
QuIP#: Even Better LLM Quantization with
Hadamard Incoherence and Lattice Codebooks

Albert Tseng * 1 Jerry Chee * 1 Qingyao Sun 2 Volodymyr Kuleshov 1 Christopher De Sa 1

Abstract
Post-training quantization (PTQ) reduces the
memory footprint of LLMs by quantizing their
weights to low-precision. In this work, we in-
troduce QuIP#, a weight-only PTQ method that
achieves state-of-the-art results in extreme com-
pression regimes (→ 4 bits per weight) using three
novel techniques. First, QuIP# improves QuIP’s
(Chee et al., 2023) incoherence processing by us-
ing the randomized Hadamard transform, which
is faster and has better theoretical properties. Sec-
ond, QuIP# uses vector quantization to take ad-
vantage of the ball-shaped sub-Gaussian distri-
bution that incoherent weights possess: specif-
ically, we introduce a set of hardware-efficient
codebooks based on the highly symmetric E8

lattice, which achieves the optimal 8-dimension
unit ball packing. Third, QuIP# uses fine-tuning
to improve fidelity to the original model. Our
experiments show that QuIP# outperforms ex-
isting PTQ methods, enables new behaviors in
PTQ scaling, and supports fast inference. Our
code can be found at https://github.com/
Cornell-RelaxML/quip-sharp.

1. Introduction
Large language models (LLMs) have driven rapid advances
across diverse fields such as natural language processing
(Touvron et al., 2023b), scientific modeling (Nguyen et al.,
2023), and program synthesis (Rozière et al., 2024). How-
ever, the massive size of these models poses significant chal-
lenges to their deployment. For example, the largest model
in the Llama 2 family has 70B parameters, and requires
140GB of GPU memory in native 16-bit precision (Touvron

*Equal contribution 1Department of Computer Science, Cor-
nell University 2Department of Operations Research and In-
formation Engineering, Cornell University. Correspondence
to: Albert Tseng <albert@cs.cornell.edu>, Jerry Chee <jer-
rychee@cs.cornell.edu>.

Proceedings of the 41 st
International Conference on Machine

Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Model Size (Bits)

W
ik

ite
xt

2
P

er
pl

ex
ity

 (c
tx

 4
09

6)

3

4

5

6

7

5E+10 1E+11

QuIP# 2 Bit

QuIP# 3 Bit

QuIP# 4 Bit

AQLM ~2 Bit

Theoretical Lossless (FP16) 4 Bit

QuIP 2 Bit

Figure 1. QuIP# offers unprecedented quantization quality at ex-
treme compression ratios. QuIP# 3-bit models also scale better
than theoretically lossless 4-bit models, a previously unseen result.

et al., 2023b). This massive memory footprint motivates re-
search into lossless LLM compression methods.

Post-training quantization (PTQ) linearly reduces the mem-
ory footprint of models by storing trained weights with
less precision. For example, Llama 2 70B only requires
< 20GB of memory when quantized to 2 bits. This not only
lets large models fit on smaller devices, but also enables
faster throughput in memory bound settings such as autore-
gressive decoding. However, existing quantization meth-
ods either do not scale to extreme compression ratios (Shao
et al., 2024) or have expensive decoding schemes (Egiazar-
ian et al., 2024), motivating the development of both good
and fast PTQ methods.

In this work, we introduce QuIP#, a weight-only PTQ
method that achieves a new state-of-the-art in model quan-
tization. QuIP# improves over existing work via three
techniques: incoherence processing, lattice codebooks, and
fine-tuning. Incoherence processing is a principled form
of outlier suppression that produces approximately Gaus-
sian distributed weight matrices (Chee et al., 2023). QuIP#

1

ar
X

iv
:2

40
2.

04
39

6v
2

 [c
s.L

G
]

4
Ju

n
20

24

https://github.com/Cornell-RelaxML/quip-sharp
https://github.com/Cornell-RelaxML/quip-sharp

QuIP#

Original
Model

Fine-TuningWeights Hadamard
Transform

Lattice Code Compressed
Model

Figure 2. QuIP# performs incoherence processing with a Randomized Hadamard Transform and uses lattice codebooks to achieve state-
of-the-art quantized models.

performs incoherence processing with the computationally-
efficient randomized Hadamard transform (Halko et al.,
2011) (Section 3). To quantize incoherent matrices, QuIP#
uses the BlockLDLQ block adaptive rounding algorithm
with compressible codebooks based on the E8 lattice, which
achieves the highest density 8 dimensional unit-ball pack-
ing (Viazovska, 2017) (Section 4). The E8 lattice is highly
structured and symmetric, allowing our codebooks to be
hardware-friendly and admit fast inference. Finally, QuIP#
includes an inter-layer fine-tuning algorithm that further im-
proves quantization quality (Section 5).

QuIP# significantly outperforms existing PTQ methods in-
cluding OmniQuant (Shao et al., 2024), QuIP (Chee et al.,
2023) (a previous, separate work), and AQLM (Egiazarian
et al., 2024). To the best of our knowledge, QuIP# is also
the first PTQ method where 3-bit models scale better than
4-bit models. This directly refutes Dettmers & Zettlemoyer
(2023)’s claim that 4-bit models are “optimal” and indicates
that as the field of PTQ develops, 2-bit models are likely to
scale better than 3-bit models in the near future. Moreover,
QuIP# was designed from the ground up to be fast. Algo-
rithm 2 describes fast inference with a QuIP#-quantized
linear layer. Our “proof of concept” CUDA implementation
of QuIP# achieves over 50% of peak memory bandwidth
on a NVIDIA RTX 4090, validating our design choices.

In summary, we introduce QuIP#, a post-training quanti-
zation method that achieves state-of-the-art results by

1. Performing incoherence processing with the Random-
ized Hadamard Transform, which has better incoher-
ence properties and faster runtime than the Kronecker
factorization in QuIP.

2. Rounding incoherence-processed weight matrices with
block adaptive rounding and codebooks based on the
E8 lattice, which achieves the highest 8-dimension unit
ball packing density (kissing number).

3. Introducing an inter-layer fine-tuning algorithm that
further improves quantization quality.

Algorithm 1 QuIP# without Fine-Tuning (QuIP#-NoFT)
input Weight W ↑ Rm→n, hessians H ↑ Rn→n, g-dim. k-

bit codebook C
Ŵ , Ĥ, SU , SV ↓ IP-RHT(W,H) (Alg. 3)
Ŵ ↓ BlockLDLQ(Ŵ , Ĥ, C) (Sec. 4.1)

output Ŵ , SU , SV

Algorithm 2 QuIP# Inference (for a Linear Layer)

input Ŵ , SU , SV from Alg. 1, g-dim. k-bit codebook C,
input x ↑ Rn.
y ↓ Had(SV ↔ x) where Had performs

an orthogonal Hadamard transform (Sec. 3)
y ↓ decompress_multiply(Ŵ , C, y)
y ↓ Had(SU ↔ y)

output y

2. Background / Related Work
2.1. Compressing LLMs

A large body of work has focused on compressing LLMs, as
doing so can directly benefit LLM inference at scale. Meth-
ods such as pruning, quantization aware training (QAT), and
post-training quantization (PTQ) all focus on different ar-
eas of this problem and are not strictly orthogonal to each
other. Pruning removes weights from models while preserv-
ing model quality and inference performance (Chee et al.,
2022; Sun et al., 2023). QAT focuses on training models that
are more “quantizable” but usually requires training mod-
els from scratch (Nagel et al., 2022; Xi et al., 2023). PTQ,
which QuIP# falls under, instead quantizes pre-trained

models. PTQ requires less compute than QAT and achieves
competitive performance (Chee et al., 2023; Frantar et al.,
2023; Shao et al., 2024; Egiazarian et al., 2024). For the
rest of this paper, we focus on PTQ.

2.2. Quantization and Adaptive Rounding

In QuIP#, we follow existing state-of-the-art PTQ methods
and round weights to minimize the per-layer proxy loss, as

2

QuIP#

formalized by Nagel et al. (2020):

ω(Ŵ) = Ex

[
↗(Ŵ ↘W)x↗2

]
(1)

= tr

(
(Ŵ ↘W)H(Ŵ ↘W)

T

)
. (2)

Here, W ↑ Rm→n is the original weight matrix in a linear
layer, Ŵ ↑ Rm→n are the quantized weights, x ↑ Rn is an
input vector drawn uniformly at random from a calibration
set, and H = Ex[xxT

] is a proxy Hessian. This intra-layer
formulation makes quantization tractable for LLMs. One
way to minimize ω is to use adaptive rounding methods that
iteratively round weight matrices by considering the current
rounding error for that specific matrix. For example, the
LDLQ1 rounding algorithm iteratively rounds rows of model
weights using linear feedback from quantization error of
already rounded rows. LDLQ is optimal within the class
of adaptive rounding methods with linear feedback and
offers provably better error rates than nearest or stochastic
rounding (Chee et al., 2023).

2.3. Incoherence Processing

Multiple works have observed that outliers in model acti-
vations and weights can hinder quantization quality, moti-
vating methods that “suppress” outliers during quantization.
For example, AWQ (Lin et al., 2023) scales model weights
by information from activations and OmniQuant (Shao et al.,
2024) uses simple learnable model-preserving transforma-
tions. However, these heuristic-based approaches tend to
fail at lower bitrates.

Instead, in QuIP, Chee et al. (2023) proposed that incoher-

ence is important for LLM quantization. Informally, inco-
herent matrices have concentrated entry magnitudes—ruling
out outliers. In LLMs, incoherent weight and Hessian matri-
ces mean that both the thing being rounded (weights) and
important rounding directions (Hessians) are not too large
in any coordinate. This enables quantization with provably

bounded error.

Definition 2.1 (Chee et al. (2023)). A Hessian H ↑ Rn→n

is µ-incoherent if its eigendecomposition H = Q!QT has

maxi,j |Qij |= maxi,j |eTi Qej |→ µ/
≃
n.

A weight matrix W ↑ Rm→n is µ-incoherent if

max
i,j

|Wij |= maxi,j |eTi Wej |→ µ↗W↗F /
≃
mn.

To exploit incoherence, Chee et al. (2023) introduced inco-

herence processing as a part of their quantization method
1OPTQ (Frantar et al., 2023) and QuIP independently intro-

duced alternative formulations of this rounding method, and QuIP
showed them to be equivalent. LDLQ is the name given by QuIP.

QuIP. QuIP’s incoherence processing works by conjugat-
ing W and H by structured random orthogonal matrices.
Specifically, QuIP constructs orthogonal matrices U ↑
Rm→m and V ↑ Rn→n via a Kronecker product by draw-
ing uniform random orthogonal matrices U1, U2 (of sizes
about

≃
n), V1, and V2 (of sizes about

≃
m) and setting

U = U1 ⇐ U2 and V = V1 ⇐ V2. If we assign H̃ ↓
V HV T and W̃ ↓ UWV T , H̃ and W̃ become Õ(1)-
incoherent with high probability (see their Lemma 5). Note
that this transformation preserves the proxy objective, as
tr
(
(UWV T

)(V HV T
)(VWTUT

)
)
= tr

(
WHWT

)
. Af-

ter quantizing the transformed weight matrix W̃ using H̃ ,
during inference, QuIP-quantized models transform model
activations x with V and UT to compute

UT
(quantized(W̃)(V x)) ⇒ UT

(W̃ (V x)) = Wx.

These structured orthogonal multiplies by a Kronecker prod-
uct lead to a runtime overhead of ”(n

≃
n+m

≃
m), which

is small relative to the ”(mn) cost of the multiply by W .

Incoherence processing can be seen as a principled alterna-
tive to more complicated and heuristic methods for outlier
suppression. Methods such as grouping and keeping outliers
in FP16 require extra storage and can negatively impact per-
formance. For example, using a 16 bit scale per group of 64
weights requires an extra 0.25 bits per weight. This increase
is significant in extreme compression regimes, whereas in-
coherence processing has minimal inference overhead and
allows more bits to be spent on actually quantizing model
weights. Alternatively, keeping outliers in high precision re-
quires storing unstructured high precision matrices, which
are slow to multiply by.

2.4. Vector Quantization

Prior PTQ works have focused on quantizing each scalar
weight Wij individually, amounting to scalar quantization
(SQ) (Chee et al., 2023; Lin et al., 2023; Shao et al., 2024).
However, SQ is subotimal as it ignores the shape of the
source distribution. Vector quantization (VQ) instead quan-
tizes a group of d weights together as a d dimensional vec-
tor. In k-bit VQ, a vector is quantized to one of 2kd vectors
↑ Rd that form a 2kd ⇑ d codebook C. By shaping C to the
source distribution of W , VQ can achieve lower distortion
than SQ, with higher d enabling better shaping (Kostina &
Verdú, 2011).

However, VQ has exponential cost in both the bitrate and
vector dimension. As such, VQ can be expensive and can
have limited distortion gains over SQ due to practical con-
straints on d. For example, for fast inference on GPUs, C
must fit in L1 cache even after bank conflicts (32⇑ dupli-
cation). This means that kd can be at most ⇒ 10 for an un-
structured C. In QuIP#, we mitigate these issues by using a
highly structured 2-bit codebook based on the 8D E8 lattice,

3

QuIP#

Algorithm 3 Incoherence Processing with RHT (IP-RHT)
input W ↑ Rm→n, H ↑ Rn→n

Sample sign vectors SV ⇓ U{±1}n, SU ⇓ U{±1}m
Ŵ ↓ Had(diag(SU)Had(diag(SV)WT

)
T
) where

Had is the Hadamard transform (sec. 3)
Ĥ ↓ Had(diag(SV)Had(diag(SV)H)

T
)

output Ŵ , Ĥ, SU , SV

E8P. E8P achieves kd = 16 but can be compressed 256⇑,
allowing it to fit in GPU cache.

2.5. Fine-Tuning vs. Quantization Aware Training

Fine-tuning (FT) for LLM PTQ was introduced in AQLM
(Egiazarian et al., 2024) as a tractable way to capture inter-
layer interactions. As presented in AQLM and here, fine-
tuning is essentially a hybrid method between pure PTQ and
full QAT that requires significantly less data and compute
than full QAT. With QuIP#, fine-tuning generally matches
the performance of QAT, with the caveat that QAT for LLMs
is a relatively underexplored area. For example, with some
extrapolation, LLM-QAT (Liu et al., 2023) 4 bit (4-16-16)
performs around the same as QuIP# 4 bit with or without
FT. However, QuIP# can quantize a 70B parameter model
in a few hours on a single 8 GPU node while LLM-QAT
needs 960 GPU-hours to generate training data alone. Since
fine-tuning for PTQ is a very recent development, both the
methods presented here and in AQLM are almost certainly
not optimal. However, they serve to show that FT is a rel-
atively cheap way to achieve QAT-quality models, making
such an approach practical and promising.

3. Incoherence Processing with the
Randomized Hadamard Transform

In this section, we propose a way of improving the inco-
herence processing of QuIP by replacing the 2-factor Kro-
necker product by a Randomized Hadamard Transforma-
tion (RHT) (Halko et al., 2011). This change yields three
advantages: (1) the theoretical bound on the incoherence pa-
rameter µ is improved; (2) the asymptotic cost of multiply-
ing by the structured random orthogonal matrix is improved
from ”(n

≃
n) to ”(n log n); (3) the cost to multiply is fur-

ther reduced by a constant factor, since a Hadamard matrix
multiply can be performed without any floating-point multi-
plies as its entries are in {↘1,+1}. Additionally, we show
in Section 6.4 that this change by itself improves the per-
plexity of quantized LLMs.

Recall from section 2.3 that one way to efficiently perform
incoherence processing is to conjugate W and H by struc-
tured random orthogonal matrices. QuIP# uses the RHT,
which performs x ⇔ V Sx where V ↑ Rn→n is a Hadamard

matrix, S is a random sign vector {±1}n, and x ↑ Rn.
The RHT can be computed in O(n log n) time with the Fast
Walsh-Hadamard Transform (Fino & Algazi, 1976) when n
is a power of 2. We will temporarily assume that all dimen-
sions are powers of 2. Later in the section we will explain 2
methods for incoherence processing when the dimension is
not a power of 2.
Lemma 3.1. Let H be any positive semidefinite matrix on

Rn→n
and W any weight matrix on Rm→n

. Let U ↑ Rm→m

and V ↑ Rn→n
be orthogonal scaled Hadamard matrices.

Let SU ↑ Rm→m
and SV ↑ Rn→n

be random diagonal ma-

trices with independent diagonal elements drawn uniformly

from {↘1,+1}. Then for any ε > 0, V SV HSV V T
is µH -

incoherent with probability at least 1↘ε, and USUWSV V T

is µW -incoherent with probability at least 1↘ ε, where

µH =

√

2 log

(
2n2

ε

)
and µW = 2 log

(
4mn

ε

)
.

In QuIP (Chee et al., 2023), the 2-factor Kronecker approach
achieves µKron

W
= A2

log (4Cmn/ε)2, where A and C
are global constants independent of n and the number of
factors. QuIP#’s RHT achieves superior incoherence via a
log dependence on the matrix size rather that the Kronecker
method’s log-squared dependence. All of QuIP’s theory
analyzing the proxy loss in Eq. (1) still holds with the RHT,
with the improved incoherence rates propagating through.

Now, what about dimensions n that are not powers of 2?
In most cases, we can factorize n = pq where that p is the
largest power of 2 such that there exists a known Hadamard
matrix of size q. This allows us to construct V ↑ Rn→n

=

Hp ⇐ Hq where Hp and Hq are size p and q Hadamard
matrices, respectively. Then we can compute V Sx in
O(q2p log p) time, which is faster than the O(n(p+q)) time
of QuIP’s 2-factor Kronecker approach when p ↖ q. For ex-
ample, Llama 2 70B has intermediate dimension 28672 =

1024 ↙ 28; 1024 ↖ 28. Algorithm 3 describes how to per-
form incoherence processing with the RHT. Doing so re-
quires storing two sign vectors SU ↑ {±1}m and SV ↑
{±1}n. Since n,m ↖ 1000 for LLMs, SU and SV add less
than 0.01 bits per weight (see Section F.1 for more details).

While the Hadamard conjecture states that ∝Hk′k, 4 | k,
finding such Hadamard matrices is still an open problem
(Hedayat & Wallis, 1978). In cases when there does not
exist a factorization n = pq where ∝Hp, Hq, we present a
Randomized Fast Fourier Transform (RFFT) incoherence
processing algorithm with similar runtime and concentration
properties as the RHT. At a high level, the RFFT performs
incoherence processing with the Fast Fourier Transform
(FFT) (Cochran et al., 1967) and a random complex phase.
The RFFT only requires n to be even, which is much weaker
than the RHT’s restrictions on n. The RFFT is also useful
when there does exist a decomposition n = pq but p ∞↖ q,

4

QuIP#

resulting in reduced speedups over an ”(n
≃
n) algorithm.

The FFT itself is also well supported on a wide variety of
hardware, meaning that it may be easier to implement a fast
RFFT when adapting QuIP# to new hardware. In practice,
we find that the RFFT performs slightly worse than the RHT
but still achieves strong results (Table 1). We describe the
RFFT in detail in Section A.2 in the Appendix.

Table 1. RHT vs. RFFT incoherence processing using 2 Bit
QuIP# (no FT). WikiText2 perplexity (→), context length 4096.

INCOHERENCE 2-7B 2-13B 2-70B

HADAMARD 8.22 6.06 4.16
FOURIER 8.30 6.08 4.17

4. BlockLDLQ and Lattice Codebooks
It follows from the central limit theorem that RHT-
transformed weights follow a roughly ball-shaped Gaussian
distribution. However, rounding weights one at a time, as
QuIP does with its LDLQ, ignores this shaping—producing
a set of representable weight vectors that is shaped like a
hypercube rather than a ball. Vector quantization (VQ) lets
us shape codebooks to better match the source distribution.
VQ codebooks quantize multiple weights to a single code-
book entry, and we design the overall shape of our codebook
to better match the roughly ball shape of the RHT trans-
formed weights. In Section 4.1, we introduce BlockLDLQ,
which adaptively rounds blocks of weights with VQ. Within
BlockLDLQ’s VQ step, QuIP# uses the 2 bit E8P codebook
(Section 4.2). E8P is based on the E8 lattice, which achieves
the highest density unit ball packing in R8 (Viazovska,
2017). E8P achieves good shaping while enabling fast infer-
ence by only needing to look up from a 256⇑ 8 codebook.

4.1. Adaptive Rounding for Vector Quantization

Chee et al. (2023) formulated a class of adaptive round-
ing algorithms with linear feedback. These methods round
columns one at a time with linear feedback ak from the
already rounded columns. Specifically, columns of a
weight matrix W ↑ Rm→n are iteratively rounded for
k = 1, 2, . . . , n: Ŵk = Q(Wk + (W:(k↑1) ↘ Ŵ:(k↑1))ak),
where Wk is the k-th column of W , W:(k↑1) is the first
k ↘ 1 columns of W , Q performs nearest or stochastic
rounding, and ak ↑ Rk↑1. The resulting Ŵ satisfies Ŵ =

Q(W + (W ↘ Ŵ)U), where U ↑ Rn→n is a upper triangu-
lar matrix whose columns are ak and Q acts elementwise.

The LDLQ algorithm sets U to be LT ↘ I where H =

LTDL is the LDL decomposition of the proxy Hessian H .
From QuIP, we know that LDLQ is optimal within adaptive
rounding methods with linear feedback when rounding to
the integers. However, LDLQ does not work with vector
quantization, which rounds multiple columns together. Here,

we extend LDLQ to support vector quantization. Given a
block size g that evenly divides n, our block LDLQ is based
on a novel g-block LDL decomposition H = LTDL, where
L is a unit block lower triangular matrix (among the n2/g2

g ⇑ g blocks of L ↑ Rn→n, the n/g diagonal blocks are
all I and all blocks above the diagonal are 0), and D is a
block diagonal matrix.2 As before, we set U = LT ↘ I , and
round W in a block-wise fashion via

Ŵk = Q(Wk + (W:(k↑1) ↘ Ŵ:(k↑1))Ak),

where Ak ↑ Rn→g contains the k ↘ g + 1 through k-th
columns of U (the kth block), Wk similarly denotes the kth
block of W , and Q denotes a vector quantizer. As in the
original QuIP paper, we can bound the error of this method.
Theorem 4.1. Suppose that we round W ↑ Rm→n

using g-

block LDLQ with Hessian H , producing Ŵ . Suppose that

H is µ-incoherent, and that we use a (possibly stochastic)

vector quantizer Q that satisfies E[(Q(x) ↘ x)(Q(x) ↘
x)T] ∈ ϑ2I for any x ↑ Rg

. Then

E[tr((Ŵ ↘W)H(Ŵ ↘W)
T
)] → gmµ

2
ω
2

n
tr(H1/2

)
2.

Observe that under the same conditions, just quantizing all
blocks independently would yield E[tr((Ŵ ↘W)H(Ŵ ↘
W)

T
)] → gmϑ2

tr(H): this “improvement” from the trace
of H to the square of the trace of its square root divided by
n is the same factor achieved in the scalar case in QuIP.3

4.2. The E8P (“E8 Padded”) Codebook

BlockLDLQ relies on an internal vector quantization (VQ)
step Q that rounds a d-dimension (g in the previous section)
vector to a codebook C. To effectively apply VQ, C should
be shaped like the source distribution and have high packing
density. One way to improve shaping is by increasing d.
However, recall from Section 2.4 that to quantize a vector
v ↑ Rd to k bits with VQ, C must have size 2

kd ⇑ d.
Since the codebook size is exponential in both the vector
dimension and bitrate, VQ quickly becomes intractable at
high dimensions or bitrates.

In QuIP#, we introduce the novel 2-bit 8 dimensional E8P

codebook, which contains 2
16 entries but only requires

lookups into a 2
8-entry table, with the remaining 8 bits be-

ing used to store signs and shifts. E8P requires only 1KiB
of space and therefore fits in the L1 cache of any modern
GPU, even after duplicating for bank conflicts (32⇑). E8P

2It is straightforward to produce the g-block LDL decomposi-
tion from the Cholesky decomposition of H .

3The original QuIP paper also included multiple other technical
guarantees, including a bound that considers more rigorously the
“real” case of finite-sized codebooks. While these results could
also be generalized to the block-LDLQ case, we view this as not
providing much insight relevant to QuIP# beyond Theorem 4.1,
so (if desired) they are left as an exercise for the reader.

5

QuIP#

mitigates the scaling issues of VQ by taking advantage of
the structure and symmetries of the E8 lattice on which it is
based. The E8 lattice is composed of all-integer or all-half-
integer vectors in R8 whose sum is an even number, that is

E8 =
(
Z8 ∋

(
Z8

+
1
2

))
△
{
x | 1Tx is even

}
.

The construction of the E8P codebook starts with an equiv-
alent way to write E8 via the D̂8 lattice, where D̂8 ={
x ↑ Z8

+
1
2 | 1Tx is even

}
is the set of half-integer vec-

tors with even parity: here, E8 = D̂8∋ (D̂8+
1
2). It follows

that (D̂8 ↘ 1
4) ∋ (D̂8 +

1
4) = E8 +

1
4 is just a shifted copy

of E8 (keeping the same optimal packing density).

D̂8 has nice symmetry properties: flipping any (nonzero)
even number of signs of an element in D̂8, yields another
distinct element in D̂8. This means that if |D̂8| denotes
the set of elementwise absolute values of entries in D̂8,
then each element of D̂8 can be expressed (uniquely) as the
elementwise product of an entry s ↑ |D̂8| and a sign vector
of appropriate parity. So, if we start from some “source
codebook” of absolute entries S ▽ |D̂8|, we can use the 128
possible odd- or even-parity sign flips to generate a subset
of D̂8. Each entry in S is either an odd or even number of
flips away from an entry in D̂8, but not both. Thus, given
s ↑ S and 7 out of the 8 sign flips, we can infer the last one
from the parity of the 7 sign flips and s. This lets us use the
following pattern to store a 16-bit codeword in E8+

1
4 : 8 bits

for the entry in S, 7 bits for sign flips, and 1 bit to ± 1
4 . This

lets us decode a size 2
16 codebook by looking up into only

a size 2
8 codebook (S) and performing some operations.

All that remains is how to choose S: we set S to be the
227 elements of |D̂8| with norm →

≃
10 plus 29 “padding”

elements from |D̂8| with norm
≃
12 (see Section C.1). We

call this ball-shaped 2
16-entry lattice codebook “E8P.”

Figure 3 plots the elementwise MSE of quantizing a stan-
dard multivariate Gaussian to various k bit codebooks. Each
k-bit codebook consists of a d-dimensional base lattice inter-
sected with a ball to reach 2

kd points. The E8-based code-
books achieve lower MSEs than all other presented code-
books, including those based on the D4 lattice (the even-
parity vectors in Z4), which achieves the kissing number
in R4. This figure illustrates the importance of dimension
for vector quantization. Increasing the vector dimension
decreases the error for the half integer grid, as the result-
ing codebook is closer in shape to the source distribution.
Finally, while K-means on the source distribution would
achieve lower MSE (Lloyd, 1982), there are a number of
practical reasons why a K-means based codebook would be
less practical, including worse end-to-end empirical perfor-
mance. We discuss this more in Section C.3.

Figure 3. Minimum achievable elementwise MSE of quantizing a
Gaussian to various codebooks. E8-based codebooks outperform
other presented codebooks due to the underlying packing density
and high dimensionality of E8.

4.3. Scaling E8 to Higher Bitrates

The E8 lattice works well for low bitrates (e.g. 2 bits), but
quickly becomes intractable at higher bitrates due to code-
book size. In QuIP#, we use residual vector quantization
(RVQ) (Juang & Gray, 1982) to get the benefits of lattice
codebooks at higher bitrates. RVQ quantizes a vector x to p
bits with a set q of qi-bit codebooks (denoted RVQ(x, p, q)
where p =

∑
0↓i<|q| qi) by repeatedly quantizing the quan-

tization residual. That is, RVQ(x, p, q) =
∑

0↓i<|q| εi

where εi = Qqi

(
(x↘

∑
0↓j<i

εj)/si
)
· si, we let Qqi(·)

denote quantizing to a qi bit codebook, and si ↑ R. Using
RVQ, we can quantize to 4 bits by rounding with the 2 bit
E8P codebook twice. We can also quantize to 3 bits by using
the 2 bit E8P codebook and a 1-bit E8 codebook (elements
of E8 with norm → 2 and 15 elements of E8 with norm 4).
One could also use more advanced multi-codebook quanti-
zation approaches other than RVQ, but we found that RVQ
was sufficient to achieve strong quantization performance.

5. Fine-Tuning During Quantization
Recent works have suggested that inter-layer interactions
are important for lossless extreme quantization (Shao et al.,
2024; Egiazarian et al., 2024). Here, we employ a simple
fine-tuning algorithm that attempts to recover the original
unquantized model during quantization. Our fine tuning
method runs on a small development set and can be per-
formed in around 50 GPU-hours for a 70B parameter model.

First, we fine-tune within each transformer block by fine-
tuning unquantized layers to compensate for already-

quantized layers before quantization. This mitigates the acti-
vation error caused by an individual linear layer during quan-

6

QuIP#

Model Size (Bits)

W
ik

ite
xt

2
P

er
pl

ex
ity

3.5

4

4.5

5

5.5

6

6.5

7

5E+10 1E+11

QuIP# 2 Bit

QuIP# 3 Bit

QuIP# 4 Bit

Wikitext2 Perplexity vs Total Model Size (Bits), Llama 1

Figure 4. QuIP# scaling, Llama 1. Like Llama 2, QuIP# 3 bit
scales better than QuIP# 4 bit for Llama 1 models and QuIP# 2
bit scales similarly to higher bitrates.

tization, and can be parallelized across transformer blocks.
The idea of fine-tuning within a transformer block was pre-
viously proposed in Egiazarian et al. (2024); our methodol-
ogy differs in how we fine tune (before quantization) and
the set of tunable parameters. Second, after all linear layers
in the model are quantized, the remaining unquantized pa-
rameters are fine-tuned to minimize activation error over the
entire model. By optimizing the sign vectors as real vectors
instead of binary vectors in both steps, we allow the inco-
herence processing step to shape the weight matrix to the

codebook. While this means we must store the sign vectors
in FP16 instead of as bitvectors, the size of LLM matrices
means that the sign vectors still add less than 0.01 bits per
weight. We describe these steps in more detail in Section D.

6. Experiments
Our main experiments show the performance of QuIP# on
the Llama 1 (Touvron et al., 2023a) and 2 (Touvron et al.,
2023b) family of models. These models range in size from 7
billion to 70 billion parameters and offer good performance,
making them suitable for understanding how quantization
methods perform and scale. Additional results for other
models are available in the Appendix.

In Section 6.1, we compare QuIP# with recently published
weight-only PTQ methods. AWQ scales weights by activa-
tion magnitudes before quantizing to reduce outliers (Lin
et al., 2023). OmniQuant learns model-preserving layer-
wise transformations that reduce outliers per transformer
block (Shao et al., 2024). AQLM uses vector quantiza-
tion with learnable unstructured 8D codebooks (Egiazarian
et al., 2024)4. We report AQLM’s “1⇑ 16” numbers, which
amounts to using a single codebook with 2

16 entries ↑ R8

per linear layer. These codebooks each take up 1MiB of
4We report results from the Jan 11, 2024 ArXiv version.

space, making them too large to fit in the L1 cache of any
current GPU and thus preventing fast inference (see Table
6). Finally, we include QuIP (Chee et al., 2023) as a base-
line for the improvements in QuIP#.

We report WxA16 numbers for AWQ and OmniQuant from
the OmniQuant paper and AQLM numbers from AQLM.
We note that there are currently 2 methods for evaluating
perplexity: using the Llama 1 context length of 2048 or
using the model’s native context length (e.g. 4096 for Llama
2). OmniQuant and AWQ use 2048 for Llama 2 while
AQLM uses 4096; we report both sets of numbers. We also
note that AQLM paper reports QuIP# numbers from an
outdated version of QuIP#; the numbers here represent the
latest QuIP# numbers. Finally, we bold numbers in our
tables when they are clearly better, such as a smaller model
matching or outperforming a larger model or a similar sized
model significantly outperforming another model.

6.1. QuIP# on Llama Models

Table 2 shows a comparison of QuIP# with OmniQuant,
AWQ, and QuIP# without fine tuning and E8P, with con-
text length 2048. QuIP# offers a paradigm shift in quanti-
zation quality over OmniQuant and AWQ. Notably, while
AWQ falls apart at even 2.15 bits (Shao et al., 2024) and
OmniQuant produces unusable models at 2 bits, QuIP#
produces high quality models that are close to OmniQuant
3 bit models. Table 2 also shows the importance of inco-
herence processing. QuIP# without fine-tuning or lattice
codebooks significantly outperforms OmniQuant and AWQ,
which both rely on heuristics to reduce model outliers dur-
ing quantization.

Table 4 shows a comparison of QuIP# with AQLM with
context length 4096. At 2 and 3 bits, QuIP# either signifi-
cantly outperforms similar-sized AQLM models or achieves
similar performance with a smaller model5. At 4 bits, both
methods perform similarly. This is not surprising as state-of-
the-art 4 bit models are all very close to FP16 performance.
Furthermore, the QuIP# 3 and 4 bit results presented in this
paper use residual vector quantization; one could potentially
achieve better numbers with more advanced multi-codebook
quantization approaches.

Table 3 shows zeroshot results for QuIP#, AQLM, and
OmniQuant. Both AQLM and QuIP# signficantly outper-
form OmniQuant, which correlates with the perpelxity re-
sults. AQLM and QuIP# both perform very close to FP16
at higher bitrates and for larger models, but QuIP# tends to
outperform AQLM at lower bitrates and model sizes. We
note that zeroshot tasks have an element of randomness and
even FP16 numbers can disagree by up to 0.5%.

5In our experience, at extreme quantization levels, even 0.1 bits
can make a significant difference in quantization quality.

7

QuIP#

Table 2. Llama 1 & 2 Wikitext2 and C4 perplexity (→), context length 2048.
WIKITEXT 2 C4

METHOD BITS 1-7 1-13 1-30 1-65 2-7 2-13 2-70 1-7 1-13 1-30 1-65 2-7 2-13 2-70

FP16 16 5.68 5.09 4.10 3.53 5.47 4.88 3.32 7.08 6.61 5.98 5.62 6.97 6.47 5.52
AWQ 4 6.08 5.34 4.39 3.76 6.15 5.12 - 7.52 6.86 6.17 5.77 7.68 6.74 -

OMNIQ 4 5.86 5.21 4.25 3.71 5.74 5.02 3.47 7.34 6.76 6.11 5.73 7.35 6.65 5.65
QUIP# NO FT & NO E8 4 5.83 5.20 4.23 3.63 5.66 5.00 3.42 7.25 6.70 6.06 5.68 7.17 6.59 5.59

QUIP# 4 5.76 5.17 4.18 3.60 5.56 4.95 3.38 7.18 6.67 6.03 5.66 7.07 6.54 5.56
AWQ 3 11.9 7.45 10.0 5.21 24.0 10.5 - 13.3 9.13 12.7 7.11 23.9 13.1 -

OMNIQ 3 6.49 5.68 4.74 4.04 6.58 5.58 3.92 8.19 7.32 6.57 6.07 8.65 7.44 6.06
QUIP# NO FT & NO E8 3 6.29 5.52 4.54 3.91 6.19 5.34 3.71 7.82 6.98 6.29 5.86 7.85 6.98 5.78

QUIP# 3 5.98 5.31 4.36 3.78 5.79 5.10 3.56 7.39 6.83 6.17 5.77 7.32 6.72 5.67
OMNIQ 2 15.5 13.2 8.71 7.58 37.4 17.2 7.81 24.9 18.3 13.9 10.8 90.6 26.8 12.3

QUIP# NO FT & NO E8 2 9.95 7.18 5.80 5.02 12.3 7.60 4.87 11.7 8.67 7.55 6.83 14.8 9.57 6.82
QUIP# 2 6.86 5.97 5.02 4.36 6.66 5.74 4.16 8.36 7.48 6.71 6.19 8.35 7.45 6.12

Table 3. Zeroshot Accuracy (acc in LM Eval, not acc_norm), Llama 2.
2-70 2-13 2-7

METHOD BITS ARCC ARCE PIQA WINO BITS ARCC ARCE PIQA WINO BITS ARCC ARCE PIQA WINO
FP16 16 51.1 77.7 81.1 77.0 16 45.6 73.3 73.5 69.6 16 40.0 69.3 78.5 67.3

OMNIQ 4 49.8 77.9 80.7 75.8 4 43.1 70.2 78.4 67.8 4 37.9 67.8 77.1 67.0
QUIP 4 47.0 74.3 80.3 76.0 4 44.9 73.3 79.0 69.7 4 - - - -

AQLM 4.07 51.0 78.1 81.4 76.9 3.94 43.9 72.2 78.6 70.4 4.04 40.3 68.9 77.7 67.3
QUIP# 4 50.6 78.1 81.4 77.1 4 45.5 73.9 78.9 69.9 4 40.5 69.1 78.4 67.6
OMNIQ 3 47.6 75.7 79.7 73.5 3 42.0 69.0 77.7 65.9 3 35.3 62.6 73.6 63.6
QUIP 3 46.3 73.2 80.0 74.6 3 41.5 70.4 76.9 69.9 3 - - - -

AQLM 3.01 50.0 77.6 81.3 77.2 3.03 43.6 73.5 77.8 67.6 3.04 38.7 67.8 76.6 68.4
QUIP# 3 50.9 77.7 81.4 76.4 3 44.0 72.5 78.4 69.1 3 39.2 68.4 77.3 66.5
OMNIQ 2 28.7 55.4 68.8 53.2 2 23.0 44.4 62.6 52.6 2 21.6 35.2 57.5 51.5
QUIP 2 34.0 62.2 74.8 67.5 2 23.5 45.2 62.0 52.8 2 19.4 26.0 54.6 51.8

AQLM 2.07 47.9 77.7 80.4 75.9 1.97 38.5 67.0 75.1 69.5 2.02 33.6 62.8 73.5 64.6
QUIP# 2 48.7 77.3 80.3 75.9 2 39.5 69.3 77.3 67.7 2 34.6 64.6 75.1 64.9

6.2. QuIP# Bit Scaling

Figures 1 (first page) and 4 show how QuIP# scales on the
Llama family of models and Wikitext2. On both Llama 1
and 2, QuIP# 3 bit outperforms QuIP# 4 bit and QuIP# 2
bit offers similar scaling to 3 and 4 bit models. Furthermore,
on Llama 2, QuIP# 3 bit outperforms a theoretical lossless
4 bit model (FP16 at 4 bits). To the best of our knowledge,
this is the first time a 3 bit PTQ method has outperformed a
theoretical lossless 4 bit model and also the first time a 2 bit
PTQ method has offered similar scaling to higher bitrates.

6.3. Efficient Inference with QuIP#

One of the key benefits of PTQ is to increase the maximum
possible inference throughput on a given device. Since
small-batch autoregressive decoding is usually memory
bound, a smaller model requires less data to be read and
can therefore be served faster. However, achieving an ac-
tual speedup requires a quantization method with low de-
coding overhead, or inference will be bottlenecked by de-
coding. For example, the AQLM models in the experiment
tables use a different 216⇑8 codebook for every linear layer.

Each entry in these codebooks takes 2 bytes, meaning that
each codebook is 1MiB. During inference, weights are read
from these codebook in an essentialy random access pat-
tern, meaning that the entire codebook must fit in L1 cache
to enable fast inference (even L2 cache is too slow). How-
ever, 1MiB is larger than any current GPU’s L1 cache (the
H100 has 256KB), so AQLM inference suffers from high
cache miss rates and is actually slower than FP16 on mod-
ern GPUs (Table 6).

In contrast, QuIP# was designed around fast inference. The
RHT can be computed in essentially O(n log n) time and
E8P only requires 1KiB and can be decoded from with very
few (< 5) instructions per weight. Table 5 shows QuIP#’s
generation speed as measured with the FlashAttention li-
brary’s (Dao et al., 2022; Dao, 2023) implementation of
Llama. QuIP# is able to achieve over 50% of peak mem-
ory bandwidth with a 2 bit model even with minimal kernel
fusion in the RHT, validating our design choices. We note
that since these “fast inference design choices” essentially
amount to restrictions on what can be done during quanti-
zation, it should be entirely possible to achieve even better
quantization quality at the expense of inference speed.

8

QuIP#

Table 4. Wikitext2 and C4 perplexity (→), context length 4096.
2-7 2-13 2-70

METHOD BITS W2 C4 BITS W2 C4 BITS W2 C4

FP16 16 5.12 6.63 16 4.57 6.05 16 3.12 4.97
QUIP# 4 5.19 6.75 4 4.63 6.13 4 3.18 5.02
ë NO FT 4 5.22 6.79 4 4.65 6.15 4 3.18 5.02
ë NO E8 4 5.29 6.86 4 4.68 6.20 4 3.22 5.05

QUIP 4 - - 4 4.76 6.29 4 3.58 5.38
AQLM 4.04 5.21 6.74 3.94 4.64 6.14 4.07 3.17 5.01
QUIP# 3 5.41 7.04 3 4.78 6.35 3 3.35 5.15
ë NO FT 3 5.60 7.34 3 4.90 6.50 3 3.41 5.20
ë NO E8 3 5.77 7.61 3 4.99 6.65 3 3.48 5.28

QUIP 3 - - 3 5.12 6.79 3 3.87 5.67
AQLM 3.04 5.46 7.10 3.03 4.83 6.37 3.01 3.36 5.17
QUIP# 2 6.19 8.16 2 5.35 7.20 2 3.91 5.71
ë NO FT 2 8.22 11.0 2 6.06 8.07 2 4.16 6.01
ë NO E8 2 11.2 14.5 2 7.04 9.37 2 4.58 6.51

QUIP 2 - - 2 13.5 16.2 2 5.90 8.17
AQLM 2.02 6.93 8.84 1.97 5.70 7.59 2.07 3.94 5.72

Table 5. QuIP# generation throughput on a NVIDIA RTX 4090
using the FlashAttention library’s Llama implementation. QuIP#
achieves > 50% peak memory bandwidth (1TB/s) during genera-
tion and admits fast inference.

MODEL
2 BIT
TOK/S

2 BIT %
MEM BW

4 BIT
TOK/S

4 BIT %
MEM BW

2-7B 170.50 29.60% 117.73 40.87%
2-13B 104.83 33.80% 71.09 45.84%
1-30B 51.60 38.39% 32.50 48.36%
2-70B 32.74 56.84% OOM OOM

Finally, if we look at the speed-quality tradeoffs of differ-
ent quantization methods, we also find that QuIP# enables
new frontiers of PTQ performance. Compared to QuIP’s
published throughput numbers (measured on an A6000),
QuIP# on an A6000 achieves roughly twice the inference
throughput at the same bitrate, making QuIP# strictly better.
Compared to existing “fast inference” quantization meth-
ods such as SpQR (Dettmers et al., 2023) and SqueezeLLM
(Kim et al., 2023), we again find that QuIP# offers signif-
icantly higher throughput (> 40%) at the same or better
quantization quality.

Table 6. QuIP# vs AQLM and FP16 generation throughput on
a NVIDIA RTX 4090 using the HuggingFace library’s Llama
implementation. Unlike AQLM, whose codebook is too large to fit
in L1 cache, QuIP# achieves significant speedups over FP16.

METHOD 2-7B 2-70B

FP16 33.1 TOK/S OOM
AQLM 2 BIT 20.6 8.27
QUIP# 2 BIT 106.3 25.9

6.4. Ablations

Table 4 also contains an ablation on the various components
of QuIP#. The “no FT” row shows QuIP# without fine-
tuning and the “no E8” row shows QuIP# without fine-
tuning and lattice codebooks. For the latter, we round to the
1-dimensional half-integer grid. We also include QuIP num-
bers as reported by AQLM. At all bitrates, each component
of QuIP# brings additional performance gains. The differ-
ence between QuIP and QuIP# without fine-tuning and lat-
tice codebooks also shows the difference between QuIP’s
Kronecker factorization and QuIP#’s RHT. The RHT offers
stronger incoherence properties than the Kronecker factor-
ization (Section 3), which improves performance.

7. Conclusion
We present QuIP#, a weight-only post training compres-
sion method that achieves state-of-the-art results on LLMs
at 2, 3, and 4 bits per weight. QuIP# uses the Randomized
Hadamard Transform as an efficient and principled form
of outlier suppression, and introduces the E8 lattice-based
E8P codebook to better quantize RHT transformed weights.
The E8P codebook is highly symmetric and admits fast in-
ference, allowing a “proof of concept” QuIP# CUDA im-
plementation to achieve over 50% peak memory bandwidth
on modern GPUs. QuIP# also implements inter-layer fine
tuning, further improving quantization. To the best of our
knowledge, QuIP# is the first PTQ method to achieve su-
perior scaling at 3 bits over 4 bits and similar scaling at 2
bits to higher bitrates. Our results indicate that, in the near
future, 2 bit models are likely to scale better than 3 bit ones.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
We thank, in no particular order, David Hou for helping with
the QuIP# CUDA implementation, Tiancheng Yuan for
lending his RTX 4090 and helping with acquiring QuIP#
timing numbers, Tri Dao for a fast CUDA implementation
of the Hadamard transform and general help with QuIP#,
and Together AI for compute resources.

References
Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A.,

Cojocaru, R., Debbah, M., Étienne Goffinet, Hesslow,
D., Launay, J., Malartic, Q., Mazzotta, D., Noune, B.,

9

QuIP#

Pannier, B., and Penedo, G. The falcon series of open
language models, 2023.

Chee, J., Renz, M., Damle, A., and Sa, C. D. Model
preserving compression for neural networks. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=gt-l9Hu2ndd.

Chee, J., Cai, Y., Kuleshov, V., and Sa, C. D. QuIP: 2-bit
quantization of large language models with guarantees.
In Thirty-seventh Conference on Neural Information Pro-

cessing Systems, 2023. URL https://openreview.
net/forum?id=xrk9g5vcXR.

Cochran, W., Cooley, J., Favin, D., Helms, H., Kaenel, R.,
Lang, W., Maling, G., Nelson, D., Rader, C., and Welch,
P. What is the fast fourier transform? Proceedings of

the IEEE, 55(10):1664–1674, 1967. doi: 10.1109/PROC.
1967.5957.

Computer, T. Redpajama: An open source recipe
to reproduce llama training dataset, 2023. URL
https://github.com/togethercomputer/
RedPajama-Data.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. 2023.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Pro-

cessing Systems, 2022.

Dettmers, T. and Zettlemoyer, L. The case for 4-bit preci-
sion: k-bit inference scaling laws. In Krause, A., Brun-
skill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett,
J. (eds.), Proceedings of the 40th International Confer-

ence on Machine Learning, volume 202 of Proceedings of

Machine Learning Research, pp. 7750–7774. PMLR, 23–
29 Jul 2023. URL https://proceedings.mlr.
press/v202/dettmers23a.html.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless llm weight compression, 2023.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression of
large language models via additive quantization, 2024.

Fino and Algazi. Unified matrix treatment of the fast walsh-
hadamard transform. IEEE Transactions on Comput-

ers, C-25(11):1142–1146, 1976. doi: 10.1109/TC.1976.
1674569.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.
OPTQ: Accurate quantization for generative pre-trained
transformers. In The Eleventh International Conference

on Learning Representations, 2023. URL https://
openreview.net/forum?id=tcbBPnfwxS.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
12 2023. URL https://zenodo.org/records/
10256836.

Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM

review, 53(2):217–288, 2011.

Hedayat, A. and Wallis, W. D. Hadamard Matrices and
Their Applications. The Annals of Statistics, 6(6):1184 –
1238, 1978. doi: 10.1214/aos/1176344370. URL https:
//doi.org/10.1214/aos/1176344370.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Juang, B.-H. and Gray, A. Multiple stage vector quantization
for speech coding. In ICASSP ’82. IEEE International

Conference on Acoustics, Speech, and Signal Processing,
volume 7, pp. 597–600, 1982. doi: 10.1109/ICASSP.
1982.1171604.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li, X., Shen,
S., Mahoney, M., and Keutzer, K. Squeezellm: Dense-
and-sparse quantization. arXiv, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Kostina, V. and Verdú, S. Fixed-length lossy compression
in the finite blocklength regime: Gaussian source. 2011

IEEE Information Theory Workshop, ITW 2011, 10 2011.
doi: 10.1109/ITW.2011.6089501.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., Gan, C., and
Han, S. Awq: Activation-aware weight quantization for
llm compression and acceleration, 2023.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. Llm-qat:
Data-free quantization aware training for large language
models, 2023.

10

https://openreview.net/forum?id=gt-l9Hu2ndd
https://openreview.net/forum?id=gt-l9Hu2ndd
https://openreview.net/forum?id=xrk9g5vcXR
https://openreview.net/forum?id=xrk9g5vcXR
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://proceedings.mlr.press/v202/dettmers23a.html
https://proceedings.mlr.press/v202/dettmers23a.html
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://doi.org/10.1214/aos/1176344370
https://doi.org/10.1214/aos/1176344370

QuIP#

Lloyd, S. Least squares quantization in pcm. IEEE Transac-

tions on Information Theory, 28(2):129–137, 1982. doi:
10.1109/TIT.1982.1056489.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C., and
Blankevoort, T. Up or down? Adaptive rounding for
post-training quantization. In III, H. D. and Singh, A.
(eds.), Proceedings of the 37th International Conference

on Machine Learning, volume 119 of Proceedings of

Machine Learning Research, pp. 7197–7206. PMLR, 13–
18 Jul 2020. URL https://proceedings.mlr.
press/v119/nagel20a.html.

Nagel, M., Fournarakis, M., Bondarenko, Y., and
Blankevoort, T. Overcoming oscillations in quantization-
aware training. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-

ceedings of the 39th International Conference on Ma-

chine Learning, volume 162 of Proceedings of Machine

Learning Research, pp. 16318–16330. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/nagel22a.html.

Nguyen, E., Poli, M., Faizi, M., Thomas, A., Birch-Sykes,
C., Wornow, M., Patel, A., Rabideau, C., Massaroli, S.,
Bengio, Y., Ermon, S., Baccus, S. A., and Ré, C. Hye-
nadna: Long-range genomic sequence modeling at single
nucleotide resolution. 2023.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T.,
Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt,
M., Ferrer, C. C., Grattafiori, A., Xiong, W., Défossez,
A., Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier,
N., Scialom, T., and Synnaeve, G. Code llama: Open
foundation models for code, 2024.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P., Qiao, Y., and Luo, P. Omniquant:
Omnidirectionally calibrated quantization for large lan-
guage models. In The Twelfth International Conference

on Learning Representations, 2024. URL https://
openreview.net/forum?id=8Wuvhh0LYW.

Sloane, N. Hadamard Matrices — neilsloane.com. http:
//neilsloane.com/hadamard/. [Accessed 02-
02-2024].

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models. In
Workshop on Efficient Systems for Foundation Models

@ ICML2023, 2023. URL https://openreview.
net/forum?id=tz9JV2PRSv.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,

Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023b.

Viazovska, M. The sphere packing problem in dimen-
sion 8. Annals of Mathematics, 185(3), May 2017.
ISSN 0003-486X. doi: 10.4007/annals.2017.185.3.
7. URL http://dx.doi.org/10.4007/annals.
2017.185.3.7.

Xi, H., Li, C., Chen, J., and Zhu, J. Training transformers
with 4-bit integers. In Thirty-seventh Conference on Neu-

ral Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=H9hWlfMT6O.

11

https://proceedings.mlr.press/v119/nagel20a.html
https://proceedings.mlr.press/v119/nagel20a.html
https://proceedings.mlr.press/v162/nagel22a.html
https://proceedings.mlr.press/v162/nagel22a.html
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
http://neilsloane.com/hadamard/
http://neilsloane.com/hadamard/
https://openreview.net/forum?id=tz9JV2PRSv
https://openreview.net/forum?id=tz9JV2PRSv
http://dx.doi.org/10.4007/annals.2017.185.3.7
http://dx.doi.org/10.4007/annals.2017.185.3.7
https://openreview.net/forum?id=H9hWlfMT6O
https://openreview.net/forum?id=H9hWlfMT6O

QuIP#

A. Concentration Inequalities for the Randomized Hadamard Transform and Fast Fourier
Transform

A.1. Incoherence Processing with the Randomized Hadamard Transform

Lemma A.1. For any non-negative real number n,

1

B (n, 1/2)

∫ +1

↑1
(1↘ x2

)
n↑1 · exp(tx) dx → exp

(
t2

4n+ 2

)
.

Proof. We start with the following “standard” integral. For non-negative integer m and real n > 0,

∫ +1

↑1
x2m

(1↘ x2
)
n↑1 dx = B

(
m+

1

2
, n

)
=

#
(
m+

1
2

)
(n)

#
(
m+ n+

1
2

) .

This means that

1

B
(
1
2 , n

)
∫ +1

↑1
x2m

(1↘ x2
)
n↑1 dx =

B
(
m+

1
2 , n

)

B
(
1
2 , n

)

=
#
(
m+

1
2

)
(n)

#
(
m+ n+

1
2

) ·
#
(
n+

1
2

)

#
(
1
2

)
(n)

=
#
(
m+

1
2

)
#
(
n+

1
2

)
≃
ϖ · #

(
m+ n+

1
2

) .

Applying the Legendre duplication formula, for integer m,

#

(
m+

1

2

)
=

(2m)!
≃
ϖ

4mm!
,

then

1

B
(
1
2 , n

)
∫ +1

↑1
x2m

(1↘ x2
)
n↑1 dx =

(2m)!
≃
ϖ

4mm!
· (2n)!

≃
ϖ

4nn!
· 1≃

ϖ
· 4

m+n
(m+ n)!

(2m+ 2n)!
≃
ϖ

=
(2m)! (2n)! (m+ n)!

m!n! (2m+ 2n)!
.

12

QuIP#

In particular, this means that

1

B
(
1
2 , n

)
∫ +1

↑1
exp(tx)(1↘ x2

)
n↑1 dx =

↔∑

m=0

t2m

(2m)!
· 1

B
(
1
2 , n

)
∫ +1

↑1
x2m

(1↘ x2
)
n↑1 dx

=

↔∑

m=0

t2m

(2m)!
· (2m)! (2n)! (m+ n)!

m!n! (2m+ 2n)!

=

↔∑

m=0

t2m

m!
· (2n)! (m+ n)!

n! (2m+ 2n)!

=

↔∑

m=0

t2m

m!
·

m∏

k=1

k + n

(2k + 2n)(2k + 2n↘ 1)

=

↔∑

m=0

t2m

m!
· 1

2m

m∏

k=1

1

2k + 2n↘ 1

→
↔∑

m=0

t2m

m!
· 1

2m

(
1

2n+ 1

)m

=

↔∑

m=0

1

m!

(
t2

4n+ 2

)m

= exp

(
t2

4n+ 2

)
.

This proves the lemma

1

B (n, 1/2)

∫ +1

↑1
(1↘ x2

)
n↑1 · exp(tx) dx → exp

(
t2

4n+ 2

)
.

Lemma A.2. Call U ↑ Rnd→nd
an (n, d)-block orthohadamard matrix if it has the following properties: (1) U is a

orthogonal matrix, and (2) each aligned d⇑ d block of U is 1/
≃
n times an orthogonal matrix. This generalizes the notion

of Hadamard matrices. Let S ↑ Rnd→nd
be a random block diagonal matrix, where each d⇑ d block of the diagonal is

sampled independently and uniformly from the set of (possibly special) orthogonal matrices. Then we call multiplication by

US a randomized orthohadamard transform, and observe that it has the following nice property. Let x ↑ Rnd
be any fixed

vector, and let b ↑ Rnd
be a fixed vector that is sparse in the sense that it is supported only on a single d-sized aligned block

(i.e. all but one of the n blocks are zero). Then

P
(bTUSx

 ̸ a
)
→ 2 exp


↘ a2nd

2 ↗b↗2 ↗x↗2


.

Proof. If we let the ith block of x be xi ↑ Rd and let the ith block of STUT bT be vi, then the vi will be independent and
uniformly distributed on the sphere in d dimensional space of radius ↗b↗ /

≃
n, and so vT

i
xi = ↗b↗ ↗xi↗n↑1/2zi, where the

zi are all independent and distributed according to an entry of a random point on the unit sphere in d dimensional space.
Observe that this means that

P(zi) ∝ (1↘ z2
i
)

d→1
2 ↑1.

13

QuIP#

So,

E

exp

(
tbTUSx

)
= E


exp


t

n∑

i=1

↗b↗ ↗xi↗n↑1/2zi



=

n∏

i=1

E
[
exp

(
t ↗b↗ ↗xi↗n↑1/2zi

)]

→
n∏

i=1

E


exp


1

4 · d↑1
2 + 2

(
t ↗b↗ ↗xi↗n↑1/2

)2


=

n∏

i=1

E


exp


t2 ↗b↗2 ↗xi↗2

2nd



= E


exp


t2 ↗b↗2 ↗x↗2

2nd


,

where the the last line follows from Lemma A.1. It follows from the standard application of Markov’s inequality that for any
a > 0,

P
(bTUSx

 ̸ a
)
→ 2 exp


↘ a2nd

2 ↗b↗2 ↗x↗2


.

This is what we wanted to show.

Lemma A.3. Let H ↑ Rn→n
be an orthogonal scaled Hadamard matrix or F ↑ Rn→n

be an orthogonal FFT matrix (the

FFT understood as operating on a real vector space). Let S ↑ Rn→n
be a random diagonal matrix with diagonal elements

supported on Rn
, and let P ↑ Rn→n

be a random 2-block-diagonal matrix with 2⇑ 2 diagonal blocks supported on SO(2)

(we can also think of this as acting like a diagonal complex matrix with each diagonal element a random complex number of

absolute value 1). Let U ↑ Rn→n
be any fixed orthogonal matrix. Then, for any ϱ > 0,

Prob


max
i,j

eT
i
HSUej

 ̸

√
2

nd
log

(
2n2

ϱ

)
→ ϱ

and

Prob


max
i,j

eT
i
FPUej

 ̸

√
2

nd
log

(
2n2

ϱ

)
→ ϱ.

That is, with probability at least 1↘ ϱ, multiplying by either HS or FP makes the resulting orthogonal matrix µ-incoherent,

where

µH =

√

2 log

(
2n2

ϱ

)
.

Proof. Setting b = ei and x = Uej in Lemma A.2,

P
(eT

i
HSUej

 ̸ a
)
→ 2 exp

(
↘a2nd

2

)
.

By the union bound,

P

(
max
i,j

eT
i
HSUej

 ̸ a

)
→ 2n2

exp

(
↘a2nd

2

)
.

Setting

a2 =
2

nd
log

(
2n2

ϱ

)

proves the lemma. The FFT case is identical.

14

QuIP#

Algorithm 4 Incoherence Processing with RFFT (IP-RFFT)
input W ↑ Rm→n, H ↑ Rn→n

Sample phase vectors
ςV ⇓ U [0, 2ϖ]n/2, ςU ⇓ U [0, 2ϖ]m/2

SV = cos(ςV) + i sin(ςV), SU = cos(ςU) + i sin(ςU)
Ŵ ↓ FFT(diag(SU)FFT(diag(SV)WT

)
T
) where

FFT is the Fast Fourier transform (Sec. A.2)
Ĥ ↓ FFT(diag(SV)FFT(diag(SV)H)

T
)

output Ŵ , Ĥ, SU , SV

Lemma A.4. Let HL ↑ Rm→m
be an orthogonal scaled Hadamard matrix or F ↑ Rm→m

be an orthogonal FFT matrix

(the FFT understood as operating on a real vector space). Let SL ↑ Rm→m
be a random diagonal matrix with diagonal

elements supported on Rm
, and let P ↑ Rm→m

be a random 2-block-diagonal matrix with 2⇑ 2 diagonal blocks supported

on SO(2). Let HR ↑ Rn→n
, FR, SR, and PR be defined analogously over n-dimensional space. Let W ↑ Rm→n

be any

fixed matrix. Then, for any ϱ > 0,

P


max
i,j

eT
i
HLSLWST

R
HT

R
ej
 ̸ ↗W↗

F


4

mn
log

(
4mn

ϱ

)
→ ϱ.

and

P


max
i,j

eT
i
FLPLWPT

R
FT

R
ej
 ̸ ↗W↗

F


4

mn
log

(
4mn

ϱ

)
→ ϱ.

That is, with probability at least 1↘ ϱ, multiplying on both sides by a randomized Hadamard transform or a randomized

FFT yields a weight matrix that is µW -incoherent, where

µW = 2 log

(
4mn

ϱ

)
.

Proof. From Lemma A.2,

P


bTUSx

 ̸ ↗b↗ ↗x↗

√
2

n
log

(
4mn

ϱ

)
→ ϱ

2mn
.

By applying this once on each side to the rows and columns respectively, and union bounding over the mn entries, we get

P


eT

i
HLSLWST

R
HT

R
ej
 ̸ ↗W↗

F


4

mn
log

(
4mn

ϱ

)
→ ϱ.

The proof in the FFT case is identical.

Lemma 3.1. Let H be any positive semidefinite matrix on Rn→n
and W any weight matrix on Rm→n

. Let U ↑ Rm→m
and

V ↑ Rn→n
be orthogonal scaled Hadamard matrices. Let SU ↑ Rm→m

and SV ↑ Rn→n
be random diagonal matrices

with independent diagonal elements drawn uniformly from {↘1,+1}. Then for any ε > 0, V SV HSV V T
is µH -incoherent

with probability at least 1↘ ε, and USUWSV V T
is µW -incoherent with probability at least 1↘ ε, where

µH =

√

2 log

(
2n2

ε

)
and µW = 2 log

(
4mn

ε

)
.

Proof. The incoherence of H follows from the application of Lemma A.3. The incoherence of W follows from the
application of Lemma A.4.

15

QuIP#

A.2. Incoherence Processing with the Randomized Fast Fourier Transform (RFFT)

Here we described the Randomized Fast Fourier Transform (RFFT), x ⇔ V Sx where V ↑ Cn/2→n/2 is the discrete
Fourier transform matrix, S ↑ Cn/2 is a random complex phase vector, and x ↑ Rn. The discrete Fourier transform can be
computed in O(n log n) time via the fast Fourier transform. Here it is understood that the FFT operates over the reals, in
that a vector x ↑ Rn is mapped to a complex representation Cn/2, the RFFT is performed, and the resulting vector mapped
back to Rn. Here the mapping simply represents reshaping real-valued x into dimension (n/2, 2), and interpreting the
corresponding 2-tuples as a complex number.

Incoherence processing via the RFFT achieves similar theoretical guarantees as the RHT, see Lemmas A.3 and A.4.
Ultimately the choice of the orthogonal transformation is up to the user. A Fourier transform works almost as well as a
Hamard transform in practice (Table 1), so if a fast Hadamard implementation is not available, the FFT is a good option.

B. Block LDLQ
Lemma B.1. Let H ↑ Rnd→nd

be a positive definite matrix with d-block LDL decomposition H = LTDL. Then

tr (D) → tr

(
H1/2

)
·
H1/2 ↔MD


2
,

where MD = I ⇐ 1d→d is the block diagonal mask. If, in addition, H is µ-incoherent in the sense that its matrix of

eigenvectors U has

↗Uij↗→
µ≃
nd

,

then

tr (D) → µ2

n
tr

(
H1/2

)2
.

Proof. Consider the optimization problem

minimize: tr
(
RTHR

)

subject to: R unit block lower diagonal.

Observe that the derivative of the loss is
∀f(R) = HR.

If R = L↑1, then HR = LTD. But this must be a block upper triangular matrix, because it’s the product of a unit upper
triangular matrix (LT) and a block diagonal matrix D. It follows that ∀f(L↑1

) is zero in all the directions in which we
could move R, since R only varies in the strictly lower triangular directions. Therefore, R = L↑1 is the solution to this
optimization problem, and for any R, ∀f(R) ̸ ∀f(L↑1

) = tr (D).

Now, let M denote the strictly block lower triangular mask, and observe that M + MT
+ MD = 1nd→nd. Set φ =H1/2 ↔MD

↑1

2
, and consider R =

(
I + φM ↔H1/2

)↑1
. Observe that

(
I + φM ↔H1/2

)T (
I + φM ↔H1/2

)
= I + φM ↔H1/2

+ φMT ↔H1/2
+ φ2

(MT ↔H1/2
)(M ↔H1/2

)

∃ I + φ(M +MT
)↔H1/2

∃ φMD ↔H1/2
+ φ(M +MT

)↔H1/2

∃ φH1/2.

It follows by inverting both sides that RRT ∈ φ↑1H↑1/2.

So, for this R,

tr
(
RTHR

)
= tr

(
HRRT

)
→ φ↑1

tr

(
H1/2

)
.

16

QuIP#

This proves the first part of the lemma. For the second part, observe that

H1/2 ↔MD


2
→

nd∑

i=1

↼1/2
i

(uiu
T

i
)↔MD


2

→ µ2

n
tr

(
H1/2

)
.

This proves the lemma.

Theorem 4.1. Suppose that we round W ↑ Rm→n
using g-block LDLQ with Hessian H , producing Ŵ . Suppose that H is

µ-incoherent, and that we use a (possibly stochastic) vector quantizer Q that satisfies E[(Q(x)↘ x)(Q(x)↘ x)T] ∈ ϑ2I
for any x ↑ Rg

. Then

E[tr((Ŵ ↘W)H(Ŵ ↘W)
T
)] → gmµ

2
ω
2

n
tr(H1/2

)
2.

Proof. First recall that from the description of block LDLQ,

Ŵk = Q(Wk + (W:(k↑1) ↘ Ŵ:(k↑1))Ak).

We can also write this in matrix form in terms of the matrix Lk as

Ŵ = Q(W + (W ↘ Ŵ)(LT ↘ I)).

Here, Q is interpreted as operating independently block-wise. Let ↽ denote the quantization error

↽ = (W + (W ↘ Ŵ)(LT ↘ I))↘Q(W + (W ↘ Ŵ)(LT ↘ I)).

Then
Ŵ = (W + (W ↘ Ŵ)(LT ↘ I))↘ ↽,

which simplifies to
(W ↘ Ŵ)LT

= ↽.

This means that

E[tr((Ŵ ↘W)H(Ŵ ↘W)
T
)] = E[tr((Ŵ ↘W)LTDL(Ŵ ↘W)

T
)] = E[tr(↽TD↽)].

But by assumption, E[↽↽T] ∈ mϑ2I (since each block is just an independent application of Q and we sum over m rows), so

E[tr((Ŵ ↘W)H(Ŵ ↘W)
T
)] → mϑ2E[tr(D)].

Combining this with the result of Lemma B.1 proves the theorem.

C. E8P details
C.1. Constructing S

We use the following 29 elements of D̂8 with norm squared 12 to pad S to 256 entries.

([3, 1, 1, 1, 3, 3, 3, 3] [1, 3, 1, 1, 3, 3, 3, 3] [1, 1, 3, 1, 3, 3, 3, 3]
[1, 1, 1, 3, 3, 3, 3, 3] [3, 3, 3, 1, 3, 3, 1, 1] [3, 3, 3, 1, 3, 1, 3, 1]
[3, 3, 3, 1, 1, 3, 3, 1] [3, 3, 3, 1, 3, 1, 1, 3] [3, 3, 3, 1, 1, 3, 1, 3]
[3, 3, 3, 1, 1, 1, 3, 3] [3, 3, 1, 3, 3, 3, 1, 1] [3, 3, 1, 3, 3, 1, 3, 1]
[3, 3, 1, 3, 1, 3, 3, 1] [3, 3, 1, 3, 3, 1, 1, 3] [3, 3, 1, 3, 1, 3, 1, 3]
[3, 3, 1, 3, 1, 1, 3, 3] [3, 1, 3, 3, 3, 3, 1, 1] [3, 1, 3, 3, 3, 1, 3, 1]
[3, 1, 3, 3, 1, 3, 3, 1] [3, 1, 3, 3, 3, 1, 1, 3] [3, 1, 3, 3, 1, 3, 1, 3]
[1, 3, 3, 3, 1, 1, 3, 3] [1, 3, 3, 3, 3, 3, 1, 1] [1, 3, 3, 3, 3, 1, 3, 1]
[1, 3, 3, 3, 1, 3, 3, 1] [1, 3, 3, 3, 3, 1, 1, 3] [1, 3, 3, 3, 1, 3, 1, 3]
[1, 1, 3, 3, 1, 3, 3, 3] [3, 3, 1, 1, 3, 3, 3, 1]) / 2

17

QuIP#

C.2. Example Decoding with E8P

Here, we give an example of decoding with E8P. In this example, the first 8 bits of the codeword encode the entry in S,
the next 7 bits encode the 7 right sign flips, and the last bit encodes whether or not we shift by 1

4 . Let the codeword be
0001010110010111. The first 8 bits 00010101 = 21 would indicate that we start with the 21st entry in S. In this
example, let that be the vector

s =


1

2
,
1

2
,
1

2
,
3

2
,
1

2
,
1

2
,
1

2
,
1

2


,

which is not in D̂8. Thus, s requires an odd number of sign flips to get into D̂8. Then, the next 7 bits 1001011 would
indicate that we need to negate the 1st, 2nd, 4th, and 7th from right bits. Since we need an odd number of sign flips, the 8th
from right bit is also a sign flip. The sign-decoded vector is then


↘1

2
,↘1

2
,
1

2
,
3

2
,↘1

2
,
1

2
,↘1

2
,↘1

2


,

which we can verify is in E8. Finally, the last bit 1 indicates that we need to add 1
4 , so the final decoded vector is


↘1

4
,↘3

4
,
3

4
,
7

4
,↘1

4
,
3

4
,↘1

4
,↘1

4


,

which is in E8 +
1
4 as desired.

For posterity, we include a copy of our CUDA kernel for matrix-vector multiplication with E8P. This kernel was designed for
NVIDIA Ampere and newer GPUs. The same kernel can be found at https://github.com/Cornell-RelaxML/
quip-sharp/blob/main/quiptools/quiptools_e8p_gemv.cu.

__global__ static void
decode_matvec_e8p_kernel(

float *__restrict__ output,
const uint2 *__restrict__ input,
const uint2 *__restrict__ weights_compressed,
const uint32_t *__restrict__ codebook_abs,
int N,
int K

) {
int warpId = threadIdx.y;
int laneId = threadIdx.x;

for (int iin = blockIdx.x; iin < (N >> 4); iin += gridDim.x) {

float z0 = 0.0;
float z1 = 0.0;
float z2 = 0.0;
float z3 = 0.0;

for (int iik = warpId; iik < (K >> 6); iik += 32) {
uint2 w_compr = weights_compressed[laneId + 32*iik + (K >> 1)*iin];
uint32_t a = w_compr.x;
uint32_t b = w_compr.y;

uint32_t s = b;
s = s ˆ (s >> 4);
s = s ˆ (s >> 8);
s = s ˆ (s >> 16);
uint32_t sb = (s & 15);
s = b ˆ sb;
sb = sb | (sb << 16);

uint32_t input_to_warp = ((const uint32_t*)(&input[16*iik]))[laneId];
uint32_t shifted_laneId = (laneId & 3) << 3;

18

https://github.com/Cornell-RelaxML/quip-sharp/blob/main/quiptools/quiptools_e8p_gemv.cu
https://github.com/Cornell-RelaxML/quip-sharp/blob/main/quiptools/quiptools_e8p_gemv.cu

QuIP#

// BLOCK 01

{
uint32_t x = codebook_abs[(a >> 0) & 255];
x = x ˆ ((s & 0x11111111) * 14);

uint32_t o = BASE_OFFSET | ((sb & 0x00010001) << 4);

uint32_t w00 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
uint32_t w01 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
uint32_t w02 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
uint32_t w03 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);

x = codebook_abs[(a >> 8) & 255];
x = x ˆ ((s & 0x22222222) * 7);

o = BASE_OFFSET | ((sb & 0x00020002) << 3);

uint32_t w10 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
uint32_t w11 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
uint32_t w12 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
uint32_t w13 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);

uint32_t x_in0 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 0);
uint32_t x_in1 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 1);

asm(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
" { %0, %1, %2, %3 },"
" { %4, %5, %6, %7 },"
" { %8, %9 },"
" { %0, %1, %2, %3 };"
: "+f"(z0), "+f"(z1), "+f"(z2), "+f"(z3)
: "r"(w00), "r"(w10), "r"(w01), "r"(w11),
"r"(x_in0), "r"(x_in1)

);

x_in0 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 2);
x_in1 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 3);

asm(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
" { %0, %1, %2, %3 },"
" { %4, %5, %6, %7 },"
" { %8, %9 },"
" { %0, %1, %2, %3 };"
: "+f"(z0), "+f"(z1), "+f"(z2), "+f"(z3)
: "r"(w02), "r"(w12), "r"(w03), "r"(w13),
"r"(x_in0), "r"(x_in1)

);
}
// BLOCK 23

{
uint32_t x = codebook_abs[(a >> 16) & 255];
s = s >> 2;
x = x ˆ ((s & 0x11111111) * 14);

uint32_t o = BASE_OFFSET | ((sb & 0x00040004) << 2);

uint32_t w00 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
uint32_t w01 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
uint32_t w02 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
uint32_t w03 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);

x = codebook_abs[(a >> 24) & 255];

19

QuIP#

x = x ˆ ((s & 0x22222222) * 7);

o = BASE_OFFSET | ((sb & 0x00080008) << 1);

uint32_t w10 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
uint32_t w11 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
uint32_t w12 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
uint32_t w13 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);

uint32_t x_in0 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 4);
uint32_t x_in1 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 5);

asm(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
" { %0, %1, %2, %3 },"
" { %4, %5, %6, %7 },"
" { %8, %9 },"
" { %0, %1, %2, %3 };"
: "+f"(z0), "+f"(z1), "+f"(z2), "+f"(z3)
: "r"(w00), "r"(w10), "r"(w01), "r"(w11),
"r"(x_in0), "r"(x_in1)

);

x_in0 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 6);
x_in1 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 7);

asm(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
" { %0, %1, %2, %3 },"
" { %4, %5, %6, %7 },"
" { %8, %9 },"
" { %0, %1, %2, %3 };"
: "+f"(z0), "+f"(z1), "+f"(z2), "+f"(z3)
: "r"(w02), "r"(w12), "r"(w03), "r"(w13),
"r"(x_in0), "r"(x_in1)

);
}

}

if ((laneId & 1) == 0) {
atomicAdd(output + (iin << 4) + (laneId >> 1), (laneId & 2) ? z2 : z0);

}
}

}

C.3. Why not K-Means?

A significant motivating factor behind E8P is that post-incoherence processing, entries of W are approximately Gaussian
distributed. However, E8P is uniformly distributed, which raises the question: why not use a K-means based codebook? K-
means based codebooks offer strong theoretical performance but have a few issues. First, it is difficult to enforce symmetry
in a “learned” K-means codebook. This is crucial to be able to have a compressible codebook. If we force sign symmetry
by learning cluster centers on only the positive orthant of a n-dimensional Gaussian, we can get around this but sacrifice
accuracy at the axis region. Second, using K-means requires storing a codebook in fp16, whereas the entries of E8P can be
stored as 4 bit integers. This means that during inference, the source codebook for a 8 dimension K-means codebook will be
4 times larger than the source codebook of E8P, running the risk of a cache eviction. Finally, we observe that empirically,
E8P actually outperforms K-means, which is somewhat interesting and suggests that allocating more information to the
edge of the distribution, even after incoherence processing, is useful.

20

QuIP#

C.4. E8P vs. Other Codebook Constructions

Below, we compare the quality of quantized models from E8P vs. other codebooks. The D4 lattice achieves the 4 dimensional
kissing number but has lower dimensionality than E8, giving poorer shaping. An 8-dimensional K-Means codebook has
similar shaping as E8P but worse packing density. Although RHT-transformed weights are approximately Gaussian and not
Uniform, we find that a Uniform codebook (E8P) performs better than a Gaussian codebook (K-means)

Table 7. E8P and E8-based codebooks outperform other codebooks based on lower-dimensional lattices or different distributions. Numbers
without fine-tuning.

MODEL CODEBOOK CODEBOOK DIM. BITS WIKI2 PPL (CTX 4096) C4 PPL (CTX 4096, C4˙NEW)

2-70B FP16 1 16 3.120 5.533
2-70B E8P 8 2 4.156 6.535
2-70B E8 LATTICE 8 2.37 3.702 6.082
2-70B D4 LATTICE 4 2 4.408 6.797
2-70B D4 LATTICE 4 2.21 3.970 6.332
2-70B K-MEANS 8 2 4.452 6.925

D. Fine-Tuning During Quantization
In Algorithm 5 we describe our fine tuning procedure for QuIP#.

Algorithm 5 QuIP# with Fine-Tuning
Require: Unquantized Model M , Development Set D, Quantization Order O,
Ensure: Quantized Model M

X ↓ Membedding(D)

C ↓ M(D)logits
for Decoder Block D ↑ M do
Y ↓ D(X)

Xtrain, Ytrain, Xvalid, Yvalid ↓ split(X,Y)

for Linear Layer L ↑ D in order specified by O do
L̂ ↓ QuIP#-NoFT(L)
Disable gradients for the weight matrix (but not SU , SV) of L̂.
Optimize D to minimize MSE(D(Xtrain), Ytrain) using Xvalid, Yvalid for early stopping.

end for
X ↓ Y

end for
{At this point, the learnable parameters in M are the layernorms, all SU and SV , and the language model head.}
Dtrain, Ctrain,Dvalid, Cvalid ↓ split(D, C)

Optimize M to minimize CrossEntropy(M(Dtrain), Ctrain) using Dvalid, Cvalid for early stopping.

21

QuIP#

Table 8. QuIP# outperforms OmniQuant even with grouping. More numbers can be found in the OmniQuant paper.

MODEL METHOD EFFECTIVE BITS WIKI2 PPL (CTX 2048) C4 PPL (CTX 2048)

2-70B FP16 16 3.32 5.52
2-70B QUIP# 2 4.16 6.12
2-70B OMNIQ W2A16 2 7.81 12.28
2-70B OMNIQ W2A16 G64 2.25 6.11 7.88
2-70B OMNIQ W3A16 3 3.92 6.06

E. Additional Results
E.1. QuIP# vs. OmniQuant with Grouping

E.2. QuIP# on Mixtral 8x7B (Jiang et al., 2024) and Falcon 180B (Almazrouei et al., 2023)

Table 9. 2 bit QuIP# without fine-tuning on Mixtral 8x7B, a mixture of experts (MoE), and Falcon 180B, a non-Llama-based model.
QuIP# scales to different architectures without issue.

MODEL BITS WIKI2 C4 ARCC ARCE BOOLQ PIQA WINO

MIXTRAL-8X7B 16 3.45 6.85 0.56 0.74 0.85 0.84 0.75
MIXTRAL-8X7B 2 4.69 8.25 0.49 0.68 0.81 0.80 0.73
FALCON-180B 16 3.30 6.31 0.61 0.82 0.87 0.85 0.81
FALCON-180B 2 4.18 7.06 0.58 0.81 0.84 0.84 0.81

22

QuIP#

E.3. Zeroshot performance for ablation on lattice codebooks and fine-tuning

Table 10. Ablation on lattice codebooks and fine-tuning. QuIP# no FT and E8 uses the RHT to perform incoherence processing but does
not use lattice codebooks or fine-tuning. QuIP# No FT uses lattice codebooks but not fine-tuning. QuIP# uses lattice codebooks and
performs fine-tuning.

MODEL METHOD BITS
ARCC

(ACC NORM)
ARCE

(ACC NORM)
BOOLQ
(ACC)

PIQA
(ACC NORM)

WINO
(ACC)

2-70 NATIVE 16 48.0 59.7 76.6 80.9 76.8
2-70 QUIP# NO FT & NO E8 4 49.4 60.1 77.6 80.7 76.1
2-70 QUIP# NO FT 4 48.3 60.1 78.4 80.6 76.2
2-70 QUIP# 4 48.3 59.4 77.4 80.7 77.1
2-70 QUIP# NO FT & NO E8 3 47.4 59.1 75.8 80.9 77.5
2-70 QUIP# NO FT 3 47.9 59.9 78.8 79.9 77.0
2-70 QUIP# 3 48.4 59.5 74.8 80.3 76.4
2-70 QUIP# NO FT & NO E8 2 43.5 56.2 75.1 78.1 76.0
2-70 QUIP# NO FT 2 47.2 59.5 79.1 78.6 74.2
2-70 QUIP# 2 47.7 59.1 80.3 79.4 75.9
2-13 NATIVE 16 44.3 58.0 69.0 79.0 69.9
2-13 QUIP# NO FT & NO E8 4 43.7 58.6 70.1 78.7 69.6
2-13 QUIP# NO FT 4 42.9 56.4 67.8 78.9 69.9
2-13 QUIP# 4 44.2 57.7 69.7 78.9 69.9
2-13 QUIP# NO FT & NO E8 3 42.1 55.2 70.0 77.8 69.5
2-13 QUIP# NO FT 3 41.9 57.7 73.3 78.1 68.0
2-13 QUIP# 3 43.3 57.7 69.8 78.4 69.1
2-13 QUIP# NO FT & NO E8 2 36.3 50.8 67.4 73.4 63.1
2-13 QUIP# NO FT 2 37.1 50.1 66.5 75.7 63.6
2-13 QUIP# 2 41.3 55.1 68.3 77.4 67.7
2-7 NATIVE 16 40.6 53.5 71.0 76.9 67.0
2-7 QUIP# NO FT & NO E8 4 39.5 51.9 71.3 76.6 67.3
2-7 QUIP# NO FT 4 40.4 53.7 68.5 77.2 67.5
2-7 QUIP# 4 40.1 53.4 69.9 76.5 67.6
2-7 QUIP# NO FT & NO E8 3 38.1 52.6 65.2 76.1 65.1
2-7 QUIP# NO FT 3 37.7 53.1 70.6 76.7 67.6
2-7 QUIP# 3 39.4 53.8 69.7 76.1 66.5
2-7 QUIP# NO FT & NO E8 2 29.2 42.5 63.3 68.0 59.0
2-7 QUIP# NO FT 2 32.5 42.8 62.3 71.2 62.4
2-7 QUIP# 2 36.1 50.5 68.3 74.9 64.9

23

QuIP#

E.4. More Scaling Plots

Model Size (Bits)

W
ik

ite
xt

2
P

er
pl

ex
ity

3

4

5

6

5E+10 1E+11

QuIP# 2 Bit

QuIP# 3 Bit

QuIP# 4 Bit

AQLM ~2 Bit

AQLM ~3 Bit

AQLM ~4 Bit

Wikitext2 Perplexity vs Total Model Size (Bits), LLama 2

Model Size (Bits)

C
4

P
er

pl
ex

ity

5

6

7

8

5E+10 1E+11

QuIP# 2 Bit

QuIP# 3 Bit

QuIP# 4 Bit

C4 Perplexity vs Total Model Size (Bits), LLama 2

Model Size (Bits)

C
4

P
er

pl
ex

ity

6

7

8

9

5E+10 1E+11

QuIP# 2 Bit

QuIP# 3 Bit

QuIP# 4 Bit

C4 Perplexity vs Total Model Size (Bits), LLama 1

Figure 5. QuIP# scaling. (Top Left) Llama 2 Wikitext 2 perplexity vs AQLM. Context length 4096. QuIP# 2 and 3 bit scale better than
AQLM 2 and 3 bit. (Top Right) Llama 2 C4 Perplexity. Context length 4096. (Bottom) Llama 1 C4 Perplexity. Context length 2048.

F. Implementation Details
This section contains implementation details for our Llama experiments. These details also mostly apply to the Mixtral and
Falcon numbers except we use the Falcon dataset (Almazrouei et al., 2023) as it is publicly avaiable.

F.1. Bit Accounting

The additional overhead of QuIP# consists of 1KiB for E8P and 16n bits for each nD sign vector if using fine tuning or n
without. The 1KiB from E8P is shared over all linear layers, so it adds ¬ 0.01 bits per weight. For a m⇑ n matrix, the sign
vectors take up 16(n+m)

nm
bits per weight with fine tuning or n+m

nm
without. For LLM-sized matrices (e.g. the smallest matrix

in Llama 2 7B is 4096⇑ 4096), this is still < 0.01 additional bits per weight.

F.2. Hessian Generation

Hessian matrices H were generated with 6144 sequences of a model’s native context length (2048 for Llama 1, 4096 for
Llama 2) from the RedPajama 1T (Computer, 2023) dataset.

24

QuIP#

F.3. Hadamard Matrices

We use Hadamard matrices available at Neil Sloane’s website (Sloane).

F.4. Perplexity and Zeroshot Evaluation

We use the OPTQ (Frantar et al., 2023) “Wiktext2” and “C4” (not “C4 New”) sampling functions to calculate perplexity for
our experiments. We use LM Eval (Gao et al., 2023) to calculate zeroshot numbers.

F.5. Scales

In order to achieve good coverage of the codebook, we scale W by ⇀|W |F before quantizing W . For E8P, we used ⇀ = 0.9,
for RVQ 3 bit we used ⇀ ⇒= 0.98 for the first stage and ⇒ 2.04 for the second stage, for RVQ 4 bit we used ⇀ ⇒= 1.03
for the first stage and ⇒ 3.45 for the second stage. These numbers were determined by finding the ⇀(s) that minimized the
quantization error of quantizing a Gaussian to the codebook. The ⇒ is because different models have slightly different
optimal ⇀ since incoherence processing does not produce an exact Gaussian. The actual numbers for each model were found
with a coarse scale sweep but are all close to these values.

F.6. Fine Tuning

For the within-transformer block section of fine-tuning, we use the Adam optimizer (Kingma & Ba, 2017), a learning rate of
5⇑ 10

↑5, batch size of 8, and sequence length equal to the model’s native context length. We train on small development
dataset of 256 sequences from RedPajama 1T and validate on 128 sequences. We train for 5 epochs (160 steps) and keep the
best model parameters based on the validation set. For the end to end tuning, we use the Adam optimizer, a learning rate
of 5 ⇑ 10

↑5, batch size of 1, sequence length equal to the model’s context length (except for 70B, where we had to use
3072 to avoid an OOM on our not very well optimized training script), and the same dataset and epoch setup as before. We
observe that outside of using a low enough learning rate, the other hyperparameters did not affect fine-tuning much. For
the 2 bit models, we used a learning rate of 5⇑ 10

↑4 for SU and SV (5⇑ 10
↑5 for everything else as above) for both the

within-block and end to end fine tuning stages.

F.7. Hardware

All experiments were run on NVIDIA A100 GPUs except for the timing numbers, which were measured on a NVIDIA RTX
4090 to see what was possible with the current state-of-the-art NVIDIA consumer GPU. We find that we can quantize Llama
2 70B without fine tuning in under 10 GPU-hours and with fine tuning in around 100 GPU-hours. Both numbers do not
include Hessian generation, which can be done once for a model and reused across many different quantization experiments.

F.8. Code and Prequantized Models

Our code is available at https://github.com/Cornell-RelaxML/quip-sharp and prequantized QuIP# mod-
els are available at https://huggingface.co/relaxml.

G. Example Generation
Below are some example generations from Llama 2 70B chat quantized with QuIP# to 2 bits, truncated to 256 tokens.

25

https://github.com/Cornell-RelaxML/quip-sharp
https://huggingface.co/relaxml

QuIP#

Prompt: How much wood could a woodchuck chuck if a woodchuck could chuck wood?

QuIP#:
The answer to this tongue-twister is a bit of a mystery. Woodchucks, also known as groundhogs, are rodents that
burrow in the ground and are known for their ability to move large amounts of soil. However, there is no scientific
evidence to suggest that they can actually chuck wood. The phrase “how much wood could a woodchuck chuck”
was first used in a song called “The Woodchuck’s Song” in the late 19th century. The song was popularized by the
singer and songwriter, Johnny Mercer, and it became a hit in the 1940s. The song’s lyrics include the line “How
much wood could a woodchuck chuck if a woodchuck could chuck wood?” but they don’t provide an answer. In
reality, woodchucks don’t chuck wood, they dig burrows. They are able to move a lot of soil and dirt as they dig
their burrows, but they don’t have the ability to move wood. So, the answer to the tongue-

Prompt: Write a song about large language models to the tune of Mariah Carey’s “All I Want For Christmas Is You”

QuIP#:
Verse 1:
I don’t want a lot for Christmas
There’s just one thing I’m wishing for
A language model that’s large and bright
To help me with my writing, day and night

Chorus:
All I want for Christmas is a language model
A big, smart, AI that’s my ideal
I’ll be happy with just a few billion parameters
All I want for Christmas is a language model, yeah

Verse 2:
I’ll be good, I won’t be naughty
I’ll use it for good, not foraughty
I’ll generate text that’s nice and neat
And make my writing life a treat

Chorus:
All I want for Christmas is a language model
A big, smart, AI that’s my ideal
I’ll be happy with just a few billion parameters
All I want for Christmas is a language model, yeah

Bridge:
I’

26

QuIP#

Prompt: Write some CUDA code that does a matrix multiply

QuIP#:
Here is a simple example of a matrix multiply using CUDA:

#include <cuda.h>
#include <cuda_runtime.h>

__global__ void matrixMultiply(float *A, float *B, float *C, int rowsA, int co
lsA, int rowsB, int colsB) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < rowsA && j < colsB) {

float sum = 0;
for (int k = 0; k < rowsB; k++) {

sum += A[i + k * colsA] * B[k + j * rowsB];
}
C[i + j * rowsB] = sum;

}
}

int main() {
int rowsA = 3;
int colsA = 3;
int rowsB = 3;

27

