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Abstract

Multi-objective Bayesian optimization has
been widely adopted in scientific experiment
design, including drug discovery and hyper-
parameter optimization. In practice, regu-
latory or safety concerns often impose ad-
ditional thresholds on certain attributes of
the experimental outcomes. Previous work
has primarily focused on constrained single-
objective optimization tasks or active search
under constraints. The existing constrained
multi-objective algorithms address the is-
sue with heuristics and approximations, pos-
ing challenges to the analysis of the sam-
ple efficiency. We propose a novel con-
strained multi-objective Bayesian optimiza-
tion algorithm (COMBOO) that balances ac-
tive learning of the level-set defined on multi-
ple unknowns with multi-objective optimiza-
tion within the feasible region. We provide
both theoretical analysis and empirical evi-
dence, demonstrating the efficacy of our ap-
proach on various synthetic benchmarks and
real-world applications.

1 INTRODUCTION

Multi-objective Bayesian optimization (MBO) plays
a critical role in various scientific fields, particu-
larly where experimental efficiency and precision are
paramount. In drug discovery, for example, re-
searchers must navigate a vast experimental space,
balancing multiple objectives like maximizing thera-
peutic efficacy while minimizing toxicity and adverse
effects (Fromer and Coley, 2023). The challenge lies
not only in identifying promising drug candidates but
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also in meeting stringent regulatory and safety re-
quirements, which impose additional constraints on
the optimization process (Mellinghoff and Cloughesy,
2022). A failure to meet these regulatory and safety
constraints can lead to significant delays in clinical
trials or even abandonment of potential drug candi-
dates. Similarly, in hyper-parameter optimization for
machine learning models, there is a need to balance
model accuracy, recall, and robustness to distribution
shift (Gardner et al., 2019). Here, efficient exploration
of hyper-parameter space must also respect practical
constraints, such as avoiding configurations that lead
to excessively high training times or resource overuse
(Karl et al., 2023). These practical considerations mo-
tivate the constrained multi-objective Bayesian opti-
mization (Ferndndez-Sanchez et al., 2023; Herndndez-

Lobato et al., 2016) beyond MBO.

Research in Bayesian Optimization (BO) has mainly
focused on unconstrained problems, with Constrained
Bayesian Optimization (CBO) evolving from early
work by Schonlau et al. (1998). Subsequent efforts in-
troduced posterior sampling (Eriksson and Poloczek,
2021) and information-based methods (Hernandez-
Lobato et al., 2014; Wang and Jegelka, 2017) to im-
prove scalability and feasibility analysis (Herndndez-
Lobato et al., 2015; Perrone et al., 2019; Takeno
et al.,, 2022). The augmented Lagrangian frame-
work helped convert constrained tasks into uncon-
strained ones (Gramacy et al., 2016; Picheny et al.,
2016), though often without guarantees. More re-
cent work (Zhou and Ji, 2022; Lu and Paulson,
2022; Xu et al., 2023; Guo et al., 2023) seeks
theoretical convergence for relaxed CBO objectives.
In constrained multi-objective Bayesian Optimiza-
tion, generalized information-criteria-based algorithms
(Herndndez-Lobato et al., 2016; Ferndndez-Sénchez
et al., 2023) allow a tradeoff between constraint learn-
ing and objective optimization but rely on necessary
approximations for traceability and lack guarantees,
similar to their single-objective counterparts.

Our contributions are summarized as follows.
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1. We propose a sample-efficient constrained multi-
objective Bayesian optimization (CMOBO) algo-
rithm that balances learning of level sets on mul-
tiple unknown objectives and constraints with
multi-objective optimization within feasible re-
gions. The insight is that we constrain the search
space to potentially feasible areas, while the ran-
dom scalarization allows an efficient and theoret-
ically justified acquisition within the region.

2. We provide theoretical analysis on the sample effi-
ciency and capability of declaring infeasibility. To
the best of our knowledge, this is the first work
in constrained multi-objective optimization that
offers a guarantee similar to that of constrained
single-objective algorithms.

3. We offer empirical evidence on both synthetic
benchmarks and real-world applications, demon-
strating the effectiveness and efficiency of the pro-
posed method against existing baselines.

2 RELATED WORK

Constrained Bayesian optimization. Constrained
Bayesian optimization primarily focuses on extending
unconstrained problems to optimize a single objective
under constraints. Schonlau et al. (1998) pioneered
this field by extending Expected Improvement (EI) to
handle black-box constraints, with subsequent refine-
ments by Gelbart et al. (2014); Gardner et al. (2014);
Feliot et al. (2017); Letham et al. (2019); Wang et al.
(2024). These approaches typically define the acquisi-
tion function as the product of the expected improve-
ment and the feasibility probability. Posterior sam-
pling methods, such as Thompson sampling in SCBO
(Eriksson and Poloczek, 2021), and information-based
methods (Herndndez-Lobato et al., 2014; Wang and
Jegelka, 2017; Herndndez-Lobato et al., 2015; Perrone
et al., 2019; Takeno et al., 2022) have been adapted
to constrained settings. The augmented Lagrangian
framework (Gramacy et al., 2016; Picheny et al., 2016;
Ariafar et al., 2019) transformed constrained BO into
unconstrained tasks, though often lacking guarantees
on feasible region identification and regret bounds. Re-
cent works (Zhou and Ji, 2022; Lu and Paulson, 2022;
Xu et al., 2023; Guo et al., 2023; Zhang et al., 2023b)
have explored relaxed CBO objectives to enable theo-
retical convergence analysis, assuming queries outside
the feasible region incur rewards.

Constrained active learning. Active learning for
constraint estimation (AL-LSE) (Gotovos et al., 2013)
leverages Gaussian Processes (GPs) for theoretical
guarantees but struggles with handling multiple un-
known functions simultaneously. Although approaches

like Malkomes et al. (2021); Komiyama et al. (2022)
propose acquisition functions prioritizing diversity in
active search, they do not effectively balance learning
constraints with optimizing the objective.

Multi-objective optimization. In multi-objective
optimization, the learner needs to optimize multi-
ple objectives simultaneously, presenting challenges in
defining valid evaluation metrics. To address this, hy-
pervolume, defined as the volume between the Pareto
frontier and any reference point, is used as a sin-
gle objective. Key developments in hypervolume-
based methods include Yang et al. (2019)’s pioneering
work on exact Expected HyperVolume Improvement
(EHVI), Daulton et al. (2020, 2021)’s extension to par-
allel settings with qEHVI and qNEHVI algorithms,
Ament et al. (2023)’s logEI to address vanishing ac-
quisition values, and Daulton et al. (2022)’s MORBO
for high-dimensional optimization. Konakovic Lukovic
et al. (2020) proposed the diversified batch query for
improving hypervolume. Golovin and Zhang (2020)
provided theoretical results on hypervolume regrets.
Concurrently, active learning approaches have focused
on directly learning the Pareto frontier, with Zuluaga
et al. (2016); Belakaria et al. (2020b) proposing un-
certainty reduction methods, Suzuki et al. (2020) in-
troducing the Pareto-Frontier Entropy Search (PFES),
and Park et al. (2024) developing BOtied based on a
cumulative distribution function indicator.

Constrained multi-objective  optimization.
There is limited research directly addressing con-
strained multi-objective optimization problems.
Without Bayesian optimization, Afshari et al. (2019)
studied non-Bayesian algorithms for known functions.
In the context of BO, the widely available Botorch
(Balandat et al., 2020) implementations of Daulton
et al. (2020) and Daulton et al. (2021), though
only briefly mentioning constrained scenarios, weight
acquisitions with feasibility probability, similar to Gel-
bart et al. (2014)’s approach for constrained Expected
Improvement.  These methods rely on objective
scalarization and constrained expected improve-
ments. Hernandez-Lobato et al. (2016) pioneered
the extension of Predictive Entropy Search (PES) to
constrained multi-objective optimization, explicitly
balancing constraint learning and Pareto frontier
discovery. To address PES’s computational complex-
ity, Ferndndez-Sanchez et al. (2023) advanced this
concept by incorporating Max-value Entropy Search
(MES) from Wang and Jegelka (2017). However,
these methods depend on approximations for tractable
acquisition optimization, potentially compromising
algorithmic soundness. Notably, convergence analysis
for constrained multi-objective Bayesian optimization
remains unexplored.
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3 PRELIMINARIES

3.1 Problem Statement

Let [n] denote the set {1,2,...,n} and let [x]* denote
function max(0,z). For a vector x, its ¢; norm is
denoted by ||z||. For any two vectors x1,X2, we use
x1 < X9 to denote their element-wise comparisons. To
improve the readability of this paper, we utilize the
big O notation to omit constant terms in theoretical
results.

W.l.o.g., we assume the search space X is finite, we
extend our analysis of continuous and compact search
space in Appendix C, e.g. X C [0,1]? is a compact
set. Let F = [f1,..., fm] : X — R™ be the multi-
objective function with m objective functions. Let G =
[91y -y 9¢] : X — R be the multi-objective function
with ¢ constraint functions. Here f;,Vi € [m], g;,Vj €
[c] are black-box functions, which implies that they can
be non-linear and non-convex functions and we don’t
necessarily have access to their gradients.

We consider the following constrained multi-objective
optimization problem:

max F(x) = [f1(x), ..., fm(X)],

xeX
st G(x) = [g1(x), ..., ge(x)] > 0.

Since we have c constraints, the feasible region of this
problem is given by

§ = {x[x € &,g;(x) = 0,Vj € [d]}. (1)

For two data points x1,Xs € §, X1 is said to Pareto-
dominate xo if (a) Vi € [m], fi(x1) > fi(x2), and (b)
3j € [m] such that f;(x1) > fj(x2). A data point x
is said to be Pareto-optimal in § if no data point in
§ Pareto-dominates it. Let X* denote the set of all
Pareto-optimal data points in §, then the Pareto front
is defined as P = {F(x)|x € X*}.

For a compact set Y, let vol(Y) denote its hypervol-
ume. Given a reference point z and a compact set
Y C F(F), we extend the definition of hypervolume
indicator (Golovin and Zhang, 2020) to constrained hy-
pervolume as

HY.(Y) =

vol({y € F(F)|ly > z,y is dominiated by some 3’ € Y'}).

Then, at step t € [T], the simple hypervolume regret
r¢ is defined as the difference between the constrained
hypervolume indicator of the Pareto front and the cur-
rent approximation of the Pareto front, i.e.,

re = HV.(P) — HV. (Y1),

where Y; is the set of observations with |Y;| = ¢. Max-
imizing HV . (Y;) reflects the exploration of the Pareto
front in the feasible region since it cannot be greater
than HV,(P). And the cumulative hypervolume regret
R is defined as the sum of simple hypervolume regret
in T iterations, i.e., Rt = Zthl T

Since we are considering the constrained optimization
problem, for a given x; at t-th iteration, Vj € [¢], we
define simple violation as

vjr = [—g; (%)

Accordingly, Vj € [¢], the cumulative violation after T
iterations is defined as V; r = 23:1 Vit

However, hypervolume regret and violations cannot si-
multaneously assess an algorithm’s ability to explore
the Pareto front and approximate the feasible region.
To address this issue, we define a novel performance
metric, called constraint regret, generalized from the
single objective optimization tasks (Xu et al., 2023),
which is the minimum sum of simple hypervolume re-
gret and violations observed up to ¢-th iteration:

C
Ci =minK r; + g Vjr
TEt] -
Jj=1

This metric allows for a more comprehensive evalu-
ation of an algorithm’s performance in constrained
multi-objective settings.

3.2 Bayesian Optimization

Bayesian optimization usually runs in a sequential
manner. At each iteration ¢ € [T, the learner takes a
new instance x;, and the observation is generated by

Y = f(xe) +me

where f is the objective function, and n; ~ N(0,0?)
is the observation noise. Let Y; = [y1,...,y:] be the
set of observations and X; = [xq, ..., X¢] be the set of
corresponding historically evaluated candidates. As-
sume f is drawn from some Gaussian process with
k(x,x’) being the kernel specifying the covariance of
f at any two observations x,x’, i.e., f ~ GP(0,k(-,")).
We further assume k(-,-) < 1. Consider the posterior
predictive distribution of f(x) given ¢ observations:
FX)|Y: ~ N(u(x),02(x)) where yu, 0, are specified
as:

(x1:6,%) " (K + 1)y, (2)
(x,%) — k(x1.,%x) (K 4+ 02I) " k(x1., %),

(3)
where K = [k(X,X)]xxefx1,..x,} and k(Xy.,x) =
[k(x1,X), ..., k(xs, x)] T

pe(x) =

k
a?(x) =k
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Since we have both multiple objective functions and
constraint functions, throughout this paper, we as-
sume that they are all drawn from some Gaussian pro-
cess, i.e., Vi € [m], f; ~ GP;,¥j € [c],g9; ~ GP;. Sim-
ilar to Eq. (2) (3), we can define the posterior mean
and variance function for f;, g;.

Some existing work in Bayesian optimization (Srini-
vas et al., 2010; Xu et al., 2023; Li and Scarlett, 2022;
Zhang et al., 2023a,b) relies on confidence bounds to
design provable sample efficient algorithms. Here, we
reiterate the construction and guarantee of the confi-
dence bounds, which are essential for the design of a
principled constrained multi-objective Bayesian opti-
mization algorithm.

At iteration t € [T7], for function h € {fi}icpm U
{9} jelq, the lower confidence bound (LCB) I}, ; and
upper confidence bound (UCB) uy, ; can be defined as:

It (%) = ptno-1(x) — BE o i1 (x),

Un,e(X) = ppe—1(x) + ﬂégh,t—l(x)’ (4)

where pp -1 and op—; are calculated using Eq. (2)
(3), and fB; is a confidence parameter. With all
these UCBs and LCBs at hand, we present Lemma 1
from Srinivas et al. (2010). It shows that with a
proper choice of parameters, the confidence interval
offers high confidence bound on discrete search space
through the whole optimization, where objectives f;
and the constraint functions g; are bounded by their
corresponding UCB and LCB jointly with high prob-
ability.

Lemma 1 (Lemma 5.1, Srinivas et al. (2010)). Let
B = 2log((m + ¢)|X|7?t2/65). Then, fix § €
(0,1),vx € X,Vt € [T], for function h € {fi}icm U
{95} je(q, with probability > 1 — 4,

-1 () = B(x)| < B2 one—1(x).

4 METHOD

The challenge of principled constrained multi-objective
Bayesian optimization lies in efficiently learning con-
straints and optimizing within the probably feasible
region of multiple objectives. Previous works (Daulton
et al., 2020, 2021) typically rely on predicted feasibil-
ity or tractable approximations of information crite-
ria (Hernandez-Lobato et al., 2016; Fernandez-Sanchez
et al., 2023) to incorporate constraint learning in op-
timization. These surrogates and approximations hin-
der theoretically sound estimation of the constrained
hypervolume’s behavior during optimization. To ad-
dress this, we propose generalizing the conventional
UCB acquisition function (Chowdhury and Gopalan,

Feasible Domain Approximation Feasible Range Approximation

true Domain/Range
ucs

true feasible region
72 posterior mean

Figure 1: A demonstration of the feasible region es-
timated by UCBs. The left figure illustrates the es-
timated feasible domain on the input space X C R?
of the Toy Function (d = 2, m = 2, ¢ = 2), which
is discussed in detail in Appendix D. We compare the
estimation utilizing the UCBs of the unknown con-
straints against the estimation using the GPs’ poste-
rior means. The right figure displays the area below
the feasible Pareto fronts estimated using the UCBs,
the posterior means, and the true values. It shows the
advantage of applying UCBs in avoiding excluding the
global maximum.

2017; Srinivas et al., 2010) for the constrained hyper-
volume.

We introduce Constrained Multi-Objective Bayesian
Optimization through Optimistic Constraints Estima-
tion (COMBOO), which efficiently handles unknown
objectives and constraints by adopting an optimistic
view of these unknowns. At any point, the objec-
tive and constraint functions are inferred from their
posterior distributions based on current observations.
The acquisition function is optimized to guide the
search toward promising regions, balancing optimal-
ity and feasibility. For optimality, COMBOO uses the
Upper Confidence Bound (UCB) from single objective
Bayesian optimization and employs random scalariza-
tion of multiple UCBs for efficient hypervolume op-
timization. For feasibility, COMBOO intersects po-
tentially feasible regions defined by each constraint
to avoid querying likely infeasible points. This ap-
proach constructs a series of UCBs for the unbiased
Monte Carlo estimator for the constrained hypervol-
umes through the optimization. This generalizes the
notion of UCB from both an optimality perspective
and feasibility perspective and simultaneously takes
all the multiple perspectives into account. It allows
for explicit search space constraining, principled ac-
quisition, theoretical guarantees, and the ability to de-
clare infeasibility when no feasible candidate exists, as
demonstrated in §5.

Scalarization. In our multi-objective setting, we
address the challenge of trading off multiple acqui-
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Algorithm 1 Constrained Multi-Objective Bayesian
Optimization through Optimistic Constraints Estima-
tion (COMBOO)

1: for t € [T] do

2: if maxyecx{minje) ug, +(x)} < 0 then

3 Declare infeasibility.

4: end if

5: Sample 6; uniformly from S; | as in (5)

6: Find x; € argmaxyex a;(x) as in (7)

T: s.t. ug, ¢ > 0,Vj € [c] as in (4).

8: Evaluate F, G at x;.

9: Update GP posterior with new evaluations.
10: end for

sition functions by applying a scalarization mapping
sp, as defined in (5), parameterized by a randomly
drawn variable 6; at each iteration. This hypervolume
scalarization, introduced by Deng and Zhang (2019);
Golovin and Zhang (2020), allows for the Monte Carlo
estimator of the hypervolume and its estimation er-
ror. This approach enables a principled combination
of optimizing objectives and considering unknown con-
straints. We extend this scalarization to the con-
strained optimization scenario with both theoretical
guarantees and comprehensive empirical evidence of
its efficiency. Here, we define the acquisition function
in Algorithm 1 with scalarization of UCBs.

Definition 4.1 (Scalarization function (Deng and
Zhang, 2019; Golovin and Zhang, 2020)). The hyper-
volume scalarization is defined as

se(y) = i%gl]([yi/ei}+)m s.t. y,0 € R™. (5)
Furthermore, it holds that

HVZ Y,) = mE
(Ye) = emBy st | YR (3)

so(y —2)]  (6)

where 6 ~ S}, denote drawing 6 uniformly from
87—1;—1m = {y € Rm|||1/|| = ly > O} and ¢, =
m 2

2T (ZE41)

This scalarization function is derived from the inte-
gration in the calculation of hypervolume, offering an
unbiased estimation of the HV. When applying a sam-
ple of the random scalarization to the UCBs of the
objectives at a certain time ¢, we have the following
acquisition function.

Definition 4.2 (Acquisition function). Let the m-
dimensional vector Uy(x) denote the UCB of m ob-
jectives f;. We define the acquisition function ay(x)
as the value of Uy (x) scalarized by hypervolume scalar-
ization as defined in Eq. (5).

Ur(x) = [up, 4(x) — 21, .0, up,, 1(X) — 2]
ar(x) = sp,(Ur(x)) (7)

where z = (21, ..., ;) is a chosen sub-optimal value.

Now, we need to construct an optimistic estimation of
the constraint functions to incorporate the considera-
tion of the feasibility.

Optimistic estimation of feasibility. Recent
work (Xu et al., 2023; Zhang et al., 2023b) in con-
strained single-objective Bayesian optimization in-
spired COMBOO by using the UCB of unknown con-
straints to limit the search space. Specifically, COM-
BOO incorporates feasibility through upper confidence
bounds w; for the c constraint functions g; as defined
in Eq. (4). When optimizing the scalarized acquisition
function, COMBOO ensures the search space is con-
strained so all UCBs for the constraints exceed the cor-
responding thresholds, shown in line 7 of Algorithm 1.
This guarantees objectives are optimized in a likely
feasible region as is shown in Figure 1. Although the
previous work adopts a frequentist view rather than
our Bayesian framework based on the Gaussian pro-
cess and only focuses on a single objective rather than
the Pareto front, we generalize its results to achieve the
guarantees on cumulative violation for COMBOO, thus
bridging multi-objective BO and constrained single-
objective BO.

Constrained optimization. With the optimistic
estimation of feasibility discussed above and the sam-
ple from the random scalarization adaptive tradeoff
among multiple objectives, we can define the COMBOO
optimization loop. In each iteration, we maximize the
scalarized function subject to the newly defined con-
straints. In line 3 of Algorithm 1, we solve an auxiliary
optimization problem to determine whether infeasibil-
ity should be declared. The solution to this auxil-
iary problem, arg maxye x minje(¢ tg; +(X), can also be
leveraged in the optimization of the acquisition func-
tion, as it helps discard inactive constraints. Note
that the UCB of Y; in the unconstrained hypervol-
ume shown in Eq. (6) at time ¢ is upper bounded by
the maximum of the expectation with respect to S _;
of the acquisition function defined in Eq. (7), detailed
explanation of which is deferred to Appendix B. Com-
bined with the optimistic feasibility estimation in line
4 of Algorithm 1, we know that COMBOO iteratively
picks the maximizer of the UCB of the Monte Carlo
estimator of the constrained hypervolume. This allows
the following theoretical guarantee of COMBOO.

5 THEORETICAL RESULTS

We analyze the performance of Algorithm 1 for dis-
crete search spaces here. The omitted proofs of our
results are provided in Appendix B. Additionally, in
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Appendix C, we extend this analysis to continuous and
compact search spaces, following a similar approach
and requiring only an appropriate adjustment of the
confidence parameter ;.

5.1 Results under Feasibility Assumption

Recall that § denotes the set of all feasible solutions
defined in Eq. (1). In this subsection, we discuss the
case when the problem is feasible, i.e., § # 0. We
first provide the bounds for cumulative HV regret and
cumulative violation regret (Theorem 1, Theorem 2),
followed by a high probability bound on the false pos-
itive rate in Line 3 of Algorithm 1 (Theorem 3).

Hypervolume regret bound. The bound for cu-
mulative HV regret is provided as follows.

Theorem 1 (Cumulative HV regret bound). With the
conditions in Lemma 1, VT > 1, the following holds
with probability at least 1 — §

Ry < O(m?[ypT In(T)]/?)

Remark. The cumulative HV bound is dependent
on the Lipschitz constant of the chosen scalarization
function sy and the maximum information gain (MIG),
~r of the kernel used in the GP model, as defined in
Srinivas et al. (2010). The orders of MIGs for com-
mon kernels were also shown in this work. The proof
of Theorem 1 requires a novel adaptation from the re-
gret analysis of Golovin and Zhang (2020) and Paria
et al. (2020) to the Bayesian setting. Furthermore,
instead of a deterministic bound as originally shown
in Golovin and Zhang (2020), we need to establish a
high-probability bound due to the task of constraint
learning.

Additionally, from the high-probability bound on the
cumulative HV regret derived above, it is straightfor-
ward to obtain an upper bound for the simple HV

regret v as rp < O <m2 #

Cumulative violation bound. We have a similar
bound for cumulative violation.

Theorem 2 (Cumulative constraint violation bound).
Vj € [¢], with conditions of Lemma 1,

Vir < O((yrTInT)"?)
with at least 1 — § probability.

Remark. It is imperative to recognize that in Theo-
rem 2, the bound for Vr fundamentally represents the
cumulative constraint violation bound as delineated in
Xu et al. (2023), where B;/Q = O(VInT) is substituted

for O(\/7r) from prior studies, reflecting divergent as-
sumptions regarding the nature of the unknown un-
derlying functions.

Constraint regret bound. Furthermore, combin-
ing Theorem 1 and Theorem 2, we can derive the con-
vergence rate of constraint regret Cr, defined in §3.1.

Corollary 1 (Convergence of constraint regret).
VT > 1, with probability at least 1 — ¢

Cr < O((c+m*)yr In(T)/T]'/?)

Guarantee for low false positive rate. Under the
regular assumption that a feasible solution exists, it is
possible—due to the stochastic nature of our algorithm
and the randomness of initial sampling—that Line 3 of
Algorithm 1 may return a negative value, leading to a
false declaration of infeasibility and termination of the
algorithm. However, we can demonstrate that the al-
gorithm COMBOO, will avoid this type of misjudgment
with high probability under the regular assumption.

Theorem 3 (Declaration of infeasibility in feasible
case). With conditions in Lemma 1, if the problem is
feasible, i.e.

Ix e X,Vj€ld,g;(x) >0

then, Algorithm 1 will not declare infeasibility with
probability > 1 — 4.

5.2 Results under Infeasibility Assumption

For completeness, in this subsection, we discuss the
case when § = (), i.e., in extremely rare instances, the
optimization problem may be infeasible. We demon-
strate that, in such cases, the algorithm will iden-
tify and declare infeasibility within a finite number of
steps, with high probability (Theorem 4). This guar-
antees that the algorithm can efficiently detect infea-
sibility and prevent unnecessary computational effort.

Theorem 4 (Declaration of infeasibility when
the problem is infeasible). With the conditions in

Lemma 1, and that lim7_, A 7%\/‘/%’7 = 0. If the prob-

lem is infeasible, i.e.

Vx € X, ming;(x) < 0.
J

Then, given 0 € (0,1), with probability at least 1 — 4,
Algorithm 1 will declare infeasibility within the follow-
ing number of steps:

- /3;/2 Yr €
T = mi T — < —
Ten+ ‘ Nkl &

where C is a positive constant independent of T" and
€ = | max,ex mine gi(z)| .
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1
BT _
=
depends on the choice of kernel and (3;, which holds

with our choice of §; combined with Linear or RBF
kernel. For the Matérn kernel, it must hold that v >
d/2, where v, d are kernel parameters (Appendix D).

Remark. The extra condition limp_, o

6 EXPERIMENTS

We applied COMBOO to various synthetic test func-
tions and datasets, including Toy Function (d =
2,m = 2,¢ = 2), Branin-Currin (d = 2,m =
2,¢ = 2), and C2-DTLZ2 (d = 4,m = 2,¢c = 1)
as discussed in details in Appendix D. Experiments
conducted on real-world application problems include
Penicillin Function (d = 7,m = 3, ¢ = 3) (Liang and
Lai, 2021), Disc Brake Design Problem (d = 4, m
= 2, ¢=3) (Tanabe and Ishibuchi, 2020), as well as dis-
crete problems Caco-2++ (d = 2175,m = 3,¢ = 3)
adapted from (Park et al., 2024) and ESOL+(d =
2133, m = 4, c = 4) adapted from Delaney (2004).

We compared COMBOO with various benchmarks, in-
cluding Parallel Noisy Expected Hypervolume Im-
provement (qNEHVI) (Daulton et al., 2021), paral-
lel ParEGO (gParEGO) (Daulton et al., 2020), Max-
value Entropy Search for Multi-Objective Bayesian
Optimization with Constraints (MESMOC) (Belakaria
et al., 2020a), and Random Search. All benchmarks
except MESMOC were implemented using the Python
library BoTorch (Balandat et al., 2020). Detailed ex-
perimental settings and full results are given in Ap-
pendix D. To balance the contributions of HV re-
gret and violation of constraints, we normalize r, and
> 51 vjr before measuring C;. We used 1.96 stan-
dard error from 10 independent trials to construct the
shaded areas for all the curves.

To match the parallel settings. Though the bench-
mark algorithms were designed for batched output, we
take a number of queries ¢ = 1 in each step to make
them comparable to our approach, which is also seen
in the experiments in Daulton et al. (2021).

Acquisition on discrete and continuous space.
In this study, we avoided manually discretizing the
domain for COMBOO whenever a continuous search
space and objective evaluation were available. Instead,
we used a multi-start gradient descent optimizer for
the acquisition function. Although we introduced dis-
cretization in §5 for theoretical convenience, it is not
a fundamental limitation of the algorithm, as demon-
strated in Appendix C. Moreover, given sufficient com-
putational resources, the discretization granularity can
be made arbitrarily fine, effectively closing the gap
with fully continuous optimization. In summary, our
approach provides a consistent and effective solution

across various search spaces.

6.1 Constraint Handling across Various
Benchmarks

gNEHVI (Daulton et al., 2021) primarily aimed at un-
constrained multi-objective optimization and offered
the derivation handling noisy outcome constraints. It
calculates the expectation of HV,(Y;) with respect to
F(x;), formulated as Epx,) [ HV.(Y;)]. It addresses
constraints by employing a conditional expectation:

Xt = argmax EF(x) [ ,Hvz(Y;NX € 3] :

qParEGO (Daulton et al., 2020) utilizes a ran-
dom augmented Chebychev scalarization sg,(y)

Min;epy,) 0+ (y: — 2:) at each step for the objectives
and employs GP to model the scalarized outcomes
(Knowles, 2006), represented as 3, (x). Subsequently,
it applies conditional expected improvement to the
surrogate scalarized objective.

x; = argmax Ep(x),. [[59,(x) — s5,]7 x I(x € F)]
where I(x) is an indicator for x being feasible, also
approximated by surrogates of g;, and sp is the best
observation of scalarized objective in the current step.

MESMOC also handles unknown constraint functions
by modeling each as an independent GP surrogate
trained on past evaluations. For each candidate input,
constraints are sampled from their GPs and integrated
into a cheap multi-objective optimization (via NSGA-
IT (Deb et al., 2002)) to generate Pareto front samples
that satisfy the approximated constraints.

6.2 Results on Real-world Problems

We introduce a real-world drug discovery problem:
Caco-2++, a dataset of 906 molecules adapted from
Caco-2 (Wang et al., 2016), sourced from the Ther-
apeutics Data Commons (Huang et al., 2021). The
search space includes molecular fingerprints and frag-
ments (fragprint) (Griffiths et al., 2022), along with
the mgn feature. In addition to permeability contained
in the original dataset, which assesses the ADME pro-
file of drugs (Park et al., 2024), we added TPSA and
drug-likeness (QED) (Bickerton et al., 2012) as ob-
jectives for a CMO problem. Constraints are lower
thresholds for each objective, and these properties can-
not be optimized simultaneously. The Tanimoto kernel
(Gower, 1971) was employed in the GP models, whose
implementation was facilitated using the Python li-
brary GAUCHE (Griffiths et al., 2023).

In Figure 4, we plot the observed best HV and cu-
mulative constraint violation for the benchmarks on
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Figure 2: The constraint regret of benchmarks on synthetic and real-world problems. The first row shows the
results of synthetic problems, while the second row shows the results of real-world problems. We report the
results from 10 independent trials on each benchmark and algorithm.

the Caco-2+4-+ dataset over time. The scalarization-
based methods, COMBOO and qParEGO, showed
faster convergence in simple HV compared to non-
scalarization approaches like gNEHVI and MESMOC.

We also evaluated the efficiency of constraint handling
across the various methods. Notably, the information-
theoretic method, MESMOC, exhibited near-zero con-
straint violation throughout the trials, in contrast to
other methods, including COMBOO, which showed in-
creasing violations at different rates. This behavior
can be attributed to MESMOC’s more pessimistic con-
straint exploration strategy.

MESMOC utilizes the posterior samples from the GP
model, pp ¢, to enforce constraints during the opti-
mization of the acquisition function, as outlined in
Line 7 of Algorithm 1. In contrast, our method em-
ploys UCB, up, to optimistically search for feasible
regions, thereby expanding the search space for acqui-
sition function optimization and increasing the likeli-
hood of identifying optimal solutions. While the opti-
mistic approximation may lead to more frequent con-
straint violations, it simultaneously facilitates a more
comprehensive exploration of objective values, result-
ing in a favorable trade-off between constraint viola-
tion and HV regret.

We measure this trade-off by the constraint regret, C;.

From Figure 2, we found COMBOO outperforms or is
comparable to all benchmarks in terms of constraint
regret on real-world problems.

6.3 Results on Synthetic Problems

In this section, we evaluate the performance of var-
ious benchmarks on synthetic test functions. We
conducted experiments on a customized Toy Func-
tion, as well as two widely used CMO test functions:
Branin-Currin and C2-DTLZ2. The constraint re-
gret curves for these functions are presented in Fig-
ure 2.

In the series of experiments conducted, COMBOO dis-
played a consistently strong performance, often align-
ing with the top-performing methods across various
test functions. Conversely, MESMOC showed the least
stable results, particularly when dealing with more in-
tricate constraints, as observed in C2-DTLZ2. Mean-
while, gqNEHVT demonstrated quicker convergence on
smaller-scale test functions within this experimental
framework; however, its performance did not sustain
this lead when applied to larger-scale scenarios, such
as the Penicillin Function in real-world applications.
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6.4 Efficiency of Constraint Learning

A motivating problem is optimizing multiple objectives
in experimental settings, such as penicillin production,
where objectives must meet thresholds f;(x) > s; to
satisfy regulatory requirements. Unlike general con-
straints g;(x) > 0, these constraints are the objectives
themselves. As a result, the Pareto front is a subset
of the unconstrained solution. To assess if COMBOO
effectively prioritizes the Pareto front within the fea-
sible region, we compared it with the state-of-the-art
algorithm qNEHVI under unconstrained settings.

Methods specialized for CMO outperformed others in
terms of simple HV regret and cumulative violation
for both the Toy function and Penicillin function
(Figure 5). We also present the sample trajectory of
the two-dimensional Toy function (Figure 3). COM-
BOO not only concentrated on the feasible region as
indicated by the red lines, but also kept the infeasible
observations in the global Pareto front. In contrast,
the unconstrained algorithm wasted observations in re-
gions distant from the Pareto front.
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Figure 5: The hypervolume (left) and cumulative con-
traints violation (right) on the Toy and Penicillin
functions. We compare COMBOO with both the con-
strained and unconstrained version of gNEHVI.

7 CONCLUSION

We proposed COMBOO, a stochastic scalarization-
based Bayesian optimization algorithm utilizing opti-
mistic estimations for constrained multi-objective op-
timization. By using random scalarization to connect
the UCBs of multiple objectives and optimistic feasi-
ble region estimation based on the UCBs for the con-
straints, we construct the optimistic estimation for the
constrained hypervolume, which incorporates both op-
timality and feasibility for COMBOO. We demonstrate
the convergence theoretically, with empirical results
showing its robustness across various benchmarks.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] . See §3.1.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] . See §5.

(¢) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes] the link for the code
is put in the appendix.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes/No/Not Applica-
ble] [Yes] . See §3.1.

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable] [Yes]

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable] [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes/No/Not Applicable] [Yes] . See
§6 and supplementary material.

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable] [Yes] . See §6

(¢) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]
[Yes] . See §6.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes/No/Not Applicable]
[Not Applicable] . The power of computa-
tional source is insignificant to our experi-
ments.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes/No/Not Applicable] [Yes]

(b) The license information of the assets, if ap-
plicable. [Yes/No/Not Applicable] [Not Ap-
plicable] .

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable] [Yes] . Will be put in the supple-
mentary materials.

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble] [Not Applicable] . All assets are under
MIT license.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or
offensive content. [Yes/No/Not Applicable]
[Not Applicable] .

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partic-
ipants and screenshots. [Yes/No/Not Appli-
cable] [Not Applicable] . We did not use
crowdsourcing or conducted research with
human subjects.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Yes/No/Not
Applicable] [Not Applicable] .

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Yes/No/Not Applica-
ble] [Not Applicable] .
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A SUPPLEMENTAL DEFINITIONS

In this section, we provide the formal definition of MIG
~r used in §5. Moreover, we define the four additional
values that were not empirically measured but are used
in the following sections of theoretical analysis.

Definition A.1 (Maximum information gain). The
information gain of a function f is the mutual infor-
mation of the distribution of f and the distribution of
t function observations Y;, denoted as I(Yz; f). More-
over, let the set of instances corresponding to each ele-
ment in Y; be A;. Both f and Y; follow the assumption
for the GP model in §3.2.

I1(Yi; f) = H(f) — H(fY:) = H(Y:) — H(Y:|f) (8)

where H(-) is the Shannon entropy function. The
closed form of I(Y3; f) is given by Srinivas et al. (2012):
flogdet(I + A7'K; ;) where K; = [k(x,X)xxca,-
Accordingly, the maximum information gain (MIG) for
objective f given t observations is defined as:

1
= max —logdet(I + 0 ?K;)  (9)

A CX s.t. |A]=t

We denote the MIG of a function h € {fi}icpm U
{9j}jelq given the current T' observations, as vy 1.
Let yr be an upper bound of v, 7,Yh € {fi}icim U
{9; }je[C]'

Definition A.2 (Scalarized regret). We define the
scalarized regret as

ro(X¢) = max SQ(F(X)—Z)—XéHXB;)r%S so(F(x)—z) (10)

Definition A.3 (Bayesian regret). The Bayesian re-
gret is the expectation of scalarized regret over all pos-
sible § ~ S| :

R(Xy) = Eplro(Xy)] (11)
Definition A.4 (Instantaneous regret). The instan-
taneous regret is defined as:

(e, 0e) = max so, (F(x) = 2) = s0,(F(xe) - 2) (12)

where 6; and x; are the parameter and corresponding
observation in the t*" iteration of our algorithm.

Definition A.5 (Cumulative regret). The cumulative
regret is defined as the sum of instantaneous regret:

T
Ro(T) = r'(x4,01) (13)

t=1

B PROOFS FOR FINITE
DISCRETE SEARCH SPACE

B.1 Proof of Theorem 1

We first state the necessary lemmas for the proof.

Lemma 2 (First part of Lemma 6 in Golovin and
Zhang (2020)). For

sg(y) = m[in]([yi/ﬂi]Jr)m s.t.y,0 € R™
1elm

in (5), it is O(B™m!*™/?)-Lipschitz for all §, where
B >y — z, z is the chosen sub-optimal point.

Lemma 3 (Lemma 5 in Golovin and Zhang (2020)).
(6) holds. That is,

HYV. (Y1) = cmEy g+ max

m—1ycY;NF(F) so(y = 2)]

Lemma 4 (Modified version of Theorem 7 in Golovin
and Zhang (2020)). Suppose sq(y) is L-Lipschitz for
all possible 6 € St (that is, |se(y) — se(v')| < Ly —
y'|l1), with GP models following the definition in §3.1,
then the expected cumulative regret in Definition 13
is bounded with probability at least 1 — §

E[Rc(T)] = O(Lm[yrTin(T)]'/?) (14)

Proof of Lemma 4. The unconstrained and definite
version of this lemma was directly used in Golovin
and Zhang (2020) and was proved by Paria et al.
(2020). Define §; = {x | ug,+(x) > 0,Vj € [d]}.
Let’s pick xf = argmaxycg, so,(F(x)) and x;, =
arg maxxeg, o, (Us(x)) in our problem. Then it fol-
lows that

T
E[Ro(T) =E | (Té%? so, (F(x)) — Sat(F(Xt)))]
- ]
< E > s6,(Ur(xe)) — s, (F(xe)) | +

@,
Il
-

B,
T -

E ZSGt (F(x3)) — se,(Us(x7))

B2

The inequality (15) holds if

s0, (Ut (1)) — s0,(Ui(x7)) = 0

and

so,(F(x;)) — maxsp, (F(x)) 2 0
The first condition holds due to the choice of x;. From
Lemma 1, we know wy, (x) > g;(x),Vj € [c|,t €
[T],x € X with probability at least 1 — 6. Hence, we
have § C §: with probability at least 1 — §, meaning
the second condition holds with the same probability.
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For finite X, the two terms in (15) have the following
bounds. Lemma 3 in Paria et al. (2020) shows

" 1/2
Yi, T
By < |L(mprT)"/? (Z 1n(1+o—2)) +
1=1

1)
" m+ oV

where By = ﬁLT,VZ’ S [m]
(2020) shows

T 6
By <Lm)_ Y exp(—5")

t=1xeX

0
< me (17)

The final bound comes from the fact that 8; + < O(Int)

and exp(—2:¢) < O(%) and that 3, 5 <=, O

(16)

Lemma 2 in Paria et al.

M)

Now, we are ready to use the relationships between
instantaneous regret, cumulative regret, and Bayesian
regret, along with the aforementioned lemmas, to de-
rive an upper bound for the cumulative HV regret.

Proof of Theorem 1. Consider the newly introduced
definitions in Appendix A. We utilize the bound of cu-
mulative regret Ro(T) in Definition 13, which is pro-
vided by Lemma 4, to derive a similar bound for R;.
The numerical connection between Rco(T) and Ry is
given by Lemma 3.

From Lemma 3:
re=HV.(P) = HV.(V}) = cnR(X;)  (18)

Assume the problem is feasible and infeasibility is not
declared, and w.l.o.g. we assume reference point z =
(0,...,0). The arithmetic relationship shows

R(X:) = Ep, [maxsp, (F(x)) — max s, (F(x))]

zeX:NF
(19)
< By [max sp, (F(x)) = o, (F(x))]  (20)
< Ep, [’ (x4, 61)] (21)

Lemma 2 shows ¢, L < O(m) for syp. Combining with
Lemma 4, we obtain

T
Rr =Y cmR(X:)

t=1

with probability at least 1 — . O

Remark. Note that in (20), the same relationship
still holds for Uy: max,ex,ng so, (Us(X)) > so, (Ur(x¢)).
Adding with the expectation with respect to 6;, the
scalarization representation of hypervolume of UCBs
of the current objective upper bounds the maximum
of acquisition function «;(x;) as described in §4.

B.2 Proof of Theorem 2

We first state the following lemma bounds the simple
violations and variance funciton.

Lemma 5. With the conditions in Lemma 1, the fol-
lowing inequality holds,

v <2870 1(x0), Vi€ [ Ve e [T]  (22)

with probability at least 1 — §.

Proof of Lemma 5. With the definition of x; in Algo-
rithm 1, and the fact
—[a+b]" < —[a]” — [b]” and [-a]" = —[2]" (23)

we have Vj € [¢],

Ve = [=g;(xe)]" = —[g;(x¢)]
= —[g;(xe) + ug; e (xe) — ug, 1(x¢)]”
< —[g5(xe) = ug,,e(xe)]” — [ug, e(xe)]™
= —[gj(xt) — ug, +(x¢)]” (24)
< —[lgy e (xe) — ug; o (xe)]”

1
=2B705,-1(xt)

with probability > 1 — 4. [-]~ is defined as min(0, -).
The equation in (24) is true by the feasiblibilty of
{x | ug; +(x) > 0,Vj € [c]}, which holds with at least
1 — § probability by Theorem 3. O

Lemma 6 (Lemma 4 in Chowdhury and Gopalan
(2017)). ¥y € [c], with xq,...,x7 selected by our al-
gorithm,

T
Z 0g;4-1(Xt) < /4T +2)7g, 1

t=1

Now, we are ready to prove the theorem.
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Proof of Theorem 2.

T
Z Uit
T
<328 %0y, i 1(xe) (25)
t=1
< 251/2 ZUg7 t—1(%¢) (26)
1/2
< 483\ /(T + 2)vg, 1 (27)

<481 */(T + 2)7r

The inequality in (25) follows directly from Lemma 5
The inequality in (26) comes from the monotonicity of
B¢ with respect to t. The inequality (27) follows from
Lemma 6. O

B.3 Proof of Theorem 3

Proof of Theorem 3. Until the T*" iteration, given § €
(0,1) from Lemma 1, we conclude that the following
holds with probability at least 1 — ¢

Ug, +(x) > g;(x)

Vx € XVt € [T],Vj € [c].
Then, assuming feasibility, it follows that

> >0 28
R e )2 g o0 20 (Y

with probability at least 1 — §, which is exactly the
counter statement for the condition in line 2 of Algo-
rithm 1. O

B.4 Proof of Theorem 4

Proof of Theorem 4. Let’s
| maxxex minje(q g;(x)| by e

denote

By a similar conclusion in Lemma 6, we have

1/2
lyr() < CELE (20

for some positive constant C'. By the regularity con-

dition that Eh ff — 0, then for sufficient large T,

V_] € [CL ung(X) -

ug; 7(X) —lg; 7(x) <€ (30)

Jointly with Lemma 1 for LCB of the constraint func-
tion, we have

ug, 7(X) — gj(x) < €,Vx € X,Vj €[] (31)

which means, for sufficient large T,

<e—e=0 32
ggggl[gug r(x) <e—e (32)

with probability at least 1 —§. This satisfies the rejec-
tion condition in line 2 of Algorithm 1.

O
B.5 Proof of Corollary 1
Proof of Corollary 1. Since
T c c
D\t Do | =R+ Vir
t=1 j=1 j=1
From Theorem 1 and Theorem 2, we have
T c
D | e+ 2
t=1 j=1
< O(m?[yrTInT]Y?) 4+ O(c[T In Tryr)'/?)
= O((c+m?*)[TInTyr]"/?)
Then, by the fact that
T c
+ Z o T (1 e v3)
min | r, v, | <
TE[T] b T
this completes the proof. O

C PROOFS FOR CONTINUOUS
AND COMPACT SEARCH
SPACE

C.1 Assumption

We now consider X to be continuous and compact.
W.lo.g. X :=[0,1]%. We keep the assumptions for
GPs in §3.2.

C.2 Generalized CMOBOO

To provide theoretical justification for our algorithm,
COMBOO, in continuous and compact search spaces,
we propose a modified algorithm that is theoretically
sound for both finite and infinite search spaces. In
this modified algorithm, we slightly adjust the defini-
tion of confidence bounds from the main paper while
preserving the scalarization method and the approach
for declaring infeasibility as outlined in Algorithm 1.

Let X be a continuous search space. At each iteration
t, we consider Ay, a finite discretization of X, where
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X, consists of points evenly distributed across X, with
1/7¢ representing the distance between any two adja-
cent points in X;. We denote [x]; as the closest point
in )Et to x.

Using this discretization, we redefine the upper and
lower confidence bounds for the objective functions f;
and the constraint functions g;.

Definition C.1 (Modified confidence bound). For h €
{fi}ie[m] U {gj}je[c] define

(%) = ping-1 ((K]e) = B2 onaa (%)) — =5 (33)

1
Up,t(x) = pni—1([x]e) + 85 jon—1([x]e) + 5 (34)
Wh.t—1,0h+—1 are defined as in §3.2.

We chose a different confidence parameter for each
objective and constraint function h € {fi}icim) U

{gj }je[c]~

Bht = 2log (27rt(m +¢)/5 [dt*by log (2day, (m + c)/é)]d>

for some constants ap,b, > 0 and 7y = % Ty =
dt?> B\/log(2dA(m + ¢)/6). Detailed definition of A, B

are in Paria et al. (2020), B.2.

Lemma 7 serves a similar purpose as Lemma 1 in the
discrete case, providing a probabilistic guarantee that
the bounds defined above represent the true bounds
for our objective and constraint functions.

Lemma 7 (Lemma 5.7 in Srinivas et al. (2010)). With
the assumption for continuous search space and the
assumption of the GP model V§ € (0, 1), Vx € §,Vh €
{fi}tiem) U{9;}tieq, Vt € [T], we have
1 1
-1 ([x]e) = Ax)| < B pone-1([x]e) + 55 (35)
with probability > 1 — 6.

In the following, we first establish a modified version
of Lemma 4, which provides a probabilistic bound on
the expected cumulative regret in the continuous case.
From this modified lemma, we can derive a bound on
the Bayesian regret using a similar approach as in the
proof of Theorem 1, ultimately leading to a bound on
the cumulative hypervolume (HV) regret in the con-
tinuous case when running Algorithm 2. Finally, we
will demonstrate three additional results analogous to
Theorem 2, Theorem 3, and Theorem 4 when running
Algorithm 2.

C.3 Cumulative Hypervolume Regret Bound

We will show a modified Lemma 4 still holds with
confidence bounds replaced by Definition C.1 and
Lemma 1 replaced by Lemma 7.

Algorithm 2 Generalized COMBOO

1: g, ¢ is defined in Definition C.1
2: for ¢t € [T] do

3: if maxycx{minjep g, ,((x)} < 0 then

4: Declare infeasibility.

5: end if

6: Sample #; uniformly from S_|.

7 Find x; € arg maxxex sq, (Ut (%))

8: 8.t Up(x) = (Ug, 1(x) — 21, .0, Uy, £(X) — 2m)
9: subject to 1, +(x) > 0,Vj € [c].

10: Evaluate F,G at x;.

11: Update GP posterior with the incoming evalu-
ations.

12: end for

Lemma 8 (A modified version of Lemma 4). In Algo-
rithm 2, suppose sg(y) is L-Lipschitz for all possible 6.
With the conditions in Definition C.1 and Lemma 7.
For ¢ € (0,1), the expected cumulative regret Defini-
tion 13 is bounded with probability at least 1 —§

E[Rc(T)] = O(Lmd* [y Tin(T)]'/?) (36)

where yr is defined in Definition A.1.

Remark. Note that yr arises because a similar con-
clusion, used to bound the kernel variance via mu-
tual information gain (MIG), as in Lemma 6, was ap-
plied in the proof. However, in Algorithm 2, the in-
put to the variance function oy (-) is mapped from
a discretized space X;. As a result, Zthl oht—1([x]t)
should be bounded by /4(T + 2)7p, 7, where 4, 7 =
MAX 4, - %y, 4, | =t logdet(I + A7'K}, ;). The analysis
of such MIG with a discretized search space was pro-
vided in Lemma 7.5 of Srinivas et al. (2010), demon-
strating that vy, 7 > 45,7. For consistency, we use the
MIG over the entire search space, v 7, rather than
n,T, in the subsequent results.

Proof of Lemma 8. In this proof, we employ a differ-
ent strategy by splitting the expected cumulative re-
gret into three components, rather than the two in
proof of Lemma 4, because we bound R¢(T) by an
extra new error term from the discretization of search
space. We will provide separate bounds for each of
these components.

Define §; = {x | ug,+(x) > 0,Vj € [c]}. Then,
take x; = argmaxxeg, o, (F(x)) and define x; =
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arg maxxeg, so, (Ug(x)). It follows that

M=

E[Ro(T)] = E

> (tmasn (F00) (F(xt»)]

> s0,(Unlx0)) = s0, (F(x1)) | +

when

so, (Ut(x1)) = so, (Ue(x7))
s0,(Ur(x¢)) = s, (U([x;]1))

and

max s, (F(x)) > max s, (F(x))

The first two conditions hold due to the choice of x;.
From Lemma 7, we know g, +(x) > g;(x),Vj € [c],t €
[T],x € X with probability at least 1 — ¢, then § C F;
with probability at least 1 — ¢, which means the third
condition holds with the same probability.

We can follow the Proof of Lemma 1, 2, 3 in Paria
et al. (2020) to show three terms in (37) are bounded.

Take Sr as an upper bound of 8y, r,Vi € [m]. For
B, Bs, we can apply the same bound as in (16) and
(17).

. 1/2
V1T
bl e (Z maio)>
=1

)
L
+ m2(m+c)7'td
T 3, 5
By <L Bty < gy ©
5 < mtzzl e_exp( 5 ) < m2(m+c)

By result in Ghosal and Roy (2006), if kernel k is sta-
tionary and 4*"-differentiable, h ~ GP. Jan, by, > 0
s.t. Yk e {1,...,d}

dh
P (sup ax

> L) < mexn (L) 69

Here we define A, B in Lemma 7:

A= sup ap
he{fi}iemmU{gi}ielel

B = sup bn
he{fitictmU{gi}iele

From equation 16 of Paria et al. (2020)

T
AB
By < LmdQJ (39)
T
t=1

t

Since 7, ~ O(dt?), B3 < O(Lm).

Finally, we conclude that for some global constants
C1,C5 > 0, expected cumulative regret is bounded in
the following.

E[Rc(T)]
< C,Lm (40)

m 1/2
Vfi,T
L T(dlnT | —_—
+ Cs (m (dInT + dlnd) ;:1 ln(1+a—2)>
(41)

with probability at least 1 — §. The final conclusion
follows from (41). O

C.4 Cumulative Constraint Violation Bound

Lemma 9. With the conditions in Lemma 7,
2 .
Vgt < 2Bg;005-1([xele) + 55, Vi €[], VE € [T] (42)

we have with probability at least 1 — 4.

The proof Lemma 9 is analogous to the proof of
Lemma 5. From Lemma 9, by taking the summation
over t, we can bound cumulative constraint violation

by 4v/Bg, 7 (T + g, 7 + 5 < O(/T T, 1)

C.5 Declaration of Infeasibility

The conclusion of Theorem 3 is consistent in the con-
tinuous setting. The proof is the same as the discrete
case. Finally, given the problem is feasible, we can
conclude arg maxyex minje(¢ Ug; ¢(x) > 0 holds with
probability at least 1 — 4.

For Theorem 4, define € as
| maXxex Min; ¢ g (x)]- Replace ug, t,0g, ¢ by
Ug, t51g; ¢ Following the same strategy, we will have

similarly, we

< 287 4(T+2)’7T+L<O( T VT

- T 3T — VT ) 43

with high probability.
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D EXPERIMENTAL DETAILS

D.1 Implementation

We follow the tutorial for gNEHVI and qParEGO found
at https://botorch.org/tutorials/constrained_
multi_objective_bo to implement those bench-
marks.

The implementation of MESMOC we tested can be
found at https://github.com/belakaria/MESMOC.

The implementation and datasets for COMBOO can be
found at https://github.com/dancewithDianTong/
COMBOO.

D.2 Test Functions

Toy Function
The objective is defined as:

X1

1
F(x1,%x2) = (- — X2, —X1 — X22)
st x1,%2 € [1,1.5]

1
—— —x9 > —1.9,—x; —x2 > —2.25
X1

Let By, 7 = 0.4log(4-(1+1)). We used the Matérn
kernel for the GP model with 0.05 standard deviation
noise. We took ten random initial candidates in each
trial.

FMatern (X1, X2) = il(y; (@d) K, (@d)

o d=(x1—x2) O %(x; — Xa) is the distance be-
tween x; and X2, scaled by the lengthscale pa-
rameter ©.

e 1 is a smoothness parameter that takes values %,

.
%, or 5. Smaller values correspond to less smooth-

ness.

e K, is a modified Bessel function.

Branin-Currin

A 2-D objective consisting of a Branin function and a

Currin function.

(15%; —5)* | 5(15x; —5) 2
472 T

f1 = 15X2 - (51 .

10
+ (10 - 877) cos(15x; — 5)

)

2300x3 4 1900x2 + 2092x; + 60
' ( 100x3 + 500x2 4 4x; + 20 )
st x1,%x2 €[0,1]
Ji=2-20,f2 > -6

We let 3y, 7 = 0.4log (4 - (1+1t)). We use the Matérn
kernel with 0.01 standard deviation and ten random
initial candidates in each trial.

C2-DTLZ2
fi(x) = (14 g(xm)) cos (gxi),w € [m]

where g(x) = Y, o (z; — 0.5)%,x € [0,1]%, and
X, represents the last d — m 4+ 1 elements of
x. The constraint of this problem is defined as:

¢(x) = —min | minfy | (fi(x) —1)* + Z;’nzl,j:i(f]z -

) (S (60 - 7= )| 20

where x € [0,1]¢ and r = 0.2. In our case, m = 2,d =
2. We used the same setting for the GP model and
Bg;, 7 as the Toy Function. For this objective, we
imposed a feasibility condition on the initial sampled
points across all experiments. Given the complexity of
the constraint for this objective, COMBOO ’s auxiliary
problem is likely to declare infeasibility when dealing
with random initial samples. However, since the ob-
jective is known to be feasible, we argue that there is
no need to discard the estimations aimed at detect-
ing infeasibility. Instead, these estimations should be
leveraged to explore the feasible region effectively.

Disc Brake Design Problem

It is the same problem with RE-3-4-3 in the real-
world constraint multi-objective problem set Tanabe
and Ishibuchi (2020). We use the same setting for the
GP model and 3, r as the Toy Function.

Caco-2++

The original version Caco-2+(d = 2133, m = 3)
was proposed in Park et al. (2024), whose objective
contains permeability, an experimentally tested value
and two extra objectives, CrippenClogP, TPSA. The
search space contains 906 drug molecules. We mod-
ified this dataset to come up with Caco-2+-+(d =
2175, m = 3, ¢ = 3). For the domain, we augmented a
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new feature, mqn feature, to the domain of Caco-2+.
We changed the objectives to permeability, TPSA, and
drug-likeliness score(QED). The search space contains
909 molecules. We constrain the objectives so that
QED > 0.5, TPSA > 80, permeability > —5.

We took By, r = clog (2(1+1)), c = 0.1 or 0.05. We
used a Tanimoto kernel specialized for molecule repre-
sentation. We take a 0.01 standard deviation observa-
tion noise and 64 initial candidates in each trial.

X1 X2

kTani , =a-

Tammoto(xl X2) a ||X1H2 T HX2||2 X, %
where a is the signal amplitute parameter, and was set
to be 1.

ESOL+

The original ESOL (Delaney (2004)) dataset contains
1,144 organic molecules and an experimentally mea-
sured metric called log(Solubility). We added three
additional objectives—LogP, TPSA, and QED—to the
original objective. For the domain, we use the same
molecule representation, fragprint, as was used by
Caco-2+ (d = 2133). We constrain the objectives
so that LogP > 2.5, QED > 0.5, TPSA > 55, and
log (Solubility) > —4.

We took By, v = clog(2(1+1)), ¢ = 0.1 or 0.05. We
used a Tanimoto kernel and a 0.005 standard devia-
tion observation noise and 64 initial candidates in each
trial.

Penicillin Function

The objective was proposed in Liang and Lai (2021).
We add a Gaussian noise with a standard deviation
of 0.05 to the observations. We define the constraint
to make penicillin production > 10, COy production
< 60 and reaction time < 350.

We took 5+ = clog(2(t+ 1)), where ¢ = 0.1 or ¢ =
0.05. We used the RBF kernel

X1 — X 2
FrpE (X1,%5) = a- oxp {Ilbl}

We fit the GP models’ parameters in each step in all
experiments.

Remark. Due to the highly skewed distribution of the
objective, we observed significant overfitting of the GP
model, even with large training data. To address this,
we applied the Voxel Grid Sampling trick to the initial
samples of the GP model for each benchmark. Specif-
ically, we filtered 64 randomly sampled candidates to
get around 20 uniformly distributed samples within
the initial candidate range for each trial. This adjust-
ment makes the performance of all benchmarks differ
from that of a random search.
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D.3 Figures

We present the additional results here.
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Figure 6: COMBOO performance on other objectives. From left to right: Hypervolume, Cumulative Hypervolume
Regret, Cumulative Constraint Violation, Constraint Regret. Curves are shaded by area between + 1.96 standard
error. 0.05 and 0.1 are the coefficients of the confidence parameter ;.

As shown in Figure 6, COMBOO consistently matches the performance of the baselines, particularly qParEGO
and qNEHVI, in terms of hypervolume. Additionally, it significantly reduces violations. MESMOC, on the
other hand, tends to avoid violations through conservative feasibility estimation, as depicted in Figure 1, but
falls behind in hypervolume improvement. Overall, COMBOO represents a principled trade-off between feasibil-
ity exploration and multi-objective optimization, demonstrating consistent and competitive performance across
various tasks.



