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Abstract

Multi-fidelity Bayesian optimization (MFBO)
is a powerful approach that utilizes low-
fidelity, cost-e!ective sources to expedite the
exploration and exploitation of a high-fidelity
objective function. Existing MFBO methods
with theoretical foundations either lack justi-
fication for performance improvements over
single-fidelity optimization or rely on strong
assumptions about the relationships between
fidelity sources to construct surrogate models
and direct queries to low-fidelity sources. To
mitigate the dependency on cross-fidelity as-
sumptions while maintaining the advantages
of low-fidelity queries, we introduce a random
sampling and partition-based MFBO frame-
work with deep kernel learning. This frame-
work is robust to cross-fidelity model misspec-
ification and explicitly illustrates the benefits
of low-fidelity queries. Our results demon-
strate that the proposed algorithm e!ectively
manages complex cross-fidelity relationships
and e”ciently optimizes the target fidelity
function.

1 Introduction

Multi-fidelity Bayesian optimization (MFBO) (Dai
et al., 2019; Wu et al., 2020b; Takeno et al., 2020)
is increasingly prevalent in the adaptive design of scien-
tific experiments (Buterez et al., 2023), automated hy-
perparameter optimization (Eggensperger et al., 2021;
Pfisterer et al., 2022), and policy optimization in con-
trol problems (Letham and Bakshy, 2019; Wu et al.,
2020b).
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Previous work has often relied on various assumptions
about the relationship between di!erent fidelities to
analyze e”ciency theoretically (Song et al., 2019; Kan-
dasamy et al., 2016, 2017). Similar to transfer learn-
ing for Bayesian optimization (BO), a more practical
challenge involves handling significant misalignment
between fidelities while maintaining cost e”ciency. Re-
cent approaches to robust transfer learning for BO
(Appice et al., 2015; Probst et al., 2019; Perrone et al.,
2019; Reif et al., 2012; Pfisterer et al., 2021; Feurer et al.,
2018) and robust single-fidelity BO against model mis-
specification (Bogunovic and Krause, 2021; Liu et al.,
2023) have addressed this issue yet typically do not con-
sider the sample e”ciency on the lower fidelities. Some
research suggests mitigating the problem by avoid-
ing evaluations or learning from unreliable low-fidelity
sources (Mikkola et al., 2023; Foumani et al., 2023),
but they do not explicitly deal with errors incurred
from the unreliable model learning of the multi-fidelity
structure in the model design and acquisition.

Leveraging recent advancements in e”cient kernel learn-
ing, uncertainty quantification, and error bounds for
learning algorithms (Xu and Raginsky, 2017; Robin-
son et al., 2020; Wang et al., 2021), we propose a
general-purpose framework that uses sampling-based
cost-aware acquisition. This framework captures com-
plex and potentially misaligned multi-fidelity evalua-
tions while explicitly addressing model misspecification
on the fly with robust data acquisition and deep kernel
learning.

Our key insight is that due to kernel learning and
the challenges in accurately specifying the prior, the
surrogate model often underestimates the epistemic un-
certainty (Yao et al., 2024). Though the problem of in-
accurate surrogate models is universal in BO (Foumani
et al., 2023; Liu et al., 2023), it is specific to MFBO
that we could explicitly improve the surrogate model

in a cost-e!cient manner by querying the low-fidelity
and low-cost sources. This insight di!erentiates our
work from existing robust BO methods (Bogunovic
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and Krause, 2021; Mikkola et al., 2023) that do not
demonstrate the benefits of low-fidelity queries from
the perspective of improving the model.

Our contributions are as follows:

• We propose a novel MFBO framework that fea-
tures robustness to model misspecification through
deep kernel learning and random sampling on low
fidelities, together with constraining the target-
fidelity query via partition of the search space.
This novel framework allows us to explicitly depict
the benefits of low-fidelity queries.

• We bound the proposed algorithm’s regret under
conventional assumptions on the underlying objec-
tive and additional assumptions based on recent
advancements in multi-task learning.

• We demonstrate the e!ectiveness of the proposed
algorithm in handling complex cross-fidelity rela-
tionships and e”cient optimization of the target
fidelity function.

2 Related Work

Overview of multi-fidelity BO Various approaches
have been explored in multi-fidelity Bayesian optimiza-
tion (MFBO), including methods with theoretical jus-
tifications (Song et al., 2019; Kandasamy et al., 2016,
2017) and practical-oriented methods that incorporate
specific structures of multiple fidelities. Examples of
the latter include early stopping (Dai et al., 2019), trace-
aware MFBO (Wu et al., 2020b), and an entropy-based
method for asynchronous parallel MFBO (Takeno et al.,
2020).

The choice of the surrogate model plays an important
role in MFBO algorithms. The common design choices
include (1) learning one single model (Letham and
Bakshy, 2019; Wu et al., 2020b), (2) learning multiple
separately trained models combined through (weighted)
addition (Feurer et al., 2018; Song et al., 2019); (3)
learning neural network to capture the hierarchical
structures (Li et al., 2020). However, there is no one-
size-fits-all solution for handling di!erent types of tasks
since each design relies on specific problem structures.
For example, early stopping in hyperparameter tun-
ing and the independent impact on objectives between
spatial knowledge and task-specific knowledge. Hyper-
Band (Li et al., 2018), a closely related idea, mitigates
the need to specify the parameter function by sampling
multiple fidelities with manually defined budget alloca-
tion. However, it has limitations in handling complex
multi-fidelity correlations. The recent advancement,
PriorBand (Mallik et al., 2024), tailored for deep learn-
ing hyperparameter tuning, combines HyperBand with

ωBO (Hvarfner et al., 2020), but inherits the limitations
of HyperBand in dealing with the complex multi-fidelity
correlations.

Robust multi-fidelity BO Several approaches have
been proposed to enhance robustness in MFBO. These
include the exclusion of unreliable sources using dis-
tances on the learned latent space (Foumani et al., 2023)
and safeguarding e”ciency through vanilla BO by ex-
cluding ine”cient low-fidelity queries with manually
specified thresholds (Mikkola et al., 2023). However,
these methods do not explicitly address errors arising
from unreliable model learning in the multi-fidelity
structure during both model design and acquisition.
Specifically, Foumani et al. (2023) o!ers no theoreti-
cal justification for the accuracy of the latent space,
while Mikkola et al. (2023) does not show improve-
ment over single-fidelity theoretical guarantees. Our
work is distinct in that it explicitly accounts for model
misspecification and leverages the benefits of querying
biased low-fidelity from the perspective of improving
the model.

BO with misspecified models Works on Bayesian
optimization with misspecified models typically intro-
duce additional assumptions (Bogunovic and Krause,
2021; Liu et al., 2023) about the relationship between
the assumed function space and the true underlying
function. Due to the complexity of low-fidelity sources,
developing universally appropriate assumptions is chal-
lenging. Furthermore, these works do not account for
di!erent evaluation costs, leading to a lack of a princi-
pled trade-o! between misspecifications and costs.

Robust transfer learning for BO Robust transfer
learning is conceptually closely related to addressing
the misalignment of di!erent data sources in MFBO.
Recent works have improved the sample e”ciency of
Bayesian optimization in the target domain through
various techniques, such as search space reduction (Ap-
pice et al., 2015; Probst et al., 2019; Perrone et al.,
2019), initial point selection based on knowledge from
previous tasks (Reif et al., 2012; Pfisterer et al., 2021),
and robust modeling in meta-learning for Bayesian
optimization (Feurer et al., 2018). However, these ap-
proaches are not directly applicable to MFBO as they
do not consider the cost of queries in data sources other
than the primary objective.

3 Preliminary

We begin by introducing useful notation, mostly follow-
ing previous work by Song et al. (2019), and formally
stating the problem studied in this paper.
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(a) (b) (c)

Figure 1: We illustrate the problem of learning and optimization on both target fidelity and misaligned low
fidelities. (a) demonstrates the one-dimensional Rastrigin function (Pohlheim, 2007) and the manually constructed
low fidelities. (b) demonstrates the posterior of learning the multi-fidelity functions with conventional multi-task
GP (Swersky et al., 2013) previously applied in MFBO (Letham and Bakshy, 2019) when feeding 2000 training
points densely distributed in the search space. (c) shows the posterior of the proposed model when feeding 10
points from each fidelity.

3.1 Multi-fidelity Optimization of Unknown
Objective

Consider the problem of maximizing an unknown payo!
function fM : X → R. We can probe this function by
directly querying it at some point x ↑ X, consequently
obtaining a noise-free observation y→x,M↑ = fM (x).

In addition to fM , we have access to oracle calls for
unknown auxiliary functions f1, . . . , fM↓1 : X → R.
Similarly, querying any fω at x yields a noise-free ob-
servation yt = fωt(xt).

Each auxiliary function fω can be viewed as a lower-
fidelity version of fM when ε < M . Specifi-
cally, we model the unknown target fidelity functions
with corresponding Gaussian process (GP): fM ↓
GP(µM (x), kM (x,x↔)), where µM and kM denote the
prior mean and covariance.

Let ↔x, ε↗ denote the action of querying fω at x. Each
action ↔x, ε↗ incurs a cost of ϑω and yields a reward:

r(↔x, ε↗) =
{
fM (x) if ε = M

rmin otherwise

That is, performing ↔x,M↗ at the target fidelity
level achieves a reward fM (x). The collective his-
torical observations after T iteration is denoted by
DT ↭ {↔xt, εt↗, yt}t=1...T . We also define the collec-
tive historical observations up to certain fidelity ε as
Dω,T ↭ {↔xt, ε↔t↗, yt}1↗t↗T,ω→t↗ω. When given a fixed
budget, we need to guarantee the cumulative cost does
not exceed the budget, i.e.,

∑T
t=1 ϑωt ↘ #.

Lower fidelity actions ↔x, ε↗ for ε < M yield the mini-
mal immediate reward rmin but can provide valuable
information about fM , potentially leading to better
decisions later. Without loss of generality, we assume
maxx fM (x) ≃ 0 and rmin ⇐ 0. Note that we define

the reward only as incurred based on the target fidelity,
and the query on low fidelity does not incur a reward
but only helps with the learning. Hence, in the context
of multi-fidelity Bayesian optimization, the simple re-
gret (SR) is defined as: R(x̂) = fM (x↘) ⇒ fM (x̂),
where x̂ := argmaxx:(→x,M↑,y)≃DT

fM (x) is a point se-
lected to be evaluated at the target fidelity, and x↘ is
the global maximizer of the function fM . Our objec-
tive is to find the candidate that minimizes the simple
regret after exhausting a given budget #.

3.2 Expected Excess Risk

In addition to the conventional analysis that assumes
the prior is properly specified, we explicitly deal with
the model misspecification regarding the di!erence be-
tween the posterior mean and true underlying func-
tion. In the context of statistical learning theory,
the convergence rate of the expected excess risk
with respect to the training dataset Dω,T at fidelity
ε ↑ [M ]+ = [1 . . .M ] after T iterations is defined

as RateMF (ε, T ) ↭ E
[
L(fω, f̃ω)|Dω,T

]
⇒ L(fω, f̃↘

ω ) =

O(Tε), Here, ⇒1 < ϖ < 0 is a constant that charac-
terizes the rate of convergence. f̃ω is the hypothesis
of fidelity ε produced by the learning algorithm when
trained on Dω,T . L(f, f̃) is the loss function evaluating
the hypothesis f̃ with respect to the true objective f ,
and f̃↘

ω is the hypothesis on fidelity ε that minimizes
the expected loss.

3.3 Assumptions

To facilitate later discussion of the algorithm design
and analysis, we first state the typical assumption for
BO performance analysis.

Assumption 1 Throughout the optimization, fM
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bears an upper bound B on the RKHS norm (Salgia

et al., 2024) corresponding to the learned deep kernels

kt. Namely ⇑fM⇑
Hkt

↘ B.

Assumption 2 (Generalized assumption 4.1 of Salgia

et al. (2024)) For all n ↑ N, there exists a discretization

Sn of X such that for all fM ↑ Hkt ,

|fM (x)⇒fM ([x]Sn)| ↘ ⇑fM⇑Hk/n and |Sn| = poly(n),

where [x]Sn = argminy≃Sn ⇑x⇒ y⇑2, is the point in Sn

that is closest to x.

Assumption 3 (Assumption 4.2 of Salgia et al.

(2024)) Let Lϑ = {x ↑ X | fM (x) ≃ ϱ} denote the

level set of fM for ϱ ↑ [⇒B,B]. We assume that for

all ϱ ↑ [⇒B,B], Lϑ is a disjoint union of at most

QfM < ⇓ components, each of which is closed and

connected. Moreover, for each such component, there

exists a bi-Lipschitzian map
1
between each such com-

ponent and X with normalized Lipschitz constant pair

LfM , L↔

fM
< ⇓.

Also, we state the assumption for analysis of the sta-
tistical learning.

Assumption 4 The hypothesis space for each fidelity

Hω contains the underlying functions fω for ⇔ε ↑ [M ]+.

Assumption 5 We assume that for fidelities ε ↑
{2, . . . ,M}, the learned function gω ↖ h for fidelity ε
is L-Lipschitz relative to the function space Hh. For-

mally, for all x ↑ X, y ↑ Yω, h, h↔ ↑ Hh, the following

inequality holds: |L(y, gω(h(x))) ⇒ L(y, gω(h↔(x)))| ↘
LL(gω↓1(h(x)), gω↓1(h↔(x))).

This generalizes the assumption of Definition 4 from
Robinson et al. (2020), that the lower fidelity perfor-
mance perturbation could bound the higher fidelity
performance change.

4 Method

In this section, we discuss the model design and the
analysis-inspired data acquisition procedure of the pro-
posed Robust Multi-Fidelity Bayesian Optimization
with Deep Kernel Learning and Partition (RMFBO-

DP). The primary challenge in optimization-oriented
multi-source model learning is the potential misalign-
ment between sources, particularly when there is a
lack of training data for model calibration due to the
budget-sensitive nature of the optimization task. An

1A map f : X → Y is bi-Lipschitzian if there exist con-
stants c1, c2 > 0 such that c1↑x↓ y↑ ↔ ↑fM (x)↓ fM (y)↑ ↔
c2↑x↓ y↑ for all x, y ↗ X.

e”cient MFBO algorithm necessitates careful calibra-
tion of the model along with cost-e!ective optimization
of the target fidelity.

We address these challenges in the model design and
acquisition procedure of RMFBO-DP. From the per-
spective of model design, we employ a regularized deep
kernel to capture the intricate multi-fidelity relation-
ships. To improve the acquisition procedure, we first
decouple the optimization objective into two parts:
minimizing the target fidelity regret and improving
the accuracy of the model itself. Then, we utilize ran-
dom sampling on the low-fidelity sources to enhance
the cost-e”ciency of model calibration while constrain-
ing target-fidelity sampling to promising partitions by
considering both optimality and potential model mis-
specification. We unfold the details of the model and
acquisition procedure in the following subsections.

X Zω

ZM

Yω

YM[M ]+

h gω

f̃M

Figure 2: Schema for multi-fidelity learning imple-
mented with deep kernel. The dotted lines denote
the flow of target fidelity (strong data), and the solid
lines the flow of low fidelities(weak data). Here, we
denote the output space for certain fidelity ε ↑ [M ]+

as Yω. Specifically, the target fidelity output space is
denoted as YM .

4.1 Model

We employ hierarchical deep kernel learning (Wil-
son et al., 2016) regularized with the spectral norm
(Van Amersfoort et al., 2021) with mean absolute error
(MAE) as the loss function to deal with overfitting
caused by shortage of training data and the specific
choice of training loss. We assume that the multiple
fidelities {fω}ω≃[M ] are mutually dependent through
some fixed, possibly unknown joint probability distri-
bution. Therefore, we seek to approximate the joint
underlying function f : X ↙ [M ]+ → R, where both
the position x ↑ X and fidelity ε ↑ [M ]+ are inputs,
and learn the approximation f̃ through joint learning
of h and gω≃[M ]+ . Here, a single latent space map-
ping h : X ↙ [M ]+ → Z convert the input space X
to the latent space Z which consists of the fidelity in-
dependent part ZM and fidelity dependent part Zω.
On top of the latent space, we construct a set of ob-
jective mappings g1 . . . gM for each fidelity. Namely
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⇔ε ↑ [M ]+, fω ↭ f(·, ε) and f(·, ε) is approximated by
f̃ω ↭ gω(h(·, ε)). We illustrate the model structure in
figure 2.

4.2 Data Acquisition

Random sampling within partitions We ex-
tend random exploration to the multi-fidelity regime.
We use both the expected generalization error and
SR bounds to guide the cost-e”cient acquisition.
When the SR contributes more to the general re-
gret, we conduct target fidelity acquisition. Pre-
vious works o!er an upper bound for cumula-
tive regret when applying random exploration on
a region of interest (Salgia et al., 2024) defined
as {x ↑ X | UCBfM ,t(x) > maxx→≃X LCBfM ,t(x↔)}, as
the target fidelity acquisition function when we ignore
the contribution of low-fidelity evaluation to the tar-
get fidelity learning. We extend the cumulative regret
bound into the following form of SR bound.

Theorem 1 When assumptions 1, 2, and 3 hold, con-

straining the random exploration on the target fidelity

on {x ↑ X | UCBfM ,t(x) > maxx→≃X LCBfM ,t(x↔)},
and choosing ς = B2

, we have the following bound

with probability at least 1⇒ φ,

SR(t) = Õ
(√

↼TM (t)

TM (t)
log

TM (t)

φ

)
(1)

Here Õ means up to the logarithmic factor, and Tω(t) ↭
|{↔xt→ , εt→↗, yt→}1↗t→↗t,ωt→=ω| denotes evaluations at fi-

delity ε among t evaluations.

Misspecification-aware simple regret We exploit
recent advancements in expected excess risk in meta-
learning (Robinson et al., 2020) to extend the previous
SR results to multiple weak learning sources. We state
the theoretical results here while deferring the proof
and other details to the Appendix A. First, we decom-
pose the ultimate SR into separate components for the
conventional regret and the generalization error.

Theorem 2 Under the assumptions of Theorem 1 ex-

cept for constraining random exploration in X̂t as

defined in equation 2. The misspecification-aware

Bayesian simple regret (SRMA = fM (x↘) ⇒ f̃M (x̂))
of the proposed algorithm can be decomposed into the

standard Bayesian simple regret (SR) and the rate term

as follows:

SRMA(t) ↘ SR(t) + RateMF (M, t).

Expected excess risk in multi-fidelity deep ker-
nel learning In the following, we generalize the meta-
learning expected excess risk (Robinson et al., 2020;
Xu and Raginsky, 2017) to multi-fidelity learning.

Theorem 3 (Generalized theorem 10 of Robinson

et al. (2020)) With the aforementioned assumptions

1, 2, 3, 4, and 5 hold, and the lowest single fidelity

bears the convergence rate RateMF (1, T ) = O(
√

1
T1
),

The excessive risk bears the bound RateMF (ε, t) ↘

O(RateMF (ε⇒ 1, t)+
√(

logTω(t) RateMF (ε⇒ 1, t) + 1
)
log Tω(t)

Tω(t)
)

Cost-e!cient convergence strategies This allows
us to di!erentiate the multiple fidelities’ contribution
to the target fidelity learning and regret minimiza-
tion. Specifically, a cost-aware multi-fidelity acquisition
could be made by minimizing the SRMA(T ) such that
the total cost incurred by querying di!erent fidelities
does not exceed #. When the error bound contributes
more to global regret, we randomly explore until it is
more cost-e”cient to conduct target fidelity acquisition.
The detailed procedure is summarized in algorithm 1.
We continue to discuss the key components of the ac-
quisition procedure.

4.3 Additional Design Choices

Reliable search space exclusion We leverage the
GP posterior calibrated with the excess risk on observed
points to exclude from acquisition the regions that, with
high probability, do not contain the global optimum.
To do so, we rely on both the upper confidence bound

UCBfM ,t(x) ↭ µfM ,t↓1(x) + ς1/2
fM ,t↽fM ,t↓1(x) and

lower confidence bound LCBfM ,t(x) ↭ µfM ,t↓1(x) ⇒
ς1/2
t ↽fM ,t↓1(x), where ςt is the scaling factor corre-

sponding to certain confidence. Formally, the acting
search space at iteration t is X̂t defined as

{
x ↑ X | UCBfM ,t(x) > max

x→≃X
LCB↔

fM ,t(x
↔)

}
(2)

Here LCB↔

fM ,t(x
↔) ↭ LCBfM ,t(x↔)⇒RateMF (M, t) gen-

eralize the lower confidence bound to incorporate the
expected generalization error.

Estimation of SR rates Due to the di”culty of
analyzing exact SR, we rely on the following simple
approximation. For two consecutive evaluations of
the target fidelity, if we observe improvement in the
best reward, we leverage the improvement to regress
the SR. Namely, for ⇔1 ↘ t1 < t2 ↘ T , if $fM ↭
y→xt2 ,ωt=M↑ ⇒ y→xt1 ,ωt=M↑ > 0, we update the approxi-
mation for SR(t2) by solving $fM = SR(t2)⇒ SR(t1).
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Algorithm 1 Robust Multi-Fidelity Bayesian
Optimization withDeep Kernel Learning andPartition
(RMFBO-DP)

1: Input:Search space X, t1 initial observation Dt1 ,
total budget #;

2: Initialize timestamp as t ∝ t1.
3: Initialize remaining budget # ∝ #⇒

∑t
t→=1 ϑωt→

4: while # > 0 do
5: Update the model f̃ as discussed in section 4.1.
6: Identify ROIs X̂t according to equation 2.
7: Maximize cost-sensitive SRMA(t+ 1)⇒ SRMA(t)

reduction as discussed in section 4.2 Theorem 2.
$SR,t ∝ SR(t+1)↓SR(t)

ϖM

$RateMF ,t ∝ maxω≃[M ]+
RateMF (ω,t+1)↓RateMF (ω,t)

ϖω

8: if $SR,t ≃ $RateMF ,t then

9: Sample xt from X̂t on target fidelity M
xt ∝ sample from uniform distribution on X̂t.

10: else
11: Sample candidate on on fidelity εt

εt ∝ argmaxω≃[M ]+
RateMF (ω,t+1)↓RateMF (ω,t)

ϖω

xt ∝ sample from uniform distribution on X.
12: end if
13: Update the observationDt+1 ∝ Dt′{↔xt, ε↔t↗, yt}
14: Update the remaining budget # ∝ #⇒ ϑω

15: Update the timestamp t ∝ t+ 1
16: end while

Estimation of expected excess risk Similar to the
above approximation of SR, we approximate the excess
risk reduction by regressing to the observed fitting
error improvement. RateMF (M, t). for ⇔1 ↘ t1 < t2 ↘
T, ε ↑ [M ]+, we resort to 5-fold cross-validation onDω,t1

and Dω,t2 to estimate the model fitting improvement
$

L(fω,f̃ω),t
= RateMF (ε, t2) ⇒ RateMF (ε, t1). Solving

the equation allows us to approximate RateMF (ε, t2).

Constraining acquisition We rely on random dis-
cretization to constrain the acquisition within X̂t,
which rejects the candidates outside X̂t. Note popular
BO frameworks typically allow optimizing the acqui-
sition function subject to constraints, e.g., Botorch
(Balandat et al., 2020).

5 Experiments

We compare the proposed RMFBO-DP against four
baselines. The first one is the entropy-based method
denoted as MF-MES proposed by Takeno et al. (2020);
the second one is denoted as MF-KG, which is the
cost-e”cient knowledge gradient method proposed by
Wu et al. (2020b). The third and fourth algorithms
are corresponding variants when applying the robust
MFBO framework proposed by Mikkola et al. (2023),

denoted as rMF-MES and rMF-KG correspondingly.
The baselines chosen represent the latest developments
in MFBO and corresponding robust variants. We rely
on BoTorch (Balandat et al., 2020) and gpytorch (Gard-
ner et al., 2018) to implement RMFBO-DP and the
baselines. More baselines and comparisons are available
in Appendix C.

5.1 Dataset

We evaluate algorithm performance on synthetic
datasets and real-world tasks, including multi-fidelity
protein design and hyperparameter optimizations.

Rastrigin Dataset As illustrated in figure 1, we
construct the four-fidelity version of Rastrigin function
(Pohlheim, 2007) on 1D search space. We further ex-
tend the construction to 20D search space. Here, the
first two lower fidelities generally share the same trend
as the target-fidelity underlying function, while the
lowest fidelity that incurs the cheapest evaluation cost
disagrees with the target fidelity function except for
limited central area and largely diverges in the border
areas.

Multi-fidelity Protein Design We use a protein en-
gineering dataset describing a set of antigen/antibody
binding calculations. These calculations, executed us-
ing supercomputing resources, estimate the change in
binding free energy at the interface between each of
the 71769 modified antibodies and the SARS-CoV-2
spike protein, as compared to the single reference an-
tibody from which they are derived. Estimations of
binding free energy ($$G) are calculated using protein-
structure-based STATIUM (DeBartolo et al., 2014),
Rosetta Flex simulation software (Das and Baker, 2008;
Barlow et al., 2018) and FoldX (Schymkowitz et al.,
2005; Sapozhnikov et al., 2023; Buß et al., 2018). We
treat Rosetta’s outcomes as the objective of the target
fidelity. These calculations took several CPU hours
each and were produced during an antibody design
process (Desautels et al., 2020, 2022).

Yahoo GYM Introduced by Pfisterer et al. (2022),
the Yahoo GYM dataset is crafted to address the short-
comings of traditional tabular benchmarks by o!ering
a more nuanced evaluation environment. It incorpo-
rates varying levels of data fidelity, simulating real-
world evaluation with surrogate models pre-trained on
corresponding tasks. Yahoo GYM consists of three
Hyperparameter Optimization tasks that were tested
in the experiments and show that the surrogate-model-
based evaluation o!ers reliable comparisons of di!erent
algorithms. It includes the following three di!erent
benchmarks.
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Figure 4: We illustrate the distribution of the low-fidelity sources and the target fidelity function on the benchmark
tasks. The x-axis denotes the target-fidelity value, and the y-axis denotes the low-fidelity value. The scatter
points are collected from the evaluation of the low-fidelity sources and the target fidelity function of 1000 random
samples.

posed algorithm RMFBO-DP’s relies on the estima-
tion of SR improvements for budget allocation across
di!erent fidelities and demonstrates more consistent
performance.

To better understand the performance di!erence of
RMFBO-DP on Yahoo GYM, which fails to outper-
form the baselines, we further investigate the relation-
ship between the low-fidelity sources and the target
fidelity on di!erent tasks. As is shown in figure 4, we
found that the low-fidelity sources in Yahoo GYM are
less biased, especially since the optimality does not
contradict the target fidelity. While the trend of tar-
get fidelity function is largely di!erent from the lowest
fidelity sources for Rastrigin and Protein design task.
This observation suggests that it is likely the advan-
tage of RMFBO-DP is more outstanding when the
cross-fidelity relationship is complex but learnable. In
other cases, RMFBO-DP is less favorable as its un-
constrained low-fidelity sampling does not optimize the
low-fidelity sources as conventional MFBO algorithms.

5.3 Ablation Study

We conduct an ablation study to investigate the impact
of the proposed algorithm components. We compare
the performance of the additional variants of the base-
lines when applying the same deep kernel learning yet
without random sampling on low-fidelities. As is shown

in table 1, the performance of the variants is not con-
sistently improved upon the corresponding baselines
and lags behind RMFBO-DP. This observation sug-
gests that data acquisition is crucial to the performance
improvement of the proposed RMFBO-DP.

Method Rastrigin-1D Rastrigin-20D
RMFBO-DP 0.75 ± 0.30 86.64 ± 9.80
MF-MES 15.00 ± 6.83 105.66 ± 4.25
MF-KG 1.84 ± 0.61 106.03 ± 6.96
MF-MES-DK 2.83 ± 2.57 106.62 ± 5.72
MF-KG-DK 7.04 ± 4.60 110.00 ± 0.00
rMF-MES 8.33 ± 7.36 100.93 ± 8.87
rMF-KG 3.02 ± 1.18 103.37 ± 6.41
rMF-MES-DK 14.88 ± 7.65 103.20 ± 6.24
rMF-KG-DK 3.37 ± 1.23 103.52 ± 5.32
Random 5.05 ± 2.43 104.06 ± 6.15

Table 1: Ultimate simple regrets for Rastrigin-1D and
Rastrigin-20D tasks. The best-performing algorithm
for each task is highlighted in bold. The results are
collected from at least ten independent trials. We mark
the variants using a deep kernel with -DK.

6 Discussion

In this paper, we introduced a novel multi-fidelity
Bayesian optimization (MFBO) approach focusing on
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robustness and e”ciency. Our method explicitly ad-
dresses the misspecification issues in multi-fidelity deep
model learning by incorporating budget-sensitive low-
fidelity sampling and constraining acquisitions to a
subset of the global search space for target fidelity op-
timization. By tackling the challenges of low-fidelity
misalignment and e”cient target fidelity optimization
in a principled, cost-e!ective manner, we demonstrated
that our approach significantly improves robustness
and performance over existing methods, as confirmed
by our theoretical and empirical results.

Future work will explore di!erent cost-e”cient strate-
gies, such as cost-e”cient Expected Improvement
(Snoek et al., 2012; Astudillo et al., 2021), which is
known to be one-step Bayesian optimal, and cost-
sensitive max-value entropy methods that enable e”-
cient parallel multi-fidelity queries (Takeno et al., 2020).
We believe our contributions, which introduce recent ad-
vancements in statistical learning theory within multi-
task frameworks, represent a significant step towards
a more robust MFBO. These advancements o!er new
insights and promising directions for future research in
the field.
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A Proofs

Here we present the missing proofs for the theorems in the main text. We begin by introducing the necessary
notions.

Definition 1 (RKHS (Salgia et al., 2024)) Consider a positive definite kernel k : X ↙ X → R. A Hilbert

space Hk of functions on X equipped with an inner product ↔·, ·↗Hk is called a Reproducing Kernel Hilbert

Space (RKHS) with reproducing kernel k if the following conditions are satisfied: (i) ⇔x ↑ X , k(·, x) ↑ Hk; (ii)

⇔x ↑ X , ⇔f ↑ Hk, f(x) = ↔f, k(·, x)↗Hk . For simplicity, we use ⇀x to denote k(·, x). The inner product induces

the RKHS norm, ⇑f⇑2
Hk

= ↔f, f↗Hk .

We also generalize the maximum mutual information gain in the multi-fidelity optimization setting as follows.

Definition 2 (Maximum Information Gain (Srinivas et al., 2009)) The information gain of a function

f refers to the mutual information between the distribution of f and the distribution of t observations of the

function, denoted as I(Yt; f). Let the set of instances corresponding to each element in Yt be At.

I(Yt; f) = H(f)⇒H(f |Yt) = H(Yt)⇒H(Yt|f)

where H(·) is the Shannon entropy function. The closed-form expression for I(Yt; f) is given by
1
2 log det(I +

ϑ↓1Ki,t) where Kt = [k(x,x↔)x,x→≃At ]. Consequently, the maximum information gain (MIG) for the objective f
given t observations is defined as:

↼t = max
At⇐X s.t. |At|=t

1

2
log det(I + ↽↓2Kt)

However, due to the kernel learning in the multi-fidelity optimization setting, the kernel associated with the
assumptions is constantly changing. We extend the above definition to the multi-fidelity setting as follows.

Definition 3 (Maximum Information Gain in Multi-fidelity Optimization) The maximum information

gain regarding the target-fidelity objective distribution fM is defined as follows.

I(Dω,t; fM ) =
1

2
log det(I + ϑ↓1Ki,t→)

where Kt→ = [kt(x,x↔)x,x→≃Dω,t ]. For simplicity, we use the notation ↼t = max
Dω,t,s.t.|Dω,t|=t→

1
2 log det(I + ↽↓2Kt→) in

all the following discussions.

A.1 Proof of Theorem 1

We provide necessary lemmas and proofs to establish the theorem. There are two major di!erences between our
results and the previous results in Salgia et al. (2024). First, we consider kernel learning in the multi-fidelity
optimization setting, where the kernel associated with the assumptions is constantly changing. Second, we
consider the noise-free setting, yet our results resemble the bound corresponding to the noisy observation scenario.

The first lemma justifies the definition of the identified region of interest. For simplicity, we denote
{x ↑ X | UCBfM ,t(x) > maxx→≃X LCBfM ,t(x↔)} as X̂↔

t.

Lemma 1 We denote x↘ = argmaxx≃X fM (x). Then ⇔t ≃ 1, we have x↘ ↑ X̂↔

t ∞ X.

Proof: Under Assumption 1, we obtain the following results as in Vakili et al. (2021); Chowdhury and Gopalan
(2017) that ⇔t ≃ 1,

|fM (x)⇒ µfM (x)| ↘ B↽fM ,t↓1

Then we have the following inequalities which reflect the desired property of X̂↔

t.

max
x≃X

LCBfM ,t(x) ↘ fM (x↘) ↘ max
x≃X

UCBfM ,t(x)

↫
The second lemma justifies the random selection within the identified region of interest.
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Lemma 2 ⇔t ≃ 1, we have fM (x↘)⇒minx≃X̂→
t
fM (x) ↘ 4Bmaxx≃X̂→

t
↽fM ,t. Specifically, when t = 1, fM (x↘)⇒

minx≃X̂→
t
fM (x) ↘ 2B.

Proof: When t = 1, we have
fM (x↘)⇒ min

x≃X̂→
t

fM (x) ↘ 2fM (x↘) ↘ 2B

given the assumptions.

When t > 1, we denote x↔ = argminx≃X̂→
t
fM (x). Then we have

UCBfM ,t(x
↔)⇒ LCBfM ,t(x

↔) ↘ 2B max
x≃X̂→

t

↽fM ,t

At the same time, we have
max
x≃X

UCBfM ,t(x)⇒UCBfM ,t(x
↔) ↘ 2B max

x≃X̂→
t

↽fM ,t

given the definition of X̂↔

t. Combining the above two inequalities, we have

fM (x↘)⇒ min
x≃X̂→

t

fM (x) ↘ max
x≃X

UCBfM ,t(x)⇒ LCBfM ,t(x
↔) ↘ 4B max

x≃X̂→
t

↽fM ,t

↫
Then we can prove Theorem 1 as follows with Theorem 4.5 from Salgia et al. (2024).

Proof: With Lemma 1 and Lemma 2, we fulfill the conditions to apply Theorem 4.5 from Salgia et al. (2024) to
the multi-fidelity optimization setting. Specifically, we have after su”cient iterations

T∑

t=1

(fM (x↘)⇒ fM (xt))1 [εt = M ] ↘ Õ
(√

↼TM (t)TM (t) log(TM (t)/φ)
)

By the relationship between simple regret and the target-fidelity cumulative regret bounded above, we have the
desired result.

SR(t) = fM (x↘)⇒max
x≃X

fM (x)

↘ 1

T

T∑

t=1

(fM (x↘)⇒ fM (xt))1 [εt = M ]

↘ Õ
(√

↼TM (t)

TM (t)
log(TM (t)/φ)

)

↫

A.2 Proof of Theorem 2

Theorem 2 reveals the relationship between the simple regret of the f̃M and the simple regret of fM .

Proof: First, by the definition of the expected excess risk, when using MAE as the loss function, we have

E
[
|fM ⇒ f̃M |

]
⇒ L(fM , f̃↘

M ) = RateMF (M,T ).

Given Assumption 4, we have that

E
[
|fM (x)⇒ f̃M (x)|

]
= RateMF (M,T )

When t = 1, since the algorithm conducts random sampling on X, we have

SRMA(t) = E [fM (x)⇒ fM (x↘)]⇒ E
[
fM (x)⇒ f̃M (x)

]
↘ SR(t) + RateMF (M, t)

When t > 1, by the construction of X̂t, we could similarly prove that the global optimum for fM is contained in
X̂t. Then by enlarging Theorem 1 with the additional term RateMF (M,T ), we arrive at the desired results. ↫
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A.3 Proof of Theorem 3

Proof: With aforementioned assumptions, for ⇔1 < ε ↘ M , the learning on fidelity ε ⇒ 1 and ε meets the
assumption of Theorem 10 of Robinson et al. (2020). Then by Theorem 10 of Robinson et al. (2020), we have
that for two consecutive fidelities ε⇒ 1 and ε, the convergence rate of the expected excess risk is bounded by

RateMF (ε, t) ↘ O



RateMF (ε⇒ 1, t) +

√(
logTω(t) RateMF (ε⇒ 1, t) + 1

)
log Tω(t)

Tω(t)





By recursively applying Theorem 10 for ε = 2 . . .M , we obtain the desired results. ↫

B Experiment Setup

In this section, we provide additional details about the experiment setup.

B.1 Implementation

The implementation is available at https://github.com/SchroDeCat/rMFBO.

B.2 Datasets

B.2.1 Augmented Rastrigin Test Function

The Augmented Rastrigin test function is a 1-dimensional synthetic test function for multi-fidelity optimization,
defined over the domain [⇒10, 10]↙ [0, 1], where the last dimension represents the fidelity parameter. The function
is described as follows:

Definition The base function B(x) is given by:

B(x) = ⇒

x2 ⇒ 10 cos(2ωx) + 10



Low fidelity approximations The low fidelity approximations of the function are perturbed by adding
normally distributed noise:

• y1 = B(x) + np.random.normal(1 · |x|)

• y2 = B(x) + np.random.normal(2 · x2, 8)

• y3 = B(x) + np.random.normal(⇒0.2 · x4, 8)

Properties

• The minimal value of B(x) (Bmin ∈ 40.2) is found at the sides of the domain.

• The maximum value of B(x) (Bmax = 0) is found in the middle of the domain.

Discrete fidelities The fidelity parameter can take discrete values from the set:

Fidelities = {0.1, 0.5, 0.75, 1}

B.2.2 Augmented Rastrigin 20D Test Function

Similarly, the Augmented Rastrigin 20D test function is a multi-dimensional (20-dimensional) synthetic test
function for multi-fidelity optimization, defined over the domain [⇒5, 5]20 ↙ [0, 1], where the last dimension
represents the fidelity parameter. The function is described as follows:

https://github.com/SchroDeCat/rMFBO
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Definition The base function B(x) for a single dimension is given by:

B(x) = ⇒

x2 ⇒ 10 cos(2ωx) + 10



Low fidelity approximations The low fidelity approximations of the function are perturbed by adding
normally distributed noise:

• y1 = B(x) + np.random.normal(1 · |x|)

• y2 = B(x) + np.random.normal(2 · x2, 8)

• y3 = B(x) + np.random.normal(⇒0.2 · x4, 8)

Properties

• The maximum value of B(x) (Bmax = 0) is found in the middle of the domain.

Discrete fidelities The fidelity parameter can take discrete values from the set:

Fidelities = {0.1, 0.5, 0.75, 1}

B.2.3 YahooGYM 4D Numeric Benchmark: RPART

The YahooGYM 4D Numeric benchmark is a multi-dimensional optimization problem with 4 numeric input
parameters, across 4 instances, and 12 objectives. The fidelity of the benchmark is defined by the fraction of
training data.

Instances The benchmark includes 4 di!erent instances, with the default instance being 1489. The full list of
instances is as follows:

[’40981’, ’41146’, ’1489’, ’1067’]

Objectives The benchmark evaluates 12 objectives:

• Mean Misclassification Error (mmce)

• F1 Score (f1)

• Area Under Curve (auc)

• Logarithmic Loss (logloss)

• RAM Usage during Training (ramtrain)

• RAM Usage for Model Storage (rammodel)

• RAM Usage during Prediction (rampredict)

• Training Time (timetrain)

• Prediction Time (timepredict)

• Misclassification Error Cost (mec)

• Index of Agreement (ias)

• Number of Features (nf)

For optimization, the objective auc is selected to be maximized.



Fengxue Zhang, Thomas A. Desautels, Yuxin Chen

Discrete train sizes The discretized fractions of training data range from 0 to 1, with a default value of 0.525.

Input parameters The input parameters for the benchmark are:

• task id: Type: Constant, Value: 1489

• cp: Type: UniformFloat, Range: [0.0001, 1.0], Default: 0.01, on log-scale

• maxdepth: Type: UniformInteger, Range: [1, 30], Default: 16

• minbucket: Type: UniformInteger, Range: [1, 100], Default: 50

• minsplit: Type: UniformInteger, Range: [1, 100], Default: 50

• trainsize: Type: UniformFloat, Range: [0.03, 1.0], Default: 0.525

B.2.4 YahooGYM 7D Numeric Benchmark: LCBench

The YahooGYM 7D Numeric benchmark is a multi-dimensional optimization problem with 7 numeric input
parameters, across 34 instances, and 6 objectives. The fidelity of the benchmark is defined by the number of
epochs.

Instances The benchmark includes 34 di!erent instances, with the default instance being 3945. The full list of
instances is as follows:

[’3945’, ’7593’, ’34539’, ’126025’, ’126026’, ’126029’, ’146212’,

’167104’, ’167149’, ’167152’, ’167161’, ’167168’, ’167181’,

’167184’, ’167185’, ’167190’, ’167200’, ’167201’, ’168329’,

’168330’, ’168331’, ’168335’, ’168868’, ’168908’, ’168910’,

’189354’, ’189862’, ’189865’, ’189866’, ’189873’, ’189905’,

’189906’, ’189908’, ’189909’]

Objectives The benchmark evaluates 6 objectives:

• Time (time)

• Validation Accuracy (val accuracy)

• Validation Cross Entropy (val cross entropy)

• Validation Balanced Accuracy (val balanced accuracy)

• Test Cross Entropy (test cross entropy)

• Test Balanced Accuracy (test balanced accuracy)

For optimization, the objective test balanced accuracy is selected to be maximized.

Discrete fidelities The discretized fidelities range from 1 to 52, with a default value of 26. The specific fidelities
used are:

{1, 8, 16, 32}

Input parameters The input parameters for the benchmark are:

• batch size: Type: UniformInteger, Range: [16, 512], Default: 91, on log-scale

• learning rate: Type: UniformFloat, Range: [0.0001, 0.1], Default: 0.003162278, on log-scale

• max dropout: Type: UniformFloat, Range: [0.0, 1.0], Default: 0.5
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• max units: Type: UniformInteger, Range: [64, 1024], Default: 256, on log-scale

• momentum: Type: UniformFloat, Range: [0.1, 0.99], Default: 0.545

• num layers: Type: UniformInteger, Range: [1, 5], Default: 3

• weight decay: Type: UniformFloat, Range: [0.00001, 0.1], Default: 0.050005

• epoch: Type: UniformInteger, Range: [1, 52], Default: 26

Reference Further details and information can be found in the referred publication:

https://www.tnt.uni-hannover.de/papers/data/1459/2020 arXiV Auto PyTorch.pdf

B.2.5 YahooGYM 13D Numeric Benchmark: XGBoost

The YahooGYM 13D Numeric benchmark is a multi-dimensional optimization problem with 13 numeric input
parameters, across 4 instances, and 12 objectives. The fidelity of the benchmark is defined by the fraction of
training data.

Instances The benchmark includes 4 di!erent instances, with the default instance being 1489. The full list of
instances is as follows:

[’40981’, ’41146’, ’1489’, ’1067’]

Objectives The benchmark evaluates 12 objectives:

• Mean Misclassification Error (mmce)

• F1 Score (f1)

• Area Under Curve (auc)

• Logarithmic Loss (logloss)

• RAM Usage during Training (ramtrain)

• RAM Usage for Model Storage (rammodel)

• RAM Usage during Prediction (rampredict)

• Training Time (timetrain)

• Prediction Time (timepredict)

• Misclassification Error Cost (mec)

• Index of Agreement (ias)

• Number of Features (nf)

For optimization, the objective auc is selected to be maximized.

Citation The benchmark data can be cited similarly as in the YahooGYM dataset.

Discrete train sizes The discretized fractions of training data range from 0 to 1, with a default value of 0.525.

https://www.tnt.uni-hannover.de/papers/data/1459/2020_arXiV_Auto_PyTorch.pdf
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Input parameters The input parameters for the benchmark are:

• task id: Type: Constant, Value: 1489

• booster: Type: Categorical, Choices: {gblinear, gbtree, dart}, Default: dart (to allow all hyperparame-
ters to be active)

• alpha: Type: UniformFloat, Range: [0.0001, 999.9999], Default: 0.316227766, on log-scale

• colsample bylevel: Type: UniformFloat, Range: [0.01, 1.0], Default: 0.505

• colsample bytree: Type: UniformFloat, Range: [0.01, 1.0], Default: 0.505

• eta: Type: UniformFloat, Range: [0.0001, 1.0], Default: 0.01, on log-scale

• gamma: Type: UniformFloat, Range: [0.0001, 6.9999], Default: 0.0264575131, on log-scale

• lambda: Type: UniformFloat, Range: [0.0001, 999.9999], Default: 0.316227766, on log-scale

• max depth: Type: UniformInteger, Range: [1, 15], Default: 8

• min child weight: Type: UniformFloat, Range: [2.718281828459045, 149.9999], Default: 20.1926292064, on
log-scale

• nrounds: Type: UniformInteger, Range: [3, 2000], Default: 77, on log-scale

• rate drop: Type: UniformFloat, Range: [0.0, 1.0], Default: 0.5

• skip drop: Type: UniformFloat, Range: [0.0, 1.0], Default: 0.5

• subsample: Type: UniformFloat, Range: [0.1, 1.0], Default: 0.55

• trainsize: Type: UniformFloat, Range: [0.03, 1.0], Default: 0.525

Parameter conditions The conditions for the input parameters are defined as follows:

colsample_bylevel | booster in {’dart’, ’gbtree’}

colsample_bytree | booster in {’dart’, ’gbtree’}

eta | booster in {’dart’, ’gbtree’}

gamma | booster in {’dart’, ’gbtree’}

max_depth | booster in {’dart’, ’gbtree’}

min_child_weight | booster in {’dart’, ’gbtree’}

rate_drop | booster == ’dart’

skip_drop | booster == ’dart’

We fix the booster to dart to allow all hyperparameters to be active.

B.2.6 Antibody Binding Free Energy Benchmark

The Antibody Binding Free Energy Benchmark estimates the change in binding free energy ($$G) at the
interface between each of 71, 769 modified antibodies and the SARS-CoV-2 spike protein, as compared to the
single reference antibody from which they are derived. These calculations were executed using supercomputing
resources and are part of an antibody design process (Desautels et al., 2020, 2022).
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Binding Free Energy Calculation The binding free energy ($$G) estimations were conducted using
protein-structure-based simulation software (Das and Baker, 2008; Barlow et al., 2018; Schymkowitz et al., 2005;
Sapozhnikov et al., 2023; Buß et al., 2018; DeBartolo et al., 2014). The low-fidelity calculations presented use
STATIUM (DeBartolo et al., 2014), which compares local geometry around a mutation with a broad database of
protein protein interfaces and operates on the principle that more favorable interactions should be more frequent
to derive a score. The mid- and higher-fidelity calculations use the FoldX (Schymkowitz et al., 2005) and Rosetta
Flex (Barlow et al., 2018) protocols, which modify the positions of protein side chains, calculate an average
interface binding free energy $G, and compare with the unmutated version to calculate the mutational change
in binding free energy, $$G. Lower $$G values indicate stronger binding a”nity between protein structures.
Each calculation required several CPU hours, reflecting the computational intensity of the process. Here we take
the negative values so that we need to maximize the objective during optimization.

Features The input sequence and structure data for these calculations is represented by an 86-dimensional
feature vector, describing changes in the antibody-target interface relative to a reference sequence. These features
capture structural and biochemical variations within the context of antibody design campaigns for derivatives of
the s230 antibody targeting the SARS-CoV-2 spike protein.

Fidelities Binding free energy ($$G) calculations were performed at three fidelity levels, reflecting varying
levels of computational resource allocation and prediction accuracy: STATIUM, FoldX, and Rosetta. Each
tool computes $$G as the mutational change ($) in binding free energy ($G) based on a single mutant sequence
and a co-complex structure of the antibody-antigen pair.

These fidelity levels—0 (STATIUM), 1 (FoldX), and 2 (Rosetta)—enable a hierarchical approach to binding free
energy estimation. STATIUM delivers rapid, coarse-grained results; FoldX balances speed and precision; and
Rosetta provides the most accurate, detailed insights into binding dynamics. The costs are specified as 0.2, 1.2,
and 2.2 correspondingly.

B.3 Hyperparameter Choices

The following summarizes the key hyperparameter choices for the algorithms in our experiments.

• We set ς1/2 = 3 for experiments except ς1/2 = 0.05 for protein design task;

• For random discretization of MF-MES, we set the sample number to be 40000 and applied the Sobel engine
for sampling.

• For the Monte Carlo approximation in (r)MF-MES and (r)MF-KG, we set the sample number to be 512;

• For the robust baselines proposed by Mikkola et al. (2023), we follow the previous practice by setting the
threshold c1 = c2 = 0.5;

• For the kernel choices, we applied the kernel designed specifically for multi-fidelity hyperparameter tuning
(Wu et al., 2020a) for (r)MF-MES and (r)MF-KG. For the deep kernel, we applied the RBF kernel (Srinivas
et al., 2009; Rasmussen and Williams, 2006) as the base kernel and applied the backpropagation of Deep
kernel learning (Wilson et al., 2016) to optimize the neural network and kernel parameters;

• For the iterative spectral norm estimation (Van Amersfoort et al., 2021), we set the iteration to be 100 for
su”cient accuracy.

• In the deep kernel, the neural network named LargeFeatureExtractor consists of the following layers: a
fully connected linear layer (linear1) with input dimension data dim and output dimension 128 using data
type torch.float64 (Linear(in features=data dim, out features=128, dtype=torch.float64)), fol-
lowed by a ReLU activation function (ReLU()), and another fully connected linear layer (linear4)
with input dimension 128 and output dimension max(data dim ⇒ 1, 2) using data type torch.float64

(Linear(in features=128, out features=max(data dim-1, 2), dtype=torch.float64)). This net-
work extracts features from input data in the sequence: linear1, relu1, and linear4.
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C Additional Results

We present additional results in this section. The S1, S2, and End denotes three time points during the
optimization process where S1 < S2 < End. The results are collected from at least ten independent trials.

Method
Dataset

Rastrigin-1D Rastrigin-20D RPART-4D LCBench-7D XGBoost-13D Protein-86D

S1

RMFBO-DP 5.79 ± 2.24 103.12 ± 7.62 0.28 ± 0.07 0.28 ± 0.01 0.18 ± 0.04 4.57 ± 0.91
MF-MES 30.06 ± 9.04 110.00 ± 0.00 0.38 ± 0.08 0.28 ± 0.01 0.16 ± 0.01 6.61 ± 0.49
MF-KG 9.90 ± 4.11 110.00 ± 0.00 0.34 ± 0.04 0.32 ± 0.07 0.67 ± 0.12 5.64 ± 0.89
SF-DK 33.58 ± 11.06 104.29 ± 5.35 0.29 ± 0.05 0.27 ± 0.02 0.17 ± 0.02 6.30 ± 0.75
SF-MES 29.36 ± 8.94 109.86 ± 0.25 0.29 ± 0.06 0.26 ± 0.01 0.15 ± 0.01 6.50 ± 0.60
SF-KG 7.48 ± 4.17 109.49 ± 0.94 0.32 ± 0.08 0.26 ± 0.01 0.15 ± 0.01 5.96 ± 0.71

rMF-MES 20.16 ± 10.50 109.93 ± 0.13 0.39 ± 0.07 0.29 ± 0.02 0.18 ± 0.07 4.76 ± 1.01
rMF-KG 6.30 ± 3.16 109.85 ± 0.27 0.38 ± 0.08 0.26 ± 0.01 0.69 ± 0.34 5.51 ± 1.71
Random 15.08 ± 6.35 110.00 ± 0.00 0.32 ± 0.07 0.30 ± 0.02 0.15 ± 0.01 15.75 ± 0.70
MF-UCB 12.50 ± 5.11 107.50 ± 3.43 0.31 ± 0.05 0.29 ± 0.02 0.16 ± 0.02 10.87 ± 1.02

DNN-MFBO 28.50 ± 8.50 110.00 ± 0.00 0.36 ± 0.07 0.27 ± 0.01 0.16 ± 0.01 6.55 ± 0.59

S2

RMFBO-DP 2.13 ± 1.47 97.08 ± 8.29 0.25 ± 0.05 0.26 ± 0.01 0.14 ± 0.01 3.09 ± 0.98
MF-MES 24.48 ± 8.38 108.16 ± 3.43 0.33 ± 0.09 0.28 ± 0.01 0.15 ± 0.01 4.99 ± 0.66
MF-KG 3.51 ± 1.36 106.03 ± 6.96 0.27 ± 0.03 0.27 ± 0.01 0.67 ± 0.12 4.91 ± 0.98
SF-DK 33.07 ± 11.42 97.63 ± 5.95 0.24 ± 0.04 0.26 ± 0.01 0.14 ± 0.02 5.50 ± 1.23
SF-MES 27.09 ± 9.77 108.68 ± 1.98 0.25 ± 0.01 0.26 ± 0.01 0.14 ± 0.01 5.50 ± 0.73
SF-KG 3.44 ± 2.74 109.49 ± 0.94 0.22 ± 0.03 0.26 ± 0.01 0.14 ± 0.01 4.02 ± 1.18

rMF-MES 15.42 ± 11.18 101.40 ± 9.02 0.27 ± 0.04 0.26 ± 0.01 0.14 ± 0.02 4.76 ± 1.01
rMF-KG 3.86 ± 1.23 107.18 ± 4.95 0.23 ± 0.02 0.25 ± 0.01 0.69 ± 0.34 4.41 ± 1.50
Random 7.07 ± 2.61 108.60 ± 1.76 0.23 ± 0.02 0.28 ± 0.01 0.14 ± 0.01 14.77 ± 0.43
MF-UCB 5.63 ± 2.11 107.50 ± 3.43 0.24 ± 0.03 0.27 ± 0.01 0.15 ± 0.02 9.98 ± 1.50

DNN-MFBO 22.50 ± 7.04 107.91 ± 6.69 0.31 ± 0.08 0.27 ± 0.01 0.15 ± 0.01 4.83 ± 0.59

End

RMFBO-DP 0.75 ± 0.30 86.64 ± 9.80 0.21 ± 0.03 0.25 ± 0.01 0.12 ± 0.01 1.63 ± 0.81
MF-MES 15.37 ± 6.83 105.66 ± 4.25 0.31 ± 0.08 0.28 ± 0.01 0.14 ± 0.01 4.09 ± 0.73
MF-KG 1.84 ± 0.61 106.03 ± 6.96 0.24 ± 0.01 0.27 ± 0.01 0.67 ± 0.12 4.34 ± 0.85
SF-DK 32.35 ± 11.98 87.28 ± 7.16 0.21 ± 0.02 0.25 ± 0.01 0.12 ± 0.02 5.29 ± 1.08
SF-MES 23.74 ± 9.98 100.92 ± 6.17 0.25 ± 0.01 0.25 ± 0.01 0.14 ± 0.01 4.25 ± 1.56
SF-KG 1.73 ± 0.84 108.20 ± 1.72 0.22 ± 0.03 0.25 ± 0.01 0.13 ± 0.01 3.25 ± 1.04

rMF-MES 8.33 ± 7.36 100.93 ± 8.87 0.22 ± 0.03 0.26 ± 0.01 0.13 ± 0.02 4.29 ± 0.78
rMF-KG 3.02 ± 1.18 103.37 ± 6.41 0.23 ± 0.02 0.25 ± 0.01 0.69 ± 0.34 4.04 ± 1.18
Random 5.05 ± 2.43 104.06 ± 6.15 0.22 ± 0.02 0.27 ± 0.01 0.13 ± 0.01 14.42 ± 0.33
MF-UCB 5.63 ± 2.11 107.50 ± 3.43 0.22 ± 0.02 0.26 ± 0.01 0.13 ± 0.02 8.44 ± 1.20

DNN-MFBO 20.50 ± 6.01 107.91 ± 6.69 0.29 ± 0.07 0.27 ± 0.01 0.14 ± 0.01 4.41 ± 0.52

Table 2: The simple regret of di!erent methods on di!erent datasets, at three selected costs. The best
performance is emphasized in bold.

This updated table includes the results for DNN-MFBO, with values similar to those of MF-MES across all
datasets and sections. As shown in the table, RMFBO-DP outperforms the baselines in most cases and at least
match the baselines’ performance, especially when in the later stage of the optimization. The results demonstrate
the e!ectiveness of RMFBO-DP in multi-fidelity optimization.
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