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Abstract—The deep learning models (DL) are becoming bigger,
easily beyond the memory capacity of a single accelerator. The
recent progress in large DL training utilizes CPU memory as an
extension of accelerator memory and offloads tensors to CPU
memory to save accelerator memory. This solution transfers
tensors between the two memories, creating a major performance
bottleneck. We identify two problems during tensor transfers: (1)
the coarse-grained tensor transfer creating difficulty in hiding
transfer overhead, and (2) the redundant transfer that unneces-
sarily migrates value-unchanged bytes from CPU to accelerator.
We introduce a cache coherence interconnect based on Compute
Express Link (CXL) to build a cache coherence domain between
CPU memory and accelerator memory. By slightly extending
CXL to support an update cache-coherence protocol and avoiding
unnecessary data transfers, we reduce training time by 33.7%
(up to 55.4%) without changing model convergence and accuracy,
compared with the state-of-the-art work in DeepSpeed [62].

I. INTRODUCTION

The deep learning (DL) models are becoming larger. In the
last four years, the model size increases by at least 1,000x.
In 2018, Bert [24], a DL model with over 300M parame-
ters, was the largest model. Just within one year, Turing-
NLG [61], T5 [77], GPT-2 [12], and Megatron-LM [92],
a set of transformer-based models, increase the number of
parameters to tens of billions. In 2022, BLOOM, one of
the largest models, has 176B parameters [44]. Utilizing large
models leads to gains in model quality [10] and resource
utilization [35]. The momentum of using them may continue.

However, training those large models faces a memory
capacity wall. The model states (such as parameters, gra-
dients, and optimizer states) and intermediate results (such
as activation) can easily go beyond the memory capacity of
an accelerator (e.g., up to 180GB in a NVIDIA Blackwell
GPU [65]). Distributed model-training technologies, such as
pipeline model parallelism [32], tensor parallelism [92], and
ZeRO data parallelism [78], are able to split the model states
across multiple accelerators or reduce data redundancy across
accelerators, hence addressing the memory capacity problem
faced by a single accelerator. In practice, using a combination
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of multiple distributed training technologies enables large
model training by leveraging aggregated accelerator memory
on multiple accelerators. However, the distributed training
relies on expensive hardware resources. For example, training
175B-parameter GPT-3 requires 112 NVIDIA A100 GPUs
(each with 80GB HBM) to accommodate memory consump-
tion, easily causing millions of dollars, which is not affordable
by many users. Even using half-precision and loss-scaling to
save memory and using eight V100 GPU on the cloud, it still
takes hundreds of thousands of dollars [82]. Large production
costs and pervasive usage of large DL models motivate various
hardware- and software-based solutions [9], [38], [47], [51],
[69], [104], [120].

Use of heterogeneous memory for model training breaks
the memory capacity wall without adding accelerators. By us-
ing the CPU memory as an extension of the accelerator mem-
ory, this technology offloads tensors (such as parameters [30],
[731, [74], [79], [85], [90], [103], optimizer states [79], [87],
and/or activation memory [79]) to the CPU memory.

Problems. Using heterogeneous memory (HM) introduces
data movement overhead: Tensors offloaded to the CPU mem-
ory must be transferred back to accelerator for model training,
and the transfer must be timely to avoid the reduction of
computation efficiency on accelerator. Existing efforts prefetch
tensors from the CPU memory to a GPU buffer and overlap
tensor transfers with computation [30], [31], [74], [85], [103]
based on the knowledge of the DL topology. To maximize the
saving of the accelerator memory, the recent effort [79], [87]
offloads optimizer computation to CPU to completely remove
optimizer states from GPU. However, to make those solutions
effective, one must use a large batch size or large layer-wise
computation in the DL model to provide overlapping oppor-
tunities, because of suboptimal data partitioning and limited
PCle bandwidth. Given a model with billions of parameters
(or hundreds of millions of parameters per accelerator with
model parallelism), the existing efforts transfer hundreds of
MB or even a few GB tensors for each layer, easily taking
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~10 or ~100 of milliseconds on a PCle 3.0 [71] (or PCle
5.0 [72]) interconnect, which is typically longer than layer-
wise computation time. The mismatch between tensor transfer
time and computation time brings challenges to hide the
overhead of tensor transfers. Hiding or reducing this overhead
is the key to use HM for large model training.

Major insights. We identify two fundamental problems
during tensor transfers for large DL model training: the
coarse-grained tensor transfer and redundant tensor transfer.
Identifying the two problems provides a new angle to examine
how to hide or reduce the tensor transfer overhead.

The coarse-grained tensor transfer means that the tensor
transfer between CPU and accelerator occurs at the granularity
of a group of variables (e.g., a group of parameters aligned
with the block size in a transformer). Such a tensor transfer is
caused by software management that periodically transfers a
group of variables (instead of individual variables) to make the
best usage of interconnect bandwidth. However, this transfer
method leads to long transfer time per transfer, which is
difficult to be overlapped with computation.

The redundant tensor transfer means unnecessary data trans-
fer causing communication overhead. Our profiling on Bert
shows that 44.5% of parameters do not change values across
two consecutive training steps throughout some training steps;
80% of the updated parameters are modified only in the least
significant two bytes. This limited byte update is a common
phenomenon in most DL training. This phenomenon is more
common in large DL models using fine-tuning. During the
fine-tuning phase, the weights and parameters do not signifi-
cantly change to avoid catastrophic forgetting [41]. Since CPU
and accelerator hold the gradient and parameter tensors in a
former training step, the unmodified parts in these tensors
do not need to be transferred. The unmodified bytes con-
sume PCI-e bandwidth and significantly delay communication
(69.5% in our experiments in Section II).

Solution. To address the above problems, we introduce
Tensor-CXL-Offload (or TECO), an HM system based on a
cache-coherent interconnect — Compute Express Link (CXL),
aiming to hide the tensor transfer overhead to train large DL.

To address the problem of coarse-grained tensor transfer,
TECO puts the CPU cache and a part of the accelerator
memory into the same CXL coherent domain. That part of
the accelerator memory is used as a giant cache of the
CPU memory. We recognize the limitation of CXL to hide
communication time because of an invalidation-based cache-
coherence. This protocol best fits for large-scale communica-
tions where it is hard to keep track of all data sharers. For the
small-scale communications that have a clear data producer
and a consumer (e.g., CPU-GPU DL training), sending an
invalidation message and the updated data in separate CXL
packets only demands more PCI-e bandwidth and unnecessar-
ily delays the data transfer. Therefore, TECO extends CXL to
be configurable to support either update- or invalidation-based
coherence based on the execution scheme. Using the new
protocol, TECO decomposes coarse-grained tensor transfers
into cache line-grained ones to maximize the overlap between

tensor transfers and computation.

To address the problem of the redundant tensor transfer,
TECO excludes useless bytes from the transfer. Based on the
statistics of the number of bytes per data (e.g., DL parameters)
updated during application execution, we configure the CXL
host module to collect only the updated bytes from each
parameter and pack multiple (trimmed) parameters in a CXL
packet. The number of bytes to drop from each 4-byte unit
data is given by the user and is passed to the accelerator-side
CXL module via a special API. With this information, the
accelerator parses each CXL packet and merges the updated
data with the original 4-byte data residing in the accelerator
memory. We call this process, dirty-byte aggregation, and
design an aggregator (to encapsulate multiple data into one
CXL packet) on the sender device and a disaggregator (to
parse individual data from a packet) on the receiver device.

We summarize the major contributions as follows.

o We use a cache coherent HM consisting of the memories of
accelerator and CPU to train large DL, based on which we
provide a new method to reduce data movement overhead;

o We characterize tensor transfers during large model train-
ing with an industry-quality, HM-based training solution
(ZeRO-Offload [87] from DeepSpeed [62]), and identify two
problems that make tensor transfers the major performance
bottleneck for the HM-based training;

o We leverage and extend CXL to address the two tensor-
transfer problems by reducing tensor transfer granularity and
avoiding useless transfer;

 To our best knowledge, this is the first study demonstrating
the effectiveness of the extended CXL giant cache model.

o Evaluating with large transformers and a graphic neural
network, we show that compared with ZeRO-Offload, TECO
reduces training time by 33.7% on average (up to 55.4%)
without changing model convergence and accuracy; TECO
reduces communication overhead by 93.7% on average (up
to 100%).

II. BACKGROUND
A. Training Large Deep Learning Models on HM

Using the CPU memory as an extension to the accelera-
tor memory, the existing solutions use various strategies to
decide which tensors should be offloaded and how to hide
transfer overhead. We review a representative and state-of-the-
art effort, ZeRO-Offload. ZeRO-Offload represents a class of
work (including ZeRO-Infinity [79], [95]) selectively offload-
ing tensors to the CPU memory but stores all parameters on
accelerator. ZeRo-Offload performs better than Unified Virtual
Memory [74], [85].

ZeRO-Offload stores the gradients and optimizer states
in the CPU memory, and stores the parameters in the GPU
memory. GPU also has a small gradient buffer. There are five
phases in a training step in ZeRO-Offload (see Figure 1).

o Phase 1: Forward propagation on GPU using recently
updated parameters on the GPU memory. These parameters
are transferred from the CPU memory;
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Fig. 1: Overview of ZeRO-Offload.

o Phase 2: Backward propagation on GPU, generating gradi-
ents in the gradient buffer on the GPU memory.

o Phase 3: During the backward propagation, the gradient
buffer is periodically filled and flushed (i.e., transferring
gradients) from GPU to the CPU memory.

« Phases 4 and 5: After collecting all gradients at the end of a
training step, the gradients are clipped to be bounded within
a certain range on CPU. The new gradients are used in the
ADAM optimizer on CPU to generate new parameters on
the CPU memory. The new parameters are then transferred
from CPU to the GPU memory for the next training step.
In ZeRO-Offload, the gradients transfers from GPU to CPU

are partially exposed to the critical path. For the parameters,

ZeRO-Offload uses a double-buffer technique on CPU to hide

the transfer overhead: while CPU fills one buffer with new

parameters, the other is used for parameter transfers from

CPU to GPU. However, the buffer filling is much faster than

the parameter transfer. As a result, the parameter transfer

is largely exposed to the critical path. Although using the

“one-step delayed parameter update” technique (DPU) [87],

the parameter transfer can overlap with GPU computation,

the effectiveness of this technique requires significantly large
batch sizes to achieve enough arithmetic intensity on GPU.

However, the batch size per GPU is limited by the maximum

global batch size that can be used during the training without

sacrificing convergence efficiency [5], [36], [121]: since the
global batch size cannot be increased indefinitely without
slowing down model convergence, training on GPUs (espe-
cially in a large scale) often forces the batch size per GPU to be
very small [102], which invalidates DPU effectiveness. Also,
DPU itself raises the risk of changing DL model convergence.

B. Compute Express Link

CXL is proposed to be used as interconnect between pro-
cessors, memory expansion, and accelerators. CXL is built
on top of PCle, and develops a custom higher-level protocol
stack. CXL intends to get lower latency of fine-grained mem-
ory accesses (i.e., cache line-level accesses), while provides
sufficient peak bandwidth (e.g., about 90% of the underlying
serial bus protocol bandwidth). CXL includes three sub-
protocols. One of them, CXL. cache, is related to this paper.
CXL.cache is an agent coherency protocol permitting device
caching of the host memory. CXL uses the MESI protocol
managed by hardware to ensure coherence for CXL.cache.

Giant cache model in CXL. The CXL specification in-
cludes a giant-cache model [21]. When the memory footprint

TABLE I: Percentage of training time used for communication.
We report the communication time exposed to the critical path.

Batch size 4 8 16 20
Overhead (ZeRO-Offload) | 42.24% | 37.87% | 28.65% | 25.95%

of a workload exceeds the capacity of accelerator memory,
this memory can work as a giant cache. In particular, the full
dataset resides in the CPU memory, but the subsets of the full
dataset are cycled through the giant cache as the computation
proceeds. The cache in the host system and the giant cache in
the accelerator are in the same coherence domain and work as
distributed caches for the CPU memory.

The recent surge of domain-specific accelerators (especially
for Al workloads) [25], [27]-[29], [52], [75], [80], [111],
makes the implementation of TECO highly feasible. This
feasibility is further enabled by the recent initiative from
NVIDIA for customization of Al chips to meet users’ growing
needs [48].

III. MOTIVATION

We study the training performance with ZeRO-Offload. We
use pre-trained Bert-large-cased [2], a large transformer model
with 334M parameters and 24 transformer blocks. We fine-
tune Bert-large-cased on the IMDB dataset [54]. We use a
system with Intel Xeon 6120 CPU, one Tesla V100 GPU with
32GB memory, PyTorch 1.10.0, and PCle 3.0 for data transfer
between CPU and GPU. We use ZeRO-Offload 0.3.15. We
vary the batch size to study its impact on tensor offloading.

Quantification of communication time. We measure ten-
sor transfer time exposed to the critical path. See Table 1.

Observation 1: the communication overhead takes a rather
large portion of total training time.

For example, when the batch size is 4, the communication
overhead takes 42.2% and 59.7% of total training time with
ZeRO-Offload. This large overhead comes from (1) some
gradient transfers from GPU to CPU are exposed to the critical
path and the CPU computation must wait for the gradient
transfers to finish before it starts, and (2) the parameter
transfers from CPU to GPU are largely exposed to the critical
path, because the double-buffer is not effective and DPU
partially fails because of low arithmetic intensity on GPU.

Furthermore, we notice that when the batch size becomes
larger, the communication overhead takes a smaller portion
of the training time. For example, for ZeRO-Offload, the
overhead reduces from 42% to 26% when the batch size
increases from 4 to 20. This is because GPU computation
complexity becomes larger while the communication time
remains the same, leading to smaller communication overhead.
Nevertheless, the communication overhead still takes a large
portion of training time. Note that increasing the batch size
increases memory consumption, hence limiting the model size
we can train and deteriorating the memory capacity problem.

Variance of parameter/gradient values across training
steps. We examine the values of parameters and gradients
in each training step. Each parameter or gradient is a 4-byte
floating point number. We study that in a training step i, among
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the 4 bytes in a parameter (or a gradient) how many of them
change values, compared with the prior step i — 1. In other
words, we count the number of value-changed bytes in each
parameter (or each gradient) across two consecutive training
steps. Given four bytes in a parameter (or a gradient), we
classify the distribution of value-changed bytes in those four
bytes into three cases: (1) only the last byte changes the value,
(2) only the last two bytes change, and (3) other distributions.
We train (fine-tune) a pre-trained Bert-large-cased to converge
using 9,870 training steps. Figure 2.(a)-(b) show that among
those value-changed parameters (or gradients), how the above
three cases are distributed in training steps.

Observation 2: Across two consecutive training steps,
among those parameters that change values, most of them
change values only in the last two bytes.

Figure 2 (a) shows that about 80% of parameters belong
to Case (1) (i.e., only the last byte changes values). An FP32
parameter has 4 bytes where the 1st byte plus one bit are for
exponent and sign, and the remaining bits are for mantissa. For
most of the parameters, there is few value-change in exponent
and sign across training steps, but there are frequent value-
changes in mantissa, leading to frequent value-changes in the
last two bytes. Also, we notice that the first two cases become
more common when the training is close to converge. Figure 2
(b) shows the distribution of value-changed bytes in gradients.
Different from parameters, all bytes in gradients frequently
change values across training steps.

IV. TECO: TENSOR-CXL-OFFLOAD

A. Overall Architecture

1) Memory Organization: A part of the accelerator’s global
memory is a cache of CPU memory and is mapped to the
CXL coherent domain using the giant cache model in CXL.
This cache is used for parameters and gradients transferred
between CPU and accelerator. The other tensors are allocated
to the remaining accelerator memory which is used as the
traditional non-coherent memory. DL training on accelerator
is executed against both parts of the memory. See Figure 3.

The giant cache size is configured to be large enough
to accommodate tensors transferred between accelerator and
CPU, and there is no cache capacity (or conflict) miss during
accelerator computation.

Before starting the DL training, once the size of batch, DL
model, and training data are determined, the giant cache size
is configured by the user and does not change during the DL
training. For Zero-Offload, this size is the size of parameters
in the accelerator plus the size of the gradient buffer (the size
of the gradient buffer is a configurable parameter in Zero-
Offload).

There can be various ways to configure giant cache size.
We use resizable Base Address Register (BAR) [70], which
enables faster communication between host CPU and PCle
devices by mapping configurable memory regions of the
devices to the system memory map. Once the size is set,
that amount of space is separately marked as the giant cache.
Then, the CXL controller and home agent handle the coherent
tensor movement between the giant cache and CPU memory
(Section IV-A2).

2) Coherence and Caching Mechanisms: Limitation of
CXL. CXL wuses invalidation-based coherence protocol
(MESI). Upon every cache line update, only invalidation
message is sent to the shared opposite party (CPU cache for the
giant cache or vice versa). Later, when the shared party issues
a memory load for the data, the updated value is transferred via
PCle. Thus, the expensive PCle transfer time is included in the
critical path. According to our evaluation, this on-demand data
transfer increases training time by 56.6% on average (up to
99.7% in the case of T5-large model with 737M parameters),
compared to when the updated data is sent at the time of
invalidation. This motivates us to optimize the CXL coherence
protocol.

CXL extension. We extend CXL to use an update-based
cache coherence protocol. This means that cache lines are
transferred at the updating time between CPU cache and
accelerator’s giant cache by CXL.cache. As the CPU cache
is typically smaller than the giant cache, only the lines residing
in the CPU cache are updated by the update protocol. For
the other lines, the CPU cache simply ignores the update
messages. Our proposed extension enables cache line level
tensor transfer over time. Thus, we can support fine-grained
migration and better compute and data transfer overlapping.

Figure 4 illustrates the revised protocol transitions. This
figure is based on the state transition figure in the CXL spec-
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ification [23]. As highlighted with a red arrow, Modified
state can be immediately transitioned to Shared state upon
the CXL home agent’s approval. When a cache line is updated
on CPU, CPU sends a message to the home agent to see if
this cache line is in the giant cache domain (see the first
two red arrows in Figure 5). The above is the only change
to the invalidation protocol, and the other transitions remain
the same.

Figure 5 depicts the state transition in detail when a pa-
rameter cache line is updated. The accelerator’s giant cache
and CPU cache are treated as peer caches. The home agent,
as depicted in the CXL specification, manages the coherence
between the peer caches of CXL device. C_S and G_S
represent the state of CPU cache line and accelerator cache line
respectively. C is the cache line that CPU updates. When the
training starts, the giant cache has a copy of the parameters. At
the beginning, the CPU state of C (i.e., C_S) is I, since C is not
in the CPU cache. The accelerator state of C (i.e., G_S) is E.
When @ happens, C_S becomes E after sending a ReadOwn
CXL coherence message. When @ happens, C_S transits to
M from E, and then transits to S after receiving the Go-
Flush message. @ has such a transition because of the revised
protocol: C is in the giant cache domain and updated by CPU.
@ to @ represents the process of updating the parameters. If
the CPU evicts C or flushes all the cache lines, C_S transits
to I from S and G_S transits to E from S. The flush happens
only once at each training iteration to guarantee all the updated
parameters are sent out. When the accelerator reads C, G_S
remains E. The accelerator only reads the parameters and never
updates them, and this means that the CPU and accelerator
never concurrently update the parameters.

We introduce a function, CXLFENCE (), to ensure the com-
pletion of in-flight CXL cache coherent traffic. CXLFENCE
is used to enforce the memory consistency. CXLFENCE ()
is implemented by extending accelerator synchronization API
such as cudaDeviceSynchronize () in GPU, which
is commonly used to check the completion of data trans-
fer or CUDA kernel call. cudaDeviceSynchronize ()
is supported by the existing GPU driver to check the
DMA-based copy engine and detect if there is incom-
plete data transfer in PCle. CXLFENCE () works similar
to cudaDeviceSynchronize () but it only guarantees
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the CXL coherence traffic by checking the status of CXL
controller and home agent.

One challenge to designing a giant cache is the large size of
snoop filter (or coherence directory) as the sharer information
of individual cache lines should be maintained in the filter.
TECO does not have the snoop filter design problem. As
the giant cache size is configured to afford gradients and
parameters, and CPU and accelerator have a clear producer-
consumer relationship for each data, it is not necessary to keep
track of data sharers and their coherence status with a snoop
filter. In particular, when CPU updates a tensor element cached
on the giant cache, based on the DL domain knowledge we
know that the tensor element must be a parameter, and the
parameter copy on the accelerator must be updated due to the
update protocol and hence in Shared state. Hence, there is
no need to apply the snoop filters. Therefore, TECO does not
maintain the snoop filters for the giant cache, which saves
memory space and avoids long snoop latency.

For the application that does not have a clear producer-
consumer relationship (e.g., having more than two sharers) or
multiple sharers updating the cache line concurrently, TECO
goes back to using the invalidation protocol and snoop filter.
This can be implemented by modifying the CXL home agent.
As shown in Figure 5, all the transitions are managed by the
home agent. By disabling the immediate FlushData transition
upon data update, the update-based transitions can be disabled.
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B. Applying TECO

Applying TECO to ZeRO-Offload. With TECO, param-
eters and gradients use the giant cache. Before training, the
CPU memory has a whole copy of parameters and gradients.
Figure 6 depicts the dataflow. TECO reduces the parameter
transfer overhead. With TECO, once any parameter is updated
on CPU, it is transferred to the GPU memory according
to MESI-update (@ and @). There is no need to use the
double-buffer technique. Therefore, we can avoid the frequent
synchronization between the two buffers and reduce software
complexity. Also, with TECO, there is no need to explicitly
call parameter transfers. Only when all parameters are updated,
CXLFENCE () is called once to enforce the completion of
coherent parameter updates to the giant cache.

The above method does not increase the communication
volume. In particular, when multiple parameters fall into the
same cache line, any update to a parameter in the cache line
can cause a transfer of the cache line from CPU. This means a
cache line containing multiple parameters may be transferred
multiple times especially when there is a long time interval
between the updates of parameters, while the original ZeRO-
Offload transfers the whole cache line only once. However,
the computation for parameter update is commonly based on
vectorization. As a result, multiple parameters are updated at
the same time, causing only one transfer of the cache line.

TECO also reduces gradient transfer overheads. With
TECO, the gradient transfer does not need to wait for the
gradient buffer to be fully filled. Instead, the gradient transfer
is overlapped with the backward propagation (®). After the
buffer is full with gradients, CXLFENCE () must be called to
ensure in-flight data transfer is done.
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Controller

Write to

memory
Aggregator
A 4
Packet CXL transfer
= =gy
encodin

Fig. 8: Workflow of updating a cache line.

V. REDUCTION OF COMMUNICATION

This section discusses the dirty-byte aggregation (DBA)
in detail. We introduce two components, Aggregator and
Disaggregator, depicted in Figure 7. The figures illustrate
(a) how the updated least-significant two bytes of each 4-
byte parameter are aggregated from two cache lines into
a CXL packet in CPU, and (b) how the aggregated dirty
bytes are parsed from the CXL packet in the accelerator and
merged with the un-updated cache lines in the giant cache
to reconstruct the updated cache lines. Note that the un-
updated cache lines remain in the accelerator memory after
being used by the prior training step. The gradients transfers
from the accelerator to CPU cannot apply DBA, because there
is no common byte-update pattern in gradients as shown in
Section III.

A. Activation of Dirty-Byte Aggregation

The DBA is activated at runtime. TECO determines the
activation of DBA after a specific number of training steps
(specified with act_aft_steps by the user in an Al model
configuration file). act_aft_steps is a model dependent hyper-
parameter. Like other hyperparameters (such as the learning
rate, batch size, and number of steps delayed for parameter
update [87]), act_aft_steps is determined by the user, while
the default value is 500 (Section VIII-E). act_aft_steps can
be tuned using the Bayesian optimization [17], [94].

To indicate the dirty-byte length, we introduce another
model-dependent hyperparameter, dirty_bytes. dirty_bytes is
configured by the user. For DL training, it is set to 2, as the
parameter-value change happens mostly in the least significant
two bytes in consecutive training steps (Section III).

B. Aggregator

When CPU updates a cache line of parameters mapped
to the giant cache, the line is transferred to the accelerator
according to MESI-update. For each FP32 parameter in 64-
byte cache lines, the Aggregator takes the last N bytes (N =
dirty_bytes), packs them into a CXL packet, and sends it to the
accelerator (Figure 7.(a)). The Aggregator and its configuration
registers are implemented in the CPU CXL module.
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The DL framework (such as PyTorch) uses the configuration
register, DBA register, in the CXL module through a CXL
configuration interface to activate the DBA. The DBA register
has four bits: the most significant bit for indicating the
activation and the remaining three bits for setting the dirty
byte length (0 to 4 bytes). For example, suppose that this
register is set with dirty bytes as 2 bytes (i.e., the DBA register
is set to 1010;). For each 64-byte cache line to be sent to
the accelerator, the Aggregator takes the least significant two
bytes of each 4-byte parameter, aggregates them into a 32-
byte payload, and passes it with the cache line address to
the CXL Link Layer to create a CXL packet. The CXL Link
Layer combines one or multiple 32-byte payloads into one
CXL packet depending on the CXL transfer size. We indicate
the size of payloads (32-byte aggregated cache lines or a 64-
byte unaggregated cache line) by reserving an unused bit in
the CXL packet header (the packet header has at least six
unused bits). When the DBA register is not set (i.e., the most
significant bit is 0), the Aggregator logic is bypassed and all
bytes in each cache line are sent through CXL.

Figure 8 shows the workflow of updating a cache line. When
the cache line is flushed or evicted from the last level cache
on CPU, the CXL home agent on CPU first checks if this
cache line is mapped in the giant cache. If not, this cache
line is directly written to CPU memory. If yes, this cache
line is sent to the transmission queue maintained by the CXL
root port. This queue is like the transmit buffer in PCle [3].
Then, the CXL root port checks if DBA is activated, and sends
out the aggregated or full cache line through the CXL link
accordingly.

As the only function that the Aggregator does is collecting
dirty bytes from a given cache line, it can be implemented with
simple logic gates. We implement it by designing a logic that
takes the lower N bytes from each 4-byte parameter, where
N is indicated by the lower three bits of DBA register, and
concatenates them together.

To indicate memory regions mapped to the giant cache on
the accelerator, the Aggregator has two registers (“address
registers”) per cached region, which are set when a tensor is
allocated and checked by the CXL host agent when triggering
coherent data transfer. Note that the implementation of regis-
ters does not change the CPU architecture. TECO leverages
unused registers in the CXL specification [19]. The Aggregator
utilizes the internal buffers of CXL Link Layer and does not
need extra buffer.

C. Disaggregator

During the DL training, the accelerator retains the parameter
values used by the prior training step. Once CPU updates the
parameters and sends only the dirty bytes through the DBA
in a MESI-update message, the accelerator reconstructs the
updated parameters by overwriting the corresponding bytes of
each parameter in its memory with the dirty bytes sent by
CPU. For this task, we design the Disaggregator in the CXL
module on the accelerator.

Once the DBA register is set in the CPU CXL module, the
CXL host agent asks the accelerator’s CXL module to activate
the disaggregation by sending the DBA-register value to the
accelerator. Once an MESI-update message is delivered to the
accelerator, the cache line to update is read from the giant
cache in the accelerator memory. If the DBA-register value
is 1010,, from the MESI-update packet, the Disaggregator
takes 32 bytes from the payload, and uses every two bytes
to overwrite every other two bytes in the 64-byte cache line

(see Figure 7.(b)).
This approach leads to one extra read operation per cache

line update to merge the dirty bytes with the un-updated
cache line in the giant cache. However, the accelerator-side
DRAM architecture does not need to be changed because
disaggregation and merge are handled in the CXL module, not
in the memory. Also, the extra read operations incur almost
negligible performance overhead according to our evaluation
(Section VIII), because there is a large bandwidth gap between
PCle and the accelerator memory (e.g., GDDRS) and the

accelerator memory is not the performance bottleneck.
The Disaggregator’s function can be implemented with neg-

ligible overhead. For example, we implement it by designing
a logic that (1) resets N bytes indicated by the DBA register
per 4 bytes of a cache line, (2) shifts the payload by taking
every N bytes from the payload and shifting them by ((4 - N)
x W) bytes, where W is the corresponding word index in the
cache line, and (3) runs OR operations between the cache line
and the shifted payload. The Disaggregator assumes that there
is an old copy of the parameters in the accelerator memory in
order to perform merging, which is true in TECO.

The Aggregator and Disaggregator require little hardware
modifications: (1) adding the address and DBA registers, (2) a
few logic gates to take the dirty bytes per word in the Aggre-
gator, and (3) merging the disaggregated dirty bytes and the
old copy in the accelerator memory in the Disaggregator. The
space and power overheads are evaluated in Section VIII-D.

About mixed-precision training. Using mixed-precision to
train large DL models is common. In those cases, param-
eters often have two copies, one in FP32 and the other in
FP16 [79], [87]. Using gradients in FP32 and optimizer states
in FP32, the parameters in FP32 are updated on CPU, and then
converted to FP16 for (back)forward propagation on GPU.
Such a conversion does not impact the effectiveness of TECO,
because the conversion happens on GPU. As a result, the
parameters transfer from CPU to GPU still uses FP32, creating
opportunities for the DBA. The conversion must happen on
GPU instead of CPU to reduce conversion overhead.

VI. USING TECO IN DL MODELS IN PRACTICE

The use of TECO includes minor changes to the DL
implementation. Listing 1 gives an example of how to use
TECO with ZeRO-Offload for Bert. Using TECO, the user just
needs to call check _activation () after the backward
propagation (Line 5). check_activation () determines if
the DBA should be activated according to Section V-A. Only
two lines of code (Lines 1 and 6) are needed.
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Listing 1: Using TECO with ZeRO-Offload for
Bert. The code from TECO is highlighted in blue.

from TECO import check_activation
. # import other packages and preparing the training
for i in range(training_steps): # main loop for training
. # feed the model and compute loss
loss.backward() # CXLFENCE() is called in this function
check_activation(i)
optimizer.step() # CXLFENCE() is called at the end in step()

NounhAwN R

Mapping parameters and gradients to the giant cache is
hidden from the user. Those tensors are allocated on CPU
as usual. CXLFENCE (), used after parameter transfers from
CPU and gradient transfers from GPU, is also hidden from
the user. CXLFENCE () is called within the implementation of
ZeRO-Offload and PyTorch (Lines 2 and 4). CXLFENCE () is
called only twice in a training step. Since CXLFENCE () can
be based on cudaDeviceSynchronize (), we measure
the time of cudaDeviceSynchronize () which takes less
than 1% of training time.

VII. TECO GENERALITY

TECO relies on minor hardware changes. This is reason-
able, because DL workloads become so important such that
recent efforts introduce DL-specific hardware [16], [34], [38],
[39], [46], [83], [97]-[99], [101]. Nevertheless, TECO can
be generally applicable to other applications. The application
that can benefit from TECO should have three characteristics:
(1) the application has an iterative structure, and the com-
putation results are iteratively fine-tuned; (2) the application
can tolerate computation approximation. Many applications
have the above characteristic, including common numerical
solvers (e.g., multi-grid solver [13] and conjugate gradient
solver [91]); (3) the data transfer between CPU and the
accelerator is a performance bottleneck, and data producer
and consumer are explicit. (1) and (2) are needed to apply the
DBA, and (3) is needed to benefit from the extended CXL.

To demonstrate the generality, we apply TECO to
LAMMPS [1] (a molecular dynamics (MD) simulation
code). We study 3D Lennard-Jones melting simulation with
LAMMPS where the accelerator is used for force calculation
for a set of molecules. After accelerator computation, the
force data is sent to CPU. CPU then updates the molecules’
positions and sends them to the accelerator. This code meets
the requirement of (1) and (2), and the data transfer takes
27% of the application time with explicit data producer and
consumer, meeting the requirement of (3). Applying TECO,
LAMMPS gets 21.5% performance improvement, and the
communication volume is reduced by 17% by DBA. Among
the performance improvement, CXL contributes 78% and
DBA contributes 22%. This improvement leads to 5-hour
saving in the simulation time.

VIII. EVALUATION

A. Experimental Setup

Evaluation method. We design an evaluation infrastructure
by interfacing a CPU simulator (gem5-avx [105] v20.0.0) and
a GPU simulator (Accel-Sim [37]) via CXL emulation, as
illustrated in Figure 9. We use GPU as an example accelerator.

GEM5-AVX CXL Emulator

[———— —————
I

______|| XL Ctrl o o -ll
STl e g )

Original parameter
cache line

Accel-sim

Updated Aggregator

parameter Disaggregator

Fig. 9: Overview of the simulation platform.

Using GPU with TECO is possible because of the recent
initiative from NVIDIA for customization of Al chips to meet
the growing needs of users [48], and the hardware support
for the giant cache model is expected to be available in
the near future. We emulate PCle 3.0 with 16 lanes with
16GB/s bandwidth. All data transfer times over the CXL
protocol are emulated by assuming to consume 94.3% of PCle
bandwidth [20], [106]. Table II shows the configurations of
gem5S-avx. Accel-Sim is configured as NVIDIA V100 GPU.
The communications over CXL are controlled by a CXL
controller with a pending queue of 128 entries. We extend
gem5-avx and Accel-Sim to model the CXL controllers.

We use Ubuntu 18.04, PyTorch 1.10.0, CUDA 10.2, Deep-
Speed 0.3.15 (including ZeRO-Offload), and Python 3.6.7.
Unless indicated otherwise, act_aft_steps and dirty_bytes are
set as 500 and 2 respectively. We change the batch size to
evaluate the effectiveness of TECO. Even though we use
tensor offloading, the batch sizes are chosen to be within
a certain range such that out-of-memory does not happen.
Pytorch 2.0 provides an API called torch.compile [59] to
optimize the computation graph. However, it can’t be used
for CPU+GPU training, and only supports computation graph-
based optimization on CPU only or GPU only.

Parameter transfer over CXL. CPU runs the parameter
update (using the ADAM optimization and AVXS512 intrinsic)
during the training. TECO uses the update-based cache co-
herence protocol. Thus, our simulation transfers a cache line
when multiple parameters in the cache line are updated using
a vectorized instruction (see Section IV-B) and the cache line
is written back to the main memory. To measure the transfer
time of these cache lines over CXL, we collect the timing
and amount of these writebacks by generating a trace of main
memory accesses during CPU simulation. The trace contains
the timings and addresses of memory loads/stores [40].

The CXL emulator measures the transfer time that does
not overlap with CPU computation time and adds it to the
gem5-avx simulation time as the final CPU time. Note that the
CXL emulator measures the transfer time by considering the
aforementioned CXL bandwidth. For TECO-Reduction (using
both CXL and DBA), the Aggregator delay is added, which is
1 ns as explained in detail in Section VIII-D. Our emulator is
designed based on the fact that CXL is a serial bus [20], [72].
The updated cache lines with different parameters are going
through the link one after another in a stream manner.

Gradient transfer over CXL. To simulate the update-based
cache coherence protocol, Accel-Sim is modified to transfer
the updated gradients over CXL whenever the corresponding
cache line is written back to the giant cache region in GPU
memory. When TECO-Reduction is used, the Disaggregator’s
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TABLE II: Gem5-avx configuration.

48 DerivO3CPU cores, 3.7GHz
8 memory controllers
32GB DDR4-2600Mhz
I-cache: 8KB/64B-line/8-way
L1cache: 8KB/64B-line/8-way
L2cache: 64KB/64B-line/16-way
L3cache: shared/16MB/64-line/64-way

Processor

Memory systems

Cache

delay (1 ns) is added as specified in Section VIII-D.

We use ZeRO-Offload as the baseline. Without CXL, the
baselines explicitly trigger gradient transfer by the DL model
rather than CXL. In evaluation, any technique to hide CPU
computation overhead and tensor transfer overhead in the
DL training framework (such as DPU in ZeRO-Offload) is
employed to enable a fair comparison.

We do not evaluate ZeRO-Infinity [79] (a ZeRO-Offload-
like work), because ZeRO-Infinity uses main memory and
NVMe SSD based on the assumption that the main memory
capacity is not large enough. ZeRO-Infinity regresses to ZeRO-
Offload when memory capacity is large enough. CXL memory
provides sufficiently large capacity, hence ZeRO-Offload is
more appropriate for evaluation.

Workloads. Table III lists DL models we evaluate. They are
pre-trained models and we fine-tune them on various datasets.

B. Overall Performance

Speedup. We use two versions of TECO: TECO-CXL
(using CXL without DBA), and TECO-Reduction (using both
CXL and DBA). For GCNII, we do not change the batch size,
because GCNII only supports full-graph training. We cannot
evaluate T5-large with ZeRO-Offload when the batch size is
16, because it leads to an out-of-memory error. Figures 11
show the training time speedup of TECO-Reduction over Zero-
Offload.

For ZeRO-Offload in Figure 11 and Table IV, we have three
observations. (1) TECO-Reduction outperforms ZeRO-Offload
by 1.08x-1.82x. (2) Albert-xxlarge-v1 shows less speedup than
the other models. That is because Albert has 4x more attention
heads than GPT-2, Bert-large-cased, and T5-large, hence the
computation (forward and backward) takes a larger portion of
the total training time. Thus, there are fewer opportunities for
TECO to take effects. (3) For all the models, TECO-Reduction
consistently outperforms TECO-CXL by up to 21% because
of DBA. Table IV has the results for TECO-reduction.

Impacts on training accuracy and convergence. We study
the impact of DBA on training accuracy with ZeRO-Offload.
Table V shows the final training accuracy (using the model
specific metrics). There is no TECO-CXL’s result, because it
does not use DBA and has no impact on training accuracy.
In general, we see small impact on training accuracy. Figure
10 shows the training loss curves. Without and with TECO-
Reduction, the training loss curves show the similar trend and
we use the same number of steps to reach convergence. The
impact on the convergence is minor. Figure 10 only shows
GPT-2 and Albert because of space limitation, but the above
conclusion is valid for Bert and TS.

5 GPT-2 Albert-xxlarge-vl
—— ZeRO-Offload —— ZeRO-Offload
" 4 —— TECO-Reduction " 4 —— TECO-Reduction
%) (%)
o o
o 3 o 3
c c
£2 £2
o O
1 Fa
0 0
0 500 1000 1500 0 3000 6000
Steps Steps

Fig. 10: The training loss curves.

Performance breakdown and analysis. To understand the
performance benefit of TECO better, we break down the
training time into forward-backward time, gradient transfer
time exposed to the critical path, gradient optimizer, parameter
optimization (using the ADAM optimizer), and parameter
transfer time exposed to the critical path. See Figure 12.

For the gradients, the transfer time is completely hidden
by TECO when the batch size is 8. When the batch size is
smaller, the gradient transfer time is exposed to the critical
path, even with TECO, but TECO hides it by at least 69%.

For the parameters, when the batch size is 4, TECO-CXL
reduces transfer time by 76%. When applying DBA, the
transfer time is completely hidden.

C. Communication Volume and DBA Contribution

Applying TECO-Reduction to parameters, the volume is
reduced by 50% after applying DBA. For gradients, there is
no reduction on the volume, because we do not apply DBA.
Nevertheless, using CXL, TECO is able to hide the gradient
transfer time. Reduction of communication volume by DBA
leads to 0.8%-7.3% performance improvement (compared with
the original time without TECO). It has been reported that
in an AWS data center, the Al training takes 20% of GPU
cycles [14]. Assume a data center with 256 A100 GPU and
50% utilization of GPUs. 7% of saving in training time leads to
a reduction of roughly $900K in production cost in a year. (The
cost estimation is based on AWS p4de.24xlarge instance [96]).

D. Overhead Analysis

We evaluate area, power, and latency overhead of the
Aggregator and Disaggregator using Xilinx Vivado ML Design
Suite [116] and Ramulator [40]. We implement the required
logic on Xilinx UltraScale architecture (KUO035-FFVA1156)
with 406K FFs and 203K LUTs in 20 nm technology [115].
The FPGA-to-ASIC area, power and delay conversion ratios
are 1:33, 1:14, and 1:3.5, respectively [42]. The latency is for
processing a 64-byte cache line. The scaled power overhead
of the Aggregator and Disaggregator is 0.0127W and 0.017W
respectively. The latency of them are 1.28 ns and 1.126 ns.

The Aggregator and Disaggregator have insignificant per-
formance overhead. When considering the limited bandwidth
of CXL interfaces, each cache line takes around 4 ns latency
and hence the added latency is amortized through pipelined
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TABLE III: DL models configurations and training datasets.

# Layers, Hidden size,
Models Model type # Parameters | # Attention head (if # Dataset Tasks Metrics Giant cache size
transformers)

GPT-2 [76] Transformer (decoder) 122M 12, 1024, 12 Wikitext Lanuage modeling | Perplexity 324MB
Albert-xxlarge-v1 [43] Transformer (encoder) 223M 12, 4096, 48 Squad-v2 Question-awsering F1I/EM 547MB
Bert-large-cased [2] Transformer (encoder) 334M 24,1024,12 IMDB Text Classification | Accuracy 817MB
T5-large [77] Transformer (encoder-decoder) 737TM 48,1024,12 Wiki-summary Summarization Gen-length 2069MB
GCNII [15] Graph neural network 156M 64,1560, N/A Wisconsin Link prediction Accuracy 400MB
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Fig. 11: Training time speedup of TECO-CXL over ZeRO-Offload. The x axis is batch sizes.

TABLE IV: TECO-reduction over ZeRO-Offload.

| Batchsize [ 4 [ 8 [ 16 |
GPT2 1.82x | 1.52x | 1.32x
Albert-xxlargevl | 1.25x | 1.23x | 1.08x
Bert-large-cased | 1.6x | 1.62x | 1.41x
T5-large 1.73x | 1.58x | N/A

TABLE V: The final model accuracy.

. Results
Models Metrics Original [ TECO-Reduction
GPT-2 Perplexity 21.05 21.54
Albert-xxlarge-v1 F1I/EM 84.38/81.40 83.69/79.87
Bert-large-cased | Accuracy 93.13 91.99
T5-large Gen-length 22.95 21.11
GCNII Accuracy 54.90 N/A

TABLE VI: Impact of model size on TECO effectiveness.

| Models | ZeRO-Offload | TECO-CXL | TECO-Reduction |
GPT2 1x 1.55x 1.82x
GPT2-Medium 1x 1.54x 1.64x
GPT2-Large 1x 1.67x 1.79x
GPT2-11B 1x 1.29x 1.41x

transfers, such as processing cache lines while transferring
earlier cache lines. However, to understand the performance
overhead, we add 1 ns overhead for end-to-end performance
evaluation. For the Disaggregator, we need to read the target

M gradient transfer @ parameter transfer O gradient optimizer
O parameter optimization O forward+backward
1500 ~eRO-
ZeRO- Offload
— Offload TECO
% - TECO-
TECO-
é 1000 CXL TECO- CXL Reduction
) Reduction
£
500
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4 . 8
Batch size

Fig. 12: Time breakdown. We use T5-large.
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Fig. 13: Impact of DBA on DL model accuracy at different
training steps. We use GPT-2.

cache line from DRAM and then the merged cache line should
be written to DRAM. We simulate these extra read operations
with Ramulator on the memory access traces extracted from
our evaluation. The total simulated DRAM cycle increases
by 2.48x and 1.9x for sequential and shuffled accesses,
respectively. Considering the bandwidth gap between GDDRS
(total 900GB/s with 8 memory controllers) and PCIe 3.0 (16
GB/s) that NVIDIA V100 GPU has, this latency does not incur
perceivable performance overhead.

E. Sensitivity Study

We use GPT-2, because it has multiple model scales pro-
vided by OpenAl [9] (GPT2-medium with 356M parameters
and GPT2-large with 778M parameters). We continue to
increase the model size to billion-scale(11 billion parameters)
by changing the GPT-2 configurations.

Model size and model configuration. Table VI shows
the performance of the original ZeRO-Offload, ZeRO-Offload
with TECO-CXL and TECO-Reduction. As the model size
is changed, TECO consistently brings performance benefits
(44.9%, 38.9%, 44.2% and 29% for GPT-2, medium, large,
11B). For GPT-2 with 11 billion parameters, the performance
improvement is smaller compared to the other three models.
This is because the computation time (including forward
pass, backward pass, gradient optimization and parameter
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TABLE VII: Training time. Zero-Quant compresses model
parameters. The compression ratio is 75%.

‘ System [ Task [ Model | Time(Hours)) |
[ Zero-Quant | GLUE-MNLI [100] [ Bert-base-uncased | 5.8 |
| TECO-Reduction | GLUE-MNLI [100] | Bert-base-uncased | 2.03 |

TABLE VIII: Performance impact of lossless compression

[ Models | GPT2 | Albert-xxlarge-vl | Bert-large | T5-large |
[ Compression ratio [ 5% ] 0% [ 0% [ 36% |
| Normalized training time | 4.51 | 1.95 \ 3.03 | 204 ]

optimization) already accounts for 63.4% of the total time.
The computation time cannot be optimized further by TECO.

When to activate DBA. Figure 13 shows model accuracy
(using the model-specific metric “perplexity”’) when TECO
skips different numbers of steps to start DBA. We train the
model to converge and use the same number of training steps
(1775 steps). Figure 13 shows that compared with no DBA
where accuracy is 21.05, activating DBA differently changes
the accuracy (22.50-21.21), while the performance speedup
varies (1.63-1.15). Choosing the 500th step strikes a balance.

F. Comparison with Model Compression

The model compression saves memory.

Lossy compression. We evaluate ZeRO-Quant [60] (a state-
of-the-art lossy compression) in DeepSpeed. ZeRO-Quant
takes 2.87x longer training time than TECO, because it
requires a teacher model (a full-precision model) during
the quantized model training to ensure training accuracy.
Such a teacher model introduces extra training latency. Some
works [67], [81] apply lossy compression to the post-training
models for reducing inference time. Although they reduce
communication time, they significantly increase training time.

Lossless compression. We evaluate the performance of a
lossless compression algorithm (LZ4) [53] when transferring
the parameters. LZ4 is a high-performance and byte-oriented
compression algorithm commonly used in recent work [50],
[63], [79]. We use LZ4’s multi-threaded version [58] for CPU
and NVIDIA’s LZ4 solution [64] for GPU. Table VIII shows
the training time normalized to TECO-Reduction. We see
that compression and decompression incur large performance
overhead (at least 2x). With this large overhead, a replacement
of DBA with the lossless compression in TECO is impractical.
The compression ratio is also very low, demonstrating the
ineffectiveness of reducing communication volume.

IX. RELATED WORK

Large DL model training on HM. Existing efforts [4],
[30], [311, [73], [74], [79], [85], [871, [90], [93], [103] study
DL models on HM, but without cache coherent intercon-
nect. Others works [26], [33], [45], [49], [55], [57], [84],
[88], [89], [107]-[110], [112]-[114], [117], [119], explore the
HM optimization with the context of CPU. Betty [118] and
Sentinel [86] uses HM to enable large graph neural network
training.

Cache coherence interconnect. The recent emergence of
cache coherent interconnect attracts attentions recently [7],

[11], [106], [122]. COARSE [106] is a distributed parame-
ter synchronization scheme based on disaggregated memory
and cache coherent interconnect for training distributed DL
models. Kona [11] reduces dirty data amplification and im-
proves network utilization and performance based on cache
coherent interconnect between FPGA and CPU. ORCA [122]
leverages cache coherent interconnect to provide efficient
notification of communication requests to accelerators and
allow accelerators to directly process requests received by
NIC. Different from them, TECO leverages cache coherent
interconnect to build a cache coherent domain between CPU
and GPU memories. OpenCAPI [68], CCIX [18] and Gen-
Z [22] are previously proposed cache coherent connection
protocols. Recently, these protocol has been merged into the
CXL specification. NVLink [66] can also support coherent
interconnection, but it can only used by NVIDIA GPUs. CXL
has an open specification enabling cache coherent commu-
nication across hosts and a variety of accelerators (including
GPUs). With the open CXL specification, the users can explore
more application-optimal solutions such as giant cache models.

Peer-to-Peer Direct Memory Access (P2P). Existing
works [6], [8], [56] use P2P to allow GPU to access SSD and
perform direct file I/O. TECO is different from them, because
it focuses on CPU memory and uses finer-grained data transfer.

X. CONCLUSIONS

Training large DL models without expensive hardware is
the key to make them approachable. Using HM with tensor of-
floading is promising. Its effectiveness relies on whether tensor
transfers in HM are efficient. Extending an emerging cache-
coherent interconnect CXL, we study how CXL can enable
efficient tensor offloading and what changes in hardware and
software should be provided. Extending CXL, we significantly
reduce training time by 33.7% and communication overhead
by 93.7%, compared with the state-of-the-art industry solution.
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Appendix: Artifact Description

Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Main Contributions

C1  We characterize tensor transfers during large model
training with an industry-quality, HM-based train-
ing solution (ZeRO-Offload from DeepSpeed), and
identify two problems that make tensor transfers
the major performance bottleneck for the HM-based
training;

Cs  Evaluating with large transformers and a graphic
neural network, we show that compared with ZeRO-
Offload, TECO reduces training time by 33.7%
without changing model convergence and accuracy;
TECO reduces communication overhead by 93.7%
on average

B. Computational Artifacts
Ay https://github.com/luckyq/ADSC-24

Artifact ID  Contributions Related
Supported Paper Elements
A O Tables LIV,V,VI
Cy Figures 2,10, 11, 12, 13

II. ARTIFACT IDENTIFICATION
A. Computational Artifact Ay
Relation To Contributions

This artifact includes the scripts to get the communication
overhead in ZeRO-Offload, the value changes between con-
tinuous iterations and the experiments in evaluation. Through
these tests, we can prove that 1): communication still takes a
large portion of the total training time in previous offloading
system; 2) TECO can outperform previous systems by ex-
tending CXL. TECO can reduce most of the communication
overhead.

Expected Results

The communication overhead takes a rather large portion
of total training time. Across two consecutive training steps,
among those parameters that change values, most of them
change values only in the last two bytes. TECO can hide
the majority of the communication time. By this, TECO can
TECO reduces training time by 33.7% without changing model
convergence and accuracy; TECO reduces communication
overhead by 93.7% on average.

Expected Reproduction Time (in Minutes)
The expected computational time of this artifact is 10 hours.

Artifact Setup (incl. Inputs)
Hardware: Intel Xeon 6120 CPU, two sockets, each socket

with 186GB DRAM. One Tesla V100 GPU with 32GB mem-
ory. The link between the GPU and CPU is PCIe3.0x16 lanes.

Software:

o PyTorch, 1.10.0,
previous- versions/

o DeepSpeed,
DeepSpeed

o DeepSpeedExamples, latest version, https://github.com/
microsoft/DeepSpeedExamples.git

o Transformer, latest version,https://huggingface.co/docs/

https://pytorch.org/get-started/

0.3.15,https://github.com/microsoft/

transformers/en/index

o Datasets, latest version, https://huggingface.co/docs/
datasets/en/index

o Gem5-AVX, latest version, https://github.com/seanzw/
gemS-avx

o Accel-Sim, latest version, https://accel-sim.github.io/

o LZA4, laster version, https://github.com/lz4/1z4.git

o« nvCOMP, latest version, https://github.com/NVIDIA/
nvcomp.git

Datasets / Inputs:

« IMDB, https://huggingface.co/datasets/stanfordnlp/imdb

o Wikitext, https://huggingface.co/datasets/wikitext

o Wiki-summary, https://github.com/m3hrdadfi/
wiki-summary

e Squad-v2,
squad_v2

o Wisconsin, https://paperswithcode.com/dataset/
wisconsin-48-32-20-fixed-splits

https://huggingface.co/datasets/rajpurkar/

Installation and Deployment: All the packages(excluding
Gem5—AVX and Accel—sim) can be installed by pip install
package_name==version. For Gem5—AVX and Accel—sim,
we can use git to download it. For the installation, we can just
follow the instructions in READ.ME of each repository.

Artifact Execution

For the motivation test, it contains two Python scripts, com-
munication.py and valuechanges.py. communication.py and
valuechanges.py are independent. The first one is used to
get the communication time exposed to the critical path. The
second one is used to get the Variance of parameter/gradient
values across training steps. The dataset used in these two
scripts is IMDB. There is no specific command-line parameter
to run the scripts. For the speedup tests, four scripts are
used for each model. model_name.sh run the model with
ZeRO-Offload. model_name_gem5_avx.sh is to simulate the
parameter updating on the CPU and get the memory access
trace. process.py is going to replay the trace and get the time
of CXL data transfer. gpu_backward.sh is going to simulate
the data transfer during the backward phase. For the accuracy
and loss tests, we will use the scripts in transformers package
(path_to_transformers/examples/pytorch/). To get results of
apply compression method in the training, we will run the LZ4
and nvCOMP to compress and decompress the same amount
of parameters.
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Artifact Analysis (incl. Outputs)

The expected results are detailed breakdown time of each
phase. A simple sum up to get the end-to-end performance.
To get the performance of TECO, the simulated results can
replace the corresponding part. For accuracy, it can directly
be read. The expected training time is reduced by 33.7% on
average. Communication overhead will be reduced 93.7% on
average. These results will prove that TECO is effective to
reduce the communication overhead in tensor-offloading Deep
learning systems.
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