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Abstract

As prompts play an increasingly critical role in Large Language Models (LLMs),
optimizing textual prompts has become a crucial challenge. The Textual Gradient
Descent (TGD) framework has emerged as a promising data-driven approach
that iteratively refines textual prompts using LLM-suggested updates (or textual
gradients) over minibatches of training samples. In this paper, we empirically
demonstrate that scaling the number of training examples would first enhance and
decrease TGD’s performance across multiple downstream NLP tasks. However,
while data scaling improves results, it also significantly increases computational
cost when leveraging LLMs. To address this, we take inspiration from numerical
gradient descent and propose Textual Stochastic Gradient Descent with Momentum
(TSGD-M)—a method that facilitates scalable in-context learning by reweighting
prompt sampling based on past batch distributions. Across 9 NLP tasks spanning
three domains—including BIG-Bench Hard (BBH), natural language understanding
tasks, and reasoning tasks—TSGD-M significantly outperforms TGD baselines
that do not incorporate reweighted sampling, while also reducing variance in most
tasks.

1 Introduction

LLMs are highly sensitive to prompt design, with slight variations yielding markedly different
outcomes [44, 48, 31, 3]. Automatic Prompt engineering seeks to harness this sensitivity by crafting
inputs that maximize LLM capabilities using LLMs’ feedback. Recent works [13, 33, 41] propose
Textual Gradient Descent (TGD) framework for automatically optimizing prompts using LLM
itself - a method that closely mirrors numerical gradient descent (GD) in optimization. Just as GD
iteratively refines parameters using gradients to minimize a loss function, TGD iteratively refines
prompts using "textual gradients"—updates derived from LLM-generated feedback. While many-
shot in-context learning can rival fine-tuning by simply increasing demonstrations [1], inference
costs grow quadratically with sequence length [11, 35], and LLMs struggle with very long contexts
[18, 25]. Given context length constraints, we categorize all of the prior works [13, 33, 47] as
Textual Stochastic Gradient Descent (TSGD) instead of TGD, which samples minibatches of
demonstrations stochastically to generate textual gradients—descriptions of current prompts’ flaws
relative to the sampled minibatch per iteration. This stochastic approach resembles stochastic gradient
descent (SGD), allowing for computational feasibility within the limited context length of LLMs.

Stepping back, this raises one question: Do LLMs truly optimize like traditional deep neural networks
(DNNGs) training? Unlike DNNs, where averaging over the entire dataset removes the stochastic noise
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Figure 1: A running example of TSGD-M on the classification task with the Subj dataset [24]. Unlike
standard approaches generating prompts solely from the previous meta prompt p;_1, TSGD-M
performs momentum-based sampling over all past meta prompts {pT}tT_:}) per token generation step.

that mini-batches introduce, LLMs may misestimate errors when summarizing flaws over the entire
dataset [3]. Previous works highlight LLMs degrading performance in long-context tasks, ranging
from multi-document question answering [18] to specification-heavy reasoning [25].

Facing such controversy, we ask: Is scaling the data all we need in TGD? Do TSGD and SGD share
the same inherent property? If so, can we benefit from more advanced optimization techniques from
traditional GD optimization literature?

In this paper, we revisit the impact of data scaling on Textual Gradient Descent (TGD) and Textual
Stochastic Gradient Descent (TSGD). Through extensive experiments across 9 NLP tasks, we observe
that: (1) moderate scaling of in-context examples per iteration and the total training data used across
the pipeline can significantly improve the performance of TGD frameworks such as DSPy [13], DLN1
[33], and TextGrad [47], given sufficient optimization iterations; and (2) beyond a certain point,
further increasing the number of in-context examples per iteration or expanding the full training set
shall plateau in effectiveness, and in most cases, even lead to performance degradation.

TSGD introduces large variance because of mini-batches and the uncertainty [17] from LLMs. We
draw inspiration from GD with momentum [30, 26, 19] to develop TSGD-M (Figure 1). TSGD-M
leverage adaptive sampling to reweight past minibatches to smooth textual gradients estimates. We
sample from previous textual gradients tokenwise to generate a new pool of prompts for each iteration.
An example of TSGD-M optimized prompt under DLN1 framework [33] is shown in Table 1. More
optimized prompts samples are presented in Appendix F.4.

Our main contributions are

* We revisit data scaling in TGD and TSGD and draw crucial insights on inputs length for
iterative APE tasks performance.

¢ We devised the first TSGD with momentum method (TSGD-M) which enables extensive
data scaling for TSGD with lower variance.

* We provided a theoretical justification to show that TSGD-M achieves lower variance and
better training performance (Appendix D), and performed extensive experiments involving
different LLMs in a wide range of Big-Bench Hard (BBH), NLU and reasoning tasks,
demonstrating the performance of TSGD-M against TGD and TSGD.



Approach Optimized Prompt Acc.

Human Classify the input text as subjective or objective. 0.491

DLNI1 1. Carefully read the input text. 2. Identify the type of language used 0.713
in the text. 3. Determine if the text includes words that express the
author’s opinion, emotion, or perspective. Look for words such as "I", "me",

"my", "we", "us", "our", "believe", "think", "feel", "opinion", "perspective",

non

"view", "attitude", "emotion", etc. If it does...

DLNI1-Momentum = 0.6  Classify each input text as subjective or objective. Subjective texts expressa  0.770
personal opinion, emotion, or experience.They often use words and phrases
like: - "I think", "I believe", "I feel", "my opinion", "my experience", "I
love", "I hate", etc. - Use of first-person pronouns (I, me, my) - Words
that describe emotions (e.g., beautiful, sad, excited) - Use of evaluative
language (e.g "smart and alert , thirteen conversations about one thing is a
small gem .
Table 1: Prompt template for the Subj task, showing Human, DLN1, and DLN1-Momentum prompts.
Colored text highlights components such as Task Description, Term Clarification, Solution Guidance.
DLN1-Momentum improves the prompt by keeping the task description after iterative refinement.

2 Preliminaries and Related Work

Problem Formulation. Consider a large language model (LLM) formally defined as LM : V* — V*,
where V denotes the vocabulary set and V* represents the space of all possible sequences over V.
For a given prompt p € V* and input x € V*, the LLM processes their concatenation [p, x] € V* to
produce an output sequence. Let D be a distribution over the input-output pairs (x,y) € V* x V*.
Suppose we have a dataset D = {(x;,y;)},, sampled i.i.d from D. The goal of prompt engineering
is to identify an optimal prompt p* € V* that optimizes the model’s expected performance on data

drawn from a certain distribution. Formally,
p*=arg max B y)~p [Perf (LM([p, z]),y)] , (1

where Perf : V* x V* — R is a metric function evaluating the quality of the model’s output against
the ground truth, and [p, ] denotes the concatenation operation. For simplicity, we do not consider
training randomness here.

Automatic Prompt Engineering via Textual Gradient Descent (TGD). Manual prompt engineering
requires significant expertise, making it both time-consuming and potentially suboptimal. Automating
this process presents unique challenges, primarily due to the discrete nature of the prompt space V*,
which renders traditional gradient-based optimization methods inapplicable. A major line of work in
automatic prompt engineering (APE) leverages the capabilities of LLMs themselves to iteratively
refine prompts. Earlier approaches directly provide the LLM with previous model predictions
alongside ground truth labels, enabling it to refine the current prompt based on observed discrepancies
[33, 43]. More recent methods adopt a more interpretable approach, first having language models
analyze and summarize errors made with the current prompt, then incorporating these insights for
prompt refinements [27, 47, 21]. We present extended related works in Appendix A.

These LLM-based APE techniques are commonly referred to as Textual Gradient Descent (TGD) in
the literature due to their iterative optimization nature [47]. Here, we argue that it should be defined
as Textual Stochastic Gradient Descent (TSGD), due to the stochasticity of sampling minibatches of

training samples. The prompt p serves as the parameter being optimized. For iteration ¢, we denote
the current prompt as p; and sample a minibatch of data {(xl(-t), yft)) ™ ~ D. For z;, we obtain the

model prediction y; = LM([p¢, x;]). The prompt update rule is written as:

pi+1 = Update(LM, py, { (24, vi, Ui) }ie1)

where Update is an algorithm that leverages LLMs’ capabilities to analyze discrepancies between
predictions {g; }7; and ground truth labels {y;} ,, yielding an improved prompt p; 1.

Example of Prompt Update Rule. One instantiation of the Update algorithm can be formalized
as a two-stage process [27, 47]. Given the current prompt p, and a batch of example triplets



{(z4,v:,7:)}™ ,, the Update algorithm proceeds as follows:!?

Vpe = LM([panatyze, P, {(@6, 95, 95) k1)), pe1 = LM([Drefines e, Vpi])-

where Vp; denotes an error analysis that captures systematic discrepancies between predictions and
ground truth, analogous to a gradient in traditional optimization [27]. This textual gradient indicates
the direction for prompt improvement, with puayze directing the LLM to identify error patterns
(i.e. creating the gradient) and prefine instructing the LLM to update the prompt accordingly (i.e.
performing the descent step). This two-stage approach creates a conceptual parallel to how gradient
descent uses the negative gradient to move toward optimal parameters iteratively.

3 Test-time Scaling of Data for TGD and TSGD

TGD generates each prompt update using all available examples ("full-batch"), whereas TSGD
samples only a subset per iteration, yielding noisier but more scalable textual gradients. Prior work
shows that increasing the number of in-context examples can improve accuracy and fluency while
reducing variance [10]. However, excessively long contexts may degrade reasoning performance,
particularly in single-pass settings [16]. In contrast, TGD and TSGD demand multiple update steps.
This raises a key question: how—and how much—should we scale data in these iterative prompt-
optimization frameworks? We investigate two complementary scaling studies in greater detail. First,
we assess how enlarging the full training corpus affects performance. Second, we isolate the impact of
increasing in-context examples under TSGD, holding the underlying training set constant. Following
[33], we set the prompt-generation temperature to 0.7 and apply early stopping when holdout-set
accuracy fails to improve for 2 iterations. All results are averaged across 10 different runs.

3.1 Test-time Scaling of Training Data for Full-batch TGD

To begin our exploration of data scaling, we first assess how the total size of the training corpus
influences performance in the full-batch TGD setting, providing a baseline understanding before
we investigate the effects of batch sizing in TSGD. We optimize prompts under TGD frameworks
with full batch settings, observing their final downstream task accuracy as the size of training dataset
increases. Tasks in TGD are more complicated than common question-answering benchmarks (e.g.,
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Figure 2: Test performance trends of scaling full training dataset from N = 3 to 25 examples.

[16]) in that they demand multi-step reasoning [47] and self-reflection on intermediate failures
per iteration rather than simple retrieval or labeling. Following the same experimental setups of
TextGrad [47], DSPy-COPRO [13] (We direct readers to Appendix A.l for justification of our
choice of COPRO as a baseline.), and DLN1 [33], we evaluate 3 representative datasets under fixed
training data and using full batch of training data over the TGD framework: GSM8K (grade-school
math problem solving; [5]) (We report GSMS8K test and development accuracies under the same
settings as [13] and [47], respectively denoted GSM8K Test and GSM8K Dev.), Subj ([24]), and Trec
([38]). For [47] settings, we follow the same setup as their original paper with gpt-4o [22] as LM
to generate Vp, and gpt-3.5-turobo-0125 as inference LM. For other methods, we use Llama3-8B
[8] for both generating textual gradients and inference LM. For each method and dataset, we set

'We present a high-level abstraction here, and specific implementations like TextGrad [47] and Learning by
Teaching [21] introduce variations such as using different LMs for error analysis and prompt refinement.

?[33] presents variations like combining parnaiyze and Pre fine into a single prompt template but we emphasize
the GD nature here, i.e. iteratively improving the prompt based on successes and errors that LM made.



the number of demonstrations m per iteration equal to the full training-set size | D| = N such that
TGD sees all training examples per iteration. We experiment with number of shots/input contexts,
setting m = N = 3,5, 10, 20, 25 training samples. Figure 2 presents the downstream task accuracy
IE(;L',y)ND [Perf: (LM([p, I])ﬂ y)]

Max Tokens  Avg Tokens

Dataset (25 ex.) per ex.
Subj ~700 ~28
Trec ~325 ~13
GSM8K ~2000 ~80

Table 2: Token statistics with randomly sampled 25 training samples

Findings: In Figure 2, the performance first increases to a clear maximum before declining as
more examples are added. However, the optimal "sweet spot" differs across tasks, baselines and
models scales: TextGrad often peaks at 10 examples on GSM8K but earlier on Subj. DLN1 generally
maximizes between 5 and 10 examples; and DSPy-COPRO peak shifts or even plateaus depending
on the dataset. This heterogeneity highlights the challenge of data scaling in APE tasks—without
prior knowledge, one cannot predict the "tipping point” for training data size that will yield peak
performance. We hypothesize that this saturation arises from the degrading reasoning capabilities of
increasing input length for current LLMs [16]. To our knowledge, prior work (e.g., [16, 15]) evaluates
LLM reasoning over long contexts in a single-pass setting, whereas our study first investigates the
effects of incrementally increasing training data in an iterative APE pipeline. Lastly, one might
question the sufficiency of the full training data scale to 25 examples as the context length of
many state-of-the-art language models shall contain hundreds of samples. We argue that we limit
the maximum N to 25 because beyond this point performance declines, and in most real-world
tasks—like most tasks in BBH [34]—golden data are scarce. Moreover, [16] systematically evaluated
how input length affects reasoning across various models and observed a marked performance drop
beyond roughly 500 tokens. To remain consistent for datasets, we therefore limit all in-context
samples to 25 for Subj, Trec, and GSM8K (See Table 2).

3.2 Test-time Scaling of Batch Size for TSGD

In this section, we investigate the impact of increasing in-context examples under TSGD while
keeping the training set fixed. In this experiment, we hold the training dataset fixed (i.e, NV is constant)
and vary the per-iteration minibatch size m over {3, 5, 10, 20, 25} when estimating textual gradients
in TSGD. In optimization literature, we are systematically increasing the stochastic gradient batch
size to evaluate its effect on convergence and performance. We repeat the same experimental setting
in Section 3.1.
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Figure 3: Test set performance trends of scaling batch size from m = 3 to 25.

Findings: In Figure 3, we find that TextGrad framework overall exhibits larger volatility for different
batch sizes due to the next iteration prompt p;; is one single prompt rather than one prompt chosen
out of a set of prompts [33, 13], easily stuck into local minima. In Figure 3 (a), all four tasks (Subj,
Trec, GSM8K Test and Dev) exhibit their highest accuracy at moderate batch sizes (10-20 examples),
but performance can change sharply outside this range. Notably, Trec performance spikes at batch
=10 (= 69 %) yet degrades precipitously at larger batch sizes, and both GSMS8K curves peak at
batch = 20 before falling back at 25. This “tipping point” behavior underscores a strong sensitivity to
batch-size choice. In DLN1 and DSPy-COPRO ((b) (c)), model accuracy rises smoothly as batch size



increases and plateaus over a broader range. Subj and GSMS8K Test/Dev all improve steadily to a
maximum at batch = 10-20, with only a mild decline at 25; Trec climbs monotonically to its apex at
5 for DLN1 and 20 for DSPy-COPRO. Compared to TextGrad, both DLN1 and DSPy-COPRO show
less volatility and higher peak accuracy (e.g. GSM8K Dev ~ 82 %). We highlight that even when
the training set size is fixed, the choice of per-update batch size has a dataset-dependent impact on
downstream task accuracy, which shall be unpredictable across tasks, baselines and model scales.

4 Textual Stochastic Gradient Descent with Momentum

Previously, we empirically demonstrated that scaling data is not all we need for TGD and TSGD.
Moreover, we are the first to investigate the scaling effect for iterative workflow without model
parameters updates. In this setting, on one hand, estimating textual gradients from mini-batches
introduces substantial noise, making it difficult to identify a consistent sweet spot for batch-size
scaling. On the other hand, computing full textual gradients is computationally prohibitive and
time-consuming, often degrading reasoning capabilities [18].These issues are exacerbated by the
limited ability of large language models to reason effectively over long contexts. Inspired by the
famous "momentum" technique from neural-network optimization [28, 19], we hope to stabilize noisy
textual gradients: the momentum term effectively reduces variances and provides sufficient “inertia”
to escape shallow local minima. Here, we show that augmenting TSGD with a momentum term
significantly improves task performance and reduces variance compared to TSGD. We also present a
theoretical analysis of variance reduction in TSGD-M (see Appendix D). As detailed in Section 2, we
maintain a buffer of all past meta-prompts (i.e. the selected prompt p; for past iterations) and generate
each new prompt by adaptively sampling token-by-token from this buffer according to predefined
weights until a maximum length is reached. The generated prompt is then either used directly as
the next meta-prompt [47] or, in alternate workflows, multiple candidates are produced and the one
achieving highest holdout-set accuracy is selected [33, 13] (See Algorithm 1).

Algorithm 1 Textual Stochastic Gradient Descent with Momentum (TSGD-M)

1: Input: LM: Language model, py: initial prompt, D: data distribution, m: batch size , T": total
iterations, use momentum flag, o: momentum parameter, 7;,,x: max tokens, k: number of
candidate prompts need to generate, S: Score Function, pefine: Template to generate new prompts

2: fort=0,1,...,7T —1do

Sample batch {(z\", y\")}7, ~ D

=

Compute predictions g?l(t) = LM([ps, xz@}) fori=1,...,m
>
5: if use momentum then >

t
Pes1 ¢ Update-Mom (LM, o {pe Yo L@, 0 0T T b, S, preﬁne> (Alg 2)
7=0

6: else >

piar < Update (LM pe. {(@” 5" ™)} 21, Tonaa, b S, preine) (Al 3 in Appendix B)

7: Output: Optimized prompt pr

In optimization literature, stochastic gradient descent with momentum (SGDM) shall be written as
mt=am' ™' +(1-a)g, 2™ =2"—nm'

m' =am'™ '+ (1= a)Vpy, peyr=p—m'.
in which Vp; denotes the "textual gradient" of current minibatch at current iteration ¢. We omit the
stepsize 7 here since we perform descent on textual gradient (i.e. using prompt template piefine tO
generate improved prompt for further iterations). The core of textual gradient descent lies in first
generating weights of each past meta prompt {p, }._, and perform adaptive sampling from mixture
of distribution. We shall introduce the momentum term by storing all the past meta prompts (i.e.,
the best prompts selected in the previous iterations). We will first generate a list of weights w.- for



7=20,1,2,...,t (Equation 2) and every weight associated with each meta prompt is generated by
exponential moving average, mimicing the spirit of momentum role in SGDM. In our formulation
of TGD, we omit the traditional step size 7 and instead interpret each token generation from the
LLM as a sample from a distribution (Equation 2). The term adaptive refers to the way we sample
meta-prompts p; fori = 0,1, 2, ..., T} ax and iteratively append previously generated tokens to the
selected meta-prompt p; to generate the next token. This process is adaptive in the sense that the
sampling dynamically adjusts based on the current token position.

t t—7

P(Token;+1 | Token.;, {pT}tTZO) x ZwTP(TOkeni+l | Tokeny.i, p-), where w, = z:taitf
7=0 =0 at—T

Remark: We consider two cases to introduce momentum term resembling SGDM for Algorithm
1: Case 1. The textual gradient descent step is a single step, generating the new prompt in one step
[33, 13] (See Figure 8 in Appendix C). In this setting, we will perform momentum sampling based on
all previous meta prompts p; per token generation (See Line 7 in Algorithm 2). Case 2. The textual
gradient descent step separates out the step to generate gradients and step to perform gradient descent
[47, 27] (See Figure 4). Following [47] setup, the algorithms would first provide a prompt template
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Figure 4: An illustration of the momentum sampling in Case 2.

Danalyze t0 generate gradients (feedbacks/criticisms) on current prompt p;, i.e. Vp;. Then the gradient
is inserted into Prefine to refine the current prompt. In this way, we will perform momentum sampling
based on both prompt and its corresponding textual gradient p; + Vp;. (See Line 7 in Alg 2).

We also acknowledge the recent work by [47], where momentum is defined as the concatenation of past
meta-prompts over a fixed window during early iterations. In contrast, our approach defines prompt
generation process through momentum sampling from weights applied to each past meta-prompt
(Equation 2) and applied per token generation. Our design is notably more memory-efficient: instead



Algorithm 2 Update-Mom

1: Input: LM, T},,40, K, S, Prefine, @: momentum parameter, {pT}tTZO: past meta prompts up to

iteration ¢, past batches of sampled demonstrations U:ZO{(JJZ(.T) ™) gihm

Ll yz
2: Generate a list of weights: {w, }._, = [%], Initialize Z < {)
3: forj=1tokdo
4: Z+ 0
5: for i = 1to T},4, do >
6: Sampling p; from P, where P(p,) = w,
7: Generate one more token ¢; using LM (prefine + p; ) if using meta prompts (or
if using textual gradients) >

9: Z+— Z\Jz
10: if & = 1 then p; ;1 < Z else p; 1 < argmax__; S(z) end if
11: Olltpllt: DPt+1

of concatenating multiple past meta-prompts, we input a single meta-prompt to generate each new
token. Table 3 presents an ablation study comparing vanilla DLN1 against the concatenation-based
strategy of [47] for DLN1; a more detailed analysis is provided in Appendix B.

5 Experiments

We conducted a series of experiments to compare the proposed TSGD-M method with TSGD on a
range of reasoning, Big-Bench Hard (BBH) and NLU tasks. We find that TSGD-M robustly improves
downstream task accuracy for every language models considered, across a range of model scales.

5.1 Experiment Setup

Tasks and Datasets We evaluate TSGD-M on the following benchmarks. We focus on classification
tasks. All experiments reported in this section is mean with standard deviation over 10 runs. Full
details on the tasks used are given in Appendix E.1.

* Big Bench Hard (BBH): Following [33], we evaluate Navigate (spatial reasoning) and Hyperbaton
(adjective ordering) using the 250 BBH-provided examples as the test set.

* Natural Language Understanding (NLU): As in [33], we draw Mpqa, Trec, and Subj from [20],
and Disaster and Airline from Leopard [4]. For each dataset, we randomly sample 400 examples
for training, 250 for validation, and 250 for testing.

¢ Mathematical Reasoning: Following [47] and [33], we use GSM8K [5] as our dataset and split
200/300/1319 as train/validation/test.

Baselines We evaluate TSGD-M against 3 representative TSGD methods: TextGrad [47], DSPy-
COPRO [13], and DLN1 [33]. All experiments are conducted in a zero-shot setting to isolate and
demonstrate the impact of our momentum-sampling module within TSGD frameworks. As all
above methods are zero-shot prompt tuning methods for APE tasks, we include two human-designed
baselines designed for zero shot evaluations:

¢ Human (ZS): Zero-shot human prompts tailored per dataset. For initial prompts, we use the same
initial prompts in [33] and [47] and refer readers on Appendix E.2.

e COT (ZS): “Let’s think step by step.” for zero-shot chain-of-thought prompt [14].

Language Models For DSPy-COPRO and DLN1, we experiment with Llama3-8B [8], Mistral-7B
[12], and DeepSeek-R1-Distill-Qwen-1.5B (denoted as Deepseek 1.5B) [9] with varying model sizes.
For TextGrad, we follow [47], using GPT-40 as the gradient generator and GPT-3.5-Turbo as the
inference model. Preliminary trials with smaller open-source models showed degrading inference
performance (with all three above models)—when the gradient generator was weaker than or equal to
the inference model, so we adhere to the original TextGrad experimental settings.
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Figure 5: Performance of TSGD-M applied to DLN1 [33], DSPy-COPRO [13] under Hy and H;.
Under Hy, DLN1-Momentum and DSPy-COPRO-Momentum yield moderate improvements over
their vanilla counterparts across most tasks. Under H; both momentum-based methods demonstrate
more substantial gains, with broader improvements observed across tasks.

Hypotheses We test two hypotheses for TSGD-M against the baselines described above and use them
as an ablation study to demonstrate that TSGD-M remains robust across different prompt-generation
temperatures and total iterations of prompt refinements.

* Hj follows the same settings as [33] with a generation temperature of 0.7 and early stopping
after 2 iterations no improvement for holdout set accuracy. Under Hy, TSGD-M yields modest
improvements over standard TSGD.

* H, raises the generation temperature to 1.1 and allows more iterations with early stopping after
5 iterations for no improvement on holdout accuracy, hypothesizing that increased stochasticity
and longer optimization will produce more diverse prompts and presumably better downstream
performance [46, 40, 29]. Figure 6 confirms that TSGD-M further enhances accuracy compared to
Hj with extended iterations and higher holdout set accuracy
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Figure 6: Test Performance comparison of DLN1 vs. DLN1-Momentum= 0.6 under Hy and H; on
Subj and Trec. Momentum improves test accuracy, especially with extended iterations under H;.
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Figure 7: Performance of TextGrad

5.2 Main Results

Figure 5 shows the performance of TSGD-M applied to DLN1 [33] and DSPy-COPRO [13] under
both hypotheses Hy and H; with momentum parameter « € {0.0, 0.3, 0.6, 0.9} for Llama3-8B and
Mistral-7B. We put results for Deepseek 1.5B in Figure 9 in Appendix F.1. Because H\ corresponds
to the original DLN1 setup—using zero-shot chain-of-thought (CoT (ZS)) and human (ZS) prompts
on the same datasets—we only report those two prompt types under H, while prompts generated
by increased temperature and longer iterations are shown under H;. Figure 7 presents TSGD-
M performance under the original TextGrad protocol. Following [47], we run 12 total iterations
with a per-iteration batch size of 3 (36 in-context examples sampled with replacement) and use a
prompt-generation temperature of 0 in their implementation.

Hy: We observe that moderate momentum o« = 0.6 consistently maximizes downstream task accuracy.
For Llama3-8B, o = 0.6 yields the highest accuracy on 8 of 10 tasks (e.g., Hyperbaton 85.33 % vs.
83.07 % baseline, SST2 92.87 % vs. 92.67 %). Mistral-7B peaks at « = 0.6 on most benchmarks
(e.g., MPQA 86.50 % vs. 83.13 %, Hyperbaton 81.60 % vs. 81.04 %). For smaller models like
Deepseek-1.5B, it also benefits most at a = 0.6 (e.g., Subj 65.02 % vs. 61.07 %, Airline 55.87 %
vs. 54.23 %). We also find that smaller models like Deepseek 1.5B exhibits larger variance and
stronger relative gains of TSGD-M compared to other bigger models like Llama3-8B and Mistral-7B,
highlighting the momentum version is more beneficial when the base model is weaker. Lastly, we
also observe that « = 0.9 often plateaus or slightly degrades accuracy (e.g., Navigate Task with
Deepseek 1.5B model drops from 61% at o = 0.6 to 57.80 % at o« = 0.9, confirming that excessive
inertia can overshoot local optima.
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H,: Under more aggresive H; regime, in which the generation temperature is higher for more diverse
prompts and up to 5 iterations of holdout set non-improvement with early stopping, all three models
exhibit the largest accuracy gains at moderate momentum (o = 0.3 — 0.6). For instance, o = 0.6
yields highest lift for most tasks using Llama3-8B and Mistral-7B, while a = 0.9 is more suitable
for Deepseek-1.5B. This finding validates that a moderate inertia term is optimal for leveraging the
increased stochasticity and extended tuning horizon of H; echoing [32]’s observation that simply
raising the momentum parameter does not improve test-set accuracy in DNN training.

5.3 Additional Studies

TSGD-M is robust to momentum parameter o We test TSGD-M’s robustness across three axes.
First, sweeping momentum « € {0.0,0.3,0.6,0.9} on 9 tasks under both Hy and H; shows that
moderate values (o« = 0.3/0.6) consistently peak in accuracy, while all momentum variants still out-
perform vanilla TSGD by 1-3 percentage point. Second, repeating these experiments on three models
confirms larger relative gains on smaller models, highlighting momentum’s value for weaker language
models. Finally, under the original TextGrad protocol (12 iterations, batch size 3, temperature 0),
TSGD-M improves over TextGrad, underscoring its stability across hyperparameters and models.
Different notions of momentum In our
ablation study, we use DLN1 as a baseline

. Dataset DLN1 DLN1 Concat

with Llama3-8B as an example language Son OIS e
- . ubj . . . .

model and compare 2 \{anants. (1) DLN1 Hyperbaton  83.07(1.15) 79.19(1.28)

and (2) the concatenation-based momen- Alrline 80.40(0.79) 76.3(0.6)

tum strategy of TextGrad [47] (See Table Navigate  51.07(5.28)  44.13(2.57)

3). DLN1 Concat prompts perform worse
than DLNI for all datasets and DLN1- Table 3: Hy : DLNI vs. DLN1+Concat Prompts
Momentum (our version) beats DLN1 for (LLlama3-8B) for sample datasets.

all datasets under the same setting.

TSGD-M generates a higher proportion

of synthetic examples than vanilla TSGD For DLN1-Momentum = 0.6, the resulting prompts
contain substantially more instances recycled from the training set—suggesting that momentum
amplifies the model’s tendency to “memorize” past error cases and incorporate them into subsequent
prompt refinements (See Table 4).

Approach Optimized Prompt

DLNI1 1. Read the question carefully and identify the main topic. 2. Determine if
the topic is a person, place, thing, or idea. 3. Ask if it refers to a living being
(human/animal), location, concept, object, or event. 4. Choose the correct
category (human, location, entity, description, expression, number). 5. Output
the chosen category.

DLNI1-Momentum (o« = 0.6) 1. Read the question carefully and identify the information type. 2. Deter-
mine whether it asks for: ¢ A specific quantity (number) ¢ A person or
group (human) < A non-person concept or idea (entity) < A descrip-
tive explanation (description) ¢ A place or area (location) 3. Use these
guidelines to select and output the correct category.

Table 4: DLN1 vs. DLNI-Momentum (« = 0.6) for Trec. Words corresponding to past errors or
examples observed during training are highlighted in bold.

Limitations. We would like to note that as our TSGD-M is designed for sampling per token, but
in reality, we perform momentum generation per every 10 tokens when using API querying for
DSPy-COPRO and TextGrad. We refer the readers for reasons in Appendix E.3 for reasons.

6 Conclusion and Discussion

We cast a wide range of automatic prompt engineering workflows as Textual Stochastic Gradient
Descent (TSGD), in which mini-batches of examples are sampled at each iteration. Building on this
view, we introduce TSGD-Momentum (TSGD-M)—a lightweight plug-in that consistently improves
accuracy across BBH, NLU, and reasoning benchmarks. Beyond boosting performance, TSGD-M
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stabilizes the optimization trajectory and significantly reduces variance in downstream task accuracy.
We also highlight a practical trade-off: the token-wise momentum sampling in TSGD-M adds to the
runtime of every iteration. Since longer tuning runs generally yield better accuracy, practitioners may
balance iteration cost against performance gains when deploying TSGD-M under time constraints.
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A Extended Related Works

A.1 Automatic Prompt Engineering Workflow

We will revisit several Automatic Prompt Engineering frameworks below.

1. APE [48] is a seminal work in leveraging LLMs for instruction optimization. In each iteration, a set
of instructions is evaluated on a validation set, and the optimizer generates a new set by paraphrasing
the highest-performing instructions. This iterative process continues until convergence. However,
we argue that APE does not fall under the category of Textual Gradient Descent (TGD) but instead
aligns more closely with evolutionary algorithms [45], as it is inherently gradient-free. Rather than
utilizing textual gradients for optimization, APE explicitly prompts LLMs to generate variations of
instructions while preserving their semantic meaning, replacing lower-performing prompts through
mechanisms akin to random variation (e.g., mutation or crossover), a hallmark of evolutionary
strategies. Therefore, we exclude it for our evaluation.

2. DLNT1 [33] views prompt optmization as learning a distribution pr,ps(y|z, 7) in which z, y are
inputs or outputs separately, and 7 is learnable prompt. The iterative process is similar to APE but
can include a verbalization of difficult examples from the task: the final prompts shall combine both
instructions and task examples, which mimic a mix of zero-shot learning and in-context learning.

3. OPRO [43] optimizes instructions by presenting the trajectory of previously generated prompts
with their corresponding training set accuracy, together with randomly extracted demonstrations from
the training set to denote the task of interest. The algorithm only keep instructions with highest scores
in the meta-prompt in consideration of LLM context length limit. The iterative process only asks
LLMs to generate one more new prompt per iteration. Note here [43] typically runs much longer
iterations compared to DLN1 [33] and DLN1 shall serve as a shorter version of [43]. We argue that
due to its similarity to DLN1, we use DLN1 as a representative method to evaluate our TSGD-M
algorithm.

4. TextGrad [47] backpropogates textual feedbacks provided by the proposal and view the textual
feedbacks as gradients to perform descent or improve upon. For every iteration, they randomly extract
several demonstrations and generate only one new prompt. They also present a momentum version
by simply concatenating previously generated past gradients within certain window length.

5. DSPy [13]. As we limit our study into zero-shot prompt optimization, in which we solely focus on
instruction optimization rather than example optimization or jointly optimize both of them [39, 23],
we only discuss COPRO module in [13]. As our tasks are APE with zero-shot demonstrations needed
to optimize, we use COPRO for automatic instruction optimization and exclude MIPROV2 as our
baselines do not involve optimizing the set of few shots demonstrations. Similar to DLN-1, COPRO
leverages Signatures (structured prompts) to optimize Signatures themselves. We refer readers for
further discussions on different optimizers [7].

6. PromptAgent [41] views prompt optimization as a more advanced planning agent using Monte
Carlo Tree Search (MCTS). We argue that [41] does not fall under TGD framework also. The MCTS
algorithm itself is not a gradient based algorithm as it relies on a search based approach rather than
differentiable optimization techniques and MCTS does not compute or apply gradients. Even though
MCTS shall be combined with gradient base learning where a policy network is trained using policy
gradients and used to guide tree search, it is beyond our paper’s research scope. Thus, we exclude
this method.

7. ProTeGi [27] was among the first methods to incorporate gradient descent principles into automatic
prompt generation. Our TSGD-M framework can be naturally extended to ProTeGi. Specifically,
we propose performing token-wise sampling over batches of meta-prompts. Rather than applying
momentum sampling to individual meta-prompts from pg to p;—1, we instead sample across batches
of prompts, denoted by U! _, B,. From this union, we select a batch B; and apply uniform weights
to all prompts within that batch. We exclude this method for evaluation due to double sampling but
this method shall be viewed as further research direction. We are also aware of a concurrent line of
work on momentum integration in ProTeGi [6], where a history of past gradients is maintained and a
single gradient is randomly sampled to generate a new prompt pool at each iteration. In contrast,
our approach performs adaptive sampling with decayed weights (defined by momentum parameter)
over past gradients (or meta-prompts) at the token level, continuing until the maximum token limit is
reached.
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A.2 Synthetic Text Generation

Recent work in differentially private (DP) language model training has explored synthetic generation
as a mechanism to protect sensitive data while enabling downstream utility [36, 2, 42]. Notably,
prior approaches such as those in DP-Few-Shot Generation [36] construct synthetic datasets by
prompting an LLM to generate tokens one at a time, with differential privacy applied via logit-level
mechanisms such as clip-and-aggregate, Gaussian noise, or report-noisy-max [2]. These methods
often rely on carefully controlled sampling from private logits or fallback to public logits when logit
similarity allows, in order to minimize privacy cost. In contrast, our approach focuses on momentum-
based prompt synthesis, where token-by-token generation is guided not by privacy constraints, but
by a trajectory of previously optimized prompts—analogous to a gradient descent path in prompt
space. While our framework does not aim for differential privacy, it shares structural similarities
with the above methods in generating synthetic text autoregressively under external constraints
(e.g., past prompt trajectories). This connection highlights the broader utility of iterative prompt
conditioning in synthetic data pipelines, whether for privacy-preserving learning or for optimizing
instruction-following behavior via momentum sampling.

B Additional algorithm details

Below Algorithm 3 provides psuedo-code for vanilla TSGD per iteration.

Algorithm 3 Update

1: Input: Language model LM, current prompt p;, {(xgt),yft),@(t)) ™., max tokens Tpnqz.

number of candidate prompts need to generate k, Score Function S, LLM Template to generate
new prompts Prefine
Z 0
for j =1tokdo
Z+0
for : = 1to 1},,, do
Generate one more token ¢; using LM (pyefine + Dt)
Z4— Z+ [ti]
Z—7Z\Jz
9: if k = 1 then
10: Pt+1 < 7
11: else
12: piy1 < argmax,; S(2)

13: Output: p;

C Illustration of Momentum Sampling (Case 1)

Figure 8 illustrates the momentum sampling process described in Section 4 for Case 1, where textual
gradient descent operates in a single step [33, 13]. In this example, the refinement prompt pyefine 1S
instantiated using a textual example from the DSPy-COPRO framework and is concatenated with the
current meta prompt p; to generate the next round of candidate prompts.
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their corresponding validation scores. (.. Read the following [Eiieenty, Hxihery @8

" ; sentence, then choose preferences. If it is subjective,
omitted due to space constraints ..) Your whether it is subjective classify it as such. If it is
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will lead a good language model to "Objective". If the sentence is
perform the task even better. Don't be subjective, respond with
afraid to be creative. "Subjective”.

(a) TSGD: new prompts are generated using prefine prompt template to instruct the LLM in
updating the prompt p; meta prompt from last iteration.

wo

>~ Prefine B 7o

You are an instruction wl
optimizer for large . pl
language models. I will

give some task
instructions I've tried,
along with their
corresponding validation
scores.
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(b) Momentum on meta-prompts

Figure 8: An illustration of the momentum sampling in Case 1.
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D Theoretical Justification

Setting. We consider a simplified setting where the optimal prompt is a scalar ¢ € R. In each
iteration, the LLM samples from j1+¢ where € ~ N'(0, 02) is independent noise. Prompt performance
is measured by mean squared error (MSE) E[(p — 11)?].

Let the baseline approach generate prompts { X, } where:

X; =LLM 3
and the alternative approach (momentum) generate prompts {Y;} using exponential moving average
YVi=a LM+ (1—a)- Y1, O<a<l 4)

for all £ > 1. We note that Yy = LLM.

Theorem 1 (Variance Reduction due to Exponential Moving Average). Then for all t > 1, we have
E[X( = E[Yi] = i, and

E[(X; — u)’] = E[¢}] = 0 ®)
and

k

2 @ 2 2t+1

= 1—
7 [2—a+2—0z( @)

Therefore, the momentum approach achieves strictly lower MSE.

Proof. The baseline process follows X; = p + ¢; with ¢, ~ N'(0, 0?). At iteration ¢:
E[(X: — p)*] = El¢f] = o* (©)

The momentum approach can be expanded recursively as follows:
t

Y, —pu= (1 — Oz)te() + OéZ(l - a)t_kek
k=1

where €, SN (0,02). We can easily see that E[Y; — u] = 0. Hence, the mean squared error becomes

E[(Y; — p)’] = Var(Y; — p) = (1 — a)*0® + Z )20k 52

_ 2_ 2t 21_(1_0‘)2t
=0 _(1—04) + M}
= g2 _(1 — a)gt + ﬁ(l —(1- a)2t)]

o[ @ 2 2t+1
= 1—
7 _2—o¢+2—a( @) }

and as t — oo, we have

N2 @ 2
E[(Ye —p) = 5——0
E More Experiment Details

E.1 Task Description

In Table 5, we provide brief descriptions and dataset statistics for all tasks used in our experiments.
For GSMS8K [5], we adopt the same data split as [13, 47], using 200 examples for training, 300 for
validation/development, and 1319 for testing.
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Task | ltrainl | Ivalidl | ltestl | Iclassl | Description

Mpqa 400 256 250 2 | Sentiment analysis.

Trec 400 256 250 6 | Question type classification.

Subj 400 256 250 2 | Determine whether a sentence is subjective or objective.
Disaster 400 250 250 2 | Determine whether a sentence is relevant to a disaster.
Airline 400 250 250 3 | Airline tweet sentiment analysis.

Hyperbaton 400 1000 250 2 | Order adjectives correctly in English sentences.
Navigate 375 375 250 2 | Spatial reasoning given navigation instructions.

SST2 67349 872 872 2 | Sentiment analysis.

GSM8K 200 300 | 1319 N/A | Reasoning Task.

Table 5: Tasks used in this work.

E.2 Prompt Initialization

We initialize the task description as reported in Table 6 for all tasks and evaluations. For GSM8K[5],
we use the default system prompt [13] as initialization.

Task Initialization

Mpqa Read the following review, then choose whether it is negative or positive.

Trec Read the following question, then choose whether it is about a description, entity, expression,
human, location or number.

Subj Classify the input text as subjective or objective.

Disaster Read the following sentence, then choose whether it is relevant to a disaster.

Airline Read the following sentence, then choose whether it is positive, negative, or neutral.

Hyperbaton =~ Which sentence has the correct adjective order.

Navigate Read the following sentence, then determine whether you return to the starting point.

SST2 Classify the input text as positive or negative.

GSMSK Your input fields are: 1. ‘question‘ (str) Your output fields are: 1. ‘reasoning’ (str) 2. ‘answer*

(str) All interactions will be structured in the following way, with the appropriate values filled
in. [[ ## question ## ]] question [[ ## reasoning ## ]] reasoning [[ ## answer ## ]] answer [[
## completed ## ]] In adhering to this structure, your objective is: Given the fields ‘question’,
produce the fields ‘answer*.

Table 6: Prompt initializations.

E.3 Templates

For DLN1, we adopt the same forward classification template as used in [33] for computing pre-
dictions of mini-batches (forward pass). For DSPy-COPRO [13] and TextGrad [47], we follow the
prompt templates provided in their respective papers.

Classification Template Forward Pass

{{ prompt }}
{{ input }}
Answer:

General API Templates As an example of an API template, we provide the following configuration
for DSPy_COPRO, which uses the Together Al platform [37] as the API provider and Llama-3 8B
[8] as the selected language model.

21



Together API Chat Example for DSPy-COPRO

import os

from together import Together

client = Together()

response = client.chat.completions.create(
model="together_ai/meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
messages=[ {"role": "system", "content": "Your input fields are:

1.attempted_instructions (str)

Your output fields are:

1. ‘proposed_instruction (str): The improved instructions for the language model

2. ‘proposed_prefix_for_output_field* (str): The string at the end of the prompt, which will help
the model start solving the task.

All interactions will be structured in the following way, with the appropriate values filled in.
[[#+# attempted_instructions ##]]

{attempted_instructions} [[## proposed_instruction ##]] {proposed_instruction }

[[#+# proposed_prefix_for_output_field #+#]]

proposed_prefix_for_output_field

[[## completed #4#]]

In adhering to this structure, your objective is:

You are an instruction optimizer for large language models. I will give some task instructions
I’ve tried, along with their corresponding validation scores. The instructions are arranged in
increasing order based on their scores, where higher scores indicate better quality.

Your task is to propose a new instruction that will lead a good language model to perform the
task even better. Don’t be afraid to be creative." },

"role": "user", "content": [##attempted_instructions##]

[1] Instruction #1 : Analyze the sentiment of the given sentence by considering the tone, lan-
guage, and context, ...

[2] Prefix #1 : The sentiment of the sentence is: [3] Resulting Score #1 : 40.0

[4] Instruction #2 : Analyze the given sentence carefully, considering the context, tone, and
language used to express the sentiment. Evaluate the emotional undertones, such as excitement,
sadness, or frustration, to determine the overall sentiment of the sentence. Classify the sentiment
as positive if it expresses happiness, satisfaction, or approval, negative if it expresses dissatisfac-
tion, anger, or sadness, and neutral if it states a fact or shows no emotional tone. [5] Prefix #2 :
The sentiment of the given sentence is:

[6] Resulting Score #2 : 43.3... },

{" "role": "assistant", "content": "Analyze the sentiment of the given sentence by considering
the language, } > Comment: We concatenate all previously generated tokens here.

]7
"temperature": 0.7, "api_key": XXX, "n": 1, "max_tokens": 10 > Comment: We choose 10 as
max new tokens generated for every momentum sampling round.

)

print(response.choices[0].message.content)

In our experiments, we observed that many platforms recommended by DSPy [13] and TextGrad
[47] do not support token-wise generation at the granularity of every single token. For example, the
OpenAl platform does not allow true token-by-token generation. Similarly, the Together API also
lacks support for generating tokens one at a time. We experimentally found that if using deepseek
models, together AT API platform would output "<think ><think ><think >" consecutively; if using
Llama models, together AI API platform would output "[[[[[[" based on the above template as our
template explicitly asks model to output [1] Instruction. As a practical workaround, we perform
momentum sampling every 10 tokens (refer to as "max_tokens": 10), which we found to be effective
in practice. Specifically, we find that extending the generation length to 10 tokens reduces token-level
repetition observed in single-token generation, while still preserving the benefits of momentum
sampling.
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E.4 Implementation Details

Same as [33], for all tasks, we set max tokens to be generated T,,,x = 100 for all tasks except
GSMB8K. For DLN1 and DSPy-COPRO, the number of candidate prompts need to generate k = 20
and batch size m = 20 for all tasks. We set the total iterations 7" is 20 while most of our iterations
end in 10 as we set the early stopping.

E.5 Runtime

For both TextGrad and DSPy-COPRO experiments, across all datasets, the total runtime remains
under 1 hour for both the momentum and non-momentum variants when executed on CPU. For
DLNI, we report runtime using LLaMA3-8B as a representative model, using 4 NVIDIA A40 GPUs.

Table 7: Llama3-8B: Averaged Runtime across 10 trials (in hours) of DLN1 and DLN1-Momentum
across datasets under H (no prompt optimization) and H; (with prompt optimization).

Dataset DLN1 (Hy) DLN1-M (Ho) DLN1(H;) DLNI1-M (H,)

Subj 1 1.5 2 4
Hyperbaton 4 5 2 35
Airline 0.3 0.5 0.5 2.5
Navigate 0.1 1 0.2 4
Trec 1 2.5 0.5 4
Disaster 0.1 0.6 0.3 3
MPQA 0.2 0.5 1.2 3
SST2 1 2 1.5 3
GSMSK 3 8 6 75

F More Experiments

F.1 Results for Deepseek 1.5B Models
Figure 9 is all the results for DLN1 and DSPy-COPRO under Hy and H; for Deepseek 1.5B.

COT(zS) w== DLN1  mmm Human (ZS) DLN1-Momentum = 0.0 === DLN1-Momentum = 0.3  mms DLN1-Momentum = 0.6 mmE DLN1-Momentum = 0.9

Accuracy

© ’5&0 «§
&
&

)

Accuracy
Accuracy

(c) DSPy-COPRO, Hy, Deepseek 1.5B (d) DSPy-COPRO, H;, Deepseek 1.5B

Figure 9: Performance of TSGD-M applied to DLNT1 [33], DSPy-COPRO [13] under H and H; for
Deepseek 1.5B.
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F.2 Result Tables for Figure 5

Below we provide the original statistics for Figure 5 in Section 5 with various « values. The reported
statistics is averaged across 10 trials with standard deviation in parentheses. We provide DLN1 and
DSPy-COPRO under both hypotheses for Hy and H;. Under Hy, we report only the results of CoT
(ZS) and Human (ZS) for DLNI1, as these are the only methods that do not involve any form of
prompt optimization or iterative generation. All other reported methods operate in an iterative manner
and incorporate prompt refinement or optimization strategies. Both CoT (ZS) and Human (ZS) are
evaluated on the test set using greedy decoding (temperature = 0), therefore no standard deviation
for these two methods. DLN1 and DSPy-COPRO use the same dataset setup so we put COT (ZS)
and Human (ZS) under DLN1. We emphasize that incorporating momentum into existing modules
reduces variance for both DLN1 and DSPy-COPRO. Similar to SGD with momentum, where a typical
setting like o = 0.9 is commonly used but not universally optimal, TSGD-M achieves variance
reduction across a range of o > 0 values (though dataset dependent), without requiring fine-tuning
for peak performance. Table 20 denotes the momentum addition compared to vanilla Textgrad [47]
under the original settings with gpt-3.5-turbo-0125 (inferencing for p;.c fine) and gpt-4o (generating
gradients for pgpalyze). For TextGrad, we repeat each experiment over 10 random seeds and find that
the improved test/development accuracy trajectory is not consistently reproducible (especially for
GSMSK). Interestingly, for tasks such as Subj, Hyperbaton, SST2, and GSMS8K, the prompts obtained
without the TextGrad optimization framework sometimes outperform those generated through the
iterative process. Among the configurations tested, a momentum value of o = 0.3 tends to yield
performance that ranks among the top two across most datasets.

Dataset COT(ZS) DLN1 Human(ZS) DLNI1 -Momentum =0.0 DLN1-Momentum =0.3 DLN1-Momentum =0.6 DLN1-Momentum = 0.9
Subj 53.0 69.03(2.57) 55.5 70.93(1.83) 68.57(2.01) 71.20(4.63) 71.57(3.29)
Hyperbaton 71.6 83.07(1.15) 48.4 82.00(1.96) 82.53(1.10) 85.53(1.53) 80.8(1.18)
Airline 70.8 80.20(0.79) 79.0 79.73(1.72) 79.47(0.66) 81.47(0.62) 80.10(1.79)
Navigate 51.20 51.07(5.28) 58.0 54.13(3.46) 50.80(5.72) 55.47(1.86) 55.20(2.29)
Trec 45.00 63.80(5.49) 44.0 70.00(4.98) 67.73(8.96) 75.00(2.97) 74.73(2.29)
Disaster 55.10 75.83(0.42) 78.0 74.67(2.71) 76.27(3.47) 76.07(1.53) 76.83(2.85)
MPQA 74.45 $3.13(2.81) 81.2 83.13(0.79) 82.47(1.85) 85.02(0.58) 83.12(0.88)
SST2 80.6 92.67(0.37) 90.94 92.37(0.70) 92.60(0.50) 92.87(0.69) 91.57(1.02)
GSMBK (Test) 72.90 72.67(5.56) 75.12 73.2(4.89) 71.2(2.4) 76.75(1.6) 76.45(2.0)
GSMSK (Development) 76.70 76.53(6.16) 78.73 77.60(5.12) 75.6(3.2) 79.80(1.5) 79.23(1.2)

Table 8: DLN1: Hy Hypothesis for Lllama3-8B

Dataset COT(ZS) Human(ZS) DLN1 DLN1 - Momentum = 0.0 DLN1 - Momentum = 0.3 DLNI - Momentum = 0.6 DLN1 - Momentum = 0.9
Subj 65.10 57.35 77.4(4.67) 74.6(2.50) 79.87(1.21) 75.2(2.32) 74.6(0.85)
Hyperbaton 76.40 75.2 81.04(2.52) 80.13(2.05) 79.73(1.71) 81.6(0.95) 80.4(0.85)
Airline 55.10 78.00 77.97(5.45) 80.5(0.36) 80.1(0.54) 79.80(0.64) 79.67(0.58)
Navigate 50.40 57.0 48.72(6.29) 51.08(5.89) 54.88(6.82) 51.20(6.23) 57.6(4.07)
Trec 40.40 44.0 64.70(12.9) 59.6(10.1) 58.6(8.52) 74.07(5.62) 65.9(7.34)
Disaster 56.8 54.0 70.60(7.26) 73.73(4.56) 73.8(5.67) 75.45(1.81) 74.8(2.4)
MPQA 79.85 83.0 86.3(2.41) 86.23(1.11) 86.34(1.00) 86.5(0.86) 85.67(2.05)
SST2 80.73 92.55 91.37(0.45) 92.9(0.04) 92.8(0.03) 93.8(0.02) 93.1(0.03)
GSMSK (Test) 50.9 49.0 44.37(3.34) 45.29(3.45) 49.6(2.9) 50.0(2.84) 52.9(2.98)
GSMSK (Development) 553 50.0 45.1(4.83) 45.91(4.6) 48.3(3.3) 57.6(2.3) 56.3(3.2)

Table 9: DLN1: Hy Hypothesis for Mistral-7B

Dataset COT(ZS) Human(ZS) DLN1 DLN1 - Momentum = 0.0 DLN1 - Momentum = 0.3 DLNI - Momentum = 0.6 DLN1 - Momentum = 0.9
Subj 51.50 49.25 61.07(3.41) 62.98(3.20) 61.78(2.65) 65.0(2.04) 61.19(3.22)
Hyperbaton 47.60 48.4 53.2(2.14) 55.6(2.50) 55.04 (1.99) 55.89(1.22) 56.8(0.99)
Airline 46.10 18.1 54.23(5.90) 55.5(5.40) 54.47(1.35) 55.87(1.07) 58.83(4.75)
Navigate 58.00 42.0 58.0(2.23) 57.64(1.17) 58.9(1.58) 61.07(1.41) 57.8(2.1)
Trec 40.20 27.6 53.48(8.07) 55.15(7.10) 55.4(4.72) 55.6(4.17) 54.3(4.89)
Disaster 55.10 42.1 61.78(3.82) 59.71(4.02) 64.32(3.89) 64.7(2.9) 58.80(2.34)
MPQA 60.35 50.00 62.70(5.59) 65.87(3.15) 67.58(3.10) 65.35(3.18) 63.50(3.54)
SST2 53.10 49.08 80.07(3.58) 80.17(3.38) 81.67(2.53) 76.77(2.98) 80.77(2.73)
GSMSK (Test) 59.12 56.50 58.53(3.02) 58.20(2.1) 57.23(1.98) 59.2(1.02) 58.96(2.99)
GSMSK (Development) 62.7 583 63.23(3.77) 63.46(3.29) 62.26(3.04) 64.82(1.89) 63.96(3.28)

Table 10: DLN1: Hy Hypothesis for Deepseek 1.5B
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Dataset DSPy-COPRO  DSPy-COPRO Momentum =0.0  DSPy-COPRO Momentum = 0.3  DSPy-COPRO Momentum = 0.6  DSPy-COPRO Momentum = 0.9

Subj 56.37(1.96) 60.86(1.27) 64.70(1.10) 62.2(2.36) 62.23(4.92)

Hyperbaton 62.40(4.33) 60.40(5.89) 57.07(2.60) 60.93(4.60) 57.33(2.01)
Airline 79.73(1.68) 77.8(1.02) 80.2(1.04) 81.9(2.42)
Navigate 56.67(7.38) 56.80(1.44) 61.73(3.03) 57.60(4.45)

Trec 65.13(2.54) 62.40(4.02) 67.73(8.96) 75.00(2.97) 74.73(2.29)
Disaster 74.97(1.15) 76.03(1.22) 75.77(1.04) 75.43(0.90) 75.47(0.94)
MPQA 82.93(2.29) 82.93(2.29) 83.83(1.16) 81.47(1.57) 83.93(2.21)

SST2 93.47(0.25) 93.43(0.68) 93.10(0.35) 91.70(2.34) 93.40(0.70)

GSMSK (Test) 75.86(0.87) 75.90(0.29) 76.07(0.05) 76.02(0.04) 75.6(0.71)
GSMSK (Development) 80.86(0.51) 79.43(1.22) 79.97(0.47) 80.87(0.80) 79.53(1.08)

Table 11: DSPy-COPRO: H; Hypothesis for Lllama3-8B

Dataset DSPy-COPRO  DSPy-COPRO - Momentum = 0.0 DSPy-COPRO - Momentum = 0.3  DSPy-COPRO - Momentum = 0.6  DSPy-COPRO - Momentum = 0.9
Subj 54.80(2.70) 60.47(2.10) 63.83(0.72) 62.50(1.87) 60.403.21)
Hyperbaton 69.96(8.07) 70.65(7.40) 71.88(5.37) 73.45(1.56) 70.93(9.64)
Airline 77.90(0.56) 77.40(0.17) 7730(1.15) 78.63(1.07) 75.73(1.25)
Navigate 58.13(2.46) 57.93(1.99) 58.40(1.20) 56.07(1.93) 57.47(0.46)
Trec 65.61(5.1) 65.33(4.05) 66.45(3.42) 70.05(4.38) 64.68(2.46)
Disaster 76.57(1.16) 76.07(1.01) 7T3(1.79) 74.93(1.21) 76.73(1.42)
MPQA 78.87(7.05) 81.23(4.30) 85.70(1.65) 86.00(0.53) 83.77(4.65)
SST2 88.57(2.35) 88.0(2.52) 87.93(1.46) 88.93(1.57) 92.83(1.52)
GSMSK (Test) 44.53(1.01) 45.07(1.28) 45.03(3.11) 3517(1.11) 46.33(0.81)
GSMSK (Development) ~ 44.87(4.83) 46.57(2.23) 44.77(1.08) 45.63(3.21) 44.70(1.73)

Table 12: DSPy-COPRO: H; Hypothesis for Mistral-7B

Dataset DSPy-COPRO  DSPy-COPRO - Momentum = 0.0  DSPy-COPRO - Momentum = 0.3  DSPy-COPRO - Momentum = 0.6  DSPy-COPRO - Momentum = 0.9
Subj 53.23(2.5) 54.53(2.37) 56.90(1.25) 56.37(1.44) 55.77(2.24)
Hyperbaton 47.03.62) 46.23(2.98) 45.97(1.63) 49.0(2.60) 50.10(2.64)
Airline 55.23(3.30) 56.33(3.27) 57.192.91) 57.23(0.21) 55.91(2.98)
Navigate 70.67(2.54) 69.77(1.05) 71.60(1.39) 72.67(2.31)
Trec 48.2(3.63) 46.00(1.97) 49.48(3.35) 51.28(3.20)
Disaster 50.1(2.89) 49.03(1.18) 50.20(2.81) 50.97(1.07)
MPQA 66.57(3.89) 64.23(2.92) 68.70(3.39) 67.88(3.41)
SST2 72.1(2.96) 70.87(1.42) 71.0(6.15) 72.47(2.80) 72.87(2.91)
GSMSK (Test) 78.47(3.21) 78.43(0.12) 79.97(0.21) 79.70(0.92) 79.77(0.38)
GSMSK (Development) ~ 82.47(0.88) 82.77(1.50) 83.00(1.18) 83.47(0.68) 81.33(3.45)

Table 13: DSPy-COPRO: H( Hypothesis for Deepseek 1.5B
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Hypothesis 1

Dataset DLN1 DLNI1 - Momentum = 0.0 DLN1 - Momentum = 0.3 DLN1 - Momentum = 0.6 DLN1 -Momentum = 0.9
Subj 72.97(1.56) 73.2(1.39) 73.67(1.68) 70.25(0.32) 71.57(2.37)
Hyperbaton 83.44(2.07) 84.02.47) 83.46(1.32) 84.2(1.07) 83.67(1.98)
Airline 79.50(1.27) 76.2(2.24) 77.5(0.94) 77.3(0.78) 80.27(1.21)
Navigate 52.40(4.17) 54.00(3.12) 54.1(1.78) 54.53(2.78) 52.80(3.89)
Trec 68.47(3.55) 70.00(4.98) 67.73(8.96) 75.00(2.97) 74.73(2.29)
Disaster 75.58(3.12) 76.16(2.17) 77.73(2.02) 76.07(1.53) 77.23(1.88)
MPQA 79.12(1.54) 80.73(0.98) 85.32(2.59) 85.27(1.28) 82.35(2.20)
SST2 91.32(1.27) 91.77(1.30) 91.40(0.70) 91.97(0.84) 91.53(0.34)
GSMB8K(Test) 72.3(1.74) 72.5(2.05) 72.5(1.63) 73.6(3.33) 72.9(2.32)
GSMB8K(Development)  74.90(1.40) 75.80(1.52) 79.0(1.21) 79.33(4.93) 78.9(2.02)

Table 14: DLN1: H; Hypothesis for Llama3-8B

Dataset DLN1 DLNI1 - Momentum = 0.0 DLNI1 - Momentum = 0.3 DLNI1 - Momentum = 0.6 DLN1 - Momentum = 0.9
Subj 76.33(2.40) 75.15(2.88) 82.13(3.38) 76.3(3.37) 77.4(1.71)
Hyperbaton 81.87(2.24) 79.2(2.04) 80.10(1.82) 80.8(1.39) $2.13(1.79)
Airline 82.57(1.92) 75.83(3.43) 76.27(2.82) 78.87(2.00) 79.37(2.66)
Navigate 55.33(6.8) 54.6(4.8) 56.2(3.34) 58.2(2.21) 56.3(3.45)
Trec 69.93(3.59) 68.73(3.34) 69.90(2.42) 70.46(2.84) 74.4(3.46)
Disaster 75.3(2.34) 75.17(0.60) 75.08(3.81) 76.63(1.66) 75.90(1.87)
MPQA 85.2(2.58) 85.87(2.59) 85.78(2.32) 85.97(2.18) 85.93(1.62)
SST2 91.87(1.70) 92.40(0.78) 92.60(1.85) 93.77(1.04) 92.17(0.87)
GSMBSK(Test) 50.93(4.25) 50.56(2.85) 54.2(2.37) 51.2(3.2) 48.67(3.27)
GSMSK(Development) ~ 54.33(4.47) 53.2(3.14) 57.2(3.12) 57.3(2.9) 50.67(4.25)

Table 15: DLN1:H; Hypothesis for Mistral-7B

Dataset DLN1 DLNI1 - Momentum = 0.0 DLN1 - Momentum =0.3 DLNI1 - Momentum = 0.6 DLNI - Momentum = 0.9
Subj 62.37(4.03) 63.42(3.03) 64.67(3.9) 63.67(1.25) 62.0(3.72)
Hyperbaton 55.20(2.88) 56.40(1.39) 52.67(1.97) 52.93(1.08) 59.06(2.17)
Airline 69.47(2.1) 67.57(1.46) 70.2(2.47) 78.87(2.00) 79.37(2.66)
Navigate 52.93(9.91) 55.20(4.87) 58.30(2.23) 58.77(2.10) 53.67(5.00)
Trec 49.8(5.26) 51.12(4.67) 50.48(8.03) 49.48(3.03) 52.70(2.90)
Disaster 59.27(3.32) 57.83(2.54) 58.70(2.65) 59.3(3.16) 60.33(2.21)
MPQA 71.07(9.43) 69.3(2.27) 71.43(3.85) 70.70(5.52) 72.8(3.84)
SST2 75.70(4.52) 77.6(3.32) 77.93(1.69) 79.27(0.2) 79.67(0.47)
GSMSK (Test) 49.78(6.71) 48.72(7.45) 51.28(3.21) 46.07(2.08) 46.33(1.68)
GSMBK (Development)  51.73(7.82) 48.3(8.2) 53.0(1.21) 49.0(1.21) 49.2(1.02)

Table 16: DLN1: H; Hypothesis for Deepseek 1.5B

Dataset DSPy-COPRO  DSPy-COPRO Momentum = 0.0 DSPy-COPRO Momentum = 0.3  DSPy-COPRO Momentum = 0.6 DSPy-COPRO Momentum = 0.9
Subj 63.7(1.47) 62.10(1.17) 63.87(2.49) 64.07(1.59) 65.60(3.35)
Hyperbaton 63.33(7.49) 63.27(2.81) 62.0(3.49) 64.0(7.21) 64.5(4.68)
Airline 79.23(1.86) 78.33(1.99) 78.17(2.06) 79.37(0.99) 78.03(1.42)
Navigate 52.8(4.57) 53.32(3.92) 53.60(1.42) 52.81(2.67) 56.67(3.40)
Trec 61.2(0.91) 70.00(4.98) 67.73(8.96) 75.00(2.97) 74.73(2.29)
Disaster 75.4(0.57) 74.67(2.71) 76.27(3.47) 76.07(1.53) 76.83(2.85)
MPQA 76.20(5.81) 75.10(4.82) 73.30(4.43) 78.57(3.54) 77.93(3.01)
SST2 91.8(0.80) 92.47(0.46) 91.60(2.04) 91.47(1.98) 92.90(0.44)
GSMSK (Test) 76.27(3.37) 76.50(2.90) 75.27(0.55) 75.57(2.40) 77.53(2.57)
GSMSK (Development) 81.13(1.82) 80.39(0.8) 80.33(2.81) 82.33(0.65) 82.67(1.35)

Table 17: DSPy-COPRO: H; Hypothesis for Lllama3-8B

Dataset DSPy-COPRO  DSPy-COPRO - Momentum = 0.0  DSPy-COPRO - Momentum = 0.3 DSPy-COPRO - Momentum = 0.6  DSPy-COPRO - Momentum = 0.9
Subj 62.97(2.82) 62.53(2.81) 60.93(1.55) 62.90(1.47) 63.57(2.55)
Hyperbaton 63.33(4.44) 62.77(4.03) 65.33(3.05) 64.50(1.98) 62.10(0.57)
Airline 57(1.14) 76.53(1.15) 76.03(1.79) 77.53(1.94) 76.73(1.81)
Navigate 56.53(1.36) 56.13(0.83) 59.07(2.66) 57.20(0.57) 56.53(2.37)
Trec 67.2(4.55) 71.43(1.10) 70.53(4.27) 72.77(3.21) 72.63(0.57)
Disaster 76.70(2.73) 76.27(1.56) 76.83(1.18) 77.43(1.87) 77.93(2.09)
MPQA 77.73(4.86) 76.40(4.68) 73.97(1.89) 71.70(3.56) 78.90(5.15)
SST2 88.07(3.52) 88.37(2.23) 91.43(0.46) 89.27(1.50) 89.07(2.22)
GSMSK (Test) 43.6(2.02) 43.23(1.86) 43.27(0.81) 36.00(2.04) 44.57(2.04)
GSMSK (Development) ~ 41.2(2.71) 41.772.04) 43.77(0.81) 45.67(2.87) 13.672.03)

Table 18: DSPy-COPRO: H; Hypothesis for Mistral-7B
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Dataset DSPy-COPRO  DSPy-COPRO - Momentum = 0.0  DSPy-COPRO-Momentum = 0.3  DSPy-COPRO-Momentum = 0.6  DSPy-COPRO-Momentum = 0.9

Subj 53.23(2.49) 53.03(0.76) 53.93(2.37) 55.30(1.23) 56.17(1.07)
Hyperbaton 48.67(4.18) 49.47(3.49) 50.87(0.96) 51.42(1.08) 50.06(2.17)
Airline 55.4(2.97) 56.40(2.32) 57.10(1.89) 55.80(2.34) 58.33(1.52)
Navigate 72.30(4.71) 73.01(3.51) 73.60(2.83) 72.90(2.81) 73.20(1.89)
Trec 43.53(4.90) 46.60(4.65) 46.27(3.13) 47.20(3.28) 48.50(3.98)
Disaster 54.46(7.23) 54.07(3.32) 55.43(3.63) 59.4(4.89) 55.9(5.89)
MPQA 63.66(8.57) 61.93(6.61) 62.8(7.78) 65.38(5.52) 70.27(3.18)
SST2 68.33(3.92) 67.30(3.19) 72.30(3.21) 69.33(3.23) 69.97(2.15)
GSMBK (Test) 75.52(3.29) 75.67(2.61) 76.17(3.17) 75.13(3.20) 77.20(1.97)
GSMSK (Development) 80.87(3.74) 79.93(2.43) 80.90(3.13) 82.35(2.59) 81.20(3.20)

Table 19: DSPy-COPRO: H; Hypothesis for Deepseek 1.5B

Textgrad

Dataset COT(ZS) Human(ZS) Textgrad Textgrad - Momentum = 0.0  Textgrad - Momentum = 0.3  Textgrad - Momentum = 0.6  Textgrad - Momentum = 0.9

Subj 70.45 64.1 63.20(7.28) 64.23(6.76) 66.99(3.89) 64.80(6.41) 62.92(6.12)

Hyperbaton 852 88.0 69.28(11.22) 70.80(7.97) 74.26(10.97) 71.52(11.25) 73.36(6.67)

Airline 84.30 83.30 83.70(0.78) 84.0(0.42) 84.53(0.47) 83.17(1.11) 83.15(3.10)

Navigate 48.8 37.6 61.10(8.57) 62.04(8.23) 62.30(2.95) 57.28(5.35) 70.80(10.61)

Trec 53.40 45.40 52.0(17.21) 48.9(10.24) 62.45(9.23) 63.91(8.55) 61.92(6.12)

Disaster 738 69.0 74.48(4.36) 72.58(5.35) 74.50(1.22) 76.10(0.46) 74.28(3.97)

MPQA 59.10 51.44 70.42(7.39) 68.43(9.06) 58.22(15.19) 66.73(6.89) 61.64(8.06)

SST2 91.17 93.12 90.14(1.95) 91.40(0.69) 90.84(1.41) 90.27(1.89) 92.72(1.08)

GSMB8K (Test) 67.25 79.31 70.32(14.63) 71.27(2.71) 71.82(8.32) 70.92(10.59) 70.83(8.58)

GSMBSK (Development) 70.0 82.0 71.83(13.72) 72.48(2.45) 71.32(10.94) 72.12(8.37) 72.11(8.11)

Table 20: Textgrad: gpt-3.5-turbo-0125(inferencing for p,¢fine) + gpt-4o(gradient for pyyaiyze)

F.3 Various Momentum Interpretations

As [47] noted that an alternative interpretation of momentum is earlier iterations of the gradient
variable when making the descent step. Specifically, [47] simply concatenating all the textual
gradients together by the prompt template below.

TextGrad Momentum prompt

Here are the past iterations of this variable:
<PAST_ITERATIONS>{past_values}</PAST_ITERATIONS>

To investigate the role of momentum in TextGrad [47], we compared our DLN1 approach with a
baseline that mimics the momentum strategy used in TextGrad—specifically, concatenating all past
textual gradients (i.e., meta-prompts) (See BE°ncatPrompts helow), which adapts from Appendix
D.2in [33]). We present results for both Llama3-8B (See Table 21, and Table 22) [8], Mistral-7B
(See Table 23 and Table 24) [12] and DeepSeek-R1-Distill-Qwen-1.5B (See Table 25 and Table 26)
[9].

This concatenation-based strategy was tested under both Hy and H; prompt selection conditions.
Across both settings for Llama3-8B, DLN1 consistently outperformed the concatenation method on a
wide range of tasks. For instance, under Hj setting, DLN1 achieved significantly better performance
in Subj (69.33 vs. 66.22), Airline (80.40 vs. 78.3), and Disaster (75.83 vs. 74.33), among others.
Under H4, the advantages of DLN1 were even more pronounced, such as on Hyperbaton (83.44 vs.
70.67) and MPQA (79.12 vs. 78.40). These results demonstrate that simply concatenating all previous
gradient prompts, as done in TextGrad, is not an effective mechanism for leveraging momentum
in APE workflow. By contrast, vanilla DLN1 setting leads to consistently stronger performance
across diverse language understanding tasks. Note here we did not list our methods of momentum
performance here as most of our methods of momentum outperform vanilla DLN1.

Under the H; hypothesis using the Mistral-7B model, DLN1 consistently outperformed the con-
catenated meta-prompt baseline across a wide variety of datasets. This supports our intuition that
simply appending all past prompts—as done in the momentum interpretation of TextGrad—can
degrade performance, particularly as the sequence becomes longer and noisier. DLNI1 led to stronger
results on core language understanding tasks such as Airline (82.57 vs. 64.7), Trec (69.93 vs. 47.07),
and MPQA (85.2 vs. 69.37), showing substantial margins of improvement. Notably, DLNI1 also
demonstrated better performance on reasoning-heavy datasets like GSMS8K (Test) (50.93 vs. 48.26)
and GSMS8K (Dev) (54.33 vs. 52.2), even though the differences were subtler. These results reinforce
our claim that raw accumulation of past meta prompts yields less effective generalization and task
performance, particularly when scaling up to stronger models like Mistral-7B.
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With the DeepSeek-R1-Distill-Qwen-1.5B model [9] —representing the smallest model in our
evaluation suite—we observed that DLN1 still outperformed the concatenation-based baseline across
most datasets, under both Hy and H; hypotheses. Notably, the performance gains with DLN1 were
accompanied by higher variance compared to larger models like Mistral-7B and LLaMA3-8B, which
is expected given the reduced capacity and stability of smaller language models. For instance, under
H, hypothesis , DLN1 surpassed the concatenation method on challenging tasks such as Airline
(69.47 vs. 53.43), MPQA (71.07 vs. 59.68), and GSM8K (Dev) (51.73 vs. 49.2), but also exhibited
substantial standard deviations (e.g., MPQA +9.43, Disaster £7.54). These results further substantiate
that prompt concatenation, as used in TextGrad-style momentum, fails to scale down effectively to
lower-capacity models. DLN1’s performance, while more variable, remains more robust and reliable,
suggesting that even for compact models, simply concatenating past meta prompts or accumulating
past gradients would bring in performance degradation, which aligns with other research findings
that LLMs might not be able to effectively perform summarizations for long context tasks [18, 25].
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Dataset Name DLN1 DLN1 Concat Prompts
Subj 69.33(2.57) | 66.22(1.2)
Hyperbaton 83.07(1.15) | 81.19(2.28)
Airline 80.40(0.79) | 78.3(0.6)
Navigate 51.07(5.28) | 50.13(8.57)
Trec 63.80(5.49) | 59.0(7.44)
Disaster 75.83(0.42) | 74.33(5.63)
MPQA 83.13(2.81) | 80.40(2.82)
SST2 92.67(0.37) | 92.13(1.31)
GSMSK (Test) 72.67(5.56) | 71.62(3.34)
GSMS8K (Development) | 76.53(6.16) | 74.23(7.21)

Table 21: Llama3-8B: Hj hypothesis for DLN1 vs. DLN1 Concatenating Meta Prompts

Dataset Name DLN1 DLN1 Concat Prompts
Subj 72.97(1.56) | 66.55(3.90)
Hyperbaton 83.44(2.07) | 70.67(4.78)
Airline 79.50(1.27) | 71.8(0.64)
Navigate 52.40(4.17) | 50.03(4.08)
Trec 68.47(3.55) | 72.47(3.73)
Disaster 75.58(3.12) | 68.83(3.76)
MPQA 79.12(1.54) | 78.40(2.82)
SST2 91.32(1.27) | 78.06(7.04)
GSMSK (Test) 72.3(1.74) | 70.82(2.31)
GSMSK (Development) | 74.90(1.40) | 71.3(3.56)

Table 22: Llama3-8B: H; hypothesis for DLN1 vs. DLN1 Concatenating Meta Prompts

Dataset Name DLN1 DLN1 Concat Prompts
Subj 77.4(4.67) | 66.75(11.01)
Hyperbaton 81.04(2.52) | 76.0(2.80)
Airline 77.97(5.45) | 75.23(7.51)
Navigate 48.72(6.29) | 56.53(1.40)
Trec 64.70(12.9) | 57.07(5.47)
Disaster 74.97(1.15) | 59.33(8.03)
MPQA 86.3(2.41) | 73.73(9.59)
SST2 91.37(0.45) | 90.33(5.51)
GSMSK (Test) 44.37(3.34) | 42.26(2.7)
GSMS8K (Development) | 45.1(4.83) 43.2(2.3)

Table 23: Mistral-7B: H hypothesis for DLN1 vs. DLN1 Concatenating Meta Prompts

Dataset Name DLN1 DLN1 Concat Prompts
Subj 76.33(2.40) | 75.67(6.66)
Hyperbaton 81.87(2.24) | 75.23(1.26)
Airline 82.57(1.92) | 64.7(3.33)
Navigate 55.33(6.8) | 47.67(9.81)
Trec 69.93(3.59) | 47.07(0.02)
Disaster 75.3(2.34) 57.37(0.91)
MPQA 85.2(2.58) | 69.37(5.65)
SST2 91.87(1.70) | 90.33(5.51)
GSMBSK (Test) 50.93(4.25) | 48.26(2.7)
GSMS8K (Development) | 54.33(4.47) | 52.2(2.3)

Table 24: Mistral-7B: H; hypothesis for DLN1 vs. DLN1 Concatenating Meta Prompts
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Dataset Name DLN1 DLN1 Concat Prompts
Subj 61.07(3.41) | 54.67(2.63)
Hyperbaton 53.2(2.14) 48.47(0.41)
Airline 54.23(5.90) | 61.3(2.48)
Navigate 58.0(2.23) 58.0(3.23)
Trec 53.48(8.07) | 39.7(5.25)
Disaster 61.78(3.82) | 56.97(1.01)
MPQA 62.70(5.59) | 58.33(3.41)
SST2 80.07(3.58) | 72.33(3.10)
GSMSK (Test) 60.53(1.88) | 58.53(2.3)
GSMSK (Development) | 63.23(2.77) | 60.2(3.3)

Table 25: DeepSeek-R1-Distill-Qwen-1.5B: Hj hypothesis for DLN1 vs. DLN1 Concatenating Meta
Prompts

Dataset Name DLN1 DLN1 Concat Prompts
Subj 62.37(4.03) | 54.83(2.48)
Hyperbaton 55.20(2.88) | 53.27(3.83)
Airline 69.47(2.1) | 53.43(2.58)
Navigate 52.93(9.91) | 56.67(0.19)
Trec 49.8(5.26) | 43.8(5.62)
Disaster 59.27(3.32) | 55.87(7.54)
MPQA 71.07(9.43) | 59.68(4.67)
SST2 75.70(4.52) | 72.33(3.10)
GSMSK (Test) 49.78(6.71) | 47.53(5.32)
GSMSK (Development) | 51.73(7.82) | 49.2(4.83)

Table 26: DeepSeek-R1-Distill-Qwen-1.5B: H; hypothesis for DLN1 vs. DLN1 Concatenating Meta
Prompts
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Prompt Proposal Template B c*tFrompts for DLN1 Concat Prompts

template:

A student is completing a task that requires producing a text output from a text
input. The student receives an instruction that describes how to produce the output
given each input.

The student has made some errors. Your task is to improve the instruction such that
the student can fix the errors.

Here are the past iterations of the instruction.
## Instructions

> {{ past_prompts }}
[END] [> Comment: We concatenate all past meta prompts together here.

# Student successes

{% for backward_info in backward_infos %} {% if backward_info.loss == 0.0 %}
## Input:

> {{ backward_info.input }}

## Correct Output:

> {{ backward_info.target }}

{% endif %} {% endfor %}

# Student errors

{% for backward_info in backward_infos %} {% if backward_info.loss > 0.0 %}
## Input:

> {{ backward_info.input }}

## Student Output:

> {{ backward_info.output }}

## Correct Output:

> {{ backward_info.target }}

{% endif %} {% endfor %}

Improve the instruction to fix the student errors. {{ message }}
## Instruction
>
message_alternatives:
e Clarify the instruction by adding few words or a short sentence. Be concise.

e Improve the instruction by providing examples on how to solve the task. Be
concise.

e Shorten the instruction by removing superfluous words or sentences.

e Rewrite the instruction by providing detailed information to avoid ambiguity.
Be concise.

F.4 Optimized Prompts by Momentum Based Sampling

We use DLNI as a representative method and Llama3-8B as a representative model to illustrate
the impact of our momentum-based tokenwise sampling approach. The prompts generated using
this strategy consistently incorporate more detailed explanations and illustrative guidance compared
to those produced by non-momentum baselines. In this section, we present optimized prompts
across all tasks, highlighting how momentum-based tokenwise sampling yields qualitatively different
prompts from both human-written and original DLN1-generated prompts. We restrict the number
of maximum tokens to be generated by 100. For GSMS8k task, we restrict max generated tokens
to be 500 and the starting prompt is the default systematic prompt provided by DSPy [13]. Since
the hyperparameter for momentum parameter o = 0.6 seems to outperform other hyperparameters
settings for DLN1-Momentum, we only present prompts for DLN1-Momentum=0.6. For simplicity,
we only present prompts generated under Hy hypothesis.
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Approach Optimized Prompt Acc.
Human Classify the input text as subjective or objective. 0.491
DLNI1 1. Carefully read the input text. 2. Identify the type of language used 0.713
in the text. 3. Determine if the text includes words that express the
author’s opinion, emotion, or perspective. Look for words such as "[", "me",
"my", "we", "us", "our", "believe", "think", "feel", "opinion", "perspective",
"view", "attitude", "emotion", etc. If it does...
DLNI1-Momentum = 0.6  Classify each input text as subjective or objective. Subjective texts expressa  0.770

personal opinion, emotion, or experience.They often use words and phrases
like: - "I think", "I believe", "I feel", "my opinion", "my experience", "I
love", "I hate", etc. - Use of first-person pronouns (I, me, my) - Words
that describe emotions (e.g., beautiful, sad, excited) - Use of evaluative
language (e.g "smart and alert , thirteen conversations about one thing is a
small gem .

Table 27: Prompt comparison for the Subj task, showing human, DLN1, and DLN1-Momentum
prompts. Colored text highlights components such as Task Description, Term Clarification, Solution
Guidance. DLN1-Momentum improves the prompt by keeping the task description after iterative

refinement.
Approach Optimized Prompt Acc.
Human Which sentence has the correct adjective order. 0.750
DLNI1 1. Read the sentence carefully. 2. Identify the adjective(s) in the sentence. 0.816
3. Arrange the adjectives in the correct order: descriptive adjective (if
any), size adjective, color adjective, shape adjective, material adjective,
and finally the noun. 4. Check if the adjective order is correct for each
sentence. This improved instruction should help the student to identify and
fix the errors in the adjective order. The student can follow the steps and
learn to produce the correct output given each input.
DLNI1-Momentum = 0.6 1. Follow the correct order of adjectives: opinion, size, shape, material, 0.872

color, and origin. 2. Start with an opinion adjective if it is present. If not,
start with a size adjective. 3. Then, add a shape adjective, followed by a
material adjective, a color adjective, and finally, an origin adjective. 4. If
an adjective is missing, leave a space for it. 5. Remember, each adjective
should be separated by a space.

Table 28: Prompt comparison for the Hyperbaton task, showing human, DLNI1, and DLN1-
Momentum prompts. Colored text highlights components such as Task Description, Term Clar-
ification, Solution Guidance and Priority/Emphasis.
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Approach

Optimized Prompt

Acc.

Human

DLNI1

DLNI1-Momentum = 0.6

Read the following sentence, then choose whether it is positive, negative,
or neutral.

1. Read the sentence carefully. 2. Identify the tone of the sentence. 3.
Determine if the tone is positive, negative, or neutral. 4. Write the correct
output (positive, negative, or neutral) based on your analysis. Additional
Tips: - Pay attention to the words used in the sentence, such as "thanks", "I

love", "good", "bad", "happy", "sad", etc. - Look for phrases that indicate a
problem or issue.

1. Read the tweet carefully and identify the key phrases, words, or sen-
tences that convey the sentiment. 2. Determine if the tweet is expressing a
positive, negative, or neutral sentiment. 3. Consider the tone and language
used in the tweet. 4. Identify the correct output by classifying the senti-
ment as positive, negative, or neutral. 5. Remember, even if the tweet is
mentioning a specific airline, the sentiment expressed may not necessarily
be about the airline itself.

0.701

0.802

0.817

Table 29: Prompt comparison for the Airline task, showing human, DLN1, and DLN1-Momentum
prompts. Colored text highlights components such as Task Description, Term Clarification, Solution
Guidance and Priority/Emphasis. DLN1-Momentum improves the prompt quality by inferring the
training examples are tweets rather than sentence.

Approach

Optimized Prompt

Acc.

Human

DLN1

DLNI1-Momentum = 0.6

Read the following question, then choose whether it is about a description,
entity, expression, human, location or number.

1. Read the question carefully and identify the main topic. 2. Determine if
the topic is a person, place, thing, or idea. 3. Ask yourself if the topic is a
living thing (human, animal, or plant), a location, a concept, an object, or an
event. 4. Choose the correct category (human, location, entity, description,
expression, or number) from the options. 5. Write the chosen category as
the output.

1. Read the question carefully and identify the type of information being
asked. 2. Determine whether the question is seeking: * A specific quantity
(number) * A person’s name or a group of people (human) * A concept, ex-
pression, or idea that is not a person (entity) * A description or explanation
of something (description) * A location or geographical area (location) 3.
Use the guidelines to categorize the correct output type for each problem.

0.451

0.586

0.772

Table 30: Prompt comparison for the Trec task, showing human, DLN1, and DLN1-Momentum
prompts. Colored text highlights components such as Task Description, Term Clarification, Solution
Guidance and Priority/Emphasis. DLN1-Momentum improves the prompt by presenting a description
for each type of answer for Term Clarification
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Approach

Optimized Prompt

Acc.

Human

DLN1

DLNI1-Momentum = 0.6

Read the following sentence, then choose whether it is relevant to a disaster.

Read the following sentence carefully and decide whether it is relevant to
a disaster. Look for information in the sentence that indicates a potential
catastrophe or serious harm to people, property, or the environment. If
the sentence is about a disaster or could be related to one, answer "yes".
Otherwise, answer "no". Remember, the focus is on disasters and the
potential harm they can cause.

Read the sentence carefully and determine if it’s relevant to a disaster
or crisis, such as a natural disaster, accident, or serious event. Ignore
any non-disaster related information, such as personal opinions, jokes,
or advertisements. Consider only the main topic or event mentioned in
the sentence. If the sentence is about a disaster or crisis, answer "yes",
otherwise, answer "no".

0.621
0.725

0.807

Table 31: Prompt comparison for the Disaster task, showing human, DLN1, and DLN1-Momentum
prompts. Colored text highlights components such as Task Description, Term Clarification, Solution
Guidance and Priority/Emphasis. DLN1-Momentum improves the prompt by providing longer
Solution Guidance and more detailed Term Clarification on disaster descriptions.

Approach

Optimized Prompt

Acc.

Human

DLNI1

DLN1-Momentum = 0.6

Read the following review, then choose whether it is negative or positive.

Read the review and identify whether it is a negative or positive review
based on the language used. Consider the tone and the words used in the
review. Determine if the review uses words that convey a sense of disap-
proval, criticism, or negativity. If the review uses words that convey a sense
of approval, praise, or positivity, then the review is positive. Conversely, if
the review uses words that convey a sense of disappointment, frustration,
or dissatisfaction, then the review is negative.

1. Read the review carefully and identify the words or phrases that convey
a positive or negative sentiment. 2. Consider the meaning of the words
or phrases in the context of the review. 3. Determine if the overall tone
of the review is positive or negative. 4. If you’re unsure, look for specific
words or phrases that clearly indicate a positive or negative sentiment. 5.
Write your answer as “positive’ or "negative’.6. Make sure to consider the
context.

0.785
0.810

0.856

Table 32: Prompt comparison for the Mpqa task, showing human, DLN1, and DLN1-Momentum
prompts. Colored text highlights components such as Task Description, Term Clarification, Solution
Guidance and Priority/Emphasis. DLN1-Momentum generates prompts with assertive tone Emphasis
on answering the question.
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Approach

Optimized Prompt

Acc.

Human

DLNI1

DLNI1-Momentum = 0.6

Classify the input text as positive or negative.

1. Read the input text carefully. 2. Determine the overall tone of the text.
3. Classify the tone as positive, negative, or neutral. If the text expresses a
positive sentiment, such as praise, admiration, or enthusiasm, classify it
as positive. If the text expresses a negative sentiment, such as criticism,
dislike, or frustration, classify it as negative. If the text does not express a
clear sentiment, classify it as neutral. 4. Write the corresponding output.

1. Read the input text carefully and identify the main idea or sentiment
expressed. 2. Determine whether the text expresses admiration, criticism,
or a neutral opinion. If it expresses admiration, write "positive". If it
expresses criticism, write "negative". If it is neutral, write "neutral". 3. Be
cautious not to misinterpret the text, especially when it uses sarcasm or
irony. 4. Practice reading between the lines and considering the tone and
context of the text.

0.840
0.922

0.935

Table 33: Prompt comparison for the SST2 task, showing human, DLN1, and DLN1-Momentum
prompts. Colored text highlights components such as Task Description, Term Clarification, Solution
Guidance and Priority/Emphasis. DLN1-Momentum generates prompts with more direct and accurate

Solution Guidance
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Approach Optimized Prompt Acc.

Human Your input fields are: 1. ‘question‘ (str) Your output fields are: 1. ‘reasoning‘ 0.6
(str) 2. ‘answer® (str) All interactions will be structured in the following
way, with the appropriate values filled in. [[ ## question ## ]] question [[ ##
reasoning ## |] reasoning [[ ## answer ## ]] answer [[ ## completed ## ]]
In adhering to this structure, your objective is: Given the fields ‘question®,
produce the fields ‘answer*.

DLN1 Your task is to write a text output given a text input. The input will be  0.69
in the format of a question, and you need to produce a reasoning and an
answer. The structure of the output is: [[ ## question ## ]] question [[ ##
reasoning ## ]] reasoning [[ ## answer ## ]] answer To complete this task,
you will need to follow these steps: 1. Read the input question carefully. 2.
Understand what is being asked and what information is needed to solve the
problem. 3. Write a clear and concise reasoning for your answer. Make sure
your reasoning is logical and easy to follow. 4. Calculate the answer based
on the given information. 5. Write the answer in the format of a sentence or
a number. Remember to use proper mathematical operations and follow the
given instructions carefully. If you are unsure about any step, you can try
breaking it down into smaller parts or using a calculator to help you with the
calculation. Also, double-check your answer to ensure it is reasonable and
accurate. By following these steps, you should be able to produce accurate
and well-structured outputs for the given inputs. Good luck!

DLNI1-Momentum =0.6 1. ‘question‘ (str) - Your output fields are: - 1. ‘reasoning‘ (str) - 2. 0.81
‘answer* (str) - All interactions will be structured in the following way,
with the appropriate values filled in. [[ ## question ## ]] question [[ ##
reasoning ## ]] reasoning [[ ## answer ## |] answer [[ ## completed ## ]] -
In adhering to this structure, your objective is: - Given the input ‘question’,
produce the fields ‘answer* by applying logical and mathematical operations
to the provided information. - Ensure that your output is accurate and
well-supported by your reasoning. - Note: - For calculations involving
percentages, ratios, and proportions, use decimal equivalents. For example,
10% can be converted to 0.1. - For questions involving time, ensure accurate
calculations of time periods and convert them to the required units. For
example, if a time period is given in hours, convert it to days or minutes
as needed. - Check your units and make sure they match the required
units in the problem. - By following these guidelines, you will be able to
produce accurate and well-supported answers. - Remember to: - Clearly
explain your steps in the ‘reasoning* field. - Provide accurate calculations
and assumptions. - Avoid ambiguity in your answers. - Ensure that your
answer is concise and easy to understand. - For the ‘answer* field, provide
the numerical value or solution to the problem. - For the ‘reasoning* field,
provide a clear and concise explanation of your steps and calculations. -
In the ‘completed field, indicate that your task is finished and your output
is ready for review. - By following these guidelines and the structure
provided, you will be able to produce accurate and well-supported answers.
- Note: - If you are unsure about any part of the problem or calculation, it
is recommended that you review the problem and recalculate your answer
before submitting it. - It is also important to double-check your units and
ensure that they match the required units in the problem. - If you have any
questions or concerns, please don’t hesitate to ask for help.

Table 34: Prompt comparison for the GSM8K(test) task, showing human, DLN1, and DLNI1-
Momentum prompts. Colored text highlights components such as Task Description, Term Clarifica-
tion, Solution Guidance and Priority/Emphasis. Prompts generated by DLN1-Momentum are more
detailed, structured, and pedagogically grounded, often mixing Solution Guidance and Priority/Em-
phasis to better support task completion and reduce ambiguity.
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F.5 Iterative Workflow with Momentum based sampling

To illustrate the effectiveness of our momentum sampling module as an enhancement to the vanilla
TextGrad framework, we use DLNI1 as a representative method. We report all meta prompts generated
by both DLN1 and DLN1-Momentum (= 0.6) throughout the iterative optimization process on the
subjective classification task. Specifically, we present the evolving meta prompts—defined as the
best-performing prompts selected from a candidate pool at each iteration. Only the changing meta
prompts are shown under the H; setting, where the prompt generation temperature is set to 1.1 and
early stopping is triggered if the best test accuracy does not improve over 5 consecutive iterations.

Compared to the standard DLN1 framework, DLN1-Momentum= 0.6 demonstrates a more gradual
and stable improvement in test set accuracy across iterations. While DLN1 achieves a rapid per-
formance boost in early iterations—jumping from 0.491 to 0.750 at iteration 1—its accuracy gains
begin to plateau shortly thereafter. In contrast, DLN1-Momentum exhibits a slower but smoother
trajectory, progressing from 0.491 to 0.66 in the first iteration and gradually increasing to 0.856 by
iteration 5. This extended optimization process allows the momentum-based approach to explore
a wider space of meta prompts and refine them more cautiously. As a result, DLN1-Momentum
tends to converge toward stronger final prompts with higher accuracy, suggesting that the momentum
mechanism effectively stabilizes prompt updates and reduces premature convergence on suboptimal
prompt candidates.

Meta Prompt # Meta Prompt Test Acc.
0 Classify the input text as subjective or objective. 0.491
1 For each input text, classify whether the statement is a fact (objective) or an 0.750

opinion/emotion (subjective). If the statement is describing a situation, event,
or thing, it is likely an objective statement. If the statement is expressing a
personal view, feeling, or evaluation, it is likely a subjective statement. Consider
the language used, tone, and context to make your decision. Pay attention to

neomon non

words such as "is", "seems", "feels", "right", and "wrong."

2 1. Read the input text carefully. 2. Identify whether the text describes a 0.756
situation, event, or thing (objective) or expresses a personal view, feeling, or
evaluation (subjective). 3. Pay attention to words like "is," "seems," "feels,"

"right," and "wrong." 4. Consider the language used and the context in which it
is used.

3 1. Read the input text carefully. 2. Identify whether the text describes a situation, 0.8125
event, or thing (objective) or expresses a personal view, feeling, or evaluation
(subjective). Pay attention to words like "is," "seems," "feels," "right," and
"wrong." 3. Consider the language used and the context in which it’s used.

non

4 1. Read the text carefully. 2. Determine whether the text is describing a 0.825
situation, event, or thing (objective) or expressing a personal view, feeling,
or evaluation (subjective). Pay attention to words like "is," "seems," "feels,"
"right," and "wrong." 3. Use context clues like language, tone, and the presence
of emotions to help determine the text type.

Table 35: DLNI1 Iterative Prompt Workflow for Subj Task
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Meta Prompt #

Meta Prompt

Test Acc.

0
1

Classify the input text as subjective or objective.

1. Read the input text carefully. 2. Determine if the text is describing an
opinion, a feeling, or an evaluation about something. If it is, classify it as
subjective. If it is describing a fact, situation, or event without expressing a
personal opinion, classify it as objective. 3. Check if the text includes words
or phrases that indicate an evaluation, such as "good", "bad", "interesting",
"amazing", or phrases that express a personal point of view

1. Read the input text carefully and identify the purpose of the text. 2. Ask
yourself, "Is the text giving information about a fact, situation, or event without
expressing a personal opinion?" If yes, classify it as objective. If not, consider
whether the text is expressing an evaluation, opinion, or personal point of view.
3. Look for words or phrases that indicate an evaluation, such as "good", "bad",

"interesting", "amazing", or phrases that

1. Read the text carefully and identify the purpose of the text. Does the
text present a fact, situation, or event without expressing a personal opinion?
Look for words or phrases that indicate an evaluation, such as "good", "bad",
"interesting", or phrases that imply a subjective perspective. 2. Ask yourself,
"Is the text describing a situation or event without making a value judgment?"
If yes, classify it as objective. If not, consider whether the text is expressing an
evaluation

1. Determine whether the text presents a fact, situation, or event without
expressing a personal opinion. Look for words or phrases that indicate an
objective description, such as "the film is a comedy" or "the main character is
awoman". 2. Check for words or phrases that imply a subjective perspective,
such as "good", "bad", "interesting", or "brilliant". 3. Ask yourself, "Does the
text describe the event or situation without expressing an opinion?"

1. Determine whether the text presents a fact, situation, or event without
expressing a personal opinion. Look for objective words or phrases that describe
a description, such as "the film is a comedy" or "the main character is a woman".
Avoid subjective words or phrases that convey a personal perspective, such as
"good", "bad", "interesting", or "brilliant". If you find a subjective phrase, it
likely expresses an opinion and is not a simple fact or description.

0.491
0.66

0.78

0.8

0.85

0.856

Table 36: DLN1-Momentum=0.6 Iterative Prompt Workflow for Subj Task

38



	Introduction
	Preliminaries and Related Work
	Test-time Scaling of Data for TGD and TSGD
	Test-time Scaling of Training Data for Full-batch TGD
	Test-time Scaling of Batch Size for TSGD

	Textual Stochastic Gradient Descent with Momentum
	Experiments
	Experiment Setup
	Main Results
	Additional Studies

	Conclusion and Discussion
	Extended Related Works
	Automatic Prompt Engineering Workflow
	Synthetic Text Generation

	Additional algorithm details
	Illustration of Momentum Sampling (Case 1)
	Theoretical Justification
	More Experiment Details
	Task Description
	Prompt Initialization
	Templates
	Implementation Details
	Runtime

	More Experiments
	Results for Deepseek 1.5B Models
	Result Tables for  Figure 5
	Various Momentum Interpretations
	Optimized Prompts by Momentum Based Sampling
	Iterative Workflow with Momentum based sampling


