
Denoising Diffusion Variational Inference:
Diffusion Models as Expressive Variational Posteriors

Wasu Top Piriyakulkij*1, Yingheng Wang*1, Volodymyr Kuleshov1,2

1Department of Computer Science, Cornell University
2The Jacobs Technion-Cornell Institute, Cornell Tech

{wp237, yw2349, kuleshov}@cornell.edu

Abstract

We propose denoising diffusion variational inference
(DDVI), a black-box variational inference algorithm for la-
tent variable models which relies on diffusion models as flex-
ible approximate posteriors. Specifically, our method intro-
duces an expressive class of diffusion-based variational pos-
teriors that perform iterative refinement in latent space; we
train these posteriors with a novel regularized evidence lower
bound (ELBO) on the marginal likelihood inspired by the
wake-sleep algorithm. Our method is easy to implement (it
fits a regularized extension of the ELBO), is compatible with
black-box variational inference, and outperforms alternative
classes of approximate posteriors based on normalizing flows
or adversarial networks. We find that DDVI improves infer-
ence and learning in deep latent variable models across com-
mon benchmarks as well as on a motivating task in biology—
inferring latent ancestry from human genomes—where it out-
performs strong baselines on 1000 Genomes dataset.

1 Introduction
We are interested in amortized black-box variational infer-
ence problems of the form

log pω(x) →max
ε

Eqω(z|x) [log pω(x, z)↑ log qε(z|x)]

:= max
ε

ELBO(x,ω,ε), (1)

in which we approximate the marginal likelihood log pω(x)
of a latent variable model pω(x, z) with an evidence lower
bound ELBO(x,ω,ε) that is a function of an approximate
variational posterior qε(z|x). We assume that pω factorizes
as pω(x|z)pω(z) and admits efficient sampling: examples
of such pω include Bayesian networks, topic models (Blei,
Ng, and Jordan 2003), variational autoencoders (VAEs), and
broad classes of pω defined via modern probabilistic pro-
gramming frameworks (Gordon et al. 2014).

Maximizing ELBO(x,ω,ε) over ε yields a varia-
tional posterior qε(z|x) that approximates pω(z|x) as
well as a tight bound on log pω(x) that serves as
a learning objective for pω . The approximation gap
log pω(x) ↑ maxε ELBO(x,ω,ε) equals precisely

*Equal contribution. Listed alphabetically.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

minε KL(qε(z|x)||pω(z|x)), which motivates the design of
expressive classes of posteriors qε(z|x) that reduce this
gap. Recent efforts leverage modern generative models—
including normalizing flows (Rezende and Mohamed 2015;
Kingma et al. 2016) and generative adversarial networks
(Goodfellow et al. 2014; Makhzani et al. 2015)—as expres-
sive model families for qε that tighten the ELBO.

This work seeks to further improve variational inference
via expressive posteriors based on diffusion models (Ho,
Jain, and Abbeel 2020; Song et al. 2020). Diffusion methods
have become the de-facto standard for high-quality image
synthesis (Rombach et al. 2022; Gokaslan et al. 2024). Here,
we use diffusion in latent space to parameterize qε(z|x).
We train this distribution with a denoising diffusion-like ob-
jective that does not involve adversarial training (Makhzani
et al. 2015) or constrained invertible normalizing flow archi-
tectures (Kingma et al. 2016). Samples from qε(z|x) are ob-
tained via iterative refinement of z, starting from a Gaussian
distribution, and gradually forming one that is multi-modal
and complex.

Our work expands upon existing diffusion-based ap-
proximate inference methods (Berner, Richter, and Ull-
rich 2022; Zhang and Chen 2021; Vargas, Grathwohl, and
Doucet 2023; Zhang et al. 2023; Richter, Berner, and Liu
2023; Sendera et al. 2024; Akhound-Sadegh et al. 2024)
that focus on the task of drawing samples from unnormal-
ized distributions p̃(z) and estimating the partition function
Z =

∫
z p̃(z)dz. While these methods are applicable in our

setting—we set the unnormalized p̃(z) to pω(x, z) such that
Z = pω(x)—they do not make use of characteristics of pω
that are common in many types of models (VAEs, Bayes
networks, etc.), namely the factorization pω(x|z)pω(z) and
efficient sampling. We find that leveraging these proper-
ties yields simpler algorithms that avoid backpropagating
through a sampling process, and that are fast enough to per-
form learning in addition to inference.

Specifically, we propose denoising diffusion variational
inference (DDVI), an approximate inference algorithm de-
fined by a class of approximate posterior distribution based
on diffusion and a learning objective inspired by the wake-
sleep algorithm (Hinton et al. 1995) that implements regu-
larized variational inference. We also derive extensions of
our method to semi-supervised learning and clustering.

Our method is easy to implement (it fits a regularized ex-

ar
X

iv
:2

40
1.

02
73

9v
4

 [c
s.L

G
]

25
 M

ar
 2

02
5

tension of the ELBO), is compatible with black-box varia-
tional inference, and outperforms alternative classes of ap-
proximate posteriors based on normalizing flows or adver-
sarial networks.

We evaluate DDVI on synthetic benchmarks and on a real
problem in biological data analysis—inferring human ances-
try from genetic data. Our method outperforms strong base-
lines on 1000 Genomes dataset (Siva 2008) and learns a low-
dimensional latent space that preserves biologically mean-
ingful structure (Haghverdi, Buettner, and Theis 2015).

Contributions. In summary, this work introduces denois-
ing diffusion variational inference, an approximate infer-
ence algorithm defined by two components: a class of
approximate posteriors q(z|x) parameterized by diffusion,
and a lower bound on the marginal likelihood inspired by
wake-sleep. We complement DDVI with extensions to semi-
supervised learning and clustering. Our method is especially
suited for probabilistic programming, representation learn-
ing, and dimensionality reduction, where it outperforms al-
ternative methods based on normalizing flows and adversar-
ial training.

2 Background
Deep Latent Variable Models Latent variable models
(LVMs) pω(x, z) are usually fit by optimizing the evidence
lower bound (ELBO)

log pω(x) → Eqω(z|x)[log pω(x|z)]↑ KL(qε(z|x)||pω(z)),

which serves as a tractable surrogate for the marginal log-
likelihood (MLL). The gap between the MLL and the ELBO
equals precisely KL(qε(z|x)||pω(z|x))—thus, a more ex-
pressive qε(z|x) may better fit the true posterior and induce
a tighter ELBO (Kingma and Welling 2013).

Expressive variational posteriors can be formed by choos-
ing more expressive model families—including auxiliary
variable methods (Maaløe et al. 2016), MCMC-based meth-
ods (Salimans, Kingma, and Welling 2015), normalizing
flows (Rezende and Mohamed 2015)—or improved learn-
ing objectives—e.g., adversarial or sample-based losses
(Makhzani et al. 2015; Zhao, Song, and Ermon 2017; Si,
Bishop, and Kuleshov 2022; Si et al. 2023).

The wake-sleep algorithm (Hinton et al. 1995) optimizes
an alternative objective

Eqω(z|x)[log pω(x|z)]↑ KL(pω(z|x)||qε(z|x)),

in which the KL divergence term is reversed. The learn-
ing procedure for wake-sleep involves alternating between
”wake” phases where the recognition model is updated and
”sleep” phases where the generative model is refined.

Denoising Diffusion Models A diffusion model is defined
via a user-specified noising process q that maps data x0 into
a sequence of T variables y1:T = y1, ...,yT that represent
increasing levels of corruption to x0. We obtain y1:T by
applying a Markov chain q(y1:T |x0) =

∏T
t=1 q(yt|yt→1),

where we define y0 = x0 for convenience. When x0 is a
continuous vector, a standard choice of transition kernel is
q(xt | xt→1) = N (yt;

↓
ϑtyt→1,

↓
1↑ϑtI), which is a

Gaussian centered around a copy of yt→1 to which we added
noise following a schedule 0 < ϑ1 < ϑ2 < ... < ϑT = 1.

A diffusion model can then be represented as a la-
tent variable distribution p(x0,y1:T) that factorizes as
p(x0,y1:T) = p(yT)

∏T→1
t=0 pω(yt | yt+1) (again using y0

as shorthand for x0). This model seeks to approximate the
reverse of the forward diffusion q and map noise yT into
data x0.

The true reverse of the process q cannot be expressed in
closed form; as such, we parameterize pω with ω trained by
maximizing the ELBO:

log pω(x0) →Eq

[
log pω(x0|x1)↑

T∑

t=2

KL(qt||pt)
]

(2)

↑ KL(q(xT |x0)||p(xT))

where qt, pt denote the distributions q(xt→1|xt,x0) and
pω(xt→1|xt), respectively.

3 Variational Inference With
Denoising Diffusion Models

We introduce denoising diffusion variational inference

(DDVI), which improves variational inference with
diffusion-based techniques.

The goal of DDVI is to fit a latent variable model pω(x, z).
We assume that pω factorizes as pω(x|z)pω(z) and admits
efficient sampling: examples of such pω include Bayesian
networks and variational autoencoders (VAEs) (Kingma and
Welling 2013).

Our approach is comprised of three components:
1. A modeling family of approximate posteriors qε(z|x)

based on diffusion;
2. A learning objective formed by a regularized ELBO;
3. An optimization algorithm inspired by wake-sleep.
The qε(z|x) iteratively refines latents z, starting from a
Gaussian distribution. The learning objective trains qε(z|x)
to reverse a used-specified forward diffusion process.

3.1 Modeling Family: Diffusion-Based Posteriors
DDVI performs variational inference using a family of ap-
proximate posteriors qε(z|x) =

∫
y qε(z|y,x)qε(y|x)dy,

which themselves contain latent variables y ↔ Y . The mod-
els qε(z|y,x), qε(y|x) must have tractable densities and
support gradient-based optimization over ε.

We choose the latent y = (y1,y2, ...,yT) to be
a vector of T variables that represent progressively
simplified versions of z, with yT corresponding to
a simple distribution (e.g., a Gaussian). The model
qε(y, z|x) = qε(z|y1,x)

∏T→1
t=1 qε(yt|yt+1,x) trans-

forms yT into z via iterative refinement. To sample from
qε, we first sample yT —this is an easier task since
we can define yT to have a simple (e.g., Gaussian)
distribution—and then by sampling from the denoising
model qε(z|y1,x)

∏T→1
t=1 qε(yt|yt+1,x).

We define the relationship between y and z via a
forward diffusion process r(y|z,x) = r(y1:T |z,x) =

!!"#	!! 	 !$	
! ≔ !! # ≔ !"

. . .
$#(!$%&|!$, ()

*(!$|!$%&, ()

*(!|#, ()

$#(#|!, ()

$ %$Dec
)%

Enc
,&

Flexible	PriorsSimple	
Priors

Reverse process
Forward process

Figure 1: Denoising diffusion variational inference in a VAE. Between the encoder and decoder, we have a diffusion model to
map a simple distribution into a complex distribution over latents.

r(y1|z,x)
∏T→1

t=1 r(yt+1|yt,x), which transforms z—the
latent whose intractable posterior we seek to approximate—
into yT , whose posterior is easier to model (possibly condi-
tioned on x). Examples of r include Gaussian forward diffu-
sion processes and discrete noising processes (Austin et al.
2021). The model qε is trained to approximately reverse this
forward diffusion process.

3.2 Learning Objective: A Markovian ELBO
The standard approach to fit auxiliary-variable generative
models (Maaløe et al. 2016) is to apply the ELBO twice:

log pω(x) → log pω(x)↑ KL(qε(z|x)||pω(z|x)) (3)
→ log pω(x)↑ KL(qε(z|x)||pω(z|x)) (4)
↑ Eqω(z|x)[KL(qε(y|x, z)||r(y|x, z))]

= Eqω(y,z|x)[log pω(x|z)] (5)
↑ KL(qε(y, z|x)||r(y|x, z)p(z))

In Equation (3), we applied the ELBO over z, and in Equa-
tion (4) we applied the ELBO over the latent y of q (see
Appendix J for the derivation). Notice that the gap be-
tween the ELBO and log pω(x) is KL(qε(z|x)||pω(z|x)) +
Eqω(z|x)[KL(qε(y|x, z)||r(y|x, z))]. Thus, if we correctly
match q and r, we will achieve a tight bound.

Analyzing the ELBO Optimizing Equation (5) re-
quires tractably dealing with the prior regularization term
Lreg(x,ω,ε) := ↑KL(qε(y, z|x)||r(y|x, z)p(z)), which
we equivalently rewrite as:

Lreg = Eqω(y,z|x)[log(r(y|x, z)p(z))] +H(q). (6)

We can expand the first term by leveraging the Markov struc-
ture of r, q to rewrite Lreg as the likelihood of samples from
the reverse diffusion process q under the forward process r.

Lreg =
T∑

t=1

Eq[log(r(yt|yt→1,x)] + Eq[log p(z)] +H(q),

where y0 := z. We refer to optimizing the Markovian ELBO
as unregularized DDVI, the first instance of our method.

The noise process r defines prior regularization terms for
each yt. This provides extra supervision for learning q in
the form of trajectories from latents yT to y1; this extra su-
pervision helps q fit complex non-Gaussian posteriors.

The term H(q) = ↑
∑T+1

t=1 Eq[log qε(yt→1|yt,x)]
denotes the entropy. For example, when each term
qε(yt→1|yt,x) is Gaussian, it is computed as

H(q) =
T+1∑

t=1

Eq

[
d

2
(1 + log(2ω)) +

1

2
log |!ε(yt,x)|

]

where d is the dimension of y and we use the notation
yT+1 = x. It is also common to leave the variance !ε fixed,
in which case H(q) is a constant.

3.3 Refining the Objective: A Regularized ELBO
Notice that optimizing Lreg involves sampling from the ap-
proximate reverse process qε(y, z|x) to match the true re-
verse process r(y|z,x): this is the opposite of diffusion
training, where we would sample from r to fit q. This type
of on-policy learning of q has been studied in the context
of approximate inference (Zhang and Chen 2021); however,
it requires backpropagating through T samples, which may
hamper training, and it optimizes a mode-covering diver-
gence that may struggle to fit complex p(z).

Adding Wake-Sleep Regularization to the ELBO We
propose to further improve the ELBO via off-policy
diffusion-like training. Our new objective is the ELBO in
Equation (5) augmented with a regularizer Lsleep(ε).

log pω(x) → Eqω(y,z|x)[log pω(x|z)]︸ ︷︷ ︸
wake / recons. term Lrec(x, ω,ε)

(7)

↑KL(qε(y, z|x)||r(y|x, z)p(z))︸ ︷︷ ︸
prior regularization term Lreg(x, ω,ε)

↑Epε(x)[KL(pω(z|x)||qε(z|x))]︸ ︷︷ ︸
sleep term Lsleep(ε)

The optimization of the regularizer Lsleep(ε) is similar to the
sleep phase of wake-sleep, and closely resembles diffusion
model training (see below). As in wake-sleep, Lsleep(ε) is
optimized over ε only, the x are sampled from p.

From Wake-Sleep to Diffusion Regularization Com-
puting Lsleep(ε) still involves intractable distributions
pω(z|x), qε(z|x). To optimize Lsleep(ε), we introduce an-
other lower bound Ldiff(ε), which we call the denoising dif-
fusion loss (for reasons that will become apparent shortly):

Lsleep(ε) = ↑Epε(x)[KL(pω(z|x)||qε(z|x))] (8)
= Epε(x,z)[log qε(z|x)] + H̄(pω)

→ Epε(x,z)

[
Er[log

qε(y, z|x)
r(y|z,x)]

]
+ H̄(pω)

= Ldiff(ε)

In Equation (8), we applied the ELBO with r(y|z,x) play-
ing the role of the variational posterior over the latent y in
qε; H̄(pω) is the expected conditional entropy of pω(z|x), a
constant that does not depend on ε.

We can further simplify Ldiff(ε) by leveraging the
Markov structure of the forward and reverse processes r, q.
Recall that each y = (y1,y2, ...,yT) can be a vector of T la-
tents, which we also denote as y1:T , and that r(y1:T |z,x) =∏T

t=1 r(yt|yt→1,x), where y0 = z and also qε(y, z|x) =

qε(y0:T |x) = qε(yT |x)
∏T

t=1 qε(yt→1|yt,x).
We may use the Markov structure in q, r to rewrite

Ldiff(ε) as a sum of T terms, one per Markov step. The
derivation is identical to that used to obtain the ELBO of
a diffusion model (Sohl-Dickstein et al. 2015), and yields an
expression of the same form:

Ldiff(ε) = Er

[
log qε(z|y1,x)↑

T∑

t=2

KL(rt||qt)
]

(9)

↑ KL(r(yT |z)||qε(y|x)).

where rt, qt denote the distributions r(yt→1|yt,y0,x) and
qε(yt→1|yt,x) (see Appendix K for the derivation).

Regularized DDVI Objective We define the full DDVI
objective Lddvi to be the sum of the aforementioned terms:

Lddvi(x,ω,ε) = Lrec(x,ω,ε) + Lreg(x,ω,ε) + Ldiff(ε)

Terms Lreg and Ldiff may be weighted by hyper-parameters
εreg,εdiff > 0, as in the ε-VAE framework. In our experi-
ments, εreg = εdiff = 1 unless otherwise specified. Note that
since Ldiff ↗ Lsleep ↗ 0, L(x,ω,ε) is a valid lower bound
on log pω(x) that is tight when qε(z|x) = pω(z|x).

3.4 Optimization: Extending Wake-Sleep
We may optimize Lddvi(x,ω,ε) using gradient descent by
alternating between ELBO optimization and taking sleep
steps (see Appendix A for full details):
1. Sample x from data, take gradient step on ω,ε optimiz-

ing Lrec(x,ω,ε) + Lreg(x,ω,ε) (the “wake” step);
2. Sample z,x from pω and take a gradient step on ε opti-

mizing Ldiff(ε) (the “sleep” step).

Again, terms may be weighted by εreg,εdiff > 0. Note that
by maximizing Ldiff(ε), we fit qε(z|x) to pω(z|x) via the
forward KL divergence; similarly, by optimizing Lrec +Lreg
(the ELBO), we fit qε(z|x) to pω(z|x) via the reverse KL di-
vergence. Thus, optimizing L(x,ω,ε) encourages qε(z|x)
to approximate pω(z|x), and when the two are equal, the
bound Lddvi on log pω(x) is tight.

Simplified Wake-Sleep We also consider a light-weight
algorithm, in which r(y|z) and qε(z|y) do not depend on x.
This scenario admits the following optimization procedure:
1. Sample x from data and compute gradient on ω,ε opti-

mizing Lrec(x,ω,ε) + Lreg(x,ω,ε).
2. Sample z from p(z) and compute gradient on ε optimiz-

ing Ldiff(ε); take step on weighted sum of both gradients.
In this case, Ldiff requires only sampling from p(z), and the
entire loss Lddvi can be optimized end-to-end using gradi-
ent descent. This algorithm is simpler (there is no separate
sleep phase); however, qε(z|x) may not perfectly approxi-
mate pω(z|x) when r(y|z) and qε(z|y) do not depend on x,
hence L may no longer be a tight bound.

Practical Considerations A common type of noising
process compatible with this bound when z is continu-
ous is Gaussian diffusion, where we define r(yt|yt→1) =
N (yt;

↓
1↑ϑtyt→1,ϑtI) for a suitable schedule (ϑt)Tt=1.

We then adopt the parameterization qε(yt→1|yt,x) =
N (yt→1;µε(yt,x, t),!ε(yt,x, t)). It is then common to
parameterize qε with a noise prediction network ϖε (Ho,
Jain, and Abbeel 2020); the sum of KL divergences
can be approximated by Et,ϑt↑r(y0,t)||ϖt ↑ ϖε(

↓
ϑ̄ty0 +↓

1↑ ϑ̄tϖt,x, t)||2. Other extensions include discrete de-
noising processes (Austin et al. 2021; Sahoo et al. 2024;
Schiff et al. 2024). In the wake-sleep setting, we know both
endpoints yT ↘ q(·|x) and y0 = z of the diffusion pro-
cess, opening the possibility for applying optimal transport
techniques (Cuturi 2013; De Bortoli et al. 2021).

4 Extensions
4.1 Semi-Supervised Learning
Following Makhzani et al. (2015), we extend our al-
gorithm to the semi-supervised learning setting where
some data points have labels denoted by l. We assume
the user provides a model of the form pω(x,y, z, l) =
pω(x|z, l)r(y|z, l)pω(z|l)p(l); we set the variational distri-
butions to qε(z|x,y, l), qε(y|x), qε(l|x). In this setting, we
consider two cases, depending on whether the label is ob-
served (Kingma et al. 2014). We extend Equation (7) to in-
corporate the label l corresponding to a data point as follows:

Lsemi = Eqω(y,z|x,l)[log pω(x|z, l)] (10)
↑ KL(qε(y, z|x, l)||pω(y, z|l))
↑ Epε(x) [KL(pω(z|x, l)||qε(z|x, l))]

When the label c cannot be observed, we treat it as a la-
tent variable and modify the learning objective Usemi =∑

c qε(l|x)Lsemi(x, l,ω,ε) + KL(qε(l|x)||p(l)). There-
fore, we can conclude a marginal likelihood on our

dataset as follows: L̃semi =
∑

(x,l)↓L Lsemi(x, l,ω,ε) +∑
x↓U Usemi(x,ω,ε). where L and U are the sets of data

with and without labels, respectively.
We also want to guarantee that all model parameters can

be learned in all cases, including qε(l|x), such that this
posterior can be applied as a classifier during inference.
Thus, we combine the marginal likelihood with a classifi-
cation loss to form an extended learning objective: L̃semiϑ =
L̃semi +ϑ · Ep̃(x,l) [↑ log qε(l|x)]

4.2 Clustering
We have further extended our algorithm to encompass the
clustering paradigm. We propose two distinct strategies. In
the first approach, we simply formulate a model in which
pω(z) is a mixture of desired priors. The means of these
priors are characterized by ω. From these means, cluster
membership, denoted as c can be deduced. This approach
requires no alteration to the existing learning objective.

Alternatively, the second method retains the original
prior, but introduces an additional latent cluster variable c
where

∑
i ci = 1. Thus, the model can be specified as

pω(x,y, z, c) = pω(x|z, c)r(y|z)pω(z)p(c) with p(c) =
Dir(ϖ). Consequently, the variational distributions become
qε(z|y, c,x), qε(y, c|x). This yields the objective:

Lclus(x) = Eqω(y,z,c|x)[log pω(x|z, c)] (11)
↑ KL(qε(y, z, c|x)||pω(y, z, c))
↑ Epε(x) [KL(pω(z|x)||qε(z|x))]

Expectations over small numbers of classes c are done ana-
lytically; larger c require backpropagating through discrete
sampling (Jang, Gu, and Poole 2016; Sahoo et al. 2023).

5 Experiments

We compare DDVI with Auto-Encoding Variational
Bayes (AEVB) (Kingma and Welling 2013), AEVB with in-
verse autoregressive flow posteriors (AEVB-IAF) (Kingma
et al. 2016), Adversarial Auto-Encoding Bayes (AAEB)
(Makhzani et al. 2015), and Path Integral Sampler (PIS)
(Zhang and Chen 2021) on MNIST (Lecun et al. 1998) and
CIFAR-10 (Krizhevsky and Hinton 2009) in unsupervised
and semi-supervised learning settings, and also on the Thou-
sand Genomes dataset (Siva 2008). We also compare with
Hierachical Auto-Encoding Variational Bayes (H-AEVB)
(Ranganath, Tran, and Blei 2016; Vahdat and Kautz 2020)
in unsupervised setting. We discuss the computational costs
of all methods in Appendix D. The priors, model architec-
ture, and training details can also be founded in Appendix H.
All results below are reported with 95% confidence interval
using 3 different seeds.

5.1 Unsupervised learning
We start with synthetic experiments that are aimed at bench-
marking the expressivity of diffusion-based posteriors and
their ability to improve fitting p, a distribution with a com-
plex structured prior, like one might find in probabilistic pro-
gramming, scientific analysis, or other applications. We fit a

model pω(x, z) on the MNIST and CIFAR-10 datasets with
three priors p(z): pinwheel, swiss roll, and square and re-
port our results in Table 1 and 7. The model distribution
pω is instantiated by a deep Gaussian latent variable model
(DGLVM) with multi-layer perceptrons (MLPs) on MNIST
and convolutional neural networks (CNNs) on CIFAR-10
(see the details of model architecture in Appendix G).

Our first set of metrics (ELBO and MMD) seeks to eval-
uate the learned generative model pω is good. In the ELBO
calculation, we average the reconstruction loss across image
pixels. We use MMD to measure sample quality: we gener-
ate images with the trained model and calculate MMD be-
tween the generated images and test images using a mixture
of Gaussian kernel with sigma equal to [2, 5, 10, 20, 40, 80].
We only report MMD for MNIST, since CIFAR-10 gener-
ated samples are very low-quality for all methods because
the latent dimension is 2.

Our last metric seeks to directly evaluate the expressivity
of the posterior. We measure latent negative log-likelihood
(Latent NLL) by fitting a kernel density estimator (KDE) on
the latents produced by the model with test data as input and
compute the log-likelihood of the latents sampled from the
prior under the fitted KDE.

From Table 1 and Table 7 in Appendix, we see our method
DDVI achieve best ELBO in all but one scenario, in which
it still performs competitively. We also see strong results in
Latent NLL and k-nearest neighbors classification accuracy
of the latents (Acc). in many scenarios, except for swiss
roll where AAEB does well. We present visualizations on
MNIST using the baselines and our method in Figure 2.

5.2 Semi-supervised Learning
We also evaluate the performance of our method and
the baselines under semi-supervised learning setting where
some labels are observed (1,000 for MNIST and 10,000 for
CIFAR-10) and the partitions of the priors are known.

For this setting, we evaluate ELBO, Latent NLL, and Acc.
We choose classification accuracy since classification is a
common downstream task for semi-supervised learning. We
use the same set of priors and baselines. Details on how we
partition each prior into pω(z|x, l) can be founded in Ap-
pendix F. The partitions defined for our priors are local parts
of the priors. We note that unlike unsupervised learning, we
use the simplified sleep term in our objective for this setting
(see Appendix B for details), since qε already gets extra in-
formation from l here.

The results are shown in Table 2 and Table 8 in Appendix.
DDVI mostly outperforms the baselines across different pri-
ors and metrics, especially on CIFAR-10 where DDVI is
best across the board. For MNIST, DDVI always achieves
the best ELBO, and it also performs competitively with other
baselines in classification accuracy. We also show the visu-
alizations of the latents in Figure 3 where DDVI matches the
prior almost perfectly.

5.3 Clustering and Visualization for Genotype
Analysis

In this section, we report results on an real-world task in
genome analysis. Visualizing genotype data reveals patterns

AEVB AEVB-IAF AAEB DDVI Prior (Oracle)

Pinwheel

Swiss
Roll

Square

Figure 2: Unsupervised visualization on MNIST using three priors (pinwheel, swiss roll, and square). Each color indicates a
class.

Method Pinwheel Swiss Roll Square
ELBO MMD Latent NLL ELBO MMD Latent NLL ELBO MMD Latent NLL

AEVB ↑12.13± 0.41 0.77± 0.04 1.68± 0.31 ↑14.80± 0.23 0.78± 0.17 5.65± 1.58 ↑7.85± 0.29 1.10± 0.66 2.78± 0.61
AEVB-IAF ↑4.19± 0.05 0.77± 0.00 1.64± 0.73 ↑5.10± 0.30 0.61± 0.15 4.43± 1.09 ↑3.97± 0.22 0.75± 0.12 1.68± 0.27

AAEB N/A 0.68± 0.02 1.54± 0.19 N/A 0.52± 0.03 3.34± 0.16 N/A 0.80± 0.02 2.46± 0.46
H-AEVB ↑7.03± 3.13 0.74± 0.02 2.25± 3.02 ↑7.21± 4.62 0.70± 0.22 4.04± 4.62 ↑5.71± 3.05 0.76± 0.21 2.22± 2.03

PIS ↑7.83± 0.64 0.75± 0.14 6.50± 1.11 ↑9.83± 0.61 0.61± 0.03 2.40± 1.01 ↑7.06± 0.06 0.77± 0.04 3.67± 0.08
DDVI ↑3.88± 0.96 0.67± 0.04 1.27± 0.21 ↑5.03± 0.58 0.62± 0.33 3.86± 0.17 ↑3.79± 0.14 0.66± 0.07 1.56± 0.09

Table 1: Unsupervised learning on MNIST. We report ELBO, MMD between generated images and test images, and latent
negative log-likelihood (Latent NLL) with pinwheel, swiss roll, and square priors.

in the latent ancestry of individuals. We instantiate DDVI
with a deep Gaussian latent variable model (DGLVM) and
compare it against with the three strong clustering baselines
using the 1000 Genomes dataset. We also report visualiza-
tions from three dimensionality reduction algorithms: PCA,
TSNE, and UMAP. For each clustering algorithm, we seek
to discover up to 20 clusters. We report quantitative results
in terms of cluster purity, cluster completeness, and normal-
ized mutual information (NMI). There is an inherent trade-
off between cluster purity completeness. The overall cluster-
ing performance can be captured with NMI.

In Table 3, we see that DDVI attains the best performance
on cluster purity and NMI. For cluster completeness, VAE
and AAE have better means but much larger confidence in-
terval. Furthermore, we visualize our genotype clustering
results in latent space, shown in Figure 4, and also report
results from classical dimensionality reduction and visual-
ization methods that do not perform clustering (PCA (Wold,
Esbensen, and Geladi 1987), t-SNE (Van der Maaten and
Hinton 2008), and UMAP (McInnes, Healy, and Melville
2018)). The legend of Figure 4 can be founded at Figure 5
in Appendix.

6 Discussion
Diffusion vs. Normalizing Flows Our approach is most
similar to flow-based approximators (Rezende and Mo-
hamed 2015; Kingma et al. 2016); in fact when T ≃ ⇐, our
diffusion-based posterior effectively becomes a continuous-
time normalizing flow (Song, Meng, and Ermon 2020).
However, classical flow-based methods require invertible ar-
chitectures for each flow layer: this constrains their expres-
sivity and requires backpropagating through potentially a
very deep network. Our approach, on the other hand, trains
a model (a continuous-time flow when T ≃ ⇐) via a de-
noising objective (similar to score matching) that does not
require invertible architectures and effectively admits an in-
finite number of layers (with weight sharing). This model
is trained not by backpropagating through the ELBO, but
rather via an auxiliary diffusion loss term (effectively, a
score matching objective).

Despite training with a modified loss, we observe in Sec-
tion 5 that a diffusion model with an expressive denoising
architecture yields an improved ELBO relative to regular
flows. Also, our modified loss based on the forward KL di-
vergence reduces posterior collapse (i.e., all modes of the
prior are covered well), and thus produces better samples.

AEVB AEVB-IAF AAEB DDVI Prior (Oracle)

Pinwheel

Swiss
Roll

Square

Figure 3: Semi-supervised visualization on MNIST with 1,000 labels using three different priors (pinwheel, swiss roll, and
square). Each a indicates one class.

Method Pinwheel Swiss Roll Square
ELBO Acc Latent NLL ELBO Acc Latent NLL ELBO Acc Latent NLL

AEVB ↑11.15± 0.53 0.93± 0.01 1.36± 0.03 ↑15.29± 1.33 0.68± 0.01 4.60± 0.23 ↑10.26± 0.25 0.86± 0.01 1.68± 0.02
AEVB-IAF ↑2.10± 0.26 0.95± 0.00 1.06± 0.03 ↑5.38± 1.78 0.90± 0.02 2.75± 0.14 ↑2.67± 0.83 0.91± 0.01 0.90± 0.02

AAEB N/A 0.89± 0.01 1.55± 0.01 N/A 0.88± 0.01 3.07± 0.05 N/A 1.94± 0.38 0.76± 0.13
DDVI ↑0.24± 0.13 0.95± 0.00 1.06± 0.01 ↑2.89± 0.33 0.92± 0.01 2.09± 0.00 0.02± 0.09 0.90± 0.01 1.49± 0.03

Table 2: Semi-supervised learning on MNIST (1,000 labels). We report ELBO, accuracy using KNN (K=20) classifier (Acc),
and latent negative log-likelihood (Latent NLL) with pinwheel, swiss roll, and square priors.

Method Cluster Purity Cluster Completeness NMI

AEVB 0.28± 0.02 0.78± 0.16 0.59± 0.08
AEVB-IAF 0.29± 0.04 0.73± 0.06 0.55± 0.06

AAEB 0.37± 0.06 0.76± 0.11 0.63± 0.02
DDVI 0.45± 0.03 0.75± 0.05 0.66± 0.04

Table 3: Quantitative genotype clustering results.

Diffusion vs. Other Generative Models Variational pos-
teriors based on GANs (Makhzani et al. 2015) also admit
expressive architectures and require only sample-based ac-
cess to the prior p(z). Our diffusion-based approach ad-
mits a more stable loss, and is potentially more expressive,
as it effectively supports an infnite number of layers (with
shared parameters when T ≃ ⇐). Unlike GANs, our mod-
els also admit explicit likelihoods and allow us to compute
the ELBO for model evaluation. Our approach is similar to
variational MCMC (Salimans, Kingma, and Welling 2015);
however, we train with a better objective augmented with
a diffusion loss, and we adopt improved architectures with
shared weights across layers.

Diffusion for Approximate Inference Existing diffusion-
based approximate inference methods (Berner, Richter, and
Ullrich 2022; Zhang and Chen 2021; Vargas, Grathwohl,

and Doucet 2023; Zhang et al. 2023; Richter, Berner, and
Liu 2023; Sendera et al. 2024; Akhound-Sadegh et al.
2024) focus on the task of drawing samples from unnor-
malized distributions p̃(z) and estimating the partition func-
tion Z =

∫
z p̃(z)dz. While these methods are applicable

in our setting—we set the unnormalized p̃(z) to pω(x, z)
such that Z = pω(x)—they also tackle a more challeng-
ing problem (drawing samples from energy-based models)
in more general classes of models (arbitrary unnormalized
distributions). In contrast, we focus on restricted but still
important classes of models (VAEs, Bayes networks, etc.),
and we solve more challenging sets of tasks (e.g., maximum-
likelihood learning) by using properties of pω (the factoriza-
tion pω(x|z)pω(z) and efficient sampling from pω).

Our algorithms are also simpler. For example, diffusion
sampling methods require backpropagating through a sam-
pling process to minimize the reverse KL(qε||pω), which
poses challenges with optimization and credit assignment.
Some methods based on Schrodinger bridges require an it-
erative optimization process generalizing the sinkhorn algo-
rithm or computationally expensive on-policy or off-policy
(Malkin et al. 2022) trajectory-based optimization. In con-
trast, DDVI optimizes the forward KL(pω||qε) using simple
gradient-based optimization that directly emulates diffusion-
based training.

VAE IAF-VAE AAE

PCA TSNE UMAP

DiffVAE

Figure 4: Visualization of genotype clusters. A color represents one ethnicity.

7 Related Work
Latent Diffusion Vahdat, Kreis, and Kautz (2021); We-
henkel and Louppe (2021); Rombach et al. (2022) perform
diffusion in the latent space of a VAE. Their goal is high
sample quality, and they introduce into p hierarchical latents
with simple Gaussian priors.

Our goal is different: we seek to fit a p with struc-
tured latents (e.g., in probabilistic programming or in sci-
ence applications, users introduce prior knowledge via hand-
crafted p), and we improve variational inference in this
structured model by introducing auxiliary latents into q. Re-
cent work (Preechakul et al. 2022; Zhang, Zhao, and Lin
2022; Wang et al. 2023) has also melded auto-encoders with
diffusion models, focusing on semantically meaningful low-
dimensional latents in a diffuser p. Cohen et al. (2022) crafts
a diffusion bridge linking a continuously coded vector to a
non-informative prior distribution.

Diffusion for Approximate Inference Diffusion sam-
pling (Berner, Richter, and Ullrich 2022; Zhang and Chen
2021; Vargas, Grathwohl, and Doucet 2023; Zhang et al.
2023; Richter, Berner, and Liu 2023; Sendera et al. 2024;
Akhound-Sadegh et al. 2024) mainly focuses on the task of
drawing samples from unnormalized distributions and es-
timating the partition function. These works draw connec-
tions between diffusion (learning the denoising process) and
stochastic control (learning the Föllmer drift). Some other
works (Zhang et al. 2023; Akhound-Sadegh et al. 2024;
Sendera et al. 2024) use continuous generative flow net-
works (GFlowNets) – deep reinforcement learning algo-
rithms adapted to variational inference that offers stable off-
policy training and thus flexible exploration. While this work
is applicable to our setting, it does not rely on the structure

of p(x, z) available to us, namely tractable sampling in p.

Dimensionality Reduction Latent variable models in
general are an attractive alternative to visualization methods
like PCA, Sparse PCA, NMF, UMAP, and t-SNE (Wold, Es-
bensen, and Geladi 1987; Kuleshov 2013; Lee and Seung
2000; McInnes, Healy, and Melville 2018; Van der Maaten
and Hinton 2008). Domain-specific knowledge can be in-
jected through the prior, and deep neural networks can be
utilized to achieve a more expressive mapping from the data
space to the latent space. Nevertheless, downsides of LVMs
are that they are more computationally expensive and re-
quire careful hyperparameter tuning.

8 Conclusion

While this paper focuses on applications of DDVI to di-
mensionality reduction and visualization, there exist other
tasks for the algorithm, e.g., density estimation or sample
quality. Accurate variational inference has the potential to
improve downstream applications of generative modeling,
e.g., decision making (Nguyen and Grover 2022; Deshpande
and Kuleshov 2023), meta-learning (Rastogi et al. 2023), or
causal effect estimation (Deshpande et al. 2022).

Since our learning objective differs from the ELBO (it
adds a regularizer), we anticipate gains on models whose
training benefits from regularization, but perhaps not on all
models. Also, attaining competitive likelihood estimation re-
quires architecture improvements that are orthogonal to this
paper. However, our ability to generate diverse samples and
achieve class separation in latent space hints at the method’s
potential on these tasks.

References
Akhound-Sadegh, T.; Rector-Brooks, J.; Bose, A. J.; Mit-
tal, S.; Lemos, P.; Liu, C.-H.; Sendera, M.; Ravanbakhsh,
S.; Gidel, G.; Bengio, Y.; et al. 2024. Iterated Denoising
Energy Matching for Sampling from Boltzmann Densities.
arXiv preprint arXiv:2402.06121.
Austin, J.; Johnson, D. D.; Ho, J.; Tarlow, D.; and Van
Den Berg, R. 2021. Structured denoising diffusion mod-
els in discrete state-spaces. Advances in Neural Information

Processing Systems, 34: 17981–17993.
Berner, J.; Richter, L.; and Ullrich, K. 2022. An optimal
control perspective on diffusion-based generative modeling.
arXiv preprint arXiv:2211.01364.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirich-
let allocation. Journal of machine Learning research, 3(Jan):
993–1022.
Cohen, M.; Quispe, G.; Corff, S. L.; Ollion, C.; and
Moulines, E. 2022. Diffusion bridges vector quantized Vari-
ational AutoEncoders. arXiv preprint arXiv:2202.04895.
Cuturi, M. 2013. Sinkhorn distances: Lightspeed computa-
tion of optimal transport. Advances in neural information

processing systems, 26.
De Bortoli, V.; Thornton, J.; Heng, J.; and Doucet, A. 2021.
Diffusion schrödinger bridge with applications to score-
based generative modeling. Advances in Neural Information

Processing Systems, 34: 17695–17709.
Deshpande, S.; and Kuleshov, V. 2023. Calibrated
Uncertainty Estimation Improves Bayesian Optimization.
arXiv:2112.04620.
Deshpande, S.; Wang, K.; Sreenivas, D.; Li, Z.; and
Kuleshov, V. 2022. Deep multi-modal structural equa-
tions for causal effect estimation with unstructured prox-
ies. Advances in Neural Information Processing Systems,
35: 10931–10944.
Gokaslan, A.; Cooper, A. F.; Collins, J.; Seguin, L.; Ja-
cobson, A.; Patel, M.; Frankle, J.; Stephenson, C.; and
Kuleshov, V. 2024. CommonCanvas: Open Diffusion Mod-
els Trained on Creative-Commons Images. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 8250–8260.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-

formation processing systems, 27.
Gordon, A. D.; Henzinger, T. A.; Nori, A. V.; and Rajamani,
S. K. 2014. Probabilistic programming. Future of software

engineering proceedings, 167–181.
Haghverdi, L.; Buettner, F.; and Theis, F. J. 2015. Diffusion
maps for high-dimensional single-cell analysis of differenti-
ation data. Bioinformatics, 31(18): 2989–2998.
Hinton, G. E.; Dayan, P.; Frey, B. J.; and Neal, R. M. 1995.
The” wake-sleep” algorithm for unsupervised neural net-
works. Science, 268(5214): 1158–1161.
Ho, J.; Jain, A.; and Abbeel, P. 2020. Denoising diffusion
probabilistic models. Advances in neural information pro-

cessing systems, 33: 6840–6851.

Jang, E.; Gu, S.; and Poole, B. 2016. Categorical
reparameterization with gumbel-softmax. arXiv preprint

arXiv:1611.01144.
Johnson, M. J.; Duvenaud, D.; Wiltschko, A. B.; Datta,
S. R.; and Adams, R. P. 2016. Composing Graphical Models
with Neural Networks for Structured Representations and
Fast Inference. In Advances in Neural Information Process-

ing Systems (NIPS) 29. ArXiv:1603.06277 [stat.ML].
Kingma, D. P.; Mohamed, S.; Jimenez Rezende, D.; and
Welling, M. 2014. Semi-supervised learning with deep gen-
erative models. Advances in neural information processing

systems, 27.
Kingma, D. P.; Salimans, T.; Jozefowicz, R.; Chen, X.;
Sutskever, I.; and Welling, M. 2016. Improved variational
inference with inverse autoregressive flow. Advances in neu-

ral information processing systems, 29.
Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Toronto, ON, Canada.
Kuleshov, V. 2013. Fast algorithms for sparse principal com-
ponent analysis based on Rayleigh quotient iteration. In In-

ternational Conference on Machine Learning, 1418–1425.
PMLR.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Lee, D.; and Seung, H. S. 2000. Algorithms for Non-
negative Matrix Factorization. In Leen, T.; Dietterich, T.;
and Tresp, V., eds., Advances in Neural Information Pro-

cessing Systems, volume 13. MIT Press.
Maaløe, L.; Sønderby, C. K.; Sønderby, S. K.; and Winther,
O. 2016. Auxiliary deep generative models. In International

conference on machine learning, 1445–1453. PMLR.
Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; and
Frey, B. 2015. Adversarial autoencoders. arXiv preprint

arXiv:1511.05644.
Malkin, N.; Jain, M.; Bengio, E.; Sun, C.; and Bengio, Y.
2022. Trajectory balance: Improved credit assignment in
GFlowNets. Advances in Neural Information Processing

Systems, 35: 5955–5967.
Marsland, S. 2014. Machine Learning: An Algorithmic Per-

spective (2nd Edition). Chapman and Hall/CRC.
McInnes, L.; Healy, J.; and Melville, J. 2018. Umap: Uni-
form manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426.
Nguyen, T.; and Grover, A. 2022. Transformer Neu-
ral Processes: Uncertainty-Aware Meta Learning Via Se-
quence Modeling. In Chaudhuri, K.; Jegelka, S.; Song, L.;
Szepesvári, C.; Niu, G.; and Sabato, S., eds., International

Conference on Machine Learning, ICML 2022, 17-23 July

2022, Baltimore, Maryland, USA, volume 162 of Proceed-

ings of Machine Learning Research, 16569–16594. PMLR.
Preechakul, K.; Chatthee, N.; Wizadwongsa, S.; and Suwa-
janakorn, S. 2022. Diffusion autoencoders: Toward a mean-
ingful and decodable representation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 10619–10629.
Ranganath, R.; Tran, D.; and Blei, D. 2016. Hierarchical
variational models. In International conference on machine

learning, 324–333. PMLR.
Rastogi, R.; Schiff, Y.; Hacohen, A.; Li, Z.; Lee, I.; Deng, Y.;
Sabuncu, M. R.; and Kuleshov, V. 2023. Semi-Parametric
Inducing Point Networks and Neural Processes. In The

Eleventh International Conference on Learning Represen-

tations.
Rezende, D.; and Mohamed, S. 2015. Variational inference
with normalizing flows. In International conference on ma-

chine learning, 1530–1538. PMLR.
Richter, L.; Berner, J.; and Liu, G.-H. 2023. Im-
proved sampling via learned diffusions. arXiv preprint

arXiv:2307.01198.
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2022. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition, 10684–
10695.
Sahoo, S. S.; Arriola, M.; Gokaslan, A.; Marroquin, E. M.;
Rush, A. M.; Schiff, Y.; Chiu, J. T.; and Kuleshov, V. 2024.
Simple and Effective Masked Diffusion Language Models.
In The Thirty-eighth Annual Conference on Neural Informa-

tion Processing Systems.
Sahoo, S. S.; Paulus, A.; Vlastelica, M.; Musil, V.; Kuleshov,
V.; and Martius, G. 2023. Backpropagation through Combi-
natorial Algorithms: Identity with Projection Works. In The

Eleventh International Conference on Learning Representa-

tions.
Salimans, T.; Kingma, D. P.; and Welling, M. 2015. Markov
Chain Monte Carlo and Variational Inference: Bridging the
Gap. In International conference on machine learning,
1218–1226. PMLR.
Schiff, Y.; Sahoo, S. S.; Phung, H.; Wang, G.; Boshar, S.;
Dalla-torre, H.; de Almeida, B. P.; Rush, A.; Pierrot, T.; and
Kuleshov, V. 2024. Simple Guidance Mechanisms for Dis-
crete Diffusion Models. arXiv preprint arXiv:2412.10193.
Sendera, M.; Kim, M.; Mittal, S.; Lemos, P.; Scimeca, L.;
Rector-Brooks, J.; Adam, A.; Bengio, Y.; and Malkin, N.
2024. On diffusion models for amortized inference: Bench-
marking and improving stochastic control and sampling.
arXiv preprint arXiv:2402.05098.
Si, P.; Bishop, A.; and Kuleshov, V. 2022. Autoregressive
Quantile Flows for Predictive Uncertainty Estimation. In
International Conference on Learning Representations.
Si, P.; Chen, Z.; Sahoo, S. S.; Schiff, Y.; and Kuleshov,
V. 2023. Semi-Autoregressive Energy Flows: Exploring
Likelihood-Free Training of Normalizing Flows. In Krause,
A.; Brunskill, E.; Cho, K.; Engelhardt, B.; Sabato, S.; and
Scarlett, J., eds., Proceedings of the 40th International Con-

ference on Machine Learning, volume 202 of Proceedings

of Machine Learning Research, 31732–31753. PMLR.
Siva, N. 2008. 1000 Genomes project. Nature biotechnol-

ogy, 26(3): 256–257.

Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; and
Ganguli, S. 2015. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-

ence on machine learning, 2256–2265. PMLR.
Song, J.; Meng, C.; and Ermon, S. 2020. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502.
Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.; Er-
mon, S.; and Poole, B. 2020. Score-based generative model-
ing through stochastic differential equations. arXiv preprint

arXiv:2011.13456.
Vahdat, A.; and Kautz, J. 2020. NVAE: A deep hierarchi-
cal variational autoencoder. Advances in neural information

processing systems, 33: 19667–19679.
Vahdat, A.; Kreis, K.; and Kautz, J. 2021. Score-based gen-
erative modeling in latent space. Advances in Neural Infor-

mation Processing Systems, 34: 11287–11302.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
Vargas, F.; Grathwohl, W.; and Doucet, A. 2023. Denoising
diffusion samplers. arXiv preprint arXiv:2302.13834.
Wang, Y.; Schiff, Y.; Gokaslan, A.; Pan, W.; Wang, F.;
De Sa, C.; and Kuleshov, V. 2023. InfoDiffusion: Repre-
sentation Learning Using Information Maximizing Diffu-
sion Models. In Krause, A.; Brunskill, E.; Cho, K.; En-
gelhardt, B.; Sabato, S.; and Scarlett, J., eds., Proceedings

of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research,
36336–36354. PMLR.
Wehenkel, A.; and Louppe, G. 2021. Diffusion priors in
variational autoencoders. arXiv preprint arXiv:2106.15671.
Wold, S.; Esbensen, K.; and Geladi, P. 1987. Principal com-
ponent analysis. Chemometrics and intelligent laboratory

systems, 2(1-3): 37–52.
Zhang, D.; Chen, R. T. Q.; Liu, C.-H.; Courville, A.; and
Bengio, Y. 2023. Diffusion generative flow samplers: Im-
proving learning signals through partial trajectory optimiza-
tion. arXiv preprint arXiv:2310.02679.
Zhang, Q.; and Chen, Y. 2021. Path integral sampler: a
stochastic control approach for sampling. arXiv preprint

arXiv:2111.15141.
Zhang, Z.; Zhao, Z.; and Lin, Z. 2022. Unsupervised rep-
resentation learning from pre-trained diffusion probabilistic
models. Advances in Neural Information Processing Sys-

tems, 35: 22117–22130.
Zhao, S.; Song, J.; and Ermon, S. 2017. Infovae: Informa-
tion maximizing variational autoencoders. arXiv preprint

arXiv:1706.02262.

A Pseudocode
Here we provide a pseudocode to illustrate the training process of DDVI.

Algorithm 1: DDVI Pseudocode

1: (Optional) Pre-train pω(x|z) and qε(y|x) with DDVI but with unconditional diffusion model qε(z|y)
2: for epoch = 1, . . . , n do
3: for x1, . . . ,xk ↘ pD(x) do
4: yi ↘ qε(y|xi) and zi ↘ q(z|yi,xi) for i = 1, . . . , k
5: Optimize ω,ε with respect to a Monte Carlo estimate of Eqω(y,z|x) [log pω(x|z)] ↑ KL (qε(y, z|x)⇒pω(y, z)) for

each xi ϑ Standard ELBO training part
6: for iteration = 1, . . . ,m do ϑ Do sleep for m iterations
7: z1, . . . , zk ↘ p(z) ϑ Batch-sample latents from prior
8: x̂i ↘ p(x|zi) for i = 1, . . . , k ϑ Construct fantasy inputs
9: yi ↘ r(y|zi) for i = 1, . . . , k ϑ Construct fantasy inputs

10: Optimize ε using the standard diffusion noise prediction loss on qε(z|yi, x̂i)
11: end for
12: end for
13: end for

B Simplifying Wake-Sleep
In wake-sleep, sampling x from pω to obtain gradients for the sleep term introduces computational overhead. To address this
issue, we propose wake-sleep in latent space, an algorithm that optimizes an approximation L̂(x,ω,ε) of L:

L̂(x,ω,ε) = Eqω(y,z|x)[log pω(x|z)]︸ ︷︷ ︸
wake / reconstr. term Lrec(x, ω,ε)

↑KL(qε(y, z|x)||pω(y, z))︸ ︷︷ ︸
prior regularization term Lreg(x, ω,ε)

↑KL(pω(z)||qε(z|x))︸ ︷︷ ︸
latent sleep term Lsleep(x,ε)

. (12)

We have replaced Lsleep(ε) with a latent sleep term Lsleep(x,ε), in which x is given, and we only seek to fit the true reverse
noising process r(z|y) independently of x. We can similarly show that

Lsleep(x,ε) = Epε(z)[log qε(z|x)] + H̄(pω) → Epε(z)r(y|z)[log(qε(y, z|x)/r(y|z))] + H̄(pω) (13)
= ↑Epε(z)[KL(r(y|z)||qε(y|z,x))]↑ KL(pω(z)||q(z|x)), (14)

where H̄(pω) is an entropy term constant in ε. Thus, we minimize the forward KL divergence by sampling z, and applying the
noising process to get y; the qε is fit to denoise z from y as in Equation 8.

We optimize our bound on L̂(x,ω,ε) end-to-end using minibatch gradient descent over ω,ε. While the wake term is a recon-
struction loss as in wake-sleep, the sleep term generates latent samples z,y from r(y|z)pω(z) (by analogy with pω(x|z)pω(z)
in normal wake-sleep); the denoiser qε is trained to recover z from y. Thus, we perform wake-sleep in latent space, which obvi-
ates the need for alternating wake and sleep phases, and allows efficient end-to-end training. A limitation of this approximation
is that the sleep term does not fit qε to the true pω(z|x,y), and as a consequence L̂ is not a tight lower bound on log pω(x). We
may think of Lsleep(x,ε) as a regularizer to the ELBO.

C Comparision of Methods
We provide a comprehensive comparison of different methods in Table 4. Vahdat, Kreis, and Kautz (2021); Wehenkel and
Louppe (2021); Rombach et al. (2022) perform diffusion in the latent space of a VAE to improve the efficiency of image gener-
ation. Their goal is high sample quality, and they introduce into p hierarchical latents with simple Gaussian priors. Our goal is
different: we seek a method to fit a p with structured latents (e.g., in probabilistic programming or in science applications, users
introduce prior knowledge via hand-crafted p), and we improve variational inference in this structured model by introducing
auxiliary latents into q.

Recent work (Preechakul et al. 2022; Zhang, Zhao, and Lin 2022; Wang et al. 2023) has also melded auto-encoders with
diffusion models, focusing on semantically meaningful low-dimensional latents in a diffuser p. Cohen et al. (2022) crafts a
diffusion bridge linking a continuous coded vector to a non-informative prior distribution.

D Computational Cost Analysis
We conduct a computational cost analysis between the baselines and DDVI with various timesteps on the genotype cluster-
ing/visualization experiments. Table 5 shows that DDVI outperforms baselines at all timestamps and continues to improve after
the baselines have plateaued.

Model Training
Objective

Approximating
Family

Sample-based
Prior

Auxiliary
Variable

Tasks Simplified Graphical
Illustration

AEVB ELBO Diagonal
Gaussian

✁ ✁ Density estimation x ≃ z ≃ x

AEVB-IAF ELBO Normalizing flow ✁ ✂ Density estimation /
Visualization

x ≃ z0 ≃ zT ≃ x

AAEB Adversarial
training

Adversarial
generator

✂ ✁ Visualization x ≃ z ≃ x

H-AEVB-
(IAF)

ELBO Factorial Normal /
Normalizing flow

✁ ✂ Density estimation /
High-quality sample

generation

x ≃ z0 ≃ zT ≃ z0 ≃
x

ADGM ELBO Non-Gaussian ✁ ✂ Density estimation x ≃ a ≃ z ≃ x

LDM ELBO Diagonal
Gaussian

✁ ✂ High-quality sample
generation

x ≃ z0 ≃ zT ≃ z0 ≃
x

LSGM ELBO & score
matching

Diagonal
Gaussian

✁ ✂ High-quality sample
generation

x ≃ z0 ≃ zT ≃ z0 ≃
x

DDVI ELBO & sleep
term

Denoising
diffusion

✂ ✂ Density estimation /
Visualization

x ≃ zT (y) ≃ z0(z) ≃
x

Table 4: Comparison of DDVI to other relevant methods. x represents the original data input to the model. z denotes the latent
(hidden) representation of the input data. a represents an auxiliary variable introduced in some models (like ADGM) to capture
additional aspects of the data distribution or to assist in the model’s learning process.

Method NMI values at different wall-clock training times
NMI @ 10 min NMI @ 20 min NMI @ 30 min NMI @ 40 min NMI @ 50 min NMI @ 60 min

AEVB 0.52 0.52 0.52 0.52 0.52 0.52
AEVB-IAF 0.54 0.52 0.52 0.52 0.52 0.52

AAEB 0.61 0.57 0.57 0.57 0.57 0.57
DDVI (T=5) warm up 0.63 0.63 0.66 0.66 0.66

DDVI (T=10) warm up 0.64 0.68 0.70 0.70 0.70
DDVI (T=20) warm up 0.50 0.51 0.56 0.64 0.68
DDVI (T=50) warm up 0.52 0.54 0.51 0.59 0.59

Table 5: Computational cost trade-off on 1kgenome: NMI vs wall-clock training time

E Connections to Diffusion Samplers
Diffusion sampling (Berner, Richter, and Ullrich 2022; Zhang and Chen 2021; Vargas, Grathwohl, and Doucet 2023; Zhang
et al. 2023; Richter, Berner, and Liu 2023; Sendera et al. 2024; Akhound-Sadegh et al. 2024) mainly focuses on the task of
drawing samples from unnormalized distributions and estimating the partition function. These works draw connections between
diffusion (learning the denoising process) and stochastic control (learning the Föllmer drift), leading to several approaches, e.g.,
path integral sampler (PIS) (Zhang and Chen 2021), denoising diffusion sampler (DDS) (Vargas, Grathwohl, and Doucet 2023),
and time-reversed diffusion sampler (DIS) (Berner, Richter, and Ullrich 2022), which have been unified by Richter, Berner,
and Liu (2023). Some other works (Zhang et al. 2023; Akhound-Sadegh et al. 2024) use continuous generative flow networks
(GFlowNets) – deep reinforcement learning algorithms adapted to variational inference that offers stable off-policy training and
thus flexible exploration. Sendera et al. (2024) benchmarked these previous diffusion-structured amortized inference methods
and studied how to improve credit assignment in diffusion samplers, which refers to the propagation of learning signals from
the target density to the parameters of earlier sampling steps. Overall, there are indeed some strong connections between these
works and ours:
• They also focus on variational methods that directly fit a parametric family of tractable distributions (given by controlled

SDEs) to the target density.
• They cast the density estimation/sampling problem into an optimization problem over a control objective, which learns

control drifts (and diffusion) parameterized by neural networks.
But we would like to clarify that there are also some clear differences between them:

• The diffusion-structured samplers only focus on density estimation/sampling but ignore the problem of learning a generative
model, which is one of the main focuses of our work. We aim to perform more accurate variational inference using an
auxiliary variable model augmented by diffusion models to improve generative modeling. In our setting, pω(z|x) is a moving
target density, as we jointly learn ω with ε, as opposed to a static target density that diffusion-structured samplers are
designed to solve.

• To tackle the challenge of credit assignment – propagating weak learning signals through the sampling trajectory, the tech-
niques proposed in diffusion-structured samplers are mostly based on partial trajectory information, which has higher train-
ing costs over on-policy (Zhang and Chen 2021) or off-policy (Malkin et al. 2022) trajectory-based optimization. Instead,
we introduce a wake-sleep optimization algorithm and its simplified version to alleviate the weak learning signal issue and
optimize the evidence lower bound in a better way.

• In Equation 8, we are minimizing the forward KL divergence KL(pω||qε), where diffusion samplers are minimizing the
reverse KL(qε||pω).

We also summarize the connections and differences in the table below.

Diffusion Samplers GFlowNet-based DDVI (ours)
(Berner, Richter, and Ull-
rich 2022; Zhang and Chen
2021; Vargas, Grathwohl,
and Doucet 2023; Akhound-
Sadegh et al. 2024)

(Zhang et al. 2023; Richter,
Berner, and Liu 2023;
Sendera et al. 2024; Malkin
et al. 2022)

Tasks Sampling, density estima-
tion

Sampling, density estima-
tion

Learning, Sampling, Dimen-
sionality reduction

Model Fam-
ily for p

Any energy-based Any energy-based Latent with tractable
p(x|z), p(z)

Model Fam-
ily for q

Markov chain Markov chain Markov chain

Objective KL(q||p) with regularizer Trajectory balance objective KL(p||q) with ELBO
Algorithm Gradient descent (with ref-

erence process), importance
sampling

RL-motivated off-policy op-
timization (replay buffers,
Thompson sampling, etc.)

Gradient descent with wake-
sleep

Compatible
Models

Anything energy-based Anything energy-based LDA, deep latent-variable
models

Applications Sampling from physics-
based models, model
selection based on NLL

Sampling from physics-
based models, model
selection based on NLL

Probabilistic programming,
visualization

Table 6: Comparison of Diffusion-structured Samplers, GFlowNet-based Approaches, and DDVI

F Priors
Below we describe the sampling process for each prior.

Pinwheel. This distribution was used in (Johnson et al. 2016). We define the number of clusters to be 10. For semi-supervised
learning experiments, this prior is partitioned into 10 partitions, each partition being a cluster.

Swiss Roll. This distribution was used in (Marsland 2014). For semi-supervised learning experiments, this prior is partitioned
into 10 partitions. The samples from the prior can actually be characterized by a single scalar representing how far you are long
the swiss roll from the center. The paritioning is done by creating 10 equal-length intervals in this 1D space.

Square. This distribution has the shaped of a square going from -1 to 1 in both axes. Each position on the square can be
characterized by a single scalar representing how far you are from the top left corner. Sampling is done by sampling the position
uniformly and turn the 1D position to 2D latent. We add noise ϖ = 0.06 to the prior. For semi-supervised learning experiments,
this prior is partitioned into 10 partitions. The partitioning is done by creating 10 equal-length intervals in the 1D position space.

AEVB and AEVB-IAF requires that we can evaluate the prior density. To do this, for all priors, we evaluate the density by
fitting a kernel density estimator with mixture of gaussian kernel with bandwidth equal to 0.005, 0.008, 0.01, 0.03, and 0.05.

G Model Architecture
All methods use the same architecture for encoder qε(z|x) and decoder pω(x|z), excluding the extra parts specific to each
method which we describe below, for the same dataset. For MNIST, the encoder and decoder are multi-layer perceptron with

Figure 5: Legend showing what ethnicity each color corresponds to in the 1000 Genomes dataset

two hidden layers, each with 1000 hidden units. For CIFAR-10, the encoder is a 4-layer convolutional neural network with (16,
32, 64, 128) channels with a linear layer on top, and the decoder is a 4-layer tranposed convolutional neural network with (64,
32, 16, 3) channels where a linear layer is used to first turn the feature dimension from 2 to 64.

AEVB-IAF employs 4 IAF transformations on top of the encoder, each is implemented with a 4-layer MADE. The number
of hidden units in MADE is 128. The ordering is reversed between every other IAF transformation.

AAEB has a discriminator, used in adversarial training, which is a multi-layer perceptron with two hidden layers, each with
1000 hidden units.

DDVI has a diffusion model on top of the encoder. The time-conditioned reverse diffusion distribution is implemented
with a 5-layer time-conditioned multi-layer perceptron, each with 128 hidden units. A time-conditioned linear layer learns an
additional embedding for each timestep and adds it to the output of the linear layer.

H Training Details
For training, we update the parameters for each batch of inputs by alternating between the ELBO phase (optimizing ω and ε
with respect to the ELBO, i.e., the reconstruction term and the prior matching term) and the sleep phase (optimizing ε with
respect to the sleep term). We use Adam optimizer and latent size of 2 for all of our experiments. Each algorithm takes roughly
2 hours on a single Nvidia GeForce RTX 3090 to complete one run of experiment. The training details of each algorithm are
detailed below:

AEVB. The batch size is set to 128. The number of epochs is 200 for unsupervised and clustering experiments and 50 for
semi-supervised experiments. The learning rate is 0.0001. The loss is BCE for MNIST and CIFAR-10 experiments and MSE for
genotype analysis experiments. For semi-supervised MNIST experiments, the kl divergence weight is set to be 0.01, while for
semi-supervised CIFAR-10 experiments, the kl divergence weight is set to be 0.01. For other experiments, the KL divergence
weight is set with a schedule linear on number of epochs going from 0 to 0.01. We also have a weight of 5 multiplied to the
prior density.

AEVB-IAF. The batch size, number of epochs, learning rate, loss, KL divergence weight, and prior density weight are the
same as VAE. The context size, i.e., the size of features used to initialize the flow layers for different datat point, is 10.

AAEB. The batch size is set to 128. The number of epochs is 200 for all experiments. The learning rate is 0.0002. The loss
is MSE for all experiments. To stabilize the training, we add noise to the input to the discriminator with sigma 0.3 at the start
and lower it by 0.1 for every 50 epochs. The noise equals to 0 at epoch 150.

DDVI. The batch size is set to 128 for most experiments, except for semi-supervied experiments where the batch size is
1024. The number of epochs is 200 for unsupervised and clustering experiments and 30 for semi-supervised experiments. The
learning rate is 0.0001. The loss is BCE for MNIST and CIFAR-10 experiments and MSE for genotype analysis experiments.
For unsupervised MNIST and CIFAR-10 experiments, the KL divergence weight is set to 0.003. For semi-supervised MNIST
experiment, we use KL divergence weight of 0.1. For semi-supervised CIFAR-10 experiment, we use KL divergence weight
of 0.5. For clustering experiment, we use KL divergence weight of 0.005. The number of timesteps is 20 for unsupervised and
clustering experiments and 100 for semi-supervised experiments.

I Genotype Analysis Experiments Details
Before inputting the data points into any of the visualization methods, we first pre-process it by running a PCA and keep only the
first 1000 principal components of the data points. We further divide the features by 30 for all latent variables model methods.

The legend of the 1000 Genomes Visualization plot can be found at Figure 5.

J ELBO for Auxiliary-Variable Generative Models
We aim to derive the lower bound for the log-likelihood log pω(x) by introducing auxiliary variables and applying the Evidence
Lower Bound (ELBO) twice.

Method Pinwheel Swiss Roll Square
ELBO Latent NLL ELBO Latent NLL ELBO Latent NLL

AEVB ↑12.96± 1.81 3.26± 0.60 ↑12.87± 4.55 6.25± 1.58 ↑7.91± 0.11 2.91± 0.17
AEVB-IAF ↑3.24± 0.16 1.71± 0.84 ↑4.03± 0.73 5.51± 0.51 ↑2.10± 0.31 1.71± 0.77

AAEB N/A 1.70± 0.41 N/A 3.18± 0.22 N/A 1.67± 0.17
H-AEVB ↑4.42± 0.46 1.69± 0.17 ↑5.36± 0.77 5.74± 0.55 ↑2.86± 0.11 1.64± 0.09

PIS ↑2.92± 1.23 3.61± 0.62 ↑4.14± 0.49 7.14± 0.14 ↑4.85± 0.06 3.91± 0.06
DDVI ↑1.38± 0.44 1.75± 0.53 ↑3.05± 0.65 5.66± 2.63 ↑2.47± 0.30 1.58± 0.09

Table 7: Unsupervised learning on CIFAR-10. We report ELBO and latent negative log-likelihood (Latent NLL) with pinwheel,
swiss roll, and square priors.

Method Pinwheel Swiss Roll Square
ELBO Acc Latent NLL ELBO Acc Latent NLL ELBO Acc Latent NLL

AEVB ↑17.14± 1.46 0.30± 0.05 2.32± 0.27 ↑17.89± 5.21 0.20± 0.07 6.56± 2.25 ↑13.30± 1.50 0.30± 0.05 1.95± 0.28
AEVB-IAF ↑5.70± 0.07 0.47± 0.01 1.62± 0.05 ↑5.53± 2.82 0.28± 0.08 6.82± 1.90 ↑4.41± 0.53 0.36± 0.01 1.58± 0.15

AAEB N/A 0.25± 0.01 1.77± 0.14 N/A 0.23± 0.01 3.38± 0.30 N/A 0.23± 0.04 1.74± 0.15
DDVI ↑1.60± 0.29 0.49± 0.01 1.09± 0.05 ↑4.13± 1.51 0.47± 0.09 2.29± 0.08 ↑1.73± 0.64 0.49± 0.01 1.48± 0.02

Table 8: Semi-supervised learning on CIFAR-10 (10,000 labels). We report ELBO, accuracy using KNN (K=20) classifier
(Acc), and latent negative log-likelihood (Latent NLL) with pinwheel, swiss roll, and square priors.

Introduce the latent variable z and apply the ELBO:

log pω(x) = log

∫
pω(x, z) dz (15)

→ Eqω(z|x)

[
log

pω(x, z)

qε(z|x)

]
(by Jensen’s inequality) (16)

= Eqω(z|x) [log pω(x|z)]↑ KL (qε(z|x) ⇒ p(z)) (17)
(18)

Then, introduce an auxiliary variable y and apply the ELBO again:
log pω(x) → Eqω(z|x) [log pω(x|z)]↑ KL (qε(z|x) ⇒ p(z)) (19)

= Eqω(z|x) [log pω(x|z)]↑ Eqω(z|x) log qε(z|x) + Eqω(z|x) log p(z) (20)

→ Eqω(z|x)

Eqω(y|x,z) [log pω(x|z)]


↑ Eqω(z|x)

[
Eqω(y|x,z)

[
log

qε(y, z|x)
r(y|x, z)

]]
+ Eqω(z|x)


Eqω(y|x,z) [log p(z)]



(21)
= Eqω(y,z|x) [log pω(x|z)]↑ KL (qε(y, z|x) ⇒ r(y|x, z)p(z)) (22)

K Diffusion Regularization
We begin with the definition of Ldiff(ε), derived as a lower bound on Lsleep(ε):

Ldiff(ε) = Epε(x,z)

[
Er

[
log

qε(y, z|x)
r(y|z,x)

]]
+ H̄(pω).

To simplify Ldiff, we leverage the Markov structure of the forward process r(y|z,x) and the reverse process qε(y, z|x).
The forward process r(y|z,x) is decomposed as:

r(y1:T |z,x) =
T

t=1

r(yt|yt→1,x),

where y0 = z.
The reverse process qε(y, z|x) is decomposed as:

qε(y, z|x) = qε(y0:T |x) = qε(yT |x)
T

t=1

qε(yt→1|yt,x),

Method Latent NLL - Pinwheel Latent NLL - Swiss Roll Latent NLL - Square

AEVB 1.68± 0.31 5.65± 1.58 2.78± 0.61
AEVB-IAF 1.64± 0.73 4.43± 1.09 1.68± 0.27

AAEB ↑ ↑ ↑
H-AEVB 2.25± 3.02 4.04± 4.62 2.22± 2.03

DDVI 1.27± 0.21 3.86± 1.17 1.56± 0.09
DDVI (w/o sleep term) 2.12 5.25 2.97

Table 9: Unsupervised learning on MNIST, including the results of DDVI without the sleep term.

where y0 = z and y1:T are increasingly noisy versions of z.
Substituting the factorizations of r and qε into the definition of Ldiff(ε), and rewriting the logarithm and rearranging terms,

we have:

Ldiff(ε) = Epε(x,z)

[
Er(y1:T |z,x)

[
log

qε(yT |x)
∏T

t=1 qε(yt→1|yt,x)∏T
t=1 r(yt|yt→1,x)

]]
+ H̄(pω)

= Er(y1:T ,z,x)

[
log qε(z|y1,x)↑

T∑

t=2

KL(rt||qt)
]
↑ KL(r(yT |z,x)||qε(yT |x)) + H̄(pω)

Here, log qε(z|y1,x) corresponds to the reconstruction term for the initial latent state z, while the summation represents the
KL divergence between the forward and reverse processes at each intermediate step. rt = r(yt→1|yt, z,x) is the conditional
forward distribution at step t, qt = qε(yt→1|yt,x) is the reverse process distribution at step t. H̄(pω) is the expected conditional
entropy of pω(z|x), a constant that does not depend on ε.

This form mirrors the ELBO derivation for diffusion models (Sohl-Dickstein et al. 2015), where each step in the Markov chain
contributes a KL divergence term, and the reconstruction term arises from the connection between the noisy latent variables
and the original data.

