can be implemented with

simple logic gates. We implement it by designing a logic that

takes the lower N bytes from each 4-byte parameter, where

N is indicated by the lower three bits of DBA register, and

concatenates them together.

To indicate memory regions mapped to the giant cache on

the accelerator, the Aggregator has two registers (“address

registers”) per cached region, which are set when a tensor is

allocated and checked by the CXL host agent when triggering

coherent data transfer. Note that the implementation of regis-

ters does not change the CPU architecture. TECO leverages

unused registers in the CXL specification [19]. The Aggregator

utilizes the internal buffers of CXL Link Layer and does not

need extra buffer.

C. Disaggregator

During the DL training, the accelerator retains the parameter

values used by the prior training step. Once CPU updates the

parameters and sends only the dirty bytes through the DBA

in a MESI-update message, the accelerator reconstructs the

updated parameters by overwriting the corresponding bytes of

each parameter in its memory with the dirty bytes sent by

CPU. For this task, we design the Disaggregator in the CXL

module on the accelerator.

Once the DBA register is set in the CPU CXL module, the

CXL host agent asks the accelerator’s CXL module to activate

the disaggregation by sending the DBA-register value to the

accelerator. Once an MESI-update message is delivered to the

accelerator, the cache line to update is read from the giant

cache in the accelerator memory. If the DBA-register value

is 10102, from the MESI-update packet, the Disaggregator

takes 32 bytes from the payload, and uses every two bytes

to overwrite every other two bytes in the 64-byte cache line

(see Figure 7.(b)).
This approach leads to one extra read operation per cache

line update to merge the dirty bytes with the un-updated

cache line in the giant cache. However, the accelerator-side

DRAM architecture does not need to be changed because

disaggregation and merge are handled in the CXL module, not

in the memory. Also, the extra read operations incur almost

negligible performance overhead according to our evaluation

(Section VIII), because there is a large bandwidth gap between

PCIe and the accelerator memory (e.g., GDDR5) and the

accelerator memory is not the performance bottleneck.
The Disaggregator’s function can be implemented with neg-

ligible overhead. For example, we implement it by designing

a logic that (1) resets N bytes indicated by the DBA register

per 4 bytes of a cache line, (2) shifts the payload by taking

every N bytes from the payload and shifting them by ((4 - N)

× W ) bytes, where W is the corresponding word index in the

cache line, and (3) runs OR operations between the cache line

and the shifted payload. The Disaggregator assumes that there

is an old copy of the parameters in the accelerator memory in

order to perform merging, which is true in TECO.

The Aggregator and Disaggregator require little hardware

modifications: (1) adding the address and DBA registers, (2) a

few logic gates to take the dirty bytes per word in the Aggre-

gator, and (3) merging the disaggregated dirty bytes and the

old copy in the accelerator memory in the Disaggregator. The

space and power overheads are evaluated in Section VIII-D.

About mixed-precision training. Using mixed-precision to

train large DL models is common. In those cases, param-

eters often have two copies, one in FP32 and the other in

FP16 [79], [87]. Using gradients in FP32 and optimizer states

in FP32, the parameters in FP32 are updated on CPU, and then

converted to FP16 for (back)forward propagation on GPU.

Such a conversion does not impact the effectiveness of TECO,

because the conversion happens on GPU. As a result, the

parameters transfer from CPU to GPU still uses FP32, creating

opportunities for the DBA. The conversion must happen on

GPU instead of CPU to reduce conversion overhead.

VI. USING TECO IN DL MODELS IN PRACTICE

The use of TECO includes minor changes to the DL

implementation. Listing 1 gives an example of how to use

TECO with ZeRO-Offload for Bert. Using TECO, the user just

needs to call check_activation() after the backward

propagation (Line 5). check_activation() determines if

the DBA should be activated according to Section V-A. Only

two lines of code (Lines 1 and 6) are needed.
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1 from TECO import check_activation

2 . . . # import other packages and preparing the training

3 for i in range(training_steps): # main loop for training

4       . . . # feed the model and compute loss

5 loss.backward() # CXLFENCE() is called in this function

6 check_activation(i)

7 optimizer.step() # CXLFENCE() is called at the end in step()

Listing 1: Using TECO with ZeRO-Offload for 

Bert. The code from TECO is highlighted in blue.

Mapping parameters and gradients to the giant cache is

hidden from the user. Those tensors are allocated on CPU

as usual. CXLFENCE(), used after parameter transfers from

CPU and gradient transfers from GPU, is also hidden from

the user. CXLFENCE() is called within the implementation of

ZeRO-Offload and PyTorch (Lines 2 and 4). CXLFENCE() is

called only twice in a training step. Since CXLFENCE() can

be based on cudaDeviceSynchronize(), we measure

the time of cudaDeviceSynchronize() which takes less

than 1% of training time.

VII. TECO GENERALITY

TECO relies on minor hardware changes. This is reason-

able, because DL workloads become so important such that

recent efforts introduce DL-specific hardware [16], [34], [38],

[39], [46], [83], [97]–[99], [101]. Nevertheless, TECO can

be generally applicable to other applications. The application

that can benefit from TECO should have three characteristics:

(1) the application has an iterative structure, and the com-

putation results are iteratively fine-tuned; (2) the application

can tolerate computation approximation. Many applications

have the above characteristic, including common numerical

solvers (e.g., multi-grid solver [13] and conjugate gradient

solver [91]); (3) the data transfer between CPU and the

accelerator is a performance bottleneck, and data producer

and consumer are explicit. (1) and (2) are needed to apply the

DBA, and (3) is needed to benefit from the extended CXL.

To demonstrate the generality, we apply TECO to

LAMMPS [1] (a molecular dynamics (MD) simulation

code). We study 3D Lennard-Jones melting simulation with

LAMMPS where the accelerator is used for force calculation

for a set of molecules. After accelerator computation, the

force data is sent to CPU. CPU then updates the molecules’

positions and sends them to the accelerator. This code meets

the requirement of (1) and (2), and the data transfer takes

27% of the application time with explicit data producer and

consumer, meeting the requirement of (3). Applying TECO,

LAMMPS gets 21.5% performance improvement, and the

communication volume is reduced by 17% by DBA. Among

the performance improvement, CXL contributes 78% and

DBA contributes 22%. This improvement leads to 5-hour

saving in the simulation time.

VIII. EVALUATION

A. Experimental Setup

Evaluation method. We design an evaluation infrastructure

by interfacing a CPU simulator (gem5-avx [105] v20.0.0) and

a GPU simulator (Accel-Sim [37]) via CXL emulation, as

illustrated in Figure 9. We use GPU as an example accelerator.

Optimizer

CXL Ctrl

CXL link

GEM5-AVX CXL Emulator Accel-sim

Forward Backward

Original parameter

cache line
Updated

parameter

Aggregator

Disaggregator

CXL Ctrl

Fig. 9: Overview of the simulation platform.

Using GPU with TECO is possible because of the recent

initiative from NVIDIA for customization of AI chips to meet

the growing needs of users [48], and the hardware support

for the giant cache model is expected to be available in

the near future. We emulate PCIe 3.0 with 16 lanes with

16GB/s bandwidth. All data transfer times over the CXL

protocol are emulated by assuming to consume 94.3% of PCIe

bandwidth [20], [106]. Table II shows the configurations of

gem5-avx. Accel-Sim is configured as NVIDIA V100 GPU.

The communications over CXL are controlled by a CXL

controller with a pending queue of 128 entries. We extend

gem5-avx and Accel-Sim to model the CXL controllers.

We use Ubuntu 18.04, PyTorch 1.10.0, CUDA 10.2, Deep-

Speed 0.3.15 (including ZeRO-Offload), and Python 3.6.7.

Unless indicated otherwise, act a f t steps and dirty bytes are

set as 500 and 2 respectively. We change the batch size to

evaluate the effectiveness of TECO. Even though we use

tensor offloading, the batch sizes are chosen to be within

a certain range such that out-of-memory does not happen.

Pytorch 2.0 provides an API called torch.compile [59] to

optimize the computation graph. However, it can’t be used

for CPU+GPU training, and only supports computation graph-

based optimization on CPU only or GPU only.

Parameter transfer over CXL. CPU runs the parameter

update (using the ADAM optimization and AVX512 intrinsic)

during the training. TECO uses the update-based cache co-

herence protocol. Thus, our simulation transfers a cache line

when multiple parameters in the cache line are updated using

a vectorized instruction (see Section IV-B) and the cache line

is written back to the main memory. To measure the transfer

time of these cache lines over CXL, we collect the timing

and amount of these writebacks by generating a trace of main

memory accesses during CPU simulation. The trace contains

the timings and addresses of memory loads/stores [40].

The CXL emulator measures the transfer time that does

not overlap with CPU computation time and adds it to the

gem5-avx simulation time as the final CPU time. Note that the

CXL emulator measures the transfer time by considering the

aforementioned CXL bandwidth. For TECO-Reduction (using

both CXL and DBA), the Aggregator delay is added, which is

1 ns as explained in detail in Section VIII-D. Our emulator is

designed based on the fact that CXL is a serial bus [20], [72].

The updated cache lines with different parameters are going

through the link one after another in a stream manner.

Gradient transfer over CXL. To simulate the update-based

cache coherence protocol, Accel-Sim is modified to transfer

the updated gradients over CXL whenever the corresponding

cache line is written back to the giant cache region in GPU

memory. When TECO-Reduction is used, the Disaggregator’s
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TABLE II: Gem5-avx configuration.

Processor 48 DerivO3CPU cores, 3.7GHz

Memory systems
8 memory controllers

32GB DDR4-2600Mhz

I-cache: 8KB/64B-line/8-way
Cache L1cache: 8KB/64B-line/8-way

L2cache: 64KB/64B-line/16-way
L3cache: shared/16MB/64-line/64-way

delay (1 ns) is added as specified in Section VIII-D.

We use ZeRO-Offload as the baseline. Without CXL, the

baselines explicitly trigger gradient transfer by the DL model

rather than CXL. In evaluation, any technique to hide CPU

computation overhead and tensor transfer overhead in the

DL training framework (such as DPU in ZeRO-Offload) is

employed to enable a fair comparison.

We do not evaluate ZeRO-Infinity [79] (a ZeRO-Offload-

like work), because ZeRO-Infinity uses main memory and

NVMe SSD based on the assumption that the main memory

capacity is not large enough. ZeRO-Infinity regresses to ZeRO-

Offload when memory capacity is large enough. CXL memory

provides sufficiently large capacity, hence ZeRO-Offload is

more appropriate for evaluation.

Workloads. Table III lists DL models we evaluate. They are

pre-trained models and we fine-tune them on various datasets.

B. Overall Performance

Speedup. We use two versions of TECO: TECO-CXL

(using CXL without DBA), and TECO-Reduction (using both

CXL and DBA). For GCNII, we do not change the batch size,

because GCNII only supports full-graph training. We cannot

evaluate T5-large with ZeRO-Offload when the batch size is

16, because it leads to an out-of-memory error. Figures 11

show the training time speedup of TECO-Reduction over Zero-

Offload.

For ZeRO-Offload in Figure 11 and Table IV, we have three

observations. (1) TECO-Reduction outperforms ZeRO-Offload

by 1.08x-1.82x. (2) Albert-xxlarge-v1 shows less speedup than

the other models. That is because Albert has 4x more attention

heads than GPT-2, Bert-large-cased, and T5-large, hence the

computation (forward and backward) takes a larger portion of

the total training time. Thus, there are fewer opportunities for

TECO to take effects. (3) For all the models, TECO-Reduction

consistently outperforms TECO-CXL by up to 21% because

of DBA. Table IV has the results for TECO-reduction.

Impacts on training accuracy and convergence. We study

the impact of DBA on training accuracy with ZeRO-Offload.

Table V shows the final training accuracy (using the model

specific metrics). There is no TECO-CXL’s result, because it

does not use DBA and has no impact on training accuracy.

In general, we see small impact on training accuracy. Figure

10 shows the training loss curves. Without and with TECO-

Reduction, the training loss curves show the similar trend and

we use the same number of steps to reach convergence. The

impact on the convergence is minor. Figure 10 only shows

GPT-2 and Albert because of space limitation, but the above

conclusion is valid for Bert and T5.

Fig. 10: The training loss curves.

Performance breakdown and analysis. To understand the

performance benefit of TECO better, we break down the

training time into forward-backward time, gradient transfer

time exposed to the critical path, gradient optimizer, parameter

optimization (using the ADAM optimizer), and parameter

transfer time exposed to the critical path. See Figure 12.

For the gradients, the transfer time is completely hidden

by TECO when the batch size is 8. When the batch size is

smaller, the gradient transfer time is exposed to the critical

path, even with TECO, but TECO hides it by at least 69%.

For the parameters, when the batch size is 4, TECO-CXL

reduces transfer time by 76%. When applying DBA, the

transfer time is completely hidden.

C. Communication Volume and DBA Contribution

Applying TECO-Reduction to parameters, the volume is

reduced by 50% after applying DBA. For gradients, there is

no reduction on the volume, because we do not apply DBA.

Nevertheless, using CXL, TECO is able to hide the gradient

transfer time. Reduction of communication volume by DBA

leads to 0.8%-7.3% performance improvement (compared with

the original time without TECO). It has been reported that

in an AWS data center, the AI training takes 20% of GPU

cycles [14]. Assume a data center with 256 A100 GPU and

50% utilization of GPUs. 7% of saving in training time leads to

a reduction of roughly $900K in production cost in a year. (The

cost estimation is based on AWS p4de.24xlarge instance [96]).

D. Overhead Analysis

We evaluate area, power, and latency overhead of the

Aggregator and Disaggregator using Xilinx Vivado ML Design

Suite [116] and Ramulator [40]. We implement the required

logic on Xilinx UltraScale architecture (KU035-FFVA1156)

with 406K FFs and 203K LUTs in 20 nm technology [115].

The FPGA-to-ASIC area, power and delay conversion ratios

are 1:33, 1:14, and 1:3.5, respectively [42]. The latency is for

processing a 64-byte cache line. The scaled power overhead

of the Aggregator and Disaggregator is 0.0127W and 0.017W

respectively. The latency of them are 1.28 ns and 1.126 ns.

The Aggregator and Disaggregator have insignificant per-

formance overhead. When considering the limited bandwidth

of CXL interfaces, each cache line takes around 4 ns latency

and hence the added latency is amortized through pipelined
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TABLE III: DL models configurations and training datasets.

Models Model type # Parameters

# Layers, Hidden size,

# Attention head (if

transformers)

# Dataset Tasks Metrics Giant cache size

GPT-2 [76] Transformer (decoder) 122M 12, 1024, 12 Wikitext Lanuage modeling Perplexity 324MB

Albert-xxlarge-v1 [43] Transformer (encoder) 223M 12, 4096, 48 Squad-v2 Question-awsering F1/EM 547MB

Bert-large-cased [2] Transformer (encoder) 334M 24,1024,12 IMDB Text Classification Accuracy 817MB

T5-large [77] Transformer (encoder-decoder) 737M 48,1024,12 Wiki-summary Summarization Gen-length 2069MB

GCNII [15] Graph neural network 156M 64,1560, N/A Wisconsin Link prediction Accuracy 400MB
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Fig. 11: Training time speedup of TECO-CXL over ZeRO-Offload. The x axis is batch sizes.

TABLE IV: TECO-reduction over ZeRO-Offload.

Batch-size 4 8 16

GPT2 1.82x 1.52x 1.32x

Albert-xxlargev1 1.25x 1.23x 1.08x

Bert-large-cased 1.6x 1.62x 1.41x

T5-large 1.73x 1.58x N/A

TABLE V: The final model accuracy.

Models Metrics
Results

Original TECO-Reduction

GPT-2 Perplexity 21.05 21.54

Albert-xxlarge-v1 F1/EM 84.38/81.40 83.69/79.87

Bert-large-cased Accuracy 93.13 91.99

T5-large Gen-length 22.95 21.11

GCNII Accuracy 54.90 N/A

TABLE VI: Impact of model size on TECO effectiveness.

Models ZeRO-Offload TECO-CXL TECO-Reduction

GPT2 1x 1.55x 1.82x

GPT2-Medium 1x 1.54x 1.64x

GPT2-Large 1x 1.67x 1.79x

GPT2-11B 1x 1.29x 1.41x

transfers, such as processing cache lines while transferring

earlier cache lines. However, to understand the performance

overhead, we add 1 ns overhead for end-to-end performance

evaluation. For the Disaggregator, we need to read the target
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Fig. 13: Impact of DBA on DL model accuracy at different

training steps. We use GPT-2.

cache line from DRAM and then the merged cache line should

be written to DRAM. We simulate these extra read operations

with Ramulator on the memory access traces extracted from

our evaluation. The total simulated DRAM cycle increases

by 2.48× and 1.9× for sequential and shuffled accesses,

respectively. Considering the bandwidth gap between GDDR5

(total 900GB/s with 8 memory controllers) and PCIe 3.0 (16

GB/s) that NVIDIA V100 GPU has, this latency does not incur

perceivable performance overhead.

E. Sensitivity Study

We use GPT-2, because it has multiple model scales pro-

vided by OpenAI [9] (GPT2-medium with 356M parameters

and GPT2-large with 778M parameters). We continue to

increase the model size to billion-scale(11 billion parameters)

by changing the GPT-2 configurations.

Model size and model configuration. Table VI shows

the performance of the original ZeRO-Offload, ZeRO-Offload

with TECO-CXL and TECO-Reduction. As the model size

is changed, TECO consistently brings performance benefits

(44.9%, 38.9%, 44.2% and 29% for GPT-2, medium, large,

11B). For GPT-2 with 11 billion parameters, the performance

improvement is smaller compared to the other three models.

This is because the computation time (including forward

pass, backward pass, gradient optimization and parameter
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TABLE VII: Training time. Zero-Quant compresses model

parameters. The compression ratio is 75%.

System Task Model Time(Hours))

Zero-Quant GLUE-MNLI [100] Bert-base-uncased 5.8

TECO-Reduction GLUE-MNLI [100] Bert-base-uncased 2.03

TABLE VIII: Performance impact of lossless compression
Models GPT2 Albert-xxlarge-v1 Bert-large T5-large

Compression ratio 5% 0% 0% 36%
Normalized training time 4.51 1.95 3.03 2.04

optimization) already accounts for 63.4% of the total time.

The computation time cannot be optimized further by TECO.

When to activate DBA. Figure 13 shows model accuracy

(using the model-specific metric “perplexity”) when TECO

skips different numbers of steps to start DBA. We train the

model to converge and use the same number of training steps

(1775 steps). Figure 13 shows that compared with no DBA

where accuracy is 21.05, activating DBA differently changes

the accuracy (22.50-21.21), while the performance speedup

varies (1.63-1.15). Choosing the 500th step strikes a balance.

F. Comparison with Model Compression

The model compression saves memory.

Lossy compression. We evaluate ZeRO-Quant [60] (a state-

of-the-art lossy compression) in DeepSpeed. ZeRO-Quant

takes 2.87x longer training time than TECO, because it

requires a teacher model (a full-precision model) during

the quantized model training to ensure training accuracy.

Such a teacher model introduces extra training latency. Some

works [67], [81] apply lossy compression to the post-training

models for reducing inference time. Although they reduce

communication time, they significantly increase training time.

Lossless compression. We evaluate the performance of a

lossless compression algorithm (LZ4) [53] when transferring

the parameters. LZ4 is a high-performance and byte-oriented

compression algorithm commonly used in recent work [50],

[63], [79]. We use LZ4’s multi-threaded version [58] for CPU

and NVIDIA’s LZ4 solution [64] for GPU. Table VIII shows

the training time normalized to TECO-Reduction. We see

that compression and decompression incur large performance

overhead (at least 2×). With this large overhead, a replacement

of DBA with the lossless compression in TECO is impractical.

The compression ratio is also very low, demonstrating the

ineffectiveness of reducing communication volume.

IX. RELATED WORK

Large DL model training on HM. Existing efforts [4],

[30], [31], [73], [74], [79], [85], [87], [90], [93], [103] study

DL models on HM, but without cache coherent intercon-

nect. Others works [26], [33], [45], [49], [55], [57], [84],

[88], [89], [107]–[110], [112]–[114], [117], [119], explore the

HM optimization with the context of CPU. Betty [118] and

Sentinel [86] uses HM to enable large graph neural network

training.

Cache coherence interconnect. The recent emergence of

cache coherent interconnect attracts attentions recently [7],

[11], [106], [122]. COARSE [106] is a distributed parame-

ter synchronization scheme based on disaggregated memory

and cache coherent interconnect for training distributed DL

models. Kona [11] reduces dirty data amplification and im-

proves network utilization and performance based on cache

coherent interconnect between FPGA and CPU. ORCA [122]

leverages cache coherent interconnect to provide efficient

notification of communication requests to accelerators and

allow accelerators to directly process requests received by

NIC. Different from them, TECO leverages cache coherent

interconnect to build a cache coherent domain between CPU

and GPU memories. OpenCAPI [68], CCIX [18] and Gen-

Z [22] are previously proposed cache coherent connection

protocols. Recently, these protocol has been merged into the

CXL specification. NVLink [66] can also support coherent

interconnection, but it can only used by NVIDIA GPUs. CXL

has an open specification enabling cache coherent commu-

nication across hosts and a variety of accelerators (including

GPUs). With the open CXL specification, the users can explore

more application-optimal solutions such as giant cache models.

Peer-to-Peer Direct Memory Access (P2P). Existing

works [6], [8], [56] use P2P to allow GPU to access SSD and

perform direct file I/O. TECO is different from them, because

it focuses on CPU memory and uses finer-grained data transfer.

X. CONCLUSIONS

Training large DL models without expensive hardware is

the key to make them approachable. Using HM with tensor of-

floading is promising. Its effectiveness relies on whether tensor

transfers in HM are efficient. Extending an emerging cache-

coherent interconnect CXL, we study how CXL can enable

efficient tensor offloading and what changes in hardware and

software should be provided. Extending CXL, we significantly

reduce training time by 33.7% and communication overhead

by 93.7%, compared with the state-of-the-art industry solution.
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Appendix: Artifact Description
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 We characterize tensor transfers during large model

training with an industry-quality, HM-based train-

ing solution (ZeRO-Offload from DeepSpeed), and

identify two problems that make tensor transfers

the major performance bottleneck for the HM-based

training;

C2 Evaluating with large transformers and a graphic

neural network, we show that compared with ZeRO-

Offload, TECO reduces training time by 33.7%

without changing model convergence and accuracy;

TECO reduces communication overhead by 93.7%

on average

B. Computational Artifacts

A1 https://github.com/luckyq/ADSC-24

Artifact ID Contributions Related

Supported Paper Elements

A1 C1 Tables I,IV,V,VI

C2 Figures 2,10, 11, 12, 13

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This artifact includes the scripts to get the communication

overhead in ZeRO-Offload, the value changes between con-

tinuous iterations and the experiments in evaluation. Through

these tests, we can prove that 1): communication still takes a

large portion of the total training time in previous offloading

system; 2) TECO can outperform previous systems by ex-

tending CXL. TECO can reduce most of the communication

overhead.

Expected Results

The communication overhead takes a rather large portion

of total training time. Across two consecutive training steps,

among those parameters that change values, most of them

change values only in the last two bytes. TECO can hide

the majority of the communication time. By this, TECO can

TECO reduces training time by 33.7% without changing model

convergence and accuracy; TECO reduces communication

overhead by 93.7% on average.

Expected Reproduction Time (in Minutes)

The expected computational time of this artifact is 10 hours.

Artifact Setup (incl. Inputs)

Hardware: Intel Xeon 6120 CPU, two sockets, each socket

with 186GB DRAM. One Tesla V100 GPU with 32GB mem-

ory. The link between the GPU and CPU is PCIe3.0x16 lanes.

Software:

• PyTorch, 1.10.0, https://pytorch.org/get-started/

previous-versions/

• DeepSpeed, 0.3.15,https://github.com/microsoft/

DeepSpeed

• DeepSpeedExamples, latest version, https://github.com/

microsoft/DeepSpeedExamples.git

• Transformer, latest version,https://huggingface.co/docs/

transformers/en/index

• Datasets, latest version, https://huggingface.co/docs/

datasets/en/index

• Gem5-AVX, latest version, https://github.com/seanzw/

gem5-avx

• Accel-Sim, latest version, https://accel-sim.github.io/

• LZ4, laster version, https://github.com/lz4/lz4.git

• nvCOMP, latest version, https://github.com/NVIDIA/

nvcomp.git

Datasets / Inputs:

• IMDB, https://huggingface.co/datasets/stanfordnlp/imdb

• Wikitext, https://huggingface.co/datasets/wikitext

• Wiki-summary, https://github.com/m3hrdadfi/

wiki-summary

• Squad-v2, https://huggingface.co/datasets/rajpurkar/

squad v2

• Wisconsin, https://paperswithcode.com/dataset/

wisconsin-48-32-20-fixed-splits

Installation and Deployment: All the packages(excluding

Gem5−AVX and Accel−sim) can be installed by pip install

package name==version. For Gem5−AVX and Accel−sim,

we can use git to download it. For the installation, we can just

follow the instructions in READ.ME of each repository.

Artifact Execution

For the motivation test, it contains two Python scripts, com-

munication.py and valuechanges.py. communication.py and

valuechanges.py are independent. The first one is used to

get the communication time exposed to the critical path. The

second one is used to get the Variance of parameter/gradient

values across training steps. The dataset used in these two

scripts is IMDB. There is no specific command-line parameter

to run the scripts. For the speedup tests, four scripts are

used for each model. model name.sh run the model with

ZeRO-Offload. model name gem5 avx.sh is to simulate the

parameter updating on the CPU and get the memory access

trace. process.py is going to replay the trace and get the time

of CXL data transfer. gpu backward.sh is going to simulate

the data transfer during the backward phase. For the accuracy

and loss tests, we will use the scripts in transformers package

(path to transformers/examples/pytorch/). To get results of

apply compression method in the training, we will run the LZ4

and nvCOMP to compress and decompress the same amount

of parameters.
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Artifact Analysis (incl. Outputs)

The expected results are detailed breakdown time of each

phase. A simple sum up to get the end-to-end performance.

To get the performance of TECO, the simulated results can

replace the corresponding part. For accuracy, it can directly

be read. The expected training time is reduced by 33.7% on

average. Communication overhead will be reduced 93.7% on

average. These results will prove that TECO is effective to

reduce the communication overhead in tensor-offloading Deep

learning systems.
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