


allows graph node-edge-based generalized communications.

HAL modulates the system’s actual implementation, which

may depend on specific hardware or programming language,

and improves compatibility with other systems and reusabil-

ity. Node connections can be inter-device since ROS 1

uses a custom TCP/IP protocol, and ROS 2 is based on

Data Distribution Service (DDS), which is more secure and

appropriate for industrial use cases [1]. However, ROS itself

does not provide robotic system architectures, and the user

should design graph communications. Even though a robot is

compatible with ROS, it does not mean it is indeed developed

using ROS inside, but the ROS node is prepared for a generic

external communication medium.

Yet Another Robot Platform (YARP) is an open-sourced

middleware to provide HAL and unified communications

between modules along with robotics libraries to provide

control infrastructure of the robots [6].

In industry, proprietary platforms and programming lan-

guages are developed for a particular family of products, such

as KUKA Robot Language (KRL) for KUKA robot arms [7],

and B&R Automation Studio for their programmable logic

controllers (PLC) [8]. They provide uniform and abstracted

access to devices with integrated robotics API libraries

and safety systems, although proprietary systems require

licensing and specific hardware.

B. Hardware Oriented Middleware

Open Robot Control Software (OROCOS) is an open-

sourced robotic control framework focused on real-time

performance [9]. Although ROS 2 has enhanced real-time

capability, OROCOS has superior latency and jitters in Inter-

Process Communication (IPC), particularly with modified

Linux kernels such as Xenomai [10]. OROCOS framework

includes standard APIs for robotics in C++, such as kine-

matics, Bayesian filtering, state machines, etc.

IPC can restrict the system’s real-time operation and cyclic

speed since data cannot be referred by memory address, and

the data must be copied and serialized to another process

[11]. Hard real-time system guarantee a response time with

a certain maximum deviation, while soft real-time system

bounds average response time [12]. Many attempts toward

soft real-time requirements, including OROCOS, have been

done in RT-Middleware [13] and TZC [11].

Hard real-time is significantly strict and requires low

latency hardware, a real-time operating system (RT-OS),

and strict time synchronization, primary for safety purpose

[12]. The automation industry has developed proprietary

PLC to achieve low-latency hard real-time programming

environments by custom designing from hardware to RTOS,

such as B&R Automation studio [8]. XBotCore is an open-

sourced hard real-time software platform for EtherCAT-based

robots [14].

One of the most successful educational purpose middle-

ware is the LEGO Mindstorms series [3]. Their Graphical

Programming Language (GPL) is suitable for students and

beginners unfamiliar with programming. The GPL grants a

coding environment as if the users are assembling bricks. For

more advanced users, LEGO Mindstorms supports C++ and

Python. However, their costs, limited simulation, and propri-

etary hardware barriers introducing them into classrooms or

moving onto different or custom hardware.

C. Middleware for Multi-Agent and Cloud Robotic

Various middleware has targeted to enhance HAL into

a robot, task or team scale to simplify programming at

different levels and modulate them to reuse. Task-level GPLs,

RAZER, etc., are toward end-users so they can program

a robot during operations and without an engineer [15].

They can help facilitate automation and robotics technolo-

gies to lesser-technical creative industries with human-robot

interaction in mind [16]. ManiWare is dedicated to team-

level abstraction and synchronization for manipulators to

conduct teamwork operations among different arms [17].

CORNET integrates unmanned aerial vehicle physics and

network simulators to realize a cyber-physical system of

multi-agent drones [18].

Cloud robotics offers offloading computation-intensive

tasks and access to cloud resources such as CPU, GPU,

storage, and a global map [19]. Multi-agent and collaborative

robots can benefit from cloud infrastructure. XbotCloud is

a cloud-integrated system designed for XbotCore-operated

robots [20].

III. REMS CONCEPT AND PRINCIPLE

A. Concepts

Our middleware , REMS, design primary concepts are the

following:

• The Zen of Python to robotics

• Provide robotic framework off-the-shelve

• Moduled robot definitions and implementations

• Scalable from one to multi-agent

The concept of Pythonic programming is about simple,

concise, and readable coding. Each class and method have a

clear role in the system. With other common middleware,

learning curves are steep at the beginning because users

should learn the specific syntax, language, process, etc. of the

middleware that are not standard or uncommon elsewhere,

i.e., IDL in ROS. Even setting up and installing a ROS pack-

age is already a significant achievement due to complicated

version dependencies [2]. The robotics domain spreads not

merely to computer science but to people with a mechanical

or electrical engineering background. In education settings, it

can take away vital opportunities to learn more about theories

and algorithms by spending time on technical details that are

only applicable in a limited field area.

Developers should put considerable design efforts into

software architecture to integrate various components in

robotics. Providing a robot control pipeline simplifies the

initial setup and implementation time. The architecture itself

can educate learners on what parts should be in the robot

system as well as basic concepts of programming, such as

abstraction and modularity.

Abstraction in a robot is more complex than said. What

defines a robot to be and what does not, are not clear









Fig. 6: SCALER-M, a two-arm 6-DoF Manipulator in hardware and simula-
tion. SCALER-M is a manipulator configuration of SCALER: a quadruped
climbing robot in [25]. Analytical model is based on forward kinematics.

users can add the same robot with different implementations

and run them simultaneously with the same inputs. In this

application [24], three residual models were generated for a

mobile and a stationary robot system: between kinematics

model and hardware, between kinematics model and simu-

lation, and between simulations and hardware. Woodbot and

a two-arm manipulator, SCALER manipulator configuration

[25] with 6-DoF per arm were used.

Deep neural network (DNN) was back-propagated online

using an unscented Kalman filter-based (UKF) auto-tuner.

This UKF auto-tuner can run online and update the residual

model, which provides strength to the pipeline. Therefore,

REMS not only allows training the residual models but

also helps to keep updating these models online while the

users run their trajectories. A process system was used to

collect and handle data from two robot implementations.

DNN back-propagation was done as background jobs since

it was computationally extensive and was not time critical.

The models’ quality was compared and evaluated by

running the robots simultaneously with and without a resid-

ual term, such as by running two simulation instances or

treating each arm as an individual robot. The SCALER

manipulator simulation was experimentally done in Pybullet

physics simulator for Python.

E. Multi-Agent

REMS is designed to run multiple robots simultaneously

regardless of whether they share the same robot definitions

or implementations. We placed seven Webots simulation

example robots and three hardware in Sec. V-A as in Fig. 1

a), b). They were operated either: using a system-wide input

to control all the robots or with individual robots independent

inputs, which mimic global and local controls structure in

multi-agent systems.

VI. DISCUSSION

Our case studies demonstrated that our middleware has

simplified and modularized the robotics coding flow, allow-

ing students and researchers to focus on what they want to

explore. Wheeled robot examples exhibit how one robot’s

definition can be extended to adapt similar robots. Combin-

ing an omni-drive base and arm definitions, we realized a

complete assembly of Youbot control. This object-oriented

way can not only simplify defining a new robot but also

reduce maintenance labor since a fix in a base will be applied

to all the robots inherited from it.

TABLE I: List of all robots and implementations experimented with.

Robot Anaytical Simulation Hardware

Create 2 Jacobian Webots Create, Dynabot, Woodbot
Woodbot Jacobian Webots Create, Dynabot, Woodbot
E-puck Jacobian Webots Create, Dynabot, Woodbot
Pioneer 3 DX Jacobian Webots Create, Dynabot, Woodbot

Pioneer 3 AX Jacobian Webots
Moose Jacobian Webots

Youbot base Jacobian Webots
Youbot Jacob/FK Webots

KUKA Arm FK Webots
SCALER-M FK Pybullet Two SCALER Manipulator

Total 32 of robot implementations experimented with throughout
our case studies for ten different robot definitions.

We tested differential drive robots on three different two-

wheeled hardware implementations. This capability means

that the same control codes can be tested on different sets of

actuators and sensors. Since Woodbot is made out of very

affordable components, the actuator velocity control is less

accurate, making it harder to move straight than the other.

Swapping implementations with the same robot defini-

tion enabled students to quickly test a robot on hardware,

simulation, and analytical model and then compare and

validate the results. REMS enhanced the students’ experience

by minimizing implementation works and providing self-

validation methods.

In the academic research case, REMS aided and added an

edge to the residual modeling algorithm. The algorithm can

run and improve the model online since REMS lets users run

hardware and simulation efficiently.

REMS has been applied from wheeled to high-DoF ma-

nipulator robots, from student-derived models to Webots,

Pybullet simulations, to off-the-shelf hardware and embedded

system. Applications are not limited to a simple joystick

control or an offline trajectory, but it is capable of machine

learning and supporting multi-agent systems. Furthermore,

it can enable multi-agent research in mixed reality, where

robots collaborate, for example, in the real and virtual

simulation worlds.

VII. CONCLUSION AND FUTURE WORKS

We have developed REMS that introduces the Zen of

Python to robotics to be more accessible and educational.

Our object-oriented framework designs enhance modular-

ity both theoretically and practically. We showcased how

various robot types and implementations can be executed

interchangeably and how users can inherit and merge existing

robots to create new ones. Case studies in an academic class

and academic research demonstrated that REMS revamped

and accelerated robot education and research.

Now REMS opens up a wide range of possibilities such

as sim-to-real translation in the same robot definition or

among extended or merged definitions, a quick algorithms

performance benchmark with diverse robots, or a multi-agent

system across hardware and simulation.



REFERENCES

[1] S. Macenski, et al. "Robot Operating System 2: Design, architecture,
and uses in the wild," Science Robotics, vol. 7, no. 66, pp. eabm6074,
2022.

[2] K. Hauser, "Why I Don’t Teach ROS to Robotics Students," Medium,
Online, 2021. https://hauser-kris.medium.com/why-i-dont-teach-ros-
to-robotics-students-55cc4f3623ce

[3] S. R. Perez, C. Gold-Veerkamp, J. Abke and K. Borgeest, "A new
didactic method for programming in C for freshmen students using
LEGO mindstorms EV3," International Conference on Interactive

Collaborative Learning (ICL), pp. 911-914, 2015.

[4] E. Afari, and S. K. Myint, "Robotics as an educational tool: Impact of
lego mindstorms." International Journal of Information and Education

Technology 7.6): 437-442, 2017.

[5] T. Peters, "The zen of python." Pro Python. Apress, 301-302, 2010.

[6] G. Metta, et al. “YARP: Yet Another Robot Platform.” International

Journal of Advanced Robotic Systems, 2006.

[7] H. Muhe, A. Angerer, A. Hoffmann, and W. Reif, "On reverse-
engineering the KUKA Robot Language, " arXiv:1009.5004, 2010.

[8] "B&R Industrial Automation GmbH: Automation Studio," 2022.
https://www.br-automation.com/en-us/products/software/automation-
software/automation-studio/

[9] H. Bruyninckx, "Open robot control software: the OROCOS
project,"Proceedings ICRA. IEEE International Conference on

Robotics and Automation, pp. 2523-2528 vol.3, 2001.

[10] S. Barut, M. Boneberger, P. Mohammadi and J. J. Steil, "Benchmark-
ing Real-Time Capabilities of ROS 2 and OROCOS for Robotics
Applications," IEEE International Conference on Robotics and Au-

tomation (ICRA), pp. 708-714, 2021.

[11] Y. P. Wang, et al. "TZC: Efficient Inter-Process Communication for
Robotics Middleware with Partial Serialization," IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pp. 7805-
7812, 2019.

[12] A. M. Hellmund, et al., "Robot operating system: A modular software
framework for automated driving," IEEE 19th International Confer-

ence on Intelligent Transportation Systems (ITSC), pp. 1564-1570,
2016.

[13] N. Ando, et al., "RT-middleware: distributed component middleware
for RT (robot technology)," IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), , pp. 3933-3938, 2005.

[14] L. Muratore, et al., "XBotCore: A Real-Time Cross-Robot Software
Platform," First IEEE International Conference on Robotic Computing

(IRC), pp. 77-80, 2017.

[15] F. Steinmetz, A. Wollschläger and R. Weitschat, "RAZER—A HRI for
Visual Task-Level Programming and Intuitive Skill Parameterization,"
in IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1362-1369,
2018.

[16] J. Braumann and K. Singline, "Towards Real-Time Interaction with
Industrial Robots in the Creative Industries," IEEE International

Conference on Robotics and Automation (ICRA), , pp. 9453-9459,
2021.

[17] Z. Cheng, J. Cao and J. Chen, "ManiWare: An Easy-to-Use Mid-
dleware for Cooperative Manipulator Teams," IEEE International

Conference on Smart Computing (SMARTCOMP), pp. 349-355, 2022.

[18] S. Acharya, et al., "CORNET: A Co-Simulation Middleware for Robot
Networks," International Conference on COMmunication Systems and

NETworkS (COMSNETS), pp. 245-251,2020.

[19] O. Saha, and D. Prithviraj, "A comprehensive survey of recent trends
in cloud robotics architectures and applications." Robotics vol. 7 no.
3:47. 2018.

[20] L. Muratore, B. Lennox and N. G. Tsagarakis, "XBotCloud: A
Scalable Cloud Computing Infrastructure for XBot Powered Robots,"
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1-9, 2018.

[21] Goldbaum et al., "unyt: Handle, manipulate, and convert data with
units in Python," Journal of Open Source Software, 3(28), 809, 2018.

[22] Moritz, Philipp, et al. "Ray: A distributed framework for emerging AI
applications." 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), 2018.

[23] A. M. Mehta, J. DelPreto, B. Shaya and D. Rus, "Cogeneration of
mechanical, electrical, and software designs for printable robots from
structural specifications," 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 2892-2897, 2014.

[24] A. Schperberg, Y. Tanaka, F. Xu, M. Menner, D. Hong "Real-to-Sim:
Deep Learning with Auto-Tuning to Predict Residual Errors using
Sparse Data" arXiv:2209.03210, 2022

[25] Y. Tanaka et al., “SCALER: A tough versatile quadruped free-climber
robot,” in Proc. 2022 IEEE/RSJ Int. Conf. Intell. Rob. Syst. (IROS),

2022.


