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ABSTRACT

Diffusion models for continuous data gained widespread adoption owing to their
high quality generation and control mechanisms. However, controllable diffusion
on discrete data faces challenges given that continuous guidance methods do not
directly apply to discrete diffusion. Here, we provide a straightforward deriva-
tion of classifier-free and classifier-based guidance for discrete diffusion, as well
as a new class of diffusion models that leverage uniform noise and that are more
guidable because they can continuously edit their outputs. We improve the quality
of these models with a novel continuous-time variational lower bound that yields
state-of-the-art performance, especially in settings involving guidance or fast gen-
eration. Empirically, we demonstrate that our guidance mechanisms combined
with uniform noise diffusion improve controllable generation relative to autore-
gressive and diffusion baselines on several discrete data domains, including ge-
nomic sequences, small molecule design, and discretized image generation. Code
to reproduce our experiments is available here.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) gained widespread adoption in image
generation and signal processing in part due to their high controllability via mechanisms such as
classifier-based (Dhariwal & Nichol, 2021a) and classifier-free guidance (Nichol et al., 2021; Ho &
Salimans, 2022). Tasks where guidance plays a key role include MRI denoising (Song & Ermon,
2019), 3D reconstruction (Poole et al., 2022; Gao et al., 2024), and conditional generation (Saharia
et al., 2022; Gokaslan et al., 2024).

However, applying controllable diffusion-based generation to tasks where the data is discrete (e.g.,
molecule design or text generation) presents challenges. First, standard diffusion models and their
guidance mechanisms are not directly applicable, since they require taking gradients with respect
to the data, and these are not defined in discrete settings. Second, popular discrete extensions of
diffusion (Sahoo et al., 2024a; Shi et al., 2024) cannot perform multiple editing passes on generated
tokens, hence are not ideal for controllable generation. Third, the performance of discrete diffusion
models (measured by perplexity) lags behind autoregressive (AR) models, especially for classes of
diffusion that are amenable to control, such as uniform noise (Austin et al., 2021; Lou et al., 2023).

Here, we propose discrete diffusion models and guidance mechanisms that are effective at con-
trollable generation and that address the above challenges. First, we provide straightforward and
easy-to-implement adaptations of classifier-based and classifier-free guidance for discrete diffusion
models. Second, we revisit uniform noise diffusion language models (UDLM), which undo random
token perturbations and are particularly amenable to guidance, since they can repeatedly edit their
samples (Austin et al., 2021) and thus correct errors. We address performance issues that plagued
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Figure 1: (Left) Adapting guidance to discrete diffusion. Models output a factorized discrete dis-
tribution for each denoised token. With our guidance mechanisms, we adjust these probabilities
according to a guidance model – either a conditional diffusion model in classifier-free guidance
(Section 3.1) or a separately trained classifier for classifier-based guidance (Section 3.2). (Right)
Relative to autoregressive models, which make local predictions one token at a time, discrete diffu-
sion models denoise the entire sequence at every iteration, allowing for more guidable outputs.

previous iterations of uniform noise discrete diffusion by deriving a continuous-time version of the
evidence lower bound, which tightens the variational gap (Kingma et al., 2021; Sahoo et al., 2024a).

We demonstrate the effectiveness of guidance with discrete diffusion models on several domains:
genomics, molecule strings, and discretized images. We find that discrete diffusion models are more
controllable than AR when paired with classifier-free guidance. Moreover, our proposed classifier-
based method improves upon previous guidance mechanisms for diffusion (Gruver et al., 2024) and
AR (Dathathri et al., 2019; Yang & Klein, 2021). Our language modeling experiments also reveal
that contrary to a widely-held belief (Austin et al., 2021; Lou et al., 2023), uniform noise diffusion
can attain state-of-the-art performance on small vocabulary datasets (e.g,. molecules, DNA) and that
UDLM attains a new state-of-the-art in perplexity among uniform noise diffusion models.

In summary, our contributions are as follows:

• We provide simple and effective discrete classifier-based and classifier-free guidance.
• We introduce UDLM, a class of discrete diffusion models particularly amenable to guid-

ance, for which we derive a tightened ELBO that significantly improves their performance.
• Across three domains, we demonstrate that discrete guidance yields better controllable

generation compared to strong AR baselines and previous diffusion guidance methods.

2 BACKGROUND

Notation Let V be the space of all one-hot tokens over some vocabulary consisting of N unique
characters: V = {z → {0, 1}N :

∑
i
zi = 1} ↑ !N , where !N represents the simplex over N

categories. Let 1 be a N -dimensional column vector of all ones, and denote the Hadamard product
between two vectors as ↓. We define z(1:L) as a sequence of L tokens, where z(ω) → V, for all tokens
ω → {1, . . . , L}, and use V

L to denote the set of all such sequences. Finally, let Cat(·; p) denote the
categorical distribution with probability vector p → !N

.

2.1 DISCRETE DIFFUSION MODELS

Diffusion models are a class of generative models defined by a denoising network pε that is trained
to remove noise from latent variables zt. These latents are generated by a fixed corruption process q
that, starting from clean data x drawn from the data distribution q(x), increasingly adds more noise
to zt, as t increases (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020).

In discrete denoising diffusion probabilistic models (D3PM; Austin et al. (2021)), the noising pro-
cess is defined in terms of a transition matrix Qt|s whose (i, j)th entry is the probability of transi-
tioning to the i-th state at time t given the j-th state at time s. This induces a Markov corruption
process where we have q(zt | zs) = Cat(zt;Qt|szs).

2
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Sahoo et al. (2024a) build off this framework to introduce specialized algorithms that are both sim-
pler and more effective than the general D3PM framework. They focus on a specific class of forward
processes from D3PM that can be defined as interpolations between clean data and a noisy prior ω,
and we adopt their notation below:

q(zt|x) = Cat(zt;εtx+ (1↔ εt)ω), (1)

where εt = ε(t) is a noise schedule monotonically decreasing in t. Defining εt|s = εt/εs, this
class of processes admit the following posteriors

q(zs|zt,x) = Cat

(
zs;

[εt|szt + (1↔ εt|s)1ω
↑zt]↓ [εsx+ (1↔ εs)ω]

εtz↑t x+ (1↔ εt)z↑t ω

)
. (2)

Of note, for absorbing-state diffusion, where ω = [MASK] , a one-hot vector at the special [MASK]
token index, Sahoo et al. (2024a) show that if zt ↗= [MASK] then q(zs|zt,x) = Cat(zs; zt), which
reflects the fact that unasked tokens at time t must remain unmasked for all time s < t.

2.2 DIFFUSION GUIDANCE

For continuous data, diffusion models have demonstrated state-of-the-art controllable generation by
means of classifier-based (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021a) and classifier-free
guidance (Nichol et al., 2021; Ho & Salimans, 2022; Saharia et al., 2022). These approaches rely
on different ways of expressing the score of a distribution conditioned on y.

Classifier-based Classifier-based generation employs a diffusion model to iteratively sample from
a tempered distribution p

ϑ(zs | y, zt) ↘ p(y | zs)ϑpε(zs | zt), where ϑ represents an inverse
temperature parameter, pε(zs | zt) is a pre-trained diffusion model, and p(y | zs) is a classifier:

≃zs log p
ϑ(zs | y, zt) = ϑ≃zs log p(y | zs) +≃zs log pε(zs | zt). (3)

Classifier-free We can also observe that appyling Bayes’ rule to p(y | x) and differentiating with
respect to the input yields ≃x log p(y | x) = ≃x log p(x | y) ↔ ≃x log p(x). Applying this to
p(y | zs) and plugging into (3) gives us the formulation for classifier-free guidance:

≃zs log p
ϑ(zs | y, zt) = ϑ · [≃zs log pε(zs | y, zt)↔≃zs log pε(zs | zt)] +≃zs log pε(zs | zt)

= ϑ≃zs log pε(zs | y, zt) + (1↔ ϑ)≃zs log pε(zs | zt). (4)

with pε(zs | y, zt) conditionally and pε(zs | zt) unconditionally trained diffusion models.

3 GUIDANCE ALGORITHMS FOR DISCRETE DIFFUSION

Applying guidance to discrete diffusion is challenging because guidance terms are not differentiable
with respect to the discrete representations zt (Gruver et al., 2024). Here, we introduce two guidance
algorithms for discrete diffusion that circumvent the issue of non-differentiability. As in Section 2.2,
we formalize the guidance term as a probability p(y|z) → !K , where y → {1, . . . ,K} is one of K
possible classes, and we begin with the distribution that controls the strength of the guidance term
via the ϑ temperature parameter (with c denoting the logarithm of the normalization constant):

log pϑ(zs | y, zt) = ϑ log p(y | zs, zt) + log p(zs | zt) + c. (5)

3.1 CLASSIFIER-FREE GUIDANCE

Guidance for a Single Token To derive classifier-free guidance, we apply Bayes’ rule to the first
term on the right-hand side of (5):

log pϑ(zs | y, zt) = ϑ log p(zs | y, zt)↔ ϑ log p(zs | zt) + ϑ log p(y | zt) + log p(zs | zt) + c.

Absorbing ϑ log p(y | zt) into the constant c and grouping terms yields:

log pϑ(zs | y, zt) = ϑ log p(zs | y, zt) + (1↔ ϑ) log p(zs | zt) + c. (6)

3
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Extension to Sequences In the derivation for (6), we can replace the single-token latent variables
with sequences of multiple tokens:

log pϑ(z(1:L)
s

| y, z(1:L)
t

) = ϑ log p(z(1:L)
s

| y, z(1:L)
t

) + (1↔ ϑ) log p(z(1:L)
s

| z(1:L)
t

) + c,

=⇐ p
ϑ(z(1:L)

s
| y, z(1:L)

t
) ↘ p(z(1:L)

s
| y, z(1:L)

t
)ϑp(z(1:L)

s
| z(1:L)

t
)(1↓ϑ)

(7)

Discrete Classifier-Free Guidance We can model the probabilities in (7) by training a conditional
denoising diffusion network pε(z

(1:L)
s | y, z(1:L)

t
) and an unconditional one pε(z

(1:L)
s | z(1:L)

t
). In

practice, we train these models in tandem by randomly ‘dropping out’ or ‘masking’ the conditioner
during training to simulate the unconditional diffusion model. Each of these distributions is thus
modeled to factorize independently along the sequence length dimension of z(1:L)

s when conditioned
on z(1:L)

t
, allowing us to efficiently sample from the tempered guidance distribution as follows:

p
ϑ

ε
(z(1:L)

s
| z(1:L)

t
, y) =

L∏

ω=1

1

Z(ω)
pε(z

(ω)
s

| y, z(1:L)
t

)ϑpε(z
(ω)
s

| z(1:L)
t

)(1↓ϑ)
, (8)

where Z
(ω) =

∑
z→
s
pε(z↔s | z

(1:L)
t

, y)ϑpε(z↔s | z
(1:L)
t

)(1↓ϑ) is the per-token partition function.

We refer to this method as D-CFG for Discrete Classifier-Free Guidance.

3.2 CLASSIFIER-BASED GUIDANCE

Guidance for a Single Token Exponentiating (5) lets us draw classifier-guided samples from the
following tempered distribution:

p
ϑ(zs | zt, y) =

p(y | zs, zt)ϑp(zs | zt)∑
z→
s
p(y | z↔

s
, zt)ϑp(z↔s | zt)

, (9)

which we can tractably normalize, as we only sum over the N possible values of a single token zs.

Extension to Sequences Unfortunately, extending (9) to sequences is not trivial, since the classifier
p(y | z(1:L)

s , z(1:L)
t

) does not necessarily factorize independently across the sequence, which would
potentially force us to compute a normalization constant with N

L terms, accounting for every pos-
sible value of z(1:L)

s . To alleviate this issue, we require the assumption that conditioned on z(1:L)
t

,
the tempered distribution p

ϑ(z(1:L)
s | z1:L

t
, y) factorizes independently across tokens. Therefore, we

can focus on the tempered distirbution of each token z(ω)s , for ω → 1, . . . , L:

p
ϑ(z(ω)

s
| z(1:L)

t
, y) ↘ p(y | z(ω)

s
, z(1:L)

t
)ϑp(z(ω)

s
| z(1:L)

t
). (10)

Discrete Classifier-Based Guidance We first introduce the following additional notation: given
z(1:L), let Z̃ω(z(1:L)) be the set of sequences z̃(1:L) for which z̃(ω

→) = z(ω
→) for all ω↔ ↗= ω, i.e., the

set of sequences that are either the same as or only differ in position ω relative to z(1:L)
. We can

sample from p
ϑ(z(ω)s | z(1:L)

t
, y) by training a classifier pϖ : VL

⇒ !K on noised latents z(1:L)
t

for
t → [0, 1] and use this to model the first term on the right-hand side of (10) by only evaluating pϖ on
sequences for which z(1:L)

s and z(1:L)
t

differ by at most the token at position ω:

p(y | z(ω)
s

, z(1:L)
t

) ⇑ pϖ(y | z̃(1:L)), for z̃(1:L) =
[
z(1:ω↓1)
t

, z(ω)
s

, z(ω+1:L)
t

]
→ Z̃ω(z

(1:L)
t

).

We additionally train an unconditional denoising network pε(z
(ω)
s | z(1:L)

t
) and then sample from

the re-normalized distribution:

p
ϑ

ϖ,ε
(z(1:L)

s
| z(1:L)

t
, y) =

L∏

ω=1

pϖ(y | z̃(1:L))ϑpε(z
(ω)
s | z(1:L)

t
)

∑
z̃(1:L) pϖ(y | z̃(1:L))ϑpε(z

(ω)
s | z(1:L)

t
)
. (11)

Restricting the summation in the denominators of (11) to Z̃ω(z
(1:L)
t

) makes normalization tractable,
as we are only summing over N terms.
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We refer to our method as D-CBG for Discrete Classifier-Based Guidance. Our method can be
thought of as an adaptation of the successful FUDGE (Yang & Klein, 2021) approach, which guides
AR generation, to discrete diffusion, similar to how NOS (Gruver et al., 2024) extended the AR
guidance mechanism of PPLM (Dathathri et al., 2019) to diffusion models.

First Order Approximation While tractable, this formulation suffers from the drawback that at
each denoising step we must perform O(L ·N) forward passes through the classifier model, which
can quickly become impractical for larger vocabularies and longer sequences. Similarly to Grath-
wohl et al. (2021), Vignac et al. (2022), we can treat the classifier pϖ as a continuous function of the
one-hot inputs z̃(1:L)

→ RL↗N and use the first order Taylor approximation of log pϖ to efficiently
compute pϖ(y | z̃(1:L)) with only a single forward and backward pass through the classifier model:

pϖ(y | z̃(1:L)) = exp

(
log

pϖ(y | z̃(1:L))

pϖ(y | z(1:L)
t

)
+ log pϖ(y | z(1:L)

t
)

)

⇑ exp
(
(z̃(1:L)

↔ z(1:L)
t

)T≃
z(1:L)
t

log pϖ(y | z(1:L)
t

) + log pϖ(y | z(1:L)
t

)
)
. (12)

4 UNIFORM DIFFUSION LANGUAGE MODELS

While masked diffusion models have demonstrated better language modeling compared to other
discrete diffusion (Austin et al., 2021; Lou et al., 2023), we argue that they are less amenable to
guidance, since once a token is unmasked at some time t it remains so for all s < t. In contrast, for
uniform noising, intermediate latents can be refined multiple times during the denoising process. We
therefore revisit categorical uniform noise discrete diffusion, where ω = u := 1/N. Our aim is that
by analyzing this class of diffusion models more carefully, we can reduce the gap to absorbing-state
and yield performant models that are more easily steered by the guidance tools we developed above.

4.1 UNIFORM NOISE DIFFUSION

Discrete Time Likelihood Bound We start with the variational lower bound that is defined by a
general diffusion process. For discrete-time diffusion, i.e., some finite steps T , we define t(i) =
(i+ 1)/T and s(i) = i/T for i in 0, . . . , T. Denoting the Kullback-Leibler divergence as DKL, the
denoising network pε is trained to minimize a variational upper bound (NELBO), which is given by:

Eq

[
↔ log pε(x|zt(0))︸ ︷︷ ︸

Lrecons

+
T∑

i=1

DKL[q(zs(i)|zt(i),x)⇓pε(zs(i)|zt(i))]

︸ ︷︷ ︸
Ldiffusion

]
+DKL[q(zt(T )|x)⇓pε(zt(T ))]︸ ︷︷ ︸

Lprior

,

(13)
When clear, we drop the explicit dependence of t and s on the discrete step i.

Uniform Noise Forward Process We focus on uniform noise diffusion using the interpolating
discrete diffusion framework (Sahoo et al., 2024a; Zhao et al., 2024; Zheng et al., 2023). When
letting ω = u, the input x transitions to a random state with some probability at each time step.
Crucially, after x changes once, it can do so again. When ω = u, the posterior from (2) becomes

q(zs | zt,x) = Cat

(
zs;

Nεtzt ↓ x+ (εt|s ↔ εt)zt + (εs ↔ εt)x+ (ϱs↓ϱt)(1↓ϱs)
Nϱs

1

Nεt⇔zt,x↖+ 1↔ εt

)
(14)

Denoising Process The optimal form for the reverse diffusion process pε matches (14): in fact
setting pε to (14) reduces the KL terms in (13) to zero. However, setting pε to exactly (14) is not
possible because it cannot be a function x (which pε is generating). Therefore, we introduce a
predictive model xε(zt, t) : V ↙ [0, 1] ⇒ !N of the ‘clean’ data given a noisy latent zt at time t.
We use xε to parameterize the denoising process as pε(zs | zt) = q(zs | zt,x = xε), yielding:

pε(zs | zt) = Cat

(
zs;

Nεtzt ↓ xε + (εt|s ↔ εt)zt + (εs ↔ εt)xε +
(ϱs↓ϱt)(1↓ϱs)

Nϱs
1

Nεt⇔zt,xε↖+ 1↔ εt

)
, (15)

Note that this minimizes the Ldiffusion term in (13) precisely when xε = x, as desired. To simplify
notation, we omit below the explicit dependence of xε on t.
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4.2 IMPROVED LIKELIHOOD BOUNDS IN CONTINUOUS TIME

We now present our contribution to uniform noise discrete diffusion modeling. We leverage the
above formulation to develop an improved NELBO by taking T ⇒ ∝ and analyzing each term
Lrecons,Ldiffusion,Lprior in (13). This yields three improvements: (1) a simple and elegant closed-form
expression for the NELBO that is easier to reason about; (2) an analytical reduction of Lrecons,Lprior
to zero, which tightens the NELBO; (3) a further tightening via the continuous-time extension of
Ldiffusion, as in Kingma et al. (2021) and Sahoo et al. (2024a;b).

Prior Loss (Lprior) Given that we define our corruption process as an interpolation between clean
data and a limiting distribution, for any noise schedules where εt(T ) = 0, the distribution q(zt(T )) =
ω. Therefore, we can simply define pε(zt(T )) = ω, and the KL divergence in Lprior evaluates to zero.

Reconstruction Loss (Lrecons) For Lrecons, if our noise schedule is such that T ⇒ ∝ =⇐ εt(0) =
1 (i.e., t(0) = 1/T ), then the marginal q(z 1

T
| x) ⇒ Cat(z 1

T
;x). That is, in the limit, the first

latent vector is identically equal to the clean data. We can thus parameterize our denoising network
such that at time t(0) the function simply copies its inputs: xε(z 1

T
, 1/T ) = z 1

T
. Additionally, we

note that our choice of parameterization for pε implies that pε(x | z 1
T
) = xε(z 1

T
, 1/T ). Thus in the

continuous time limit, we have:

lim
T↘≃

Eq[Lrecons] = lim
T↘≃

Eq[log pε(x | z 1
T
)] = lim

T↘≃
Eq[log(⇔x,xε(z 1

T
, 1/T )↖)] = 0.

Diffusion Loss (Ldiffusion) Turning finally to the diffusion loss term Ldiffusion, we first define the
shorthand DKL[qt||pε] = DKL[[q(zs | zt,x)||pε(zs | zt)]] and then re-write this loss term as an
expectation over t uniformly sampled from 1/T, 2/T, . . . , T :

Ldiffusion =
T∑

i=1

DKL[qi/T ||pε] = T · Et⇐{1/T,2/T,...,T}DKL[qt||pε]. (16)

Plugging in our expressions for the true and predicted posteriors from (14) and (15) into (16), then
taking T ⇒ ∝, we get (see Appendix A for details):

lim
T↘≃

Ldiffusion = lim
T↘≃

Et⇐{1/T,2/T,...,T}T ·DKL[qt||pε] =


t=1

t=0
lim

T↘≃
T ·DKL[qt||pε]dt

=


t=1

t=0

[
ε
↔
t

Nεt

[
N

x̄i

↔
N

(x̄ε)i
↔

∑

j s.t. (zt)j=0

(
x̄j

x̄i

)
log

[(
(x̄ε)i · x̄j

(x̄ε)j · x̄i

)]]]
dt,

(17)

where xj denotes the j
th index of a vector x, x̄ = Nεtx + (1 ↔ εt)1, x̄ε = Nεtxε + (1 ↔ εt)1,

and we define i = argmaxj⇒[N ](zt)j to be the non-zero entry of zt.

Combining our arguments regarding Lprior and Lrecons with (17), yields our final tight bound:

L
≃ =


t=1

t=0
Eq

[
ε
↔
t

Nεt

[
N

x̄i

↔
N

(x̄ε)i
↔

∑

j s.t. (zt)j=0

(
x̄j

x̄i

)
log

[(
(x̄ε)i · x̄j

(x̄ε)j · x̄i

)]]]
dt. (18)

Extension to Sequences Extending training with (18) from x → V to sequences x(1:L)
→ V

L
, we

make the assumption that the denoising process factorizes independently across tokens when condi-
tioned on a sequence of noisy latents z(1:L)

t
. In this case, we use a single model x(ω)

ε
(z(1:L)

t
, t) for

predicting each token ω → {1, . . . , L} in a sequence, and we train with the sequence-level objective:

L
≃ =


t=1

t=0
Eq

∑

ω

[
ε
↔
t

Nεt

[
N

x̄(ω)
i

↔
N

(x̄(ω)
ε

)i
↔

∑

j s.t. (z(ω)
t )j=0

(
x̄(ω)
j

x̄(ω)
i

)
log

[(
(x̄(ω)

ε
)i · x̄

(ω)
j

(x̄(ω)
ε

)j · x̄
(ω)
i

)]]]
dt.

(19)
We dub models trained with our refined objective Uniform Diffusion Language Models (UDLM).
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5 EXPERIMENTS

Datasets For our language modeling experiments, we examine several discrete domains: reference
genomes from tens species (Species10), the QM9 small molecule dataset (Ruddigkeit et al., 2012;
Ramakrishnan et al., 2014), where molecules are represented by SMILES strings (Weininger, 1988),
CIFAR10 discretized images (Krizhevsky et al., 2009), and three NLP datasets consisting of text8
(Mahoney, 2011), Amazon Review (McAuley & Leskovec, 2013; Zhang et al., 2015), and the one
billion words dataset (LM1B; Chelba et al. (2014)). These datasets cover a range of domains and
vocabularies of varying sizes (see Table 1). For guidance experiments, we explore species-specific
sequence generation, molecular property maximization, and class-conditional image generation.

5.1 LANGUAGE MODELING WITH UNIFORM NOISE DISCRETE DIFFUSION

Our language modeling experiments show that (1) contrary to a widely-held belief, uniform noise
diffusion can attain state-of-the-art performance on small vocabulary datasets (Table 1), and that
(2) our UDLM are state-of-the-art among uniform noise diffusion (Tables 2 and 3).

Table 1: UDLM performs best with smaller vocabs.
Perplexity (′) on various datasets. Best values are
bolded. * indicates values reported from early stop-
ping on the validation set; otherwise validation per-
formance at the end of training is used. †From Sa-
hoo et al. (2024a). $From Lou et al. (2023).

|Vocab.| AR MDLM UDLM

Species10 12 2.88 3.17↑ 3.15↑
QM9* 40 2.19 2.12↑ 2.02↑
CIFAR10 256 - 9.14↑ 11.21↑
text8 35 2.35$ 2.62↑ 2.71↑
Amazon* 30,522 21.67 24.93↑ 27.27↑
LM1B 30,522 22.32† 27.04†

↑ 31.28↑

In Table 1, despite previous evidence in-
dicating that absorbing-state discrete diffu-
sion greatly outperforms uniform noise, we
find a more nuanced story. Namely, for
smaller vocabulary regimes, the gap be-
tween MDLM and UDLM is negligible, with
UDLM even outperforming absorbing-state
on certain datasets. Even within a single do-
main, we find a trend between vocabulary size
and performance gap, with the text8 results of
UDLM on par with MDLM, and a more per-
sistent gap for larger vocabularies. Intuitively,
for larger vocabulary regimes, uniform noise
diffusion models need to predict over a com-
binatorially larger set of potential clean data
sequences compared to absorbing-state; smaller vocabularies reduce this complexity.

Figure 2: T ⇒ ∝ improves valida-
tion PPL (′) on Amazon dataset.

Secondly, despite the persisting gap between absorbing and
uniform noise discrete diffusion for larger vocabulary NLP
datasets, we note that models trained with UDLM close this
gap, as evidenced in Tables 2 and 3, where we show that
UDLM attains the best reported uniform noise discrete dif-
fusion language modeling performance.

Ablating Continuous Time Formulation In Figure 2, we
see the effect of increasing T and using our continuous time
NELBO. The curves represent validation perplexity on the
Amazon Polarity dataset at various training steps, and we
observe that increasing T indeed improves language mod-
eling with UDLM, i.e., T = ∝, performing best.

5.2 GUIDED DISCRETE DIFFUSION

Our guidance results indicate that (1) classifier-free guidance is more useful when paired with dif-
fusion models compared to AR (Table 4) and that (2) our proposed D-CBG is the best classifier-
based method for discrete guidance, especially when combined with UDLM (Table 5 & Figure 3).

Baselines For guidance experiments, our primary baseline is the dominant AR approach. We com-
pare to three flavors of guided AR. The first is applying D-CFG to AR models. We also use the
established control mechanisms of Plug-and-play language models (PPLM; Dathathri et al. (2019))
and FUDGE (Yang & Klein, 2021). To demonstrate the better performance of our D-CBG method,
we compare to Gruver et al. (2024) (NOS), an extension of PPLM to discrete diffusion.
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Table 2: UDLM outperforms other uniform dis-
crete diffusion on text8. Best value is bolded
& best uniform diffusion value is underlined.
†From Lou et al. (2023). *From Shi et al. (2024).

Method BPC (→)

Autoregressive
IAF/SCF† (Ziegler & Rush, 2019) 1.88
Argmax Flow† (Hoogeboom et al., 2021) 1.39
Discrete Flow† (Tran et al., 2019) 1.23
Autoregressive† 1.23

Non-autoregressive
Mult. Diffusion† (Hoogeboom et al., 2021) 1.72↑
MAC† (Shih et al., 2022) 1.40↑
BFN† (Graves et al., 2023) 1.41↑
D3PM Absorb† (Austin et al., 2021) 1.45↑
SEDD Absorb† (Lou et al., 2023) 1.39↑
MDLM (Sahoo et al., 2024a) (Retrained) 1.38↑
MD4* (Shi et al., 2024) 1.37↑
GenMD4→ (Shi et al., 2024) 1.34↑

Discrete Uniform Diffusion
D3PM Uniform† (Austin et al., 2021) 1.61↑
SEDD Uniform† (Lou et al., 2023) 1.47↑
UDLM (Ours) 1.44↑

Table 3: UDLM outperforms other uniform
discrete diffusion on LM1B. Best value is
bolded & best discrete uniform diffusion
value is underlined. †From Sahoo et al.
(2024a). *From Lou et al. (2023). $From
Austin et al. (2021).

Method PPL (→)

Autoregressive†
Transformer-X (Dai et al., 2019) 23.5
OmniNetT (Tay et al., 2021) 21.5
Transformer 22.32

Diffusion†

BERT-Mouth (Wang & Cho, 2019) 142.89↑
D3PM Absorb (Austin et al., 2021) 77.50↑
Diffusion-LM (Li et al., 2022) 118.62↑
DiffusionBert (Wang & Cho, 2019) 63.78↑
SEDD Absorb (Lou et al., 2023) 32.79↑
MDLM (Sahoo et al., 2024a) 27.04↑

Discrete Uniform Diffusion
D3PM Uniform$ (Austin et al., 2021) 137.9↑
SEDD Uniform* (Lou et al., 2023) 40.25↑
UDLM (Ours) 31.28↑

Hyperparameters For both D-CFG and D-CBG, we vary the strength of the ϑ parameter. Although
the original FUDGE formulation simply uses ϑ = 1, we also perform a search for this baseline. For
PPLM and NOS, we vary the parameters of the Langevin sampling that updates models’ hidden rep-
resentation, i.e., number of update steps n, step size ϖ, and fluency KL weight ϑkl (see Dathathri et al.
(2019) and Gruver et al. (2024) for more details). For all methods, we display the best performing
hyperparameter configuration in the main table results, and defer the the full sweep to Appendix E.

Table 4: Diffusion decoding with D-CFG is more
controllable than AR for genomic sequences.
Mean ± standard deviation reported from five ran-
dom seeds. Best values are bolded.

Model D-CFG
ω

Disc.
AUROC (→) F1 (↑)

Random – 1.00 0.07
AR 1 0.53±0.075 0.87±0.011
AR 2 0.90±0.051 0.81±0.009
AR 3 0.97±0.018 0.74±0.022
MDLM 1 0.51±0.059 0.88±0.011
MDLM 2 0.74±0.037 0.91±0.009
MDLM 3 0.93±0.031 0.78±0.007
UDLM 1 0.52±0.044 0.91±0.01
UDLM 2 0.61±0.043 0.93±0.009
UDLM 3 0.87±0.051 0.94±0.007

Species-specific Genome Generation For ge-
nomic sequences, we evaluate D-CFG with dif-
fusion compared to with AR. We train on se-
quences of 32,768 nucleotides, using base-pair
level tokenization and conditionally generate
64 sequences for each class. We train a small
classifier to distinguish between generated and
validation set sequences and report the area un-
der the receiver operator curve for this classi-
fier (Disc. AUROC). Values closer to 0.5 indi-
cate that the classifier is unable to distinguish
between synthetic and true sequences (Sarkar
et al., 2024). To measure the controllability,
we train a separate classifier on the Species10
dataset and measure macro F1 score of this ‘or-
acle’ classifier on the generated sequences. Re-
sults of this experiment are presented in Ta-
ble 4. For reference, we also provide metrics
for randomly generating sequences with nucleotide frequencies proportional to species representa-
tion in the data. We find that both MDLM and UDLM are able to better generate sequences that
match the desired control parameter, with higher F1 scores relative to AR. Moreover, UDLM is able
to outperform MDLM in satisfying this control. Importantly, we find that only UDLM is amenable
to increasing the guidance parameter ϑ, where its metrics improves while AR and MDLM metrics
degrade. Finally, of note, the diffusion model generation for this experiment is accomplished with
far fewer function evaluations compared to AR. Whereas AR must decode each of the 32,768 tokens,
because MDLM and UDLM can decode multiple tokens in parallel, we generate with T = 512.
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Table 5: Guidance with discrete diffusion models better balances the generation of valid and novel
molecules with maximizing the property of interest, drug likeness (QED) / ring count, compared to
AR. Validity, novelty, and mean QED / ring count for novel sequences are measured for generated
sequences from each method. Mean ± standard deviation reported from five random seeds. Best
values are bolded.

QED Ring Count
Method Guidance Valid (↑) Novel (↑) Mean (↑) Valid (↑) Novel (↑) Mean (↑)

Original Data – 133k 133k 0.47 133k 133k 1.74

Classifier-free
AR D-CFG 946.4±9.0 79.4±6.4 0.60±0.00 441.4±11.1 77.8±2.3 4.83±0.08
MDLM D-CFG 317.4±11.5 95.8±9.0 0.60±0.01 90.0±8.2 60.0±7.5 5.26±0.15
UDLM D-CFG 1013.6±2.5 64.0±5.1 0.62±0.00 998.2±4.5 216.2±13.0 4.88±0.04

Classifier-based
AR FUDGE 924.4±12.1 53.0±3.5 0.61±0.00 281.2±5.0 103.6±4.8 4.89±0.10
AR PPLM 1007.2±2.3 142.0±14.2 0.45±0.00 1009.8±1.9 140.6±16.5 1.92±0.09
MDLM D-CBG 417.6±19.7 116.6±8.9 0.58±0.00 113.0±8.8 85.6±8.8 4.75±0.23
MDLM NOS 506.0±29.5 240.4±16.0 0.45±0.01 247.8±14.0 193.6±13.1 3.51±0.22
UDLM D-CBG 994.8±2.9 63.8±8.1 0.61±0.00 897.2±11.6 432.0±19.1 4.84±0.02
UDLM NOS 547.8±10.6 158.8±11.0 0.47±0.00 573.8±13.0 244.4±13.1 3.96±0.07

Figure 3: Diffusion models extend the steer-ability Pareto frontier. (Left) D-CBG outperforms
FUDGE classifier guidance when maximizing drug-likeness (QED). (Right) D-CFG with diffusion
better trades-off novel generation and ring-count maximization compared to AR.

Table 6: Guidance improves FID & IS on
CIFAR10. Finite- (D3PM) vs. continuous-
time (MDLM / UDLM). Best values are
bolded. †From Austin et al. (2021).

FID (→) IS (↑)

D3PM Absorb† 41.28 6.26
MDLM 33.75 6.74
MDLM D-CFG 15.56 9.02

D3PM Uniform† 51.27 5.99
UDLM 33.65 6.86
UDLM D-CFG 23.21 8.66

Molecular Property Maximization For QM9, we in-
vestigate novel generation of sequences that maximize
either drug-likeness (QED; Bickerton et al. (2012)) or
number of rings present in the molecule. We only re-
port values for which we generated at least 50 novel se-
quences (out of 1,024). In Table 5, for D-CFG, we see
that all methods perform comparably when maximiz-
ing drug likeness, but that MDLM and UDLM are bet-
ter suited for the structural property of ring count. For
classifier-based guidance mechanisms, we again find
that both QED and ring count, D-CBG with discrete
diffusion best trades-off maximizing these properties
while generating valid and novel sequences compared
to AR or diffusion with NOS.

Class-conditional Image Generation In Table 6, we see that both MDLM and UDLM outperform
finite-time counterparts (in the form of D3PM (Austin et al., 2021)) with improved image quality
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metrics of Fréchet inception distance (FID; Heusel et al. (2017)) and Inception Score (IS; Salimans
et al. (2016)). This is especially true when we add guidance using D-CFG. MDLM / UDLM samples
are generated with T = 1000.

Ablation: Faster Sampling In Table 7, we explore using faster inference settings (smaller T ) where
diffusion models predict multiple pixels in parallel. These results focus on the CIFAR10 dataset; see
Appendix E.3 for additional experiments on other datasets. MDLM’s performance deteriorates with
smaller T , whereas UDLM is robust to this setting. This validates a key motivation behind UDLM:
in settings where MDLM ‘locks in’ certain predictions that it cannot change, UDLM is more resilient
given that all tokens can change throughout the decoding process.

6 RELATED WORKS, DISCUSSION, AND CONCLUSION

Table 7: UDLM is robust to faster sam-
pling. CIFAR10 images sampled from
a conditional model (D-CFGϑ=1). Best
values per T are bolded.

Model FID (→) IS (↑)

T = 128
MDLM 64.09 5.81
UDLM 30.48 7.30

T = 1024
MDLM 27.94 7.14
UDLM 26.70 7.43

Discrete Diffusion Recent works have examined inter-
polating discrete diffusion (Ou et al., 2024; Sahoo et al.,
2024a; Shi et al., 2024; Zhao et al., 2024; Zheng et al.,
2023), a special case of the general framework from
D3PM (Austin et al., 2021). Our UDLM method most
closely aligns to the state-of-the-art discrete diffusion of
Ou et al. (2024), Sahoo et al. (2024a), and Shi et al. (2024)
that focus on absorbing state diffusion. Similar to these
works, we provide a continuous time NELBO leading to
performance gains, but we focus on uniform noise. Of
note, other extensions of D3PM that do not start from the
variational perspective, instead rely on the formalisms of
continuous time Markov chains (CTMC) (Campbell et al.,
2022) and concrete score matching (Lou et al., 2023), but
are less performant than works such as MDLM and our method. Also stemming from CTMC are
extensions of flow-based (Lipman et al., 2022) approaches to discrete data (Campbell et al., 2024;
Gat et al., 2024). In Appendix C, we discuss connections of our work to CTMC in more detail.

Guidance Leveraging continuous embeddings of discrete data, Diffusion-LM (Li et al., 2022) uses
Langevin sampling with CBG. Similarly, SSD-LM (Han et al., 2022) perform Gaussian noising
on the logits of a bi-directional model, which they combine with pre-trained classifiers to perform
CBG with Langevin dynamics. LD4LG (Lovelace et al., 2024) implement CFG on continuous
embeddings. Stark et al. (2024) use flow-matching on the simplex to perform CFG and CBG on
continuous representations. Wang et al. (2023) perform guidance using auxiliary semantic latent
variables. In contrast, to these continuous formulations for discrete data, our work adapts guidance
mechanisms directly to the discrete domain.

FUDGE (Yang & Klein, 2021) can be viewed as the AR analog to our D-CBG. DiGress (Vignac
et al., 2022) uses a similar first-order approximation to resolve the intractability of the normalizing
constant. In our work, we derive a tractable expression for classifier-based guidance and simply
use the Taylor approximation to speed up computation in large sequence length and vocabulary size
regimes. Sanchez et al. (2023) derives an equivalent formulation for D-CFG and use it to better
enforce AR models’ adherence to prefix prompts. FreeGress (Ninniri et al., 2024) also offer a
comparable method to D-CFG, but focus on graph diffusion models. Most similar to our method,
is the concurrent work of Nisonoff et al. (2024), which derives classifier-based and classifier-free
guidance for discrete diffusion and flow models. However, this work is highly tailored to models
that leverage the formalism of CTMC, and guidance is applied to the rate matrices. See Appendix B
for details on relating our guidance methods to Nisonoff et al. (2024).

Conclusion In search of a more controllable diffusion process, in this work, we derived a tight
variational bound for uniform noise discrete diffusion, closing the gap to state-of-the-art absorbing-
state diffusion models. We also highlighted that contrary to previous findings, in small vocabulary
regimes, uniform noise is on par or better than absorbing state. We then demonstrated that straight-
forward adaptations of classifier-based and classifier-free guidance can offer improved guided gen-
eration relative to AR models. We found that with classifier-free mechanisms, diffusion models are
more amenable to control without sacrificing quality of generated sequences. We also demonstrated
that our classifier-based method is better than previous ones for both AR and diffusion models.
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A CONTINUOUS TIME DISCRETE UNIFORM DIFFUSION

Here, we derive a continuous time formulation (T ⇒ ∝) for the diffusion loss term Ldiffusion when
using the uniform distribution as the limiting distribution of the diffusion process.

For uniform noise diffusion, we define a limiting distribution u = 1/N, where 1 represents the
column vector of all ones, and N the size of the vocabulary. We adopt the assumption from MDLM
(Sahoo et al., 2024a) that our diffusion process interpolates between clean data and noise:

q(zt | x) = Cat(zt;εtx+ (1↔ εt)ω) (20)
and the marginals are given as

q(zt | zs) = Cat(zt;εt|szs + (1↔ εt|s)ω), (21)

where εt|s = εt/εs.

Following Austin et al. (2021), we can derive the posterior:

q(zs | zt,x) = Cat

(
zs;

[εt|szt + (1↔ εt|s)1ω
↑zt]↓ [εsx+ (1↔ εs)ω]

εt⇔zt,x↖+ (1↔ εt)z↑t ω

)
. (22)

Using ω = u as defined above, we get the following:

q(zs | zt,x) = Cat

(
zs;

εtzt ↓ x+
(ϱt|s↓ϱt)

N
zt +

(ϱs↓ϱt)
N

x+
(1↓ϱt|s)(1↓ϱs)

N2 1

εt⇔zt,x↖+
(1↓ϱt)

N

)
(23)

= Cat

(
zs;

Nεtzt ↓ x+ (εt|s ↔ εt)zt + (εs ↔ εt)x+ (ϱs↓ϱt)(1↓ϱs)
Nϱs

1

Nεt⇔zt,x↖+ 1↔ εt

)
. (24)

For the denoising distribution, we replace x by xε:

pε(zs | zt) = Cat

(
zs;

Nεtzt ↓ xε + (εt|s ↔ εt)zt + (εs ↔ εt)xε +
(ϱs↓ϱt)(1↓ϱs)

ϱsN
1

Nεt⇔zt,xε↖+ 1↔ εt

)
. (25)

Let us now look at the diffusion loss term in the NELBO:

T ·DKL(q(zs | zt,x)||pε(zs | zt)) = T ·

∑

j⇒[N ]

q(zs | zt,x)j log


q(zs | zt,x)j
pε(zs | zt)j


. (26)

Letting i = argmaxj⇒[N ](zt)j be the non-zero entry of zt, we can break up this KL into two terms:

T ·DKL(q(zs | zt,x)||pε(zs | zt)) =T · q(zs | zt,x)i log


q(zs | zt,x)i
pε(zs | zt)i



︸ ︷︷ ︸
Term 1

+ T ·

∑

j⇒[N ]
s.t. (zt)j=0

q(zs | zt,x)j log


q(zs | zt,x)j
pε(zs | zt)j



︸ ︷︷ ︸
Term 2

. (27)

17



Published as a conference paper at ICLR 2025

We now examine each of these terms taking T ⇒ ∝, or equivalently, using s = t ↔
1
T

=⇐ T =
1

t↓s
, taking s ⇒ t.

Term 1:

lim
s↘t

1

t↔ s
·
Nεtxi + εt|s ↔ εt + (εs ↔ εt)xi +

(ϱs↓ϱt)(1↓ϱs)
ϱsN

Nεtxi + 1↔ εt

· log

[ Nϱtxi+ϱt|s↓ϱt+(ϱs↓ϱt)xi+
(εs↑εt)(1↑εs)

εsN

Nϱtxi+1↓ϱt

Nϱt(xϑ)i+ϱt|s↓ϱt+(ϱs↓ϱt)(xϑ)i+
(εs↑εt)(1↑εs)

εsN

Nϱt(xϑ)i+1↓ϱt

]
(28)

As s ⇒ t, the coefficient on the log term will approach 1. Additionally both the numerator and the
denominator inside the log term will approach 1, thus the entire log term will approach 0. Combining
this with the fact that t↔ s will approach 0, gives us the indeterminate form of 0/0, hence we apply
L’Hôpital’s’s rule to (28). Writing q and pε as functions of s, when we differentiate the log term we
get:

d

ds
log

[
q(s)

pε(s)

]
=

d

ds
log q(s)↔

d

ds
log pε(s)

=
d

ds
q(s)

q(s)
↔

d

ds
pε(s)

pε(s)
(29)

Let’s look at each derivative term in (29):

lim
s↘t

d

ds
q(s) = lim

s↘t

↓ϱ
→
sϱt

ϱ2
s

+ ε
↔
s
(xε)i +

Nϱs[ϱ
→
s(1↓ϱs)↓ϱ

→
s(ϱs↓ϱt)]↓[Nϱ

→
s(ϱs↓ϱt)(1↓ϱs)]

Nϱ2
s

Nεtxi + 1↔ εt

=

↓ϱ
→
t

ϱt
+ ε

↔
t
xi +

ϱ
→
t(1↓ϱt)
Nϱt

Nεtxi + 1↔ εt

=
ε
↔
t

Nεt

[
↔N +Nεtxi + 1↔ εt

Nεtxi + 1↔ εt

]

=
ε
↔
t

Nεt

[
1↔

N

Nεtxi + 1↔ εt

]
(30)

Similarly,

lim
s↘t

d

ds
pε(s) =

ε
↔
t

Nεt

[
1↔

N

Nεt(xε)i + 1↔ εt

]
(31)

Note that when taking s ⇒ t, both q(s) and pε(s) evaluate to 1. Additionally, differentiating 1
t↓s

with respect to s evaluates to ↔1. When combining these facts and plugging (30) and (31) into (29),
(28) becomes

lim
s↘t

Term 1 =
↔ε

↔
t

Nεt

[
1↔

N

Nεtxi + 1↔ εt

]
+

ε
↔
t

Nεt

[
1↔

N

Nεt(xε)i + 1↔ εt

]

=
ε
↔
t

Nεt

[
N

Nεtxi + 1↔ εt

↔
N

Nεt(xε)i + 1↔ εt

]
(32)

Term 2:

lim
s↘t

1

t↔ s
·

∑

j⇒[N ]
s.t. (zt)j=0

(εs ↔ εt)xj +
(ϱs↓ϱt)(1↓ϱs)

Nϱs

Nεtxi + 1↔ εt

log

[ (ϱs↓ϱt)xj+
(εs↑εt)(1↑εs)

Nεs
Nϱtxi+1↓ϱt

(ϱs↓ϱt)(xϑ)j+
(εs↑εt)(1↑εt)

Nεs
Nϱt(xϑ)i+1↓ϱt

]
(33)

For each term in the summation, 1
t↓s

times the coefficient on the log term will have an indeterminate
form of 0/0 as s ⇒ t. We therefore apply L’Hôpital’s rule to this coefficient:

lim
s↘t

1

t↔ s
·
(εs ↔ εt)xj +

(ϱs↓ϱt)(1↓ϱs)
Nϱs

Nεtxi + 1↔ εt

=
↔ε

↔
t

Nεt

[
Nεtxj + 1↔ εt

Nεtxi + 1↔ εt

]
(34)
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Now, for the log term, we exchange the limit with the continuous log function and have that both
the numerator and the denominator go to zero as s ⇒ t. We therefore apply L’Hôpital’s rule here as
well:

log lim
s↘t

[ (ϱs↓ϱt)xj+
(εs↑εt)(1↑εs)

Nεs
Nϱtxi+1↓ϱt

(ϱs↓ϱt)(xϑ)j+
(εs↑εt)(1↑εt)

Nεs
Nϱt(xϑ)i+1↓ϱt

]
= log lim

s↘t

[
d

ds

(ϱs↓ϱt)xj+
(εs↑εt)(1↑εs)

Nεs
Nϱtxi+1↓ϱt

d

ds

(ϱs↓ϱt)(xϑ)j+
(εs↑εt)(1↑εt)

Nεs
Nϱt(xϑ)i+1↓ϱt

]

= log

[(
Nεt(xε)i + 1↔ εt

Nεtxi + 1↔ εt

)(
ε
↔
t
xj +

ϱ
→
t(1↓ϱt)
Nϱt

ε
↔
t
(xε)j +

ϱ
→
t(1↓ϱt)
Nϱt

)]

= log

[(
Nεt(xε)i + 1↔ εt

Nεtxi + 1↔ εt

)(
ϱ

→
t

Nϱt
(Nεtxj + 1↔ εt)

ϱ
→
t

Nϱt
(Nεt(xε)j + 1↔ εt)

)]

= log

[(
Nεt(xε)i + 1↔ εt

Nεtxi + 1↔ εt

)(
Nεtxj + 1↔ εt

Nεt(xε)j + 1↔ εt

)]

= log

[(
Nεt(xε)i + 1↔ εt

Nεt(xε)j + 1↔ εt

)(
Nεtxj + 1↔ εt

Nεtxi + 1↔ εt

)]
(35)

Multiplying (34) by (35), we get:

lim
s↘t

Term 2 =
↔ε

↔
t

Nεt

∑

j⇒[N ]
s.t. (zt)j=0

(
Nεtxj + 1↔ εt

Nεtxi + 1↔ εt

)
log

[(
Nεt(xε)i + 1↔ εt

Nεt(xε)j + 1↔ εt

)(
Nεtxj + 1↔ εt

Nεtxi + 1↔ εt

)]

(36)

Combining Terms 1 and 2: Using (32) and (36), the final KL term in the continuous time limit is:

lim
T↘≃

T ·DKL(q||pε) =
ε
↔
t

Nεt

[
N

Nεtxi + 1↔ εt

↔
N

Nεt(xε)i + 1↔ εt

↔

∑

j⇒[N ]
s.t. (zt)j=0

(
Nεtxj + 1↔ εt

Nεtxi + 1↔ εt

)
log

[(
Nεt(xε)i + 1↔ εt

Nεt(xε)j + 1↔ εt

)(
Nεtxj + 1↔ εt

Nεtxi + 1↔ εt

)]]
.

Defining x̄ = Nεtx+(1↔εt)1 and x̄ε = Nεtxε+(1↔εt)1, as in Section 4.2, yields the desired
result.

B RELATING GUIDANCE TO CTMC

Below we demonstrate how our proposed guidance mechanisms from Section 3 admit straightfor-
ward continuous-time extensions. In concurrent work, Nisonoff et al. (2024) use the formalisms of
continuous time Markov chains (CTMC) to derive similar guidance formulas, which we show are
equivalent to the continuous-time extensions of our work.

Background on CTMC In the CTMC formulation, the key quantity of interest is the rate matrix
Rt → RN↗N . In analogy to the discrete time transition matrices Qt, which define the transition
probabilities between states, these rate matrices define the instantaneous rate of change between
states in continuous time. More formally, letting ϱ(x,y) be the Kronecker delta function that equals
1 if x = y and 0 otherwise, and using z and z↔ to denote observed values of the latents, we can
define the forward noising process using Rt as follows:

q(zt = z↔ | zs = z) = ϱz,z→ +Rt(z, z
↔)
1

T
+ o

( 1

T

)
(37)

where o(1/T ) indicates terms that vanish more quickly than 1/T. Note that when clear from the
context, we use the shorthand ϱz,z→ := ϱ(z, z↔). Recall that we defined s = t ↔

1
T
. In continuous
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time, as T ⇒ ∝, o(1/T ) terms are ignored, and we have

Rt(z, z
↔) = lim

T↘≃

q(zt = z↔ | zt↓(1/T ) = z)↔ ϱz,z→

1/T
, (38)

hence our treatment of Rt as the ‘instantaneous’ rate of state transitions.

Importantly, processes defined as in (37) have known time reversals given by (Kelly, 2011; Sun
et al., 2022):

q(zs = z | zt = z↔) = ϱz→,z + Řt(z
↔
, z)

1

T
+ o

( 1

T

)
, (39)

where Řt represents the reverse rate matrix which is related to the forward matrix as follows:

Řt(z
↔
, z) =

q(zt = z↔)

q(zt = z)
Rt(z, z

↔), if z↔ ↗= z, (40)

with Řt(z, z) = ↔
∑

z→ ⇑=z Řt(z↔, z), which ensures that the rows of Řt sum to zero (i.e., mass cannot
be created or destroyed). Note that in (40), we are scaling the forward rate matrix by a ratio of the
unconditional marginals: q(zt = z↔)/q(zt = z).

We remark that in the derivations for guidance in Nisonoff et al. (2024), they slightly change the
form of (39) to:

q(zs = z | zt = z↔) = ϱz→,z(1 + Řt(z
↔
, z↔))(1/T ) + (1↔ ϱz→,z)Řt(z

↔
, z)(1/T ) + o(1/T ). (41)

Sampling with Learned Reverse Rate Matrices Assuming we have a learned model Rt,ε(z↔, z)
that approximates the true reverse rates (see Campbell et al. (2022) or Campbell et al. (2024) for
details), we can generate from this model by drawing samples from the limiting distribution z1 ∞ ω
and using a forward Euler discretization to sample a chain of latents that end in samples x ∞ q(x)
(Campbell et al., 2024):

zs ∞ Cat(zs; ϱ(zt = z↔, zs) + (1/T ) ·Rt,ε(zt = z↔, zs)), (42)

where 1/T represents the discretization step size and, as above, s = t↔1/T. Additionally, note that
here we follow the convention of diffusion models and let the time variable go from t = 1 ⇒ 0 to
indicate moving from noise towards signal, in contrast with the flow matching literature, where the
reverse time convention is used (Lipman et al., 2022; Campbell et al., 2024).

B.1 CTMC FORMULATION OF D-CFG

In Nisonoff et al. (2024), guidance is achieved by scaling the parametrized reverse rate matrix Rt,ε.
Predictor-free guidance (the analogous method to D-CFG) is presented as:

R
ϑ

t,ε
(zt = z↔, zs | y) = Rt,ε(zt = z↔, zs | y)

ϑ
·Rt,ε(zt = z↔, zs)

(1↓ϑ)
, (43)

where Rt,ε(· | y) is the learned reverse rate when conditioned on y.

We now present the continuous-time extension of D-CFG and show that it is proportional to using
the predictor-free guided reverse rate from (43) in conjunction with the forward Euler sampling from
(42). Starting from the formulation of D-CFG from our work (where we make more explicit which
variables are free / set)

p
ϑ(zs | zt = z↔, y) ↘ pε(zs | zt = z↔, y)ϑ · pε(zs | zt = z↔)(1↓ϑ)

,
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when using the forward Euler sampling scheme, we can plug in the formulation from (41) (with the
true reverse rate replaced with the approximate one) into the right-hand side of this equation to get
p
ϑ(zs | zt = z↔, y) ↘
[(

ϱ(zt = z↔, zs)(1 +Rt,ε(zt = z↔, zs = z↔ | y))(1/T ) + (1↔ ϱ(zt = z↔, zs))Rt,ε(zt = z↔, zs | y)(1/T )
)ϑ

+
(
ϱ(zt = z↔, zs)(1 +Rt,ε(zt = z↔, zs = z↔))(1/T ) + (1↔ ϱ(zt = z↔, zs))Rt,ε(zt = z↔, zs)(1/T )

)(1↓ϑ)
]

=

[
ϱ(zt = z↔, zs)(1 +Rt,ε(zt = z↔, zs = z↔ | y))ϑ · (1 +Rt,ε(zt = z↔, zs = z↔))(1↓ϑ)(1/T )

+ (1↔ ϱ(zt = z↔, zs))Rt,ε(zt = z↔, zs | y)
ϑ
·Rt,ε(zt = z↔, zs)

(1↓ϑ)(1/T )

]

=

[
ϱ(zt = z↔, zs)(1 +R

ϑ

t,ε
(zt = z↔, zs = z↔ | y))(1/T )

+ (1↔ ϱ(zt = z↔, zs))R
ϑ

t,ε
(zt = z↔, zs | y)(1/T )

]
,

where the first equality comes from the fact that all cross terms involving ϱ(zt = z↔, z) · (1↔ ϱ(zt =
z↔, z)) evaluate to zero, allowing us to aggregate terms under the exponents ϑ and 1 ↔ ϑ, and the
second equality comes from (43).

B.2 CTMC FORMULATION OF D-CBG

While for classifier-free guidance, we did not need to distinguish between latent variables with a
single token and those representing sequences of tokens (as argued in Section 3.1), below we make
this distinction explicit by including superscripts (ω) and (1 : L) on variables zs, zt. However, for
notational simplicity we omit theses subscripts on variables that denote realized values, such as z↔.

In Nisonoff et al. (2024), predictor guided rates (the analog to our D-CBG) are attained by scaling
Rt,ε as follows:

R
ϑ

t,ε
(z(1:L)

t
= z↔, z(1:L)

s
| y) =

(
pϖ(y | z(1:L)

s , z(1:L)
t

= z↔)

pϖ(y | z(1:L)
s = z↔, z(1:L)

t
= z↔)

)ϑ

Rt,ε(z
(1:L)
t

= z↔, z(1:L)
s

),

(44)
where pϖ is an external classifier. Given the factorization assumptions of the forward and reverse
processes, the reverse rate matrix in the CTMC formulation is only non-zero at entries where its
arguments differ in (at most) one dimension (Campbell et al., 2022; 2024; Nisonoff et al., 2024).
Thus, the classifier only needs to be evaluated on candidates for which latents differ in at most one
token, which coincides with the argument / classifier we introduce in Section 3.2. The formulation
in (44) can be further simplified to (see Nisonoff et al. (2024) for details):

R
ϑ

t,ε
(z(1:L)

t
= z↔, z(1:L)

s
| y) =

pϖ(y | z(1:L)
s )

pϖ(y | z(1:L)
s = z(1:L)

t
= z↔)

Rt,ε(z
(1:L)
t

= z↔, z(1:L)
s

), (45)

where for each ω, using the notation introduced in Section 3.2, we only evaluate pϖ on z(1:L)
s →

Z̃ω(z
(1:L)
t

).

As in Appendix B.1, we present the continuous-time extension of D-CBG and show that it is pro-
portional to sampling using the reverse rate matrix in (45) (with Euler discretization for sampling).

Let R(ω)
t,ε

represent the rate matrix corresponding to transitions where all dimensions are kept the
same except for potentially the one corresponding to the ωth token. We follow a similar derivation to
that used in Appendix B.1 and start with our formulation for D-CBG:

p
ϑ(z(ω)

s
| z(1:L)

t
, y) ↘ pϖ(y | z̃(1:L))ϑpε(z

(ω)
s

| z(1:L)
t

),
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where recall that z̃(1:L) =
[
z(1:ω↓1)
t

, z(ω)s , z(ω+1:L)
t

]
. We then plug in the formulation for the approx-

imate reverse rate to get:

p
ϑ(z(ω)

s
| z(1:L)

t
= z↔, y) ↘

pϖ(y | z̃(1:L))ϑ ·

(
ϱ(z(1:L)

t
= z↔, z(1:L)

s
)(1 +R

(ω)
t,ε

(z(1:L)
t

= z↔, z(1:L)
s

= z↔))(1/T )

+ (1↔ ϱ(z(1:L)
t

= z↔, z(1:L)
s

))R(ω)
t,ε

(z(1:L)
t

= z↔, z(1:L)
s

)(1/T )

)

↘

(
pϖ(y | z̃(1:L))

pϖ(y | z(1:L)
t

= z↔)

)ϑ

·

(
ϱ(zt = z↔, zs)(1 +R

(ω)
t,ε

(zt = z↔, zs = z↔))(1/T )

+ (1↔ ϱ(zt = z↔, zs))R
(ω)
t,ε

(z(1:L)
t

= z↔, z(1:L)
s

)(1/T )

)
,

where the second proportionality comes from the fact that pϖ(y | z(1:L)
t

= z↔) is simply a constant.
Therefore, we have shown the equivalence between our D-CBG method and the predictor guidance
method introduced in Nisonoff et al. (2024).

C RELATING UDLM TO CTMC

Similar to Sahoo et al. (2024a), our work tackles the problem of discrete diffusion from the vari-
ational perspective and analyzes the ELBO in the continuous time limit. In contrast, other works,
such as Campbell et al. (2022) and Lou et al. (2023), have extended the discrete diffusion framework
proposed in Austin et al. (2021) using the formalisms of CTMC. In this section, we relate these two
approaches.

Forward Rate Matrices for Uniform Noise Recall from the analysis in Appendix A that we can
use L’Hospital’s rule to evaluate limT↘≃ T · (1 ↔ εt|s) = ↔ε

↔
t
/εt. Now, using (21) from above,

for z↔ ↗= z we have

q(zt = z↔ | zs = z) =
1↔ εt|s

N
. (46)

Combining this with (38), we have that:

Rt(z, z
↔) = lim

T↘≃
T ·

1↔ εt|s

N
= ↔

ε
↔
t

Nεt

. (47)

Now for z↔ = z, again from (21), we have

q(zt = z | zs = z) = εt|s +
1↔ εt|s

N
, (48)

which combines with (38) to yield:

Rt(z, z) = lim
T↘≃

T ·

(
εt|s +

1↔ εt|s

N
↔ 1

)
=

1↔N

N
lim

T↘≃
T · (1↔ εt|s) =

↔ε
↔
t

Nεt

(1↔N).

(49)

Alternatively, for (49), we could have relied on the property that Rt(z, z) = ↔
∑

z→ ⇑=z Rt(z, z↔).

Writing (47) and (49) as a single expression, gives:

Rt(z, z
↔) = ↔

ε
↔
t

Nεt

[11↑
↔NI]. (50)
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C.1 EQUIVALENCE OF UDLM ELBO AND SEDD ELBO

Below, we demonstrate that the variational lower bound from (18) used to train UDLM is equiva-
lent to the lower bound derived in SEDD (Lou et al., 2023), for a specific parameterization of the
denoising score matching.

Notation To facilitate the discussion, we introduce a notational shorthand qt(z↔) = q(zt = z↔)
and qt(z↔ | x) = q(zt = z↔ | x).

In SEDD, the quantity of interest is the ratio of probabilities in the reverse rate matrix equation given
in (40), and they train a parametric model to learn this so-called concrete score (Meng et al., 2022):

sε(z)z→ ⇑
qt(z↔)

qt(z)
. (51)

Since the unconditional marginals in this ratio are intractable, SEDD proposes a tractable denoising
score-based objective. Importantly, they show that the denoising score-based objective they use
for training serves as variational bound and derive the following expression for Negative Evidence
Lower Bound (NELBO):

NELBOSEDD

= Et⇒[0,1],z⇐qt(.|x)




∑

z→ ⇑=zt

Rt(z, z
↔)


sε(z)z→ ↔

qt(z↔|x)

qt(z|x)
log sε(z)z→ +K


qt(z↔|x)

qt(z|x)



 , (52)

where K(a) = a(log a↔ 1), for a → R+.

SEDD with Interpolating Uniform Noise From (1) we have qt(z|x) = εtxi+(1↔εt)/N where
i is the non-zero index of the one-hot vector z, i.e., zi = 1. Thus, the ‘true’ conditional score in (52)
can be written as

qt(z↔|x)

qt(z|x)
=

εtxj + (1↔ εt)/N

εtxi + (1↔ εt)/N
=

Nεtxj + (1↔ εt)

Nεtxi + (1↔ εt)
, (53)

where we use i and j to denote the non-zero indices of the one-hot vectors z and z↔, respectively.

Using Mean Parameterization in SEDD NELBO In our work, we use the mean parameteriza-
tion: we predict the ‘clean’ data given noisy observations using the model that we denote as xε.
Note that (52) is minimized if

sε(z)z→ =
qt(z↔|x)

qt(z|x)
.

Thus, we can replace x in (53) to extract a score model from our parameterization:

sε(z)z→ =
εt(xε)j + (1↔ εt)/N

εt(xε)i + (1↔ εt)/N
=

Nεt(xε)j + (1↔ εt)

Nεt(xε)i + (1↔ εt)
. (54)
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We now show two useful identities that come from this parameterization. First,

∑

z→ ⇑=z

sε(z)z→ =
∑

j ⇑=i

εt(xε)j + (1↔ εt)/N

εt(xε)i + (1↔ εt)/N

=
εt[

∑
j ⇑=i

(xε)j ] +
∑

j ⇑=i
(1↔ εt)/N

εt(xε)i + (1↔ εt)/N

=
εt[

∑
j ⇑=i

(xε)j ] + (1↔ εt)(N ↔ 1)/N

εt(xε)i + (1↔ εt)/N
↭

N∑

j=1

1 = N =↓
∑

j ↓=i

1 = N ↔ 1

=
εt[1↔ (xε)i] + (1↔ εt)↔ (1↔ εt)/N

εt(xε)i + (1↔ εt)/N
↭
∑

j

(xω)j = 1 =↓
∑

j ↓=i

(xω)j = 1↔ (xω)i

=
εt + (1↔ εt)↔ εt(xε)i ↔ (1↔ εt)/N

εt(xε)i + (1↔ εt)/N

=
1↔ εt(xε)i ↔ (1↔ εt)/N

εt(xε)i + (1↔ εt)/N

=
1

εt(xε)i + (1↔ εt)/N
↔ 1

=
N

Nεt(xε)i + (1↔ εt)
↔ 1 (55)

The same logic can be applied to show that

∑

z→ ⇑=z

qt(z↔|x)

qt(z|x)
=

∑

j ⇑=i

εtxj + (1↔ εt)/N

εtxi + (1↔ εt)/N
=

N

Nεtxi + (1↔ εt)
↔ 1. (56)
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Equivalence Between NELBOSEDD and NELBOUDLM We can now use the identities from (55)
and (56) to demonstrate that NELBOSEDD (52) is equivalent to NELBOUDLM (18).
NELBOSEDD

= Et⇒[0,1],z⇐qt(.|x)




∑

z→ ⇑=z

Rt(z, z
↔)


sε(z)z→ ↔

qt(z↔|x)

qt(z|x)
log sε(z)z→ +K


qt(z↔|x)

qt(z|x)





= Et⇒[0,1],z⇐qt(.|x)




∑

z→ ⇑=z

↔
ε
↔
t

Nεt


sε(z)z→ ↔

qt(z↔|x)

qt(z|x)
log sε(z)z→ +K


qt(z↔|x)

qt(z|x)



 from (47)

= Et⇒[0,1],z⇐qt(.|x)



 ε
↔
t

Nεt



↔

∑

z→ ⇑=z

sε(z)z→ +
∑

z→ ⇑=z

qt(z↔|x)

qt(z|x)
log sε(z)z→ ↔

∑

z→ ⇑=z

K


qt(z↔|x)

qt(z|x)









Recall that K(a) = a log a↔ a

= Et⇒[0,1],z⇐qt(.|x)
ε
↔
t

Nεt



↔
∑

z→ ⇑=z

sε(z)z→ +
∑

z→ ⇑=z

qt(z↔|x)

qt(z|x)
log sε(z)z→ ↔

∑

z→ ⇑=z

qt(z↔|x)

qt(z|x)
log

qt(z↔|x)

qt(z|x)
+

∑

z→ ⇑=z

qt(z↔|x)

qt(z|x)





Using (55) and (56) we get,

= Et⇒[0,1],z⇐qt(.|x)
ε
↔
t

Nεt

[
↔

N

εtN(xε)i + (1↔ εt)
+

N

εtNxi + (1↔ εt)

+
∑

z→ ⇑=z

qt(z↔|x)

qt(z|x)
log sε(z)z→ ↔

∑

z→ ⇑=z

qt(z↔|x)

qt(z|x)
log

qt(z↔|x)

qt(z|x)

]

= Et⇒[0,1],z⇐qt(.|x)
ε
↔
t

Nεt

[
↔

N

εtN(xε)i + (1↔ εt)
+

N

εtNxi + (1↔ εt)

↔

∑

z→ ⇑=z

qt(z↔|x)

qt(z|x)
log


1

sε(z)z→

qt(z↔|x)

qt(z|x)

]

Using (53) and (54) we get,

= Et⇒[0,1],z⇐qt(.|x)
ε
↔
t

Nεt

[
N

εtNxi + (1↔ εt)
↔

N

εtN(xε)i + (1↔ εt)

↔

∑

z→ ⇑=z

εtNxj + (1↔ εt)

εtNxi + (1↔ εt)
log


εtN(xε)i + (1↔ εt)

εtN(xε)j + (1↔ εt)
·
εtNxj + (1↔ εt)

εtNxi + (1↔ εt)

]

= NELBOUDLM

D EXPERIMENTAL DETAILS

D.1 DATASET DETAILS

In this section, we provide more details, e.g., source, train/validation splits, etc., for the the datasets
used in this work. For an overview, please see Table 8.

Species10 This dataset is a composite of reference genomes from ten diverse species: Arabidopsis
thaliana, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Felis catus, Gallus gallus,
Gorilla gorilla, Homo sapiens, Mus musculus, and Salmo trutta, which were downloaded from
NCBI refseq database (O’Leary et al., 2016). In Table 9, we provide the assembly accession IDs
used to download the reference genomes. Genomes were chunked into non-overlapping segments
of 32,768 nucleotides and were tokenized using base-pair-level tokenization.

Training and validation sets were randomly split using 95% / 5%. In Table 10, we specify the
size and relative species composition of each split. For guidance, we use the species label. This
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Table 8: Relevant details for datasets used in this work.

Dataset Tokenizer Vocab. Size Input size Padding?

Species10 Base-pair 12 32,768 No
QM9 Regex (Schwaller et al., 2019) 40 32 Yes
CIFAR10 Binned Pixel Intensity 256 32↙32↙3 No
text8 Character 35 256 No
Amazon bert-base-uncased 30,522 128 Yes
LM1B bert-base-uncased 30,522 128 Yes

Table 9: Species genomes accession IDs

Species Assembly Accession

Arabidopsis thaliana GCF 000001735.4 TAIR10.1
Caenorhabditis elegans GCF 000002985.6 WBcel235
Danio rerio GCF 000002035.6 GRCz11
Drosophila melanogaster GCF 000001215.4 Release 6 plus ISO1 MT
Felis catus GCF 018350175.1 F.catus Fca126 mat1.0
Gallus gallus GCF 016699485.2 bGalGal1.mat.broiler.GRCg7b
Gorilla gorilla GCF 029281585.2 NHGRI mGorGor1-v2.0 pri
Homo sapiens GCF 000001405.40 GRCh38.p14
Mus musculus GCF 000001635.27 GRCm39
Salmo trutta GCF 901001165.1 fSalTru1.1

dataset is made available here: https://huggingface.co/datasets/yairschiff/
ten_species.

QM9 Molecules The QM9 dataset comes from Ruddigkeit et al. (2012) and Ramakrishnan et al.
(2014). The dataset is comprised of ∞133k small molecules. We process the dataset using the
RDKit library (Landrum et al., 2013) to extract ‘canonical’ SMILES string representations and add
the annotations for drug-likeness (QED) and ring-counts. The data are tokenized using a regular
expression from Schwaller et al. (2019), which is available here: https://huggingface.co/
yairschiff/qm9-tokenizer. We used input lengths of 32 tokens (with right-sided padding)
for pre-training and generation experiments.

Training and validation sets were randomly split using 95% / 5%. For guidance, we use a cutoff of
90th percentile for QED / ring count to generate binary labels. This dataset is made available here:
https://huggingface.co/datasets/yairschiff/qm9.

CIFAR10 This widely-used image dataset contains RGB images with 32↙ 32 pixels per channel.
We use the provided train and test splits of 50,000 training images and 10,000 validation images.
The dataset contains 10 classes of roughly equal proportion. We tokenize the dataset by rounding to
integer pixel intensity values in the range [0, 255]. For guidance, we use the image class label.

text8 The dataset was downloaded from http://mattmahoney.net/dc/text8.zip.
Data was tokenized at the character level using the lower case letters [‘a’ - ‘z’] and a white-space
character. The data was broken into non-overlapping chunks of 256 tokens.

The first 90M characters were used for the training set and the final 5M characters were used as a
validation set.

Amazon Review The Amazon Review dataset was downloaded from https:
//huggingface.co/datasets/fancyzhx/amazon_polarity. We tokenize us-
ing the bert-base-uncased tokenizer. Sequences were padded to a max input length of 128
tokens.
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Table 10: Species10 train and validation splits statistics. Proportion of each species in the training
and validation sets. Overall split size is indicated in parentheses in the column header.

Species Train Validation
(95% ⇑ 16.5B bps) (5% ⇑ 869M bps)

Arabidopsis thaliana 0.68 0.77
Caenorhabditis elegans 0.58 0.58
Danio rerio 9.50 9.29
Drosophila melanogaster 0.08 0.73
Felis catus 13.94 14.05
Gallus gallus 6.04 5.93
Gorilla gorilla 20.40 20.19
Homo sapiens 18.89 19.22
Mus musculus 15.69 15.60
Salmo trutta 13.49 13.64

Train and validation splits were used from the downloaded data, with 3.6 M sequences in the training
data and 400k sequences in the validation set.

LM1B This dataset was downloaded from https://huggingface.co/datasets/
billion-word-benchmark/lm1b. We tokenize using the bert-base-uncased tok-
enizer. Sequences were padded to a max input length of 128 tokens.

We use the train and validation splits provided in the downloaded data. After chunking the data, our
training set consisted of 7M sequences and our validation set consisted of 72k sequences.

D.2 ARCHITECTURAL DETAILS

In Table 11, we provide an overview of the architectures and parameter counts of the models used
for each dataset.

Table 11: Architectures used when training on various datasets.

Dataset Architecture Parameter Count

Species10 Mamba (AR) / Caduceus (Diffusion) 3.5 M (AR) / 4.8 M (Diffusion)
QM9 Transformer 92.4 M
CIFAR10 UNet 35.8 M
Text8 Transformer 92.4 M
Amazon Transformer 139 M
LM1B Transformer 139 M

Genomics Caduceus For the Species10 experiments, we use Mamba-based models (Gu & Dao,
2023). The AR model is a standard next-token-prediction Mamba backbone with 8 blocks and
hidden dimension 256. For the diffusion models we train with a variant of the Caduceus architecture
from Schiff et al. (2024), also with 8 blocks and hidden dimension 256. Specifically, we use the
non-reverse complementary equivariant version of Caduceus, dubbed Caduceus-Ph in Schiff et al.
(2024), which is similar to the AR Mamba, but with bi-directional Mamba blocks that use strategic
weight tying to limit the parameter count: 3.5 M parameters of AR vs. 4.8 M for diffusion models.

CIFAR10 UNet We adopt the UNet (Ronneberger et al., 2015) as a main backbone for both
MDLM and UDLM, following (Ho et al., 2020). Network configurations are presented in Table 12.
Specifically, we follow Austin et al. (2021) and Campbell et al. (2022) and use the original UNet
backbone from DDPM (Ho et al., 2020), adding an extra discretized truncated logistic transforma-
tion to network outputs. To enable conditioning on labels, we add a label embedding layer which is
added to the time embeddings, inspired by ADM network (Dhariwal & Nichol, 2021b).
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Table 12: Architecture details for CIFAR10 UNet.

MDLM UDLM

Vocab size 258 256
Number of ResNet blocks per scale 2 2
Base channels 128 128
Channel multiplier per scale (1,2,2,2) (1,2,2,2)
Attention resolutions 16 16
Time conditioning False True
Conditional embedding dimension 128 128
Number of Params 35.8M 35.8M

QM9 and NLP Transformer For both the QM9 and NLP datasets (Amazon, text8, and LM1B),
we use the same Diffusion Transformer (Peebles & Xie, 2023) with adaLN for conditioning on time
(for uniform noise diffusion models) and class (for guided generation). The Transformer for each
dataset differs only in the word-embedding size, which is determined by the vocabulary size of the
datasets’ corresponding tokenizer. Our Transformer consists of 12 layers, a hidden dimension of
768, and 12 attention heads. We use RoPE (Su et al., 2021) as the positional embeddings.

D.3 TRAINING CONFIGURATIONS

In Table 13, we detail the hyperparameter setup for each of the language modeling experiments in
Section 5.1.

All diffusion models were trained and evaluated using a log-linear noise schedule.

Of note, for CIFAR10, our models are trained for 300K iterations as opposed to 1.5M iterations, as
in D3PM (Austin et al., 2021).

Table 13: Training hyper-parameters for all included experiments.

Species10 QM9 CIFAR10 text8 Amazon LM1B

Train
steps 30K 25K 300K 1000K 184K 1000K

Context
size 32,768 32 32↗32↗3 256 128 128

Batch
size 32 2048 512 512 512 512

LR 2e↔3 3e↔4 2e↔4 3e↔4 3e↔4 3e↔4

Optim. ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

LR
sched.

Cosine decay
3e↔6 min.

Cosine decay
3e↔6 min. - - - -

LR warmup
steps 3K 1K 5K 2.5K 2.5K 2.5K

GPU
count 8 4 8 8 8 8

GPU
type A5000 A6000 A100 A100 A5000 A100

D.4 GUIDANCE DETAILS

D.4.1 BASELINES

FUDGE Implementation FUDGE is a classifier-based autoregressive guidance method proposed
by Yang & Klein (2021). FUDGE first trains a classifier on all possible prefixes. Instead of di-
rectly sampling from p(x(ω)

| x(1:ω↓1)), FUDGE samples from the perturbed conditional distribu-
tion p(y | x(1:ω))p(x(ω)

| x(1:ω↓1)) where y denotes the classifier label, x(1:ω↓1) denotes the already
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decoded tokens and x(ω) stands for possible token to be generated. For efficiency, FUDGE truncates
x(ω) to the topk tokens with the largest unconditional log-likelihood. Although not in the origi-
nal FUDGE formulation, following the classifier-based guidance in diffusion models (Dhariwal &
Nichol (2021b)), we introduce the temperature variable ϑ and sample from the perturbed distribu-
tion:

p(x(ω)
| x(1:ω↓1))pϑ(y | x(1:ω))∑

x(ω) p(x(ω) | x(1:ω↓1))pϑ(y | x(1:ω))

In our QM9 experiments, topk is set as the vocabulary size, which is 40. When training the classifier,
we use a smaller classification model using the same dataset specified in Appendix D.1. The smaller
backbone DiT consists of 8 layers, 8 attention heads, and a hidden dimension of 512. We use the
same hyperparameters as those specified in Table 13.

PPLM Implementation Inspired by the approximate Metropolis-adjusted Langevin (MALA),
Plug and Play language model (PPLM; Dathathri et al. (2019)) introduces guidance by conduct-
ing gradient updates on the hidden representations of a language model. PPLM first rewrites the
autoregressive language models’ decoding process using the KV-cache mechanism (Wolf et al.,
2020): xt+1, Ht+1 = LM(xt, Ht), where xt denotes the token at time step t and Ht is defined as
[(K(1)

t
, V

(1)
t

), ..., (K(l)
t

, V
(l)
t

] in which l is the number of layers. When decoding the token xt+1

at time step t + 1, PPLM initializes the perturbation term !Ht as 0, and then performs n updates,
following the gradient ascend formula:

!Ht ∈ !Ht+ϖ
≃!Ht [log(p(y | Ht +!Ht))↔ ϑKLDKL(p(xt+1 | Ht +!Ht)||p(xt+1 | Ht))]

⇓≃!Ht [log(p(y | Ht +!Ht))↔ ϑKLDKL(p(xt+1 | Ht +!Ht)||p(xt+1 | Ht))]⇓
.

PPLM then generates the perturbed probability distribution pperb(xt+1 | Ht+!Ht) using Ht+!Ht

and decodes xt+1 using the fused probability distribution 1
ς
p
ϑgm

perb
(xt+1 | Ht +!Ht)p

1↓ϑgm

unperb
(xt+1 |

Ht), where ς is the normalization factor. Following Dathathri et al. (2019), in our experiments ϑkl
is set as 0.01 and ϑgm is set as 0.95. ϖ and n are decided by grid search.

For the QM9 experiments, when training the classifier for PPLM, we use the same dataset specified
in Appendix D.1. We use the same hyperparameters as those specified in Table 13, except the LR
peak is reduced to 3e↓5 and minimum is reduced to 3e↓7.

NOS Implementation To implement the NOS baseline from Gruver et al. (2024), we train a
classifier where we use the same backbone as the unconditional diffusion model (see Appendix D.2
for architecture details), and we initialize and freeze weights using the pre-trained unconditional
diffusion model. We then mean pool the last hidden embeddings of the backbone and linearly
project them to the classification logits. This final projection layer represents the only trainable
parameters of the guidance model.

At inference, we perform Langevin sampling following Algorithm 2 from Gruver et al. (2024). In
our experiments, we denote step-size for the Langevin sampling by ϖ, the number of steps by n, and
the weight on the ‘stability’ / ‘fluency’ KL penalty by ϑkl.

For the QM9 experiments, when training the classifier for NOS, we use the same dataset specified
in Appendix D.1. We use the same hyperparameters as those specified in Table 13, except the LR
peak is reduced to 3e↓5 and minimum is reduced to 3e↓7.

D.4.2 D-CFG DETAILS

When implementing D-CFG we train a single AR / discrete diffusion model (see Appendix D.2 for
architecture details) where we randomly drop out the class condition by replacing it with a class
[MASK] token. The class condition is fused into models using the implementation of adaptive layer
norm from Peebles & Xie (2023). We use 10% rate for masking / dropping-out the condition.

At inference time, we perform two forward passes through the model, one with condition provided to
compute the conditional probability pε(zs | zt, y) and one where the condition is masked to compute
the unconditional probability pε(zs | zt). These values are then used as described in Section 3.1.
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D.4.3 D-CBG DETAILS

For D-CBG in the QM9 experiment, we train a smaller classification model using the same dataset
specified in Appendix D.1. The smaller backbone DiT consists of 8 layers, 8 attention heads, and
a hidden dimension of 512. We apply mean pooling on the final hidden representations before
linearly projecting to the classification logits. We use the same hyperparameters as those specified
in Table 13.

We train the model on noised inputs using a log-linear schedule, where the type of corruption applied
corresponds to the diffusion model to which guidance is applied.

D.5 GUIDANCE EVALUATION DETAILS

D.5.1 GENOMIC SEQUENCES METRICS

Below we describe the quality and control metrics used in the species-specific genome generation
experiment.

k-mer JS To compute the k-mer distirbution shift, for each species, we create counts for each of
the unique 3mers and 6mers for that species in the validation set and 64 generated sequences for that
species. We then compute the Jensen-Shannon divergence between those categorical histograms.
Finally we take a weighted average of these distances across species where the weights are given by
the relative species proportion in the validation dataset. See Table 10 for the relative proportions.

Discriminator AUROC For the discriminator AUROC metric, we train a HyenaDNA model
with 2 layers and hidden dimension 128. This model was downloaded from https://
huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf, modified (we re-
duced the number of layers and hidden dimension), and initialized from scratch. We mean pool
the final layer embeddings and linearly project them to the binary classification logits. The model
is trained on the 640 generated sequences, which are labeled as the negative class, and 640 ran-
domly selected sequences from the ground truth validation set (64 sequences per species), which
are labeled as the positive class. This dataset of 1,280 sequences is randomly split into 95% train
and 5% validation. The discriminator is trained with batch size of 8, learning rate of 1e↓4, and the
ADAM optimizer for 5 epochs to minimize binary cross entropy loss on the classification of real
vs. generated sequences. We report the AUROC from the final epoch on the 5% validation split of
this classification dataset.

Oracle F1 Finally, controllability is measured by the macro-averaged F1 of an oracle
model on the 640 generated sequences. Our oracle model is a separate HyenaDNA model
with 8 layers and hidden dimension 256, which has 6.6M parameters. This model was
downloaded and initialized from scratch from https://huggingface.co/LongSafari/
hyenadna-small-32k-seqlen-hf. We mean pool the final layer embeddings and linearly
project them to the ten category classification logits. This model was trained on the full Species10
dataset as described in Appendix D.1. For reference, in Table 14 we present the classification results
of the this oracle model on the 5% valdiation set of the original data. We see that other than difficulty
distinguishing between human and gorilla genomes, the model can serve as a near perfect oracle.

D.5.2 CIFAR10 QUALITY METRICS

For evaluation, we randomly samples 50,000 images for each model and the tools provided
here: https://github.com/w86763777/pytorch-image-generation-metrics.
git, as described in Campbell et al. (2022).

FID Fréchet inception distance (Heusel et al., 2017) is a common metric in image generation
where the divergence between real and generated data is measured to reflect the alignment of two
distributions. The metric uses features extracted from a pretrained Inception-v3 model on ImageNet-
1K to estimate the mean and variance of the input data. The difference of two multi-dimensional
Gaussian distributions is measured by Wasserstein-2 distance or Fréchet distance d(.) as follows:
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Table 14: Evaluation of HyenaDNA ‘oracle’ classifier on Species10 validation split.

Species Precision Recall F1

Arabidopsis thaliana 1.00 0.99 1.00
Caenorhabditis elegans 1.00 1.00 1.00
Danio rerio 1.00 1.00 1.00
Drosophila melanogaster 1.00 1.00 1.00
Felis catus 1.00 1.00 1.00
Gallus gallus 1.00 1.00 1.00
Gorilla gorilla 0.63 0.45 0.52
Homo sapiens 0.54 0.72 0.62
Mus musculus 1.00 0.97 0.98
Salmo trutta 1.00 0.98 0.99

FID = d(N (µreal,”real),N (µfake,”fake)) = ⇓µreal ↔ µfake⇓+

⇓Tr(”real + ”fake ↔ 2(”real”fake)
0.5)⇓ (57)

IS Inception Score (Salimans et al., 2016) is an alternative measure of how well generated images
are aligned with human judgement. IS also utilizes Inception-v3 model to compute label distribution
p(y|x) for each generated image. IS focuses on two criteria: (1) A generated image should contain a
distinct class object, meaning its label distribution is expected to have low entropy; (2) The generated
images should vary across multiple classes, so the marginal distribution, p(y) =


z
p(y|G(z))dz, is

expected to have high entropy, ideally approaching a uniform distribution. The formula is presented
as below:

IS = exp [ExKL(p(y|x)⇓p(y))] , (58)

F1 F1 is used as a proxy for satisfying the desired conditional generation of gener-
ated samples by a pre-trained classifier on CIFAR10. We use a pretrained Vision Trans-
former model downloaded from https://huggingface.co/edadaltocg/vit_base_
patch16_224_in21k_ft_cifar10 and fine-tuned on CIFAR10.

D.5.3 QM9 GUIDANCE METRICS

For the guidance experiments in QM9, we generate 2,048 sequences of length 32. The reported
metrics are explained below.

Validity Validity is measured by whether the generated SMILES string can be parsed by the RDKit
library (Landrum et al., 2013). Any strings that fail to be parsed are counted as invalid.

Novelty Novelty is measured by the number of valid and unique sequences that are not present in
the original QM9 dataset.

Property Mean / Median Finally, we also report the mean and median of the novel generated
sequence for the property of interest, QED or ring count. These quantities are computed using the
RDKit library.

E GUIDANCE ABLATION RESULTS

E.1 EFFECT OF VARYING GUIDANCE HYPERPARAMETERS

For each of the guidance experiments, we perform a hyerparameter search on the guidance param-
eters, e.g., ϑ in D-CFG and D-CBG. Below we present results from these searches for the various
guidance experiments.
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Species-specific Genome Generation In this experiment we vary ϑ → {1, 2, 3} for D-CFG ap-
plied to AR, MDLM, and UDLM. Additionally, for MDLM and UDLM we vary the number of
sampling steps T → {128, 256, 512}.

Results presented in Table 15 highlight that UDLM is more amenable to guidance than either AR
or MDLM in this setting. UDLM achieves better quality and control metrics, and AR and MDLM
performance degrades as ϑ, this is not the case for UDLM.

Table 15: Varying ϑ for species-specific generation with AR, MDLM, UDLM using D-CFG. Mean
± standard deviation reported from repeated generation of 640 sequences (64 per species) using five
different random seeds.

D-CFGϑ T
3-mer
JS (′)

6-mer
JS (′)

Disc.
AUROC (′) F1 (∋)

AR
1 32,768 0.03 ± 0.002 0.07 ± 0.004 0.53 ± 0.075 0.87 ± 0.011
2 32,768 0.05 ± 0.003 0.12 ± 0.004 0.90 ± 0.051 0.81 ± 0.009
3 32,768 0.07 ± 0.002 0.15 ± 0.002 0.97 ± 0.018 0.74 ± 0.022

MDLM
1 128 0.02 ± 0.001 0.06 ± 0.001 0.51 ± 0.073 0.88 ± 0.01
1 256 0.02 ± 0.002 0.06 ± 0.003 0.55 ± 0.039 0.88 ± 0.006
1 512 0.02 ± 0.001 0.06 ± 0.001 0.51 ± 0.059 0.88 ± 0.011
2 128 0.06 ± 0.001 0.11 ± 0.003 0.71 ± 0.013 0.90 ± 0.011
2 256 0.05 ± 0.001 0.10 ± 0.002 0.77 ± 0.027 0.91 ± 0.009
2 512 0.05 ± 0.001 0.11 ± 0.003 0.74 ± 0.037 0.91 ± 0.009
3 128 0.12 ± 0.002 0.20 ± 0.003 0.94 ± 0.031 0.78 ± 0.009
3 256 0.11 ± 0.002 0.19 ± 0.005 0.91 ± 0.025 0.78 ± 0.01
3 512 0.11 ± 0.004 0.20 ± 0.005 0.93 ± 0.031 0.78 ± 0.007

UDLM
1 128 0.02 ± 0.001 0.05 ± 0.001 0.55 ± 0.041 0.90 ± 0.006
1 256 0.02 ± 0.002 0.06 ± 0.002 0.56 ± 0.042 0.91 ± 0.006
1 512 0.02 ± 0.002 0.06 ± 0.003 0.52 ± 0.044 0.91 ± 0.01
2 128 0.05 ± 0.003 0.12 ± 0.004 0.52 ± 0.02 0.92 ± 0.006
2 256 0.05 ± 0.002 0.13 ± 0.004 0.59 ± 0.043 0.91 ± 0.005
2 512 0.05 ± 0.002 0.13 ± 0.002 0.61 ± 0.043 0.93 ± 0.009
3 128 0.08 ± 0.003 0.19 ± 0.004 0.80 ± 0.048 0.93 ± 0.009
3 256 0.08 ± 0.002 0.20 ± 0.004 0.81 ± 0.084 0.92 ± 0.005
3 512 0.08 ± 0.002 0.20 ± 0.003 0.87 ± 0.051 0.94 ± 0.007

QM9 In this section, we list the hyperparameter grid search results for QM9 drug likeliness (QED)
maximization using

• AR D-CFG (Table 16), AR FUDGE (Table 17), AR PPLM (Table 18),
• MDLM D-CFG (Table 19), MDLM D-CBG (Table 20), MDLM NOS (Table 21),
• UDLM D-CFG (Table 22), UDLM D-CBG (Table 23), and UDLM NOS (Table 24).

We also list the grid search results for QM9 ring count maximization guidance results with

• AR D-CFG (Table 25), AR FUDGE (Table 26) AR PPLM (Table 27),
• MDLM D-CFG (Table 28) MDLM D-CBG (Table 29), MDLM NOS (Table 30),
• UDLM D-CFG (Table 31), UDLM D-CBG (Table 32), UDLM NOS (Table 33).

CIFAR10 In Table 34, we explore the effect of ϑ → 1, 2, 3, 4, 5 in conditional image generation.
For this table, we use T = 1000. We find that increasing ϑ generally leads to better IS and F1 scores
for both MDLM and UDLM. For FID, MDLM achieves better scores as ϑ increases. However, the
impact of ϑ is weaker for UDLM, as the model’s FID score worsens when ϑ exceeds 2. We also plot
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Table 16: Varying ϑ for maximizing drug-likeness (QED) guidance with AR D-CFG. Validity,
novelty, and mean QED for novel sequences are reported. Mean ± standard deviation reported from
repeated generation of 1,024 sequences using five different random seeds. The setting reported in
the main paper is bolded.

ϑ Num. Valid (∋) Num. Novel (∋) QED Mean (∋)

1 1013.0 ± 4.9 82.6 ± 2.97 0.57 ± 0.00
2 1001.4 ± 5.37 79.2 ± 9.34 0.59 ± 0.00
3 946.4 ± 8.99 79.4 ± 6.35 0.60 ± 0.00
4 777.2 ± 15.39 86.8 ± 8.73 0.59 ± 0.00
5 591.8 ± 10.43 77.8 ± 9.12 0.58 ± 0.00

Table 17: Varying ϑ for maximizing drug-likeness (QED) guidance with AR FUDGE. Validity,
novelty, and mean QED for novel sequences are reported. Mean ± standard deviation reported from
repeated generation of 1,024 sequences using five different random seeds. The setting reported in
the main paper is bolded.

ϑ Num. Valid (∋) Num. Novel (∋) QED Mean (∋)

1 998.4 ± 3.21 113.0 ± 7.18 0.56 ± 0.00
2 985.2 ± 6.46 88.8 ± 5.5 0.58 ± 0.01
3 973.8 ± 4.97 90.8 ± 7.66 0.59 ± 0.00
4 963.4 ± 8.53 86.4 ± 14.05 0.59 ± 0.00
5 949.6 ± 10.71 74.6 ± 9.07 0.60 ± 0.00
6 935.0 ± 9.33 64.6 ± 7.09 0.60 ± 0.00
7 924.4 ± 12.05 53.0 ± 3.54 0.61 ± 0.00
8 902.8 ± 16.08 46.6 ± 4.04 0.62 ± 0.00
9 876.6 ± 13.03 34.8 ± 3.63 0.62 ± 0.01
10 873.8 ± 11.21 29.2 ± 2.77 0.62 ± 0.01

visual outputs of different ϑ in Figure 4. As ϑ is increased, the appearance and the shape of a class
object become more refined and sharpened.

E.2 EFFECT OF USING FIRST ORDER APPROXIMATION IN D-CBG

The data for this analysis is available in Tables 20, 23, 29, and 32. We present it graphically in
Figure 5. In these plots, we use T = 32 for diffusion generation.

QED We see that for drug-likeness (QED) maximization, using the full D-CBG without the first
order approximation leads to a boost in performance for both MDLM and UDLM.

Ring Count When maximizing ring count, we again find that for UDLM, not relying on the first
order approximation improves performance with both more novel molecule generation and higher
ring counts. For MDLM, however, we observe instability for ϑ > 1, as the model tends to decode
the full sequence early on in the generation process and cannot recover from mistakes. The first
order approximation for MDLM does not appear to suffer from this same instability.

E.3 EFFECT OF VARYING T

Species10 In Table 15, we see the effect of increasing T on the genomic sequence generation. In
this setting T → {128, 256, 512} is orders of magnitude smaller than sequence length L = 32768.
We see a positive relationship between decoding steps and sample quality for both MDLM and
UDLM.

QM9 In Figure 6, we see that for both properties (QED and ring count), MDLM benefits signifi-
cantly from increasing T . In contrast, UDLM appears to have more consistent results across varying
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Table 18: Varying n (the number of Langevin steps) and ϖ (the step size) for maximizing drug-
likeness (QED) guidance with AR PPLM. Validity, novelty, and mean QED for novel sequences are
measured for generated sequences from each method. Mean ± standard deviation reported from
repeated generation of 1,024 sequences using five different random seeds. The setting reported in
the main paper is bolded.

n ϖ Num. Valid (∋) Num. Novel (∋) Novel QED Mean (∋)

10 0.040 1009.6 ± 2.61 140.4 ± 18.19 0.46 ± 0.01
10 0.100 1008.8 ± 2.17 138.4 ± 17.24 0.46 ± 0.01
30 0.040 1008.8 ± 2.77 137.8 ± 16.83 0.45 ± 0.00
30 0.100 1007.2 ± 2.28 142.0 ± 14.2 0.45 ± 0.00

Table 19: Varying ϑ for maximizing drug-likeness (QED) guidance with MDLM D-CFG. Validity,
novelty, and mean QED for novel sequences are reported. Mean ± standard deviation reported from
repeated generation of 1,024 sequences using five different random seeds. The setting reported in
the main paper is bolded.

ϑ Num. Valid (∋) Num. Novel (∋) Novel QED Mean (∋)

1 561.0 ± 6.08 182.8 ± 10.52 0.56 ± 0.00
2 449.8 ± 8.7 142.8 ± 8.47 0.59 ± 0.01
3 317.4 ± 11.5 95.8 ± 9.04 0.60 ± 0.01
4 226.0 ± 10.34 79.0 ± 6.36 0.59 ± 0.01
5 163.4 ± 7.86 68.4 ± 3.58 0.59 ± 0.01

number of decoding steps. Note that for the D-CBG results in this section we do not use the first
order approximation for maximizing QED and we do use it for maximizing ring count.

CIFAR10 In Table 35, we present additional T beyond those presented in Table 7 in Section 5.2.
As discussed in the main paper results, we find that UDLM is able to accommodate this faster
inference setting better than MDLM, owing to the ability of UDLM to recover from ‘mistakes.’

F UNCONDITIONAL SAMPLE GENERATION

In this section, we evaluate unconditional samples generated from models trained on LM1B.
In Table 36, we report generative perplexity for 1,024 unconditionally generated sequences.
We use GPT-2 Large (Radford et al., 2019) downloaded from https://huggingface.co/
openai-community/gpt2-large to compute generative perplexity. In Table 37, we present
random examples of sample generation.
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Table 20: Varying ϑ for maximizing drug-likeness (QED) guidance with MDLM D-CBG. We also
report results for both using the first order approximation and not using it. Validity, novelty, and
mean QED for novel sequences are reported. Mean ± standard deviation reported from repeated
generation of 1,024 sequences using five different random seeds. The setting reported in the main
paper is bolded.

ϑ Use Approx. Num. Valid (∋) Num. Novel (∋) Novel QED Mean (∋)

1 False 526.4 ± 16.53 170.8 ± 14.69 0.56 ± 0.00
1 True 476.0 ± 15.23 221.4 ± 7.57 0.46 ± 0.01
2 False 524.8 ± 22.04 139.0 ± 11.79 0.58 ± 0.00
2 True 363.4 ± 17.57 172.4 ± 9.42 0.47 ± 0.01
3 False 417.6 ± 19.69 116.6 ± 8.91 0.58 ± 0.00
3 True 244.0 ± 13.38 114.0 ± 6.16 0.47 ± 0.01
4 False 200.4 ± 10.31 66.4 ± 7.7 0.58 ± 0.00
4 True 174.6 ± 11.26 83.6 ± 3.51 0.49 ± 0.02
5 False 24.6 ± 3.21 11.6 ± 2.3 0.58 ± 0.01
5 True 120.6 ± 6.69 48.4 ± 5.41 0.50 ± 0.01
6 False 0.2 ± 0.45 0.2 ± 0.45 0.12 ± 0.26
6 True 96.4 ± 4.04 35.0 ± 5.24 0.50 ± 0.02
7 False 0.0 ± 0.00 0.0 ± 0.00 0.00 ± 0.00
7 True 85.4 ± 9.81 28.6 ± 5.32 0.51 ± 0.01
8 False 0.0 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
8 True 77.0 ± 8.63 24.8 ± 6.76 0.55 ± 0.01
9 False 0.0 ± 0.00 0.0 ± 0.00 0.00 ± 0.00
9 True 71.2 ± 10.94 21.6 ± 6.73 0.55 ± 0.01

10 False 0.0 ± 0.00 0.0 ± 0.00 0.00 ± 0.00
10 True 72.6 ± 7.13 21.2 ± 1.79 0.55 ± 0.02

MDLM UDLM

Figure 4: Illustration of varying ϑ on CIFAR10.
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Table 21: Varying n (the number of Langevin steps), ϖ (the step size), and ϑkl (the stability reg-
ularization coefficient) for maximizing drug-likeness (QED) guidance with MDLM NOS. Validity,
novelty, and mean ring count for novel sequences are measured for generated sequences from each
method. Mean ± standard deviation reported from repeated generation of 1,024 sequences using
five different random seeds. The setting reported in the main paper is bolded.

n ϖ ϑkl Num. Valid (∋) Num. Novel (∋) Novel QED Mean (∋)

1 0.001 0.000 509.4 ± 23.78 238.2 ± 8.87 0.45 ± 0.00
1 0.001 0.001 509.4 ± 23.78 238.2 ± 8.87 0.45 ± 0.00
1 0.001 0.010 509.4 ± 23.78 238.2 ± 8.87 0.45 ± 0.00
1 0.010 0.000 510.00 ± 24.24 238.8 ± 7.82 0.45 ± 0.00
1 0.010 0.001 509.4 ± 24.15 238.6 ± 7.77 0.45 ± 0.00
1 0.010 0.010 509.4 ± 24.15 238.6 ± 7.77 0.45 ± 0.00
1 0.100 0.000 507.4 ± 29.98 240.2 ± 14.82 0.45 ± 0.00
1 0.100 0.001 507.4 ± 29.98 240.2 ± 14.82 0.45 ± 0.00
1 0.100 0.010 507.4 ± 29.98 240.2 ± 14.82 0.45 ± 0.00
1 1.000 0.000 461.0 ± 29.21 233.2 ± 15.16 0.44 ± 0.00
1 1.000 0.001 461.0 ± 29.21 233.2 ± 15.16 0.44 ± 0.00
1 1.000 0.010 461.0 ± 29.21 233.2 ± 15.16 0.44 ± 0.00
1 5.000 0.000 185.8 ± 8.23 127.0 ± 8.25 0.42 ± 0.01
1 5.000 0.001 185.8 ± 8.23 127.0 ± 8.25 0.42 ± 0.01
1 5.000 0.010 185.8 ± 8.23 127.0 ± 8.25 0.42 ± 0.01
5 0.001 0.000 509.4 ± 24.67 237.0 ± 9.67 0.45 ± 0.00
5 0.001 0.001 509.4 ± 24.67 237.0 ± 9.67 0.45 ± 0.00
5 0.001 0.010 509.4 ± 24.67 237.0 ± 9.67 0.45 ± 0.00
5 0.010 0.000 509.2 ± 26.2 238.4 ± 8.79 0.45 ± 0.01
5 0.010 0.001 509.2 ± 26.2 238.4 ± 8.79 0.45 ± 0.01
5 0.010 0.010 509.2 ± 26.2 238.4 ± 8.79 0.45 ± 0.01
5 0.100 0.000 505.6 ± 29.52 239.8 ± 16.36 0.45 ± 0.01
5 0.100 0.001 505.6 ± 29.52 239.8 ± 16.36 0.45 ± 0.01
5 0.100 0.010 506.0 ± 29.45 240.4 ± 16.01 0.45 ± 0.01
5 1.000 0.000 461.0 ± 29.21 233.2 ± 15.16 0.44 ± 0.00
5 1.000 0.001 461.6 ± 28.4 233.2 ± 14.77 0.44 ± 0.00
5 1.000 0.010 459.8 ± 28.6 231.2 ± 13.72 0.44 ± 0.00
5 5.000 0.000 185.8 ± 8.23 127.0 ± 8.25 0.42 ± 0.01
5 5.000 0.001 186.2 ± 8.98 127.2 ± 8.79 0.42 ± 0.01
5 5.000 0.010 186.0 ± 9.59 127.0 ± 9.46 0.42 ± 0.01
10 0.001 0.000 509.6 ± 25.58 238.0 ± 9.77 0.45 ± 0.00
10 0.001 0.001 509.0 ± 25.46 237.4 ± 9.56 0.45 ± 0.00
10 0.001 0.010 509.0 ± 25.46 237.4 ± 9.56 0.45 ± 0.00
10 0.010 0.000 508.2 ± 25.77 238.4 ± 11.08 0.45 ± 0.00
10 0.010 0.001 508.2 ± 25.77 238.4 ± 11.08 0.45 ± 0.00
10 0.010 0.010 508.2 ± 25.77 238.4 ± 11.08 0.45 ± 0.00
10 0.100 0.000 504.2 ± 26.75 238.2 ± 14.81 0.45 ± 0.01
10 0.100 0.001 505.0 ± 26.84 238.8 ± 15.25 0.45 ± 0.01
10 0.100 0.010 504.2 ± 26.75 238.2 ± 14.81 0.45 ± 0.01
10 1.000 0.000 461.0 ± 29.21 233.2 ± 15.16 0.44 ± 0.00
10 1.000 0.001 461.0 ± 28.31 232.8 ± 14.08 0.44 ± 0.00
10 1.000 0.010 460.6 ± 28.41 231.8 ± 12.99 0.45 ± 0.00
10 5.000 0.000 185.8 ± 8.23 127.0 ± 8.25 0.42 ± 0.01
10 5.000 0.001 186.4 ± 7.92 127.4 ± 7.96 0.42 ± 0.01
10 5.000 0.010 190.4 ± 10.48 130.4 ± 9.63 0.42 ± 0.01
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Table 22: Varying ϑ for maximizing drug-likeness (QED) guidance with UDLM D-CFG. Validity,
novelty, and mean QED for novel sequences are reported. Mean ± standard deviation reported from
repeated generation of 1,024 sequences using five different random seeds. The setting reported in
the main paper is bolded.

ϑ Num. Valid (∋) Num. Novel (∋) Novel QED Mean (∋)

1 1003.4 ± 5.46 82.0 ± 15.28 0.57 ± 0.00
2 1017.6 ± 1.82 64.2 ± 3.96 0.60 ± 0.00
3 1017.2 ± 0.84 61.2 ± 7.19 0.61 ± 0.00
4 1019.0 ± 1.41 61.6 ± 9.13 0.61 ± 0.00
5 1013.6 ± 2.51 64.0 ± 5.1 0.62 ± 0.00

Table 23: Varying ϑ for maximizing drug-likeness (QED) guidance with UDLM D-CBG. We also
report results for both using the first order approximation and not using it. Validity, novelty, and
mean QED for novel sequences are reported. Mean ± standard deviation reported from repeated
generation of 1,024 sequences using five different random seeds. The setting reported in the main
paper is bolded.

ϑ Use Approx. Num. Valid (∋) Num. Novel (∋) Novel QED Mean (∋)

1 False 933.4 ± 7.5 134.6 ± 7.33 0.53 ± 0.01
1 True 996.4 ± 5.86 132.2 ± 8.87 0.47 ± 0.01
2 False 911.2 ± 8.14 119.8 ± 16.47 0.57 ± 0.01
2 True 974.8 ± 8.26 110.6 ± 9.53 0.49 ± 0.01
3 False 941.0 ± 11.31 96.4 ± 8.82 0.58 ± 0.01
3 True 925.0 ± 8.09 111.4 ± 9.56 0.51 ± 0.01
4 False 961.8 ± 7.98 77.0 ± 7.55 0.59 ± 0.00
4 True 866.4 ± 17.67 93.8 ± 10.28 0.52 ± 0.00
5 False 967.6 ± 1.52 77.8 ± 10.83 0.59 ± 0.01
5 True 828.2 ± 17.85 86.2 ± 13.01 0.53 ± 0.01
6 False 976.2 ± 7.92 78.6 ± 12.92 0.60 ± 0.00
6 True 821.0 ± 11.22 79.8 ± 7.19 0.54 ± 0.00
7 False 982.4 ± 3.21 73.8 ± 6.91 0.60 ± 0.00
7 True 798.6 ± 5.64 82.2 ± 7.66 0.55 ± 0.00
8 False 986.4 ± 4.98 66.6 ± 8.53 0.61 ± 0.01
8 True 789.8 ± 15.09 69.2 ± 6.76 0.55 ± 0.01
9 False 992.8 ± 6.3 68.0 ± 1.22 0.61 ± 0.00
9 True 798.4 ± 11.06 68.2 ± 10.5 0.57 ± 0.01

10 False 994.8 ± 2.86 63.8 ± 8.11 0.61 ± 0.00
10 True 783.2 ± 13.88 67.0 ± 3.08 0.56 ± 0.01
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Table 24: Varying n (the number of Langevin steps), ϖ (the step size), and ϑkl (the stability reg-
ularization coefficient) for maximizing drug-likeness (QED) guidance with UDLM NOS. Validity,
novelty, and mean ring count for novel sequences are measured for generated sequences from each
method. Mean ± standard deviation reported from repeated generation of 1,024 sequences using
five different random seeds. The setting reported used in the main paper is bolded.

n ϖ ϑkl Num. Valid (∋) Num. Novel (∋) Novel QED Mean (∋)

1 0.001 0.000 1000.8 ± 2.77 145.6 ± 8.44 0.46 ± 0.00
1 0.001 0.001 1000.8 ± 2.77 145.6 ± 8.44 0.46 ± 0.00
1 0.001 0.010 1000.8 ± 2.77 145.8 ± 8.04 0.46 ± 0.00
1 0.010 0.000 1001.0 ± 3.0 147.0 ± 7.81 0.46 ± 0.01
1 0.010 0.001 1001.0 ± 3.0 147.0 ± 7.81 0.46 ± 0.01
1 0.010 0.010 1001.0 ± 3.0 147.0 ± 7.81 0.46 ± 0.01
1 0.100 0.000 999.2 ± 4.6 146.4 ± 6.88 0.46 ± 0.01
1 0.100 0.001 999.2 ± 4.6 146.4 ± 6.88 0.46 ± 0.01
1 0.100 0.010 999.2 ± 4.6 146.4 ± 6.88 0.46 ± 0.01
1 1.000 0.000 992.2 ± 5.63 152.0 ± 7.25 0.46 ± 0.00
1 1.000 0.001 992.2 ± 5.63 152.0 ± 7.25 0.46 ± 0.00
1 1.000 0.010 992.2 ± 5.63 152.0 ± 7.25 0.46 ± 0.00
1 5.000 0.000 357.4 ± 20.84 106.4 ± 12.66 0.47 ± 0.01
1 5.000 0.001 357.4 ± 20.84 106.4 ± 12.66 0.47 ± 0.01
1 5.000 0.010 357.4 ± 20.84 106.4 ± 12.66 0.47 ± 0.01
5 0.001 0.000 1000.8 ± 2.77 147.0 ± 7.91 0.46 ± 0.00
5 0.001 0.001 1000.8 ± 2.77 147.0 ± 7.91 0.46 ± 0.00
5 0.001 0.010 1000.8 ± 2.77 147.0 ± 7.91 0.46 ± 0.00
5 0.010 0.000 1000.4 ± 2.3 146.0 ± 8.97 0.46 ± 0.01
5 0.010 0.001 1000.4 ± 2.3 146.0 ± 8.97 0.46 ± 0.01
5 0.010 0.010 1000.4 ± 2.3 146.0 ± 8.97 0.46 ± 0.01
5 0.100 0.000 1000.4 ± 5.68 144.8 ± 5.36 0.46 ± 0.01
5 0.100 0.001 1000.2 ± 5.63 144.4 ± 5.18 0.46 ± 0.01
5 0.100 0.010 1000.2 ± 5.63 145.2 ± 5.22 0.46 ± 0.01
5 1.000 0.000 992.2 ± 5.63 152.0 ± 7.25 0.46 ± 0.00
5 1.000 0.001 991.8 ± 4.21 151.0 ± 5.66 0.46 ± 0.01
5 1.000 0.010 994.0 ± 5.74 151.4 ± 5.68 0.46 ± 0.01
5 5.000 0.000 357.4 ± 20.84 106.4 ± 12.66 0.47 ± 0.01
5 5.000 0.001 373.8 ± 13.2 109.0 ± 8.09 0.47 ± 0.01
5 5.000 0.010 456.6 ± 10.29 135.8 ± 11.41 0.47 ± 0.01
10 0.001 0.000 1000.8 ± 2.77 146.8 ± 8.14 0.46 ± 0.01
10 0.001 0.001 1000.8 ± 2.77 146.8 ± 8.14 0.46 ± 0.01
10 0.001 0.010 1001.0 ± 2.74 146.2 ± 8.04 0.46 ± 0.01
10 0.010 0.000 1000.8 ± 2.77 146.4 ± 10.64 0.46 ± 0.00
10 0.010 0.001 1001.0 ± 3.46 146.0 ± 10.46 0.46 ± 0.00
10 0.010 0.010 1000.6 ± 3.13 146.4 ± 10.09 0.46 ± 0.00
10 0.100 0.000 1001.2 ± 5.26 144.6 ± 3.29 0.46 ± 0.01
10 0.100 0.001 1000.6 ± 5.68 144.4 ± 2.88 0.46 ± 0.01
10 0.100 0.010 1000.6 ± 6.31 144.8 ± 1.92 0.46 ± 0.01
10 1.000 0.000 992.2 ± 5.63 152.0 ± 7.25 0.46 ± 0.00
10 1.000 0.001 991.0 ± 3.81 149.8 ± 6.22 0.46 ± 0.01
10 1.000 0.010 993.6 ± 5.55 150.6 ± 3.97 0.46 ± 0.00
10 5.000 0.000 357.4 ± 20.84 106.4 ± 12.66 0.47 ± 0.01
10 5.000 0.001 386.0 ± 15.02 111.4 ± 6.35 0.47 ± 0.01
10 5.000 0.010 547.8 ± 10.57 158.8 ± 10.99 0.47 ± 0.00
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Table 25: Varying ϑ for maximizing ring count guidance with AR D-CFG. Validity, novelty, and
mean ring count for novel sequences are reported. Mean ± standard deviation reported from re-
peated generation of 1,024 sequences using five different random seeds. The setting reported in the
main paper is bolded.

ϑ Num. Valid (∋) Num. Novel (∋) Novel Ring Count Mean (∋)

1 1003.4 ± 4.72 189.0 ± 6.44 4.53 ± 0.07
2 966.6 ± 5.32 217.4 ± 14.5 4.76 ± 0.10
3 856.4 ± 10.21 213.0 ± 12.75 4.81 ± 0.08
4 647.6 ± 16.07 137.4 ± 9.21 4.75 ± 0.10
5 441.4 ± 11.08 77.8 ± 2.28 4.83 ± 0.08

Table 26: Varying ϑ for maximizing ring count guidance with AR FUDGE. Validity, novelty, and
mean ring count for novel sequences are reported. Mean ± standard deviation reported from re-
peated generation of 1,024 sequences using five different random seeds. The setting reported in the
main paper is bolded.

ϑ Num. Valid (∋) Num. Novel (∋) Novel Ring Count Mean (∋)

1 956.8 ± 3.11 220.2 ± 27.53 4.50 ± 0.10
2 861.6 ± 6.07 239.4 ± 20.89 4.70 ± 0.06
3 847.2 ± 8.44 266.4 ± 13.76 4.80 ± 0.06
4 704.0 ± 5.2 241.0 ± 18.37 4.87 ± 0.04
5 281.2 ± 4.97 103.6 ± 4.83 4.89 ± 0.10
6 50.6 ± 5.86 19.4 ± 4.34 5.02 ± 0.23
7 8.6 ± 4.34 4.0 ± 1.58 4.89 ± 0.44
8 1.0 ± 1.41 0.4 ± 0.55 2.20 ± 3.03
9 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
10 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00

Table 27: Varying n (the number of Langevin steps) and ϖ (the step size) for maximizing ring count
guidance with AR PPLM. Validity, novelty, and mean ring count for novel sequences are measured
for generated sequences from each method. Mean ± standard deviation reported from repeated
generation of 1,024 sequences using five different random seeds. The setting reported in the main
paper is bolded.

n ϖ Num. Valid (∋) Num. Novel (∋) Novel Ring Count Mean (∋)

10 0.04 1009.8 ± 1.92 140.6 ± 16.47 1.92 ± 0.09
10 0.1 1009.6 ± 2.07 140.2 ± 16.25 1.92 ± 0.06
30 0.04 1010.0 ± 2.35 139.4 ± 14.74 1.91 ± 0.09
30 0.1 1010.0 ± 1.58 138.6 ± 10.31 1.88 ± 0.12

Table 28: Varying ϑ for maximizing ring count guidance with MDLM D-CFG. Validity, novelty,
and mean ring count for novel sequences are reported. Mean ± standard deviation reported from
repeated generation of 1,024 sequences using five different random seeds. The setting reported in
the main paper is bolded.

ϑ Num. Valid (∋) Num. Novel (∋) Novel Ring Count Mean (∋)

1 465.0 ± 18.56 273.8 ± 11.95 4.52 ± 0.05
2 363.6 ± 17.5 215.6 ± 11.1 4.85 ± 0.05
3 242.4 ± 15.85 144.6 ± 16.89 5.01 ± 0.08
4 152.2 ± 4.44 97.4 ± 5.08 5.10 ± 0.13
5 90.0 ± 8.15 60.0 ± 7.52 5.26 ± 0.15
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Table 29: Varying ϑ for maximizing ring count guidance with MDLM D-CBG. We also report
results for both using the first order approximation and not using it. Validity, novelty, and mean
ring count for novel sequences are reported. Mean ± standard deviation reported from repeated
generation of 1,024 sequences using five different random seeds. The setting reported in the main
paper is bolded.

ϑ Use Approx. Num. Valid (∋) Num. Novel (∋) Novel Ring Count Mean (∋)

1 False 143.8 ± 6.61 121.2 ± 7.01 5.00 ± 0.07
1 True 455.4 ± 24.81 229.4 ± 15.21 2.52 ± 0.11
2 False 0.4 ± 0.55 0.4 ± 0.55 3.00 ± 4.47
2 True 327.6 ± 15.82 176.4 ± 17.3 2.82 ± 0.15
3 False 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
3 True 223.8 ± 15.01 136.0 ± 9.8 3.25 ± 0.26
4 False 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
4 True 158.0 ± 9.27 106.6 ± 7.13 3.73 ± 0.19
5 False 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
5 True 135.0 ± 9.9 94.4 ± 11.06 4.11 ± 0.26
6 False 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
6 True 122.8 ± 11.3 89.8 ± 7.82 4.41 ± 0.11
7 False 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
7 True 116.4 ± 12.5 85.4 ± 10.38 4.59 ± 0.10
8 False 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
8 True 121.2 ± 12.91 92.6 ± 11.95 4.54 ± 0.16
9 False 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
9 True 112.2 ± 12.28 87.4 ± 11.84 4.70 ± 0.17

10 False 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
10 True 113.0 ± 8.75 85.6 ± 8.82 4.75 ± 0.23

Figure 5: Ablating the use of first order approximation when applying D-CBG to discrete diffusion
models. (Left) Maximizing drug-likeness (QED). (Right) Maximizing ring count.
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Table 30: Varying n (the number of Langevin steps), ϖ (the step size), and ϑkl (the stability reg-
ularization coefficient) for maximizing ring count guidance with MDLM NOS. Validity, novelty,
and mean ring count for novel sequences are measured for generated sequences from each method.
Mean ± standard deviation reported from repeated generation of 1,024 sequences using five different
random seeds. The setting reported used in the main paper is bolded.

n ϖ ϑkl Num. Valid (∋) Num. Novel (∋) Novel Ring Count Mean (∋)

1 0.001 0.000 508.8 ± 24.18 237.0 ± 8.57 2.41 ± 0.16
1 0.001 0.001 508.8 ± 24.18 237.0 ± 8.57 2.41 ± 0.16
1 0.001 0.010 508.8 ± 24.18 237.0 ± 8.57 2.41 ± 0.16
1 0.010 0.000 509.6 ± 24.27 237.0 ± 10.37 2.41 ± 0.16
1 0.010 0.001 509.6 ± 24.27 237.4 ± 10.45 2.41 ± 0.16
1 0.010 0.010 509.6 ± 24.27 237.0 ± 10.37 2.41 ± 0.16
1 0.100 0.000 505.2 ± 25.71 237.4 ± 13.2 2.46 ± 0.15
1 0.100 0.001 504.4 ± 25.59 236.4 ± 12.66 2.46 ± 0.15
1 0.100 0.010 505.2 ± 25.71 237.4 ± 13.2 2.46 ± 0.15
1 1.000 0.000 458.4 ± 26.28 250.00 ± 12.35 2.79 ± 0.14
1 1.000 0.001 458.4 ± 26.28 250.00 ± 12.35 2.79 ± 0.14
1 1.000 0.010 458.4 ± 26.28 250.00 ± 12.35 2.79 ± 0.14
1 5.000 0.000 187.0 ± 11.6 141.4 ± 13.96 3.08 ± 0.24
1 5.000 0.001 187.0 ± 11.6 141.4 ± 13.96 3.08 ± 0.24
1 5.000 0.010 187.0 ± 11.6 141.4 ± 13.96 3.08 ± 0.24
5 0.001 0.000 509.8 ± 24.71 237.6 ± 9.79 2.4 ± 0.16
5 0.001 0.001 510.00 ± 24.66 237.6 ± 9.79 2.4 ± 0.16
5 0.001 0.010 510.00 ± 24.66 237.6 ± 9.79 2.4 ± 0.16
5 0.010 0.000 509.4 ± 24.44 238.0 ± 11.47 2.42 ± 0.17
5 0.010 0.001 509.2 ± 24.43 237.8 ± 11.21 2.42 ± 0.17
5 0.010 0.010 509.4 ± 24.42 238.0 ± 11.25 2.42 ± 0.17
5 0.100 0.000 506.0 ± 21.25 238.6 ± 11.74 2.48 ± 0.17
5 0.100 0.001 506.4 ± 20.21 238.0 ± 10.54 2.48 ± 0.14
5 0.100 0.010 505.0 ± 21.06 236.6 ± 10.06 2.48 ± 0.16
5 1.000 0.000 458.4 ± 26.28 250.00 ± 12.35 2.79 ± 0.14
5 1.000 0.001 464.4 ± 21.0 252.4 ± 11.95 2.79 ± 0.14
5 1.000 0.010 466.4 ± 22.04 254.0 ± 11.38 2.78 ± 0.1
5 5.000 0.000 187.0 ± 11.6 141.4 ± 13.96 3.08 ± 0.24
5 5.000 0.001 213.6 ± 17.36 164.0 ± 18.33 3.31 ± 0.19
5 5.000 0.010 247.8 ± 13.97 193.6 ± 13.13 3.51 ± 0.22
10 0.001 0.000 509.0 ± 24.14 237.2 ± 8.7 2.41 ± 0.16
10 0.001 0.001 509.8 ± 24.28 238.0 ± 9.0 2.4 ± 0.17
10 0.001 0.010 509.8 ± 24.28 238.0 ± 9.0 2.4 ± 0.17
10 0.010 0.000 510.4 ± 24.42 239.4 ± 10.21 2.43 ± 0.14
10 0.010 0.001 510.2 ± 24.41 239.6 ± 10.36 2.42 ± 0.14
10 0.010 0.010 510.00 ± 24.4 239.6 ± 10.36 2.43 ± 0.14
10 0.100 0.000 504.0 ± 19.26 238.4 ± 10.74 2.48 ± 0.19
10 0.100 0.001 505.6 ± 18.15 239.6 ± 10.36 2.48 ± 0.16
10 0.100 0.010 506.4 ± 18.66 240.4 ± 9.79 2.48 ± 0.17
10 1.000 0.000 458.4 ± 26.28 250.00 ± 12.35 2.79 ± 0.14
10 1.000 0.001 471.4 ± 18.01 257.8 ± 10.89 2.8 ± 0.1
10 1.000 0.010 473.2 ± 18.86 257.0 ± 7.91 2.76 ± 0.12
10 5.000 0.000 187.0 ± 11.6 141.4 ± 13.96 3.08 ± 0.24
10 5.000 0.001 225.6 ± 17.47 176.8 ± 18.65 3.32 ± 0.17
10 5.000 0.010 265.4 ± 12.62 206.6 ± 10.88 3.47 ± 0.24
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Table 31: Varying ϑ for maximizing ring count guidance with UDLM D-CFG. Validity, novelty,
and mean ring count for novel sequences are reported. Mean ± standard deviation reported from
repeated generation of 1,024 sequences using five different random seeds. The setting reported in
the main paper is bolded.

ϑ Num. Valid (∋) Num. Novel (∋) Novel Ring Count Mean (∋)

1 979.0 ± 8.83 276.8 ± 17.34 4.54 ± 0.05
2 998.2 ± 6.83 229.0 ± 8.94 4.75 ± 0.08
3 998.2 ± 4.49 216.2 ± 12.99 4.88 ± 0.04
4 989.6 ± 5.94 211.4 ± 2.88 4.85 ± 0.08
5 968.6 ± 7.89 209.4 ± 13.2 4.84 ± 0.06

Table 32: Varying ϑ for maximizing ring count guidance with UDLM D-CBG. We also report results
for both using the first order approximation and not using it. Validity, novelty, and mean ring count
for novel sequences are reported. Mean ± standard deviation reported from repeated generation of
1,024 sequences using five different random seeds. The setting reported in the main paper is bolded.

ϑ Use Approx. Num. Valid (∋) Num. Novel (∋) Novel Ring Count Mean (∋)

1 False 797.4 ± 9.91 279.0 ± 23.37 4.12 ± 0.04
1 True 978.4 ± 3.91 166.0 ± 11.81 2.49 ± 0.07
2 False 829.4 ± 11.59 336.4 ± 10.55 4.54 ± 0.03
2 True 892.2 ± 12.19 171.2 ± 13.59 3.09 ± 0.08
3 False 862.6 ± 7.73 363.8 ± 12.76 4.70 ± 0.03
3 True 763.8 ± 11.52 198.8 ± 10.76 3.76 ± 0.09
4 False 880.6 ± 19.15 393.0 ± 12.39 4.74 ± 0.08
4 True 705.8 ± 14.69 215.2 ± 15.06 4.30 ± 0.14
5 False 889.2 ± 12.4 404.0 ± 9.64 4.76 ± 0.03
5 True 726.8 ± 15.64 245.8 ± 6.83 4.47 ± 0.07
6 False 898.6 ± 21.13 427.6 ± 13.81 4.79 ± 0.06
6 True 757.6 ± 10.38 277.6 ± 8.73 4.55 ± 0.04
7 False 898.2 ± 9.26 436.4 ± 8.79 4.80 ± 0.06
7 True 779.4 ± 17.29 295.6 ± 22.18 4.62 ± 0.06
8 False 897.2 ± 11.58 432.0 ± 19.07 4.84 ± 0.02
8 True 796.6 ± 15.84 304.4 ± 10.01 4.66 ± 0.06
9 False 903.2 ± 3.96 445.8 ± 13.14 4.83 ± 0.05
9 True 811.8 ± 7.82 328.4 ± 7.5 4.66 ± 0.02
10 False 891.6 ± 12.18 431.4 ± 11.46 4.76 ± 0.05
10 True 816.6 ± 15.14 359.8 ± 21.87 4.70 ± 0.05
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Table 33: Varying n (the number of Langevin steps), ϖ (the step size), and ϑkl (the stability reg-
ularization coefficient) for maximizing ring count guidance with UDLM NOS. Validity, novelty,
and mean ring count for novel sequences are measured for generated sequences from each method.
Mean ± standard deviation reported from repeated generation of 1,024 sequences using five different
random seeds. The setting reported used in the main paper is bolded.

n ϖ ϑkl Num. Valid (∋) Num. Novel (∋) Novel Ring Count Mean (∋)

1 0.001 0.000 1000.8 ± 2.77 146.2 ± 7.26 2.10 ± 0.08
1 0.001 0.001 1000.8 ± 2.77 146.2 ± 7.26 2.10 ± 0.08
1 0.001 0.010 1000.8 ± 2.77 146.2 ± 7.26 2.10 ± 0.08
1 0.010 0.000 1001.0 ± 2.45 147.2 ± 8.44 2.10 ± 0.09
1 0.010 0.001 1000.8 ± 2.17 147.4 ± 8.56 2.10 ± 0.09
1 0.010 0.010 1001.0 ± 2.45 147.2 ± 8.44 2.10 ± 0.09
1 0.100 0.000 1000.8 ± 4.92 148.2 ± 7.66 2.13 ± 0.09
1 0.100 0.001 1000.8 ± 4.92 148.2 ± 7.66 2.13 ± 0.09
1 0.100 0.010 1000.8 ± 4.92 148.2 ± 7.66 2.13 ± 0.09
1 1.000 0.000 988.6 ± 5.5 161.6 ± 10.74 2.47 ± 0.11
1 1.000 0.001 988.6 ± 5.5 161.6 ± 10.74 2.47 ± 0.11
1 1.000 0.010 988.6 ± 5.5 161.6 ± 10.74 2.47 ± 0.11
1 5.000 0.000 323.6 ± 15.18 109.4 ± 12.24 3.41 ± 0.09
1 5.000 0.001 323.6 ± 15.18 109.4 ± 12.24 3.41 ± 0.09
1 5.000 0.010 323.6 ± 15.18 109.4 ± 12.24 3.41 ± 0.09
5 0.001 0.000 1000.8 ± 2.77 146.6 ± 7.5 2.10 ± 0.08
5 0.001 0.001 1000.8 ± 2.77 146.6 ± 7.5 2.10 ± 0.08
5 0.001 0.010 1000.8 ± 2.77 146.6 ± 7.5 2.10 ± 0.08
5 0.010 0.000 1000.8 ± 2.86 148.2 ± 6.94 2.11 ± 0.10
5 0.010 0.001 1000.8 ± 2.86 148.0 ± 7.04 2.11 ± 0.10
5 0.010 0.010 1000.8 ± 2.86 147.8 ± 7.4 2.12 ± 0.10
5 0.100 0.000 1001.0 ± 4.24 149.0 ± 5.29 2.14 ± 0.13
5 0.100 0.001 1001.0 ± 4.24 149.0 ± 5.29 2.14 ± 0.13
5 0.100 0.010 1001.0 ± 4.24 149.0 ± 6.0 2.14 ± 0.13
5 1.000 0.000 988.6 ± 5.5 161.6 ± 10.74 2.47 ± 0.11
5 1.000 0.001 990.2 ± 5.26 162.2 ± 9.96 2.46 ± 0.11
5 1.000 0.010 989.4 ± 4.83 160.4 ± 7.57 2.44 ± 0.11
5 5.000 0.000 323.6 ± 15.18 109.4 ± 12.24 3.41 ± 0.09
5 5.000 0.001 413.0 ± 16.17 166.8 ± 18.95 3.92 ± 0.05
5 5.000 0.010 573.8 ± 13.03 244.4 ± 13.05 3.96 ± 0.07
10 0.001 0.000 1001.0 ± 2.74 146.8 ± 7.33 2.09 ± 0.09
10 0.001 0.001 1001.0 ± 2.74 146.8 ± 7.33 2.09 ± 0.09
10 0.001 0.010 1001.0 ± 2.74 146.8 ± 7.33 2.09 ± 0.09
10 0.010 0.000 1001.0 ± 3.08 147.8 ± 7.46 2.12 ± 0.10
10 0.010 0.001 1001.0 ± 3.08 147.8 ± 7.46 2.12 ± 0.10
10 0.010 0.010 1000.6 ± 3.78 147.2 ± 6.98 2.12 ± 0.10
10 0.100 0.000 1000.0 ± 4.74 150.4 ± 7.09 2.15 ± 0.13
10 0.100 0.001 1000.0 ± 4.74 151.0 ± 6.78 2.14 ± 0.12
10 0.100 0.010 1000.0 ± 4.74 150.6 ± 6.15 2.15 ± 0.13
10 1.000 0.000 988.6 ± 5.5 161.6 ± 10.74 2.47 ± 0.11
10 1.000 0.001 990.6 ± 5.55 162.0 ± 9.64 2.45 ± 0.09
10 1.000 0.010 993.0 ± 3.46 163.6 ± 9.89 2.47 ± 0.09
10 5.000 0.000 323.6 ± 15.18 109.4 ± 12.24 3.41 ± 0.09
10 5.000 0.001 454.6 ± 12.78 188.8 ± 12.24 3.96 ± 0.05
10 5.000 0.010 670.0 ± 6.4 276.8 ± 20.62 3.81 ± 0.07
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Table 34: Ablation results of ϑ values on CIFAR10. Best values for each model are bolded.

FID (′) IS (∋) F1 (∋)

MDLM D-CFG
ϑ = 1 27.94 7.14 0.76
ϑ = 2 18.62 8.24 0.95
ϑ = 3 16.19 8.78 0.99
ϑ = 4 15.56 9.02 0.99
ϑ = 5 15.73 9.19 1.00

UDLM D-CFG
ϑ = 1 26.70 7.43 0.81
ϑ = 2 20.75 8.34 0.96
ϑ = 3 21.31 8.52 0.98
ϑ = 4 23.21 8.66 0.99
ϑ = 5 26.15 8.60 0.99

Figure 6: Effect of varying T on QM9 guidance generation. (Top Left) Maximizing drug-likeness
(QED) using D-CFG. (Bottom Left) Maximizing drug-likeness (QED) using D-CBG. (Top Right)
Maximizing ring count using D-CFG. (Bottom Right) Maximizing ring count using D-CBG.
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Table 35: Varying T for CIFAR10 conditional generation. 50k images sampled from a conditional
model (D-CFG ϑ=1). F1 metric from a separate classifier trained to identify the class label used for
the conditional generation. Best metric per T is bolded.

Model FID (′) IS (∋) F1 (∋)

T = 128
MDLM 64.09 5.81 0.63
UDLM 30.48 7.30 0.80

T = 256
MDLM 41.53 6.51 0.70
UDLM 28.30 7.40 0.81

T = 512
MDLM 31.97 6.89 0.74
UDLM 27.12 7.43 0.74

T = 1024
MDLM 27.94 7.14 0.81
UDLM 26.70 7.43 0.81

Table 36: Generative Perplexity (Gen. PPL; using GPT-2 Large) for unconditional sample genera-
tion from models trained on LM1B. Best value is bolded.

Model T Gen. PPL (′)

AR 128 67.46
MDLM 16 170.64
MDLM 32 140.47
MDLM 64 130.62
MDLM 128 120.93
MDLM 256 119.96
MDLM 512 118.34
MDLM 1024 116.80
UDLM 16 82.09
UDLM 32 79.80
UDLM 64 79.93
UDLM 128 79.87
UDLM 256 79.07
UDLM 512 79.14
UDLM 1024 78.22
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Table 37: Generated samples for unconditional generation from models trained on LM1B.

Model - T Generated Text

AR - 128 “[CLS] to move the global economy away from inappropriate trade
practices and build an environment that rewards innovation. i. e. sam-
ples of s̈eed money b̈y jim mellon, paul pompa jr., gil familier, vanessa
thomas, george rothman, george whitacre, john ziemba, mark sweitzer,
little george nowi, thayer evans and allison gallagher. i. e. yang if you
don’t wanna fly, the statistics means you are going to make your rocket
arm - rolls. [CLS] savings that made the difference in someone’s life
cannot be made in another country without foreign assistance on their
[CLS]”

MDLM - 16 “[CLS] mezzo ev of dream spirits. [CLS] to naval cadets i didn’t want
mum and dad to be a group, but even with the odd social butterflies i
felt myself sitting at the edge of a deep blue pool. [CLS] on wednesday
morning, fighter jets billoured the area during the early hours of the
morning. [CLS] i know of the sailing course, the scenery, the coastline,
the whole thing very beautiful - - the land of water. [CLS] wednesday,
after its peak height reached the ice’s lowest point. [CLS] reader’s
thought is. for the basic requirements of team leadership, internship,
part time, a...”

MDLM - 1024 “[CLS] was killed as mr. giffords and as the caregiver, representative
giffords’s. [CLS] but i have no doubt that this process will produce
meat, m̈s. rommel said. [CLS] and even if you don’t need to hit an
agency envelope during it, you should pay the rent through office ex-
penses, r̈eferring to the possible error. [CLS] blog. view billshrift and
discuss yahoo commercials, and what? [CLS] this month, the new logos
of cin - armarge became scranton neck - based riverton and tollhorn.
[CLS] when i arrived, he’d ducking behind the woman..”

UDLM - 16 “[CLS] grandeur. [CLS] grand avenue an. [CLS] it upon request, such
information plays only in the p̈rovision of the protocol äs guidelines for
the nonprofit sector. [CLS] that too has to worry people about schools
that shut down and closed schools for several weeks. [CLS] ı̈ will not
comment on anything important to the eu, where someone is blaming
serbia to not a figurehead. [CLS] but i think that because an increasing
number of coal is put at risk as a displaced gateway, and the other party
of technology falls away from communities that can somehow show up
as a starting point, one thing that the province will suffer is loss of
almost [CLS]”

UDLM - 1024 “[CLS] would [CLS] a 49 percent stake in the company under the terms
of the deal. [CLS] the only subsequent trial out of ms, sykes is 19 febru-
ary next year after prosecutors failed to overturn the death sentence
against him. [CLS] but dugard has recorded several rings for baby je-
sus, a completely new thing as for calling muslim cold - callers and
working with his confiscators. [CLS] i am forced to seek out convenient
explanations while remaining in no position either to caucus. [CLS] of
course, get me out of there. [CLS] the first thing being wrote about is
having available food. [CLS] sir simon’s guests included singer hayley
wood and”
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