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Abstract— This paper introduces REMS, a robotics middle-
ware and control framework that is designed to introduce the
Zen of Python to robotics and to improve robotics education
and development flow. Although existing middleware can serve
hardware abstraction and modularity, setting up environments
and learning middleware-specific syntax and procedures are
less viable in education. They can curb opportunities to under-
stand robotics concepts, theories, and algorithms. Robotics is
a field of integration; students and developers from various
backgrounds will be involved in programming. Establishing
Pythonic and object-oriented robotic framework in a natural
way can enhance modular and abstracted programming for
better readability, reusability, and simplicity, but also supports
useful and practical skills generally in coding. REMS is to be
a valuable robot educational medium not just as a tool and to
be a platform from one robot to multi-agent across hardware,
simulation, and analytical model implementations.

I. INTRODUCTION

Robotics platforms have been proposed to simplify and
generalize programming and integration of robotics tech-
nologies across various areas of study. Popular middleware
ROS [1] enables developers to create a package that can run
cross-platform with a unified data communication protocol.
OROCOS intends to provide a robot control system with
a soft real-time capability and built-in robotics libraries.
However, such middleware systems require a handful of
setup procedures and compiling packages, and the users
often should spend efforts to start using them [2]. This can
be a considerable disadvantage when the primary focus is
education since students are forced to spare time learning
an uncommon language, syntax, and technologies elsewhere.
Programming for an integrated system such as a robot can
become complex and abstract thinking may not be as intu-
itive [3]. LEGO Mindstorms has been a successful tool for
elementary to college level classrooms thanks to interactive
and fun infrastructure [3], [4]. Although its primary graphical
programming makes robot controls more accessible, there is
still a gap from LEGO to more advanced or custom robots
since Mindstorms is a proprietary system, and all hardware
and software are designed to be integrated.

Python has been gaining popularity because of its sim-
ple ecosystem and readability. The Zen of Python is all
about simplicity: "Beautiful is better than ugly." and "If
the implementation is easy to explain, it may be a good
idea." [5]. Introducing the Zen of Python into robotics can
philosophically reinforce robotics software and architectures
to be better readable and sharable. Adapting Python can
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Fig. 1: REMS: robotics middleware and framework. A total of 32 robot
implementations were demonstrated, including simulations in a) and d), and
hardware in b) and ¢), and analytical models. a) Webots physics simulator
robots: Woodbot, E-puck, Create 2, Youbot, arm, base only, Pioneer DX,
AT, and Moose. b) hardware: Create 2 (top), Dynabot (left) and Woodbot
(right). ¢) Two-arm 6-DoF manipulator hardware, SCALER Manipulator[25]
and d) Pybullet physics simulation.

benefit users with and without a programming background
due to its simple installation mechanisms, interactive no-
compilation interpreter, and scientific or machine learning
libraries. Object-oriented structures benefit and accelerate
robotics development with abstracted and modular codes that
can be inherited or merged to create a new system. Such
scalable and coherent designs have the potential to enhance
robotics education and development.

In this paper, we propose REMS: Robotics Education Mid-
dleware System, a robotics middleware and control frame-
work that employs the zen of Python and are designed for
educational and research purpose.

Our contributions are summarized as follows:

1) We develop REMS: a Pythonic robotics middleware
and framework for education and development purpose

2) Object-oriented design to allow users to swap, extend
and combine for a new robot or a functionality

3) Enable simultaneous run of multiple robots and im-
plementations for a multi-agent system and debug-
ging/comparisons

4) Case studies running 32 robot implementations, and
applications in an academic class and research

1I. RELATED WORKS
A. Middleware in Robotics

Robot Operation System (ROS and ROS2) is one of the
most well-known and widespread middleware for robotics
[1]. ROS provides a hardware abstraction layer (HAL) and



allows graph node-edge-based generalized communications.
HAL modulates the system’s actual implementation, which
may depend on specific hardware or programming language,
and improves compatibility with other systems and reusabil-
ity. Node connections can be inter-device since ROS 1
uses a custom TCP/IP protocol, and ROS 2 is based on
Data Distribution Service (DDS), which is more secure and
appropriate for industrial use cases [1]. However, ROS itself
does not provide robotic system architectures, and the user
should design graph communications. Even though a robot is
compatible with ROS, it does not mean it is indeed developed
using ROS inside, but the ROS node is prepared for a generic
external communication medium.

Yet Another Robot Platform (YARP) is an open-sourced
middleware to provide HAL and unified communications
between modules along with robotics libraries to provide
control infrastructure of the robots [6].

In industry, proprietary platforms and programming lan-
guages are developed for a particular family of products, such
as KUKA Robot Language (KRL) for KUKA robot arms [7],
and B&R Automation Studio for their programmable logic
controllers (PLC) [8]. They provide uniform and abstracted
access to devices with integrated robotics API libraries
and safety systems, although proprietary systems require
licensing and specific hardware.

B. Hardware Oriented Middleware

Open Robot Control Software (OROCOS) is an open-
sourced robotic control framework focused on real-time
performance [9]. Although ROS 2 has enhanced real-time
capability, OROCOS has superior latency and jitters in Inter-
Process Communication (IPC), particularly with modified
Linux kernels such as Xenomai [10]. OROCOS framework
includes standard APIs for robotics in C++, such as kine-
matics, Bayesian filtering, state machines, etc.

IPC can restrict the system’s real-time operation and cyclic
speed since data cannot be referred by memory address, and
the data must be copied and serialized to another process
[11]. Hard real-time system guarantee a response time with
a certain maximum deviation, while soft real-time system
bounds average response time [12]. Many attempts toward
soft real-time requirements, including OROCQOS, have been
done in RT-Middleware [13] and TZC [11].

Hard real-time is significantly strict and requires low
latency hardware, a real-time operating system (RT-OS),
and strict time synchronization, primary for safety purpose
[12]. The automation industry has developed proprietary
PLC to achieve low-latency hard real-time programming
environments by custom designing from hardware to RTOS,
such as B&R Automation studio [8]. XBotCore is an open-
sourced hard real-time software platform for EtherCAT-based
robots [14].

One of the most successful educational purpose middle-
ware is the LEGO Mindstorms series [3]. Their Graphical
Programming Language (GPL) is suitable for students and
beginners unfamiliar with programming. The GPL grants a
coding environment as if the users are assembling bricks. For

more advanced users, LEGO Mindstorms supports C++ and
Python. However, their costs, limited simulation, and propri-
etary hardware barriers introducing them into classrooms or
moving onto different or custom hardware.

C. Middleware for Multi-Agent and Cloud Robotic

Various middleware has targeted to enhance HAL into
a robot, task or team scale to simplify programming at
different levels and modulate them to reuse. Task-level GPLs,
RAZER, etc., are toward end-users so they can program
a robot during operations and without an engineer [15].
They can help facilitate automation and robotics technolo-
gies to lesser-technical creative industries with human-robot
interaction in mind [16]. ManiWare is dedicated to team-
level abstraction and synchronization for manipulators to
conduct teamwork operations among different arms [17].
CORNET integrates unmanned aerial vehicle physics and
network simulators to realize a cyber-physical system of
multi-agent drones [18].

Cloud robotics offers offloading computation-intensive
tasks and access to cloud resources such as CPU, GPU,
storage, and a global map [19]. Multi-agent and collaborative
robots can benefit from cloud infrastructure. XbotCloud is
a cloud-integrated system designed for XbotCore-operated
robots [20].

III. REMS CONCEPT AND PRINCIPLE
A. Concepts

Our middleware , REMS, design primary concepts are the
following:

o The Zen of Python to robotics

o Provide robotic framework off-the-shelve

+ Moduled robot definitions and implementations
e Scalable from one to multi-agent

The concept of Pythonic programming is about simple,
concise, and readable coding. Each class and method have a
clear role in the system. With other common middleware,
learning curves are steep at the beginning because users
should learn the specific syntax, language, process, etc. of the
middleware that are not standard or uncommon elsewhere,
i.e., IDL in ROS. Even setting up and installing a ROS pack-
age is already a significant achievement due to complicated
version dependencies [2]. The robotics domain spreads not
merely to computer science but to people with a mechanical
or electrical engineering background. In education settings, it
can take away vital opportunities to learn more about theories
and algorithms by spending time on technical details that are
only applicable in a limited field area.

Developers should put considerable design efforts into
software architecture to integrate various components in
robotics. Providing a robot control pipeline simplifies the
initial setup and implementation time. The architecture itself
can educate learners on what parts should be in the robot
system as well as basic concepts of programming, such as
abstraction and modularity.

Abstraction in a robot is more complex than said. What
defines a robot to be and what does not, are not clear



or less considered questions. Coherent divisions between
a robot definition and its actual implementation support
students’ better understanding and execution of the theories
lectured. This strategy lets users swap the implementation
from hardware to simulation or to an analytical mathematical
model of the same robot, which can help them debug their
math or algorithms by cross-checking the outcomes and
can prevent damaging money and time extensive hardware.
Users can inherit, extend and merge one or more existing
definitions to create a new robot definition, which expands
the possibility of rapid development and modular robot
software design. Moving from one robot to two or multi-
agent is not trivial since there must be another layer of
software designed to handle and communicate with all the
robots. Seamless scalability of more robots remove a barrier
to getting started with a multi-agent system; moreover, users
can add the same robot with different implementations.
With these concepts, REMS ambitions to be a valuable
educational medium not just as a tool but as a platform that
can support advanced robotics development and research.

B. Design Principle

o Abstraction and modularity

o Generalize interface and conversions
o Processing, threading,

« synchronization and synchronization

Abstraction and modularity are the basics of programming.
Clarifying the dependency of each module can enhance its
reusability. In REMS, we divide a whole robot into a set of
sub-system as shown in Fig. 2. Each system should inherit
from a corresponding base and be independent of other
systems. This approach resolves the complex integration of
a robot structure into a manageable scale and encourages
users to separate the functionality they want to achieve into
independent components. Each system, class, and method is
designed to do an explicit functionality that can be read from
their names.

Interfaces and communications among different modules
must be abstracted to ensure each system can adequately
communicate. Common methods, such as having structured
data classes or positional assignments using array objects,
are prone to change and not explicit or Pythonic. REMS
aims to attain an explicit but flexible and natural way of
interfacing. However, it is also important to consider cases
when not a standard form of variables is assigned since
Python is a dynamically typed language and type hints are
not mandatory.

Python processing and threading are unique due to Global
Interpreter Lock (GIL). GIL limits each python interpreter to
one CPU core, and no concurrent thread execution is allowed.
It can quickly handicap a python-based robot framework,
especially when adding multiple robots, graphical outputs,
or any computationally extensive processes. Many popular
libraries and simulators have restrictions on using them
in a separate thread or having multiple instances inside
the same processes. To evade those restrictions in Python,
multi-process-based robot execution is more appropriate.

Multi-processing can increase architecture design and coding
complexity, and IPC handling is not necessarily intuitive for
all users. We design REMS to be as natural as possible and
ensure that such multi-processing issues do not arise and
cause minimal pain to the users.

Synchronous and asynchronous executions become essen-
tial, especially when hardware devices are involved. It is not
reasonable to slow down the entire system because one of
the devices is slow to extract data. However, asynchronous
operations make the data transmission non-deterministic, and
some communication protocol requires ordered connections.
Half-duplex serial links only allow one-way communication
simultaneously. Thus it is more appropriate to sequentially
write and read to such devices, i.g. actuator commands and
encoder readings. For 1/0 bounded operations, threading can
be adequate to avoid IPC. Consequently, REMS accommo-
dates users’ needs by supporting several types of executions
mode.

IV. MIDDLEWARE ARCHITECTURE
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Fig. 2: REMS middleware system class, variables and method list. The robot
system consists of a definition and implementation. Definitions contain the
robot’s unique information. Implementation represents hardware, simulation,
or analytical model and how to interact with them. This facilitates an easily
swappable mechanism for different robot definitions and implementations.

A. Input, Robot and Output System

The user should specify three systems to run a robot:
input, robot, and output system. An input system takes
inputs to the robots, such as a trajectory file, keyboard, or
joystick. The robot system contains robot definitions and
implementations necessary to interact with the robot. An
output system handles how to save or display data collected
at each timestep and after the run.

B. Robot Definitions and Implementations

The robot system separates robot definitions and imple-
mentations. The Definitions include the robot space def-
initions and forward, inverse Kkinematics, etc., which are
universal regardless of the actual implementation of the
robot. The implementation means such as simulation or
hardware. Dividing a robot definition class and an imple-
mentation class explicitly forces the users to think about
what defines a robot to be and what is tight to a specific



simulation or hardware. This improves the reusability of
such definitions and implementations. For instance, REMS
consists of standard support for a Webots psychics simulator.
Thus, users can apply their robot definitions to the Webots
implementation to use simulations with little extra coding.
When adding a robot to a run, users hand over these two,
and under the hood, they are dynamically inherited to create
a one single robot class instance. Therefore, more advanced
users can overwrite robot implementation behaviors in the
definition class, or vice versa, as the instantiated robot is
derived from these two (Python multiple inheritances).

C. Interfacing, Data Flow and Conversions

Interfacing among different codes can easily cause issues
when a data mismatch happens. In REMS, data are stored
in a dictionary-like object; we call it Defined Dictionary
or DefDict. DefDict shares similar ideas to structured array
in NumPy, which names each array-like element for more
explicit data management. DefDict is designed to work as
if it is a Python dictionary object and holds set of variable
names and corresponding element types. Primary differences
from the existing libraries are:

« Type enforcement and optional unit enforcement
o Add rules for conversions among different definitions
« Object-oriented nested data structure handling

Instead of specifying Python types such as float and int, users
can set the data unit, range, mapping tables, default, etc., with
our custom unit class. Basic unit conversions and dimension
checks take advantage of Unyt library [21]. Unconventional
translation can occur when i.g. an actuator takes a duty cycle
(PWM), or a sensor returns byte data that needs to be solved
by a lookup table. Users can add a custom rule to define a
mapping, such as from keyboard commands to robot inputs.

D. Process System and Background Job

The processing system get executed at each system
timestep. It helps run data processing, such as mapping,
online planning, or machine learning. The user can interact
with robot classes by handing over the instance of the robots
at setup. The processing system can dispatch background
jobs and receive a callback when the job is done. Time-
consuming computations that may take longer than one
timestep can benefit, such as image processing.

1) Time Synchronization, Real-time and Inter/Intra Pro-
cess Communication: Time synchronization and real-time
are often issues in robotics. However, real-time system
demands specially designed hardware and operation system
(OS) or kernel. Therefore, strict time management is out
of our scope because our focus is Pythonic installation and
simple usage for everyone. REMS time synchronizes using a
discrete timestep, and all robots receive the same time from
the primary process. Systems, robots, processes, and devices
can have different internal timestep, which is handled in
an inner loop as shown in Fig. 3. Optionally, our system
lets users run robots faster than in actual time or as fast as
possible if they are in simulations.
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Fig. 3: Robot control framework execution orders. After initialization, the
main loop will be executed at a system timestep till the user-specified time.
After the run, the robot is closed, and outputs are generated. Process system
and output system are called at every system timestep. The background job
sends a callback to the submitter after the job is done.

REMS run independent processing for each robot and
output using a Ray library [22]. Devices runs on thread and
optionally in a different process. REMS hides Ray API and
emulates behaviors of ordinary Python objects so that users
can handle them as naturally as possible.

V. CASE STUDIES AND APPLICATIONS
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Fig. 4. REMS hardware, simulation and analytical model experimented in
the case studies. Total 32 implementations were pictured. All differential
drive robots are inherited and extended from the same base. Youbot is
defined by merely merging base and arm definitions.
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We have conducted the following case studies to exhibit
our middleware system capabilities, and applications en-
abled. Robots implemented are pictured in Fig. 4.

1) Middleware use examples with various robot defini-

tions, types, and implementations

2) Educational uses in an undergraduate academic class

3) Academic research with a high DoF robot

4) Multi-agent cases with different implementations



A. Webots Examples

We use Webots examples of robots to show how our sys-
tem can easily control different robots implemented in kine-
matics, simulation, and hardware. Differential-drive, omni-
drive, and manipulator systems were selected. A manipulator
use case is also discussed in Sec. V-D. Three types of
drive mechanisms were implemented in Webots simulation
and analytical modeling. One robot was tested with three
different hardware.

o Create 2, iRobot, (‘Two-wheeled)
e Youbot base, Kuka, (Mecanum Wheeled, Omni drive)
« KUKA manipulator, Kuka, (5-DoF manipulator)

Create 2 was experimented with Create 2 hardware and
two custom-designed two-wheeled robots; we call them;
Woodbot and Dynabot. Create 2 is an off-the-shelf Roomba-
like robot with touch and distance sensors tethered through
USB serial communication. Woodbot is an affordable differ-
ential drive robot generated through [23] and manufactured
using a laser cutter. A microcontroller, ESP32, controls
Woodbot with a 9g continuous servo, two lidar, and IMU
sensors, and it can communicate to a computer through a
Wi-Fi WebSocket connection. Dynabot is a 3D-printed robot
using Dynamixel actuators and tethered. Arauco markers
were attached for their state estimations.

Interfacing issues in the codes are not negligible in this
case since the robot definitions are used with five imple-
mentations: analytical model, Webots, and three hardware.
Some implementations use different units, and they all work
distinctly. For instance, actuator velocity in Webots is in
rad/s, Dynabot in rpm, Woodbot in duty cycle, and Create 2
in count range [—500, 500]. Such interface discrepancies are
automatically handled in DefDict with the unit system.

REMS main loop can run at relatively higher frequency
(i.g. 1kHz), but typically hardware communication limits the
maximum device frequency. Create 2 is at 20Hz, Dynabot at
100Hz, Woodbot at SHz for sending inputs and receiving
sensor outputs. Timestep loop and device threads handle the
frequency difference asynchronously.

B. Extending Existing Robots for Different Definitions

The previous case demonstrated that REMS can adopt
three types of robots with various implementations. We
can further inherit those robot definitions to generate and
accommodate similar but different robot definitions. We
extended three robots definitions to test the following robots:

o Woodbot, (Two-wheeled)

o E-puck, GCTronic, (Two-wheeled)

o Pioneer 3DX, Adept, (Two-wheeled)

o Pioneer 3AT, Adept, (Four-wheeled)

« Moose, Clearpath Robotics, (Eight-wheeled)

e Youbot with an arm, Kuka, (Mecanum Wheeled, omni
drive with a 6-DoF manipulator)

Create 2, Woodbot, E-puck, Pioneer 3-DX, AT, and Moose
are all differential drive robots, meaning they all can be
controlled in the same manner. Therefore they can all inherit
the same differential drive definition class. However, Pioneer

3-At and Moose include slave motors. Such a case was
resolved by adding rules to link the master and slave motors.
Youbot installed with a KUKA manipulator is a combination
of the two earlier examples, meaning we can simply inherit
two definitions as they don’t have any interfering definitions.

The two-wheel robots are also tested on three hardware as
well. Although the manipulator case is not tested in hardware
here, Sec. V-D demonstrated that two-arm 6-DoFF manipula-
tor with Analytical model, simulation, and hardware.

C. Woodbot Class Lab Activity

Hardware

Fig. 5: Woodbot trajectory comparison. Students were tasked to formulate
kinematics model of Woodbot, setup simulation, assemble hardware, and
run them all to compare. a) Three implementations (hardware, simulation,
model) simultaneously ran with the same input starting from the red star
for 10 s. b) Hardware robot and ¢) Webots simulation environment.

We experimented with our earlier version of our middle-
ware in a robotics capstone class, an undergraduate student
graduation project course for the Electrical and Computer
Engineering department and Mechanical and Aerospace de-
partment (ECE183, MAE162) at UCLA. The groups of stu-
dents were tasked to derive a kinematics model of Woodbot
motion and sensor outputs, implement a Webots simulation,
and assemble and run Woodbot hardware shown in Fig. 5.
These tasks were to familiarize them with basic robotics
knowledge and to prepare them for their own robotics
final project. Our middleware lets them run their derived
kinematics, simulation, and hardware using human inputs or
predefined trajectories and visualize their motions and states.
Running three implementations simultaneously demonstrated
that these motions were generally close but also not identical.
In Fig. 5 example, the Webots simulation and analytical
model behaved closely at the beginning and slightly diverged
at the end. Hardware tended to lean left when going straight.
This helped students debug their kinematics model calcula-
tion by comparing the states and outputs in real-time and
offline. Students have learned what fundamentally defines the
robot theoretically and what it indeed takes to run robots.

D. Real to Sim Dynamics Residual Modeling

The residual dynamics modeling attempts to capture the
discrepancy between simulation and hardware behaviors.
This requires the same robot in both simulation and hardware
to collect the data. REMS is helpful in this case since the



Fig. 6: SCALER-M, a two-arm 6-DoF Manipulator in hardware and simula-
tion. SCALER-M is a manipulator configuration of SCALER: a quadruped
climbing robot in [25]. Analytical model is based on forward kinematics.

users can add the same robot with different implementations
and run them simultaneously with the same inputs. In this
application [24], three residual models were generated for a
mobile and a stationary robot system: between kinematics
model and hardware, between kinematics model and simu-
lation, and between simulations and hardware. Woodbot and
a two-arm manipulator, SCALER manipulator configuration
[25] with 6-DoF per arm were used.

Deep neural network (DNN) was back-propagated online
using an unscented Kalman filter-based (UKF) auto-tuner.
This UKF auto-tuner can run online and update the residual
model, which provides strength to the pipeline. Therefore,
REMS not only allows training the residual models but
also helps to keep updating these models online while the
users run their trajectories. A process system was used to
collect and handle data from two robot implementations.
DNN back-propagation was done as background jobs since
it was computationally extensive and was not time critical.

The models’ quality was compared and evaluated by
running the robots simultaneously with and without a resid-
ual term, such as by running two simulation instances or
treating each arm as an individual robot. The SCALER
manipulator simulation was experimentally done in Pybullet
physics simulator for Python.

E. Multi-Agent

REMS is designed to run multiple robots simultaneously
regardless of whether they share the same robot definitions
or implementations. We placed seven Webots simulation
example robots and three hardware in Sec. V-A as in Fig. 1
a), b). They were operated either: using a system-wide input
to control all the robots or with individual robots independent
inputs, which mimic global and local controls structure in
multi-agent systems.

VI. DISCUSSION

Our case studies demonstrated that our middleware has
simplified and modularized the robotics coding flow, allow-
ing students and researchers to focus on what they want to
explore. Wheeled robot examples exhibit how one robot’s
definition can be extended to adapt similar robots. Combin-
ing an omni-drive base and arm definitions, we realized a
complete assembly of Youbot control. This object-oriented
way can not only simplify defining a new robot but also
reduce maintenance labor since a fix in a base will be applied
to all the robots inherited from it.

TABLE I: List of all robots and implementations experimented with.

Robot Anaytical ~ Simulation Hardware

Create 2 Jacobian Webots Create, Dynabot, Woodbot
‘Woodbot Jacobian Webots Create, Dynabot, Woodbot
E-puck Jacobian Webots Create, Dynabot, Woodbot
Pioneer 3 DX Jacobian Webots Create, Dynabot, Woodbot
Pioneer 3 AX Jacobian Webots

Moose Jacobian Webots

Youbot base Jacobian Webots

Youbot Jacob/FK Webots

KUKA Arm FK Webots

SCALER-M FK Pybullet Two SCALER Manipulator

Total 32 of robot implementations experimented with throughout
our case studies for ten different robot definitions.

We tested differential drive robots on three different two-
wheeled hardware implementations. This capability means
that the same control codes can be tested on different sets of
actuators and sensors. Since Woodbot is made out of very
affordable components, the actuator velocity control is less
accurate, making it harder to move straight than the other.

Swapping implementations with the same robot defini-
tion enabled students to quickly test a robot on hardware,
simulation, and analytical model and then compare and
validate the results. REMS enhanced the students’ experience
by minimizing implementation works and providing self-
validation methods.

In the academic research case, REMS aided and added an
edge to the residual modeling algorithm. The algorithm can
run and improve the model online since REMS lets users run
hardware and simulation efficiently.

REMS has been applied from wheeled to high-DoF ma-
nipulator robots, from student-derived models to Webots,
Pybullet simulations, to off-the-shelf hardware and embedded
system. Applications are not limited to a simple joystick
control or an offline trajectory, but it is capable of machine
learning and supporting multi-agent systems. Furthermore,
it can enable multi-agent research in mixed reality, where
robots collaborate, for example, in the real and virtual
simulation worlds.

VII. CONCLUSION AND FUTURE WORKS

We have developed REMS that introduces the Zen of
Python to robotics to be more accessible and educational.
Our object-oriented framework designs enhance modular-
ity both theoretically and practically. We showcased how
various robot types and implementations can be executed
interchangeably and how users can inherit and merge existing
robots to create new ones. Case studies in an academic class
and academic research demonstrated that REMS revamped
and accelerated robot education and research.

Now REMS opens up a wide range of possibilities such
as sim-to-real translation in the same robot definition or
among extended or merged definitions, a quick algorithms
performance benchmark with diverse robots, or a multi-agent
system across hardware and simulation.
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