Hopter: a Safe, Robust, and Responsive
Embedded Operating System

Zhiyao Ma Guojun Chen
zhiyao.ma@yale.edu guojun.chen@yale.edu
Yale University Yale University

New Haven, CT, USA New Haven, CT, USA

Abstract

Microcontroller-based embedded systems are vulnerable to memory
safety errors and must be robust and responsive because they are
often used in unmanned and mission-critical scenarios. The Rust
programming language offers an appealing compile-time solution
for memory safety but leaves stack overflows unresolved and foils
zero-latency interrupt handling. We present Hopter, a Rust-based
embedded operating system (OS) that provides memory safety, sys-
tem robustness, and interrupt responsiveness to embedded systems
while requiring minimal application cooperation. Hopter executes
Rust code under a novel finite-stack semantics that converts stack
overflows into Rust panics, enabling recovery from fatal errors
through stack unwinding and restart. Hopter also employs a novel
mechanism called soft-locks so that the OS never disables interrupts.
We compare Hopter with other well-known embedded OSes using
controlled workloads and report our experience using Hopter to
develop a flight control system for a miniature drone and a gateway
system for Internet of Things (IoT). We demonstrate that Hopter is
well-suited for resource-constrained microcontrollers and supports
error recovery for real-time workloads.
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1 Introduction

Embedded systems have seen increasing adoption in the past decade,
and their number is predicted to increase even more in the coming
decades [37-39]. Due to resource constraints, many embedded sys-
tems employ microcontrollers without a memory management unit
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(MMU) and as a result, do not enjoy the safety associated with vir-
tual memory. To make things worse, C, an unsafe language, has been
the most common language for programming such microcontroller-
based embedded systems. Consequently, these systems can suffer
from memory-related security vulnerabilities that are difficult to
discover, as is evident from those reported for FreeRTOS [17, 18]
a decade after its release. With microcontroller-based embedded
systems increasingly used in mission-critical applications, it is im-
perative to enhance their memory safety and system robustness
without demanding more resources or sacrificing system respon-
siveness.

The Rust programming language offers an attractive alternative
to C. It guarantees memory safety primarily through compile-time
checks, incurring little runtime overhead, and has already seen
adoption in operating system (OS) development [8, 13, 14, 26, 50, 56],
including embedded systems [41, 55, 63].

However, the use of Rust on microcontroller-based embedded
systems faces its own challenges. First, memory safety errors linger
on even with safe Rust, because its semantics assumes an infinite
size of function call stacks, which is especially problematic for
microcontroller-based embedded systems where there is no virtual
memory and only 10s to 100s KiB of SRAM are usually available.
Vulnerability reports have shown the existence of stack overflows
in Rust libraries, including those intended for embedded use [15, 16,
19, 22-24]. Second, Rust’s built-in exception handling mechanism,
i.e., panics, requires a stack unwinder, which is usually unavailable
on microcontrollers. Without a stack unwinder, panics lead to hang
or reset of the application [41] or the whole system [11, 12]. Finally,
language restrictions of Rust make it difficult to implement zero-
latency interrupt handling, where the OS never disables interrupts
to ensure timely response to events. Known solutions [47, 48, 57, 58]
are infeasible with safe Rust because they struggle to pass the
compile-time check. §2 elaborates on the challenges.

In this paper, we seek to answer the following question: Can we
bring memory safety, system robustness, and interrupt responsive-
ness to a Rust-based embedded system while requiring minimal
application cooperation? We present a positive answer with the
Hopter embedded OS (§3). Hopter features a co-design between the
OS and the implementation language to complete memory safety
and achieve fatal error resilience. Hopter also brings zero-latency
interrupt handling to a Rust-based system running threaded tasks,
using a novel mechanism called soft-locks.

Hopter augments Rust with finite-stack semantics (FS-semantics)
to achieve stack memory safety and overflow resilience (§4.1). FS-
semantics treats each function call as a potential panic site. Before
executing the function body, a prologue checks the remaining stack
space and will raise a panic if insufficient. In case a drop handler
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or its callee overflows the stack, Hopter will temporarily extend
the stack to finish the drop handler [35, 45, 67] and raise a panic
afterward. This effectively unifies stack overflows with other fatal
errors using Rust panics.

Hopter then reclaims the resources upon panics utilizing a cus-
tomized stack unwinder, which allows Hopter to automatically
restart failed tasks (§4.2). When possible, Hopter performs a concur-
rent restart to expedite recovery, where the restarted task instance
runs concurrently with the unwinding procedure of the failed one.

Soft-locks enable zero-latency interrupt handling by serializing
mutations for each OS object, avoiding the global serialization
queue and therefore unsafe Rust (§4.3). When a task or interrupt
handler acquires a soft-lock that is not under contention, it gains
full access to the protected object. Otherwise, it gains partial access
to record its intended operations on the object and the soft-lock
will commit them after contention.

We implement and open-source Hopter as a Rust library crate
for Arm Cortex-M0 and Cortex-M4 architectures (§5). Hopter re-
quires a customized compiler to compile the system, but the Rust
syntax remains the same and the semantics compatible. Hopter
also supports unmodified third-party hardware abstraction layer
(HAL) crates, allowing application programmers to tap the growing
Rust ecosystem. We evaluate Hopter by comparing it with two
other embedded OSes, namely FreeRTOS and Tock (§6). Hopter
has lower interrupt handling latency than FreeRTOS and is safer
and more robust. Hopter requires less hardware resources than
Tock and supports microcontrollers that lack a memory protection
unit (MPU). We develop a flight control system for the Crazyflie
2.1 miniature drone and a gateway system for Internet of Things
(IoT) devices. With the flight control system, Hopter exhibits a 56%
increase in flash usage and proportionally 15% higher CPU load
incurred together by FS-semantics, the unwinding mechanism, and
soft-locks. The gateway system showcases Hopter’s robustness
against runtime errors, even on a Cortex-M0 CPU without MPU.

We make the following contributions:

Finite-stack semantics for Rust to guarantee stack memory safety
and overflow resilience, implemented via compile-time instru-
mentation and OS support.

Soft-locks, a novel synchronization primitive which enables zero-
latency interrupt handling on Rust-based systems with threaded
tasks.

e Open-source implementation of the Hopter embedded OS [25],
which integrates FS-semantics and soft-locks to deliver memory
safety, failure resilience, and responsiveness, while requiring
minimal application cooperation.

Evaluation of the code size and performance overhead incurred by
FS-semantics, the unwinding mechanism, and soft-locks, show-
ing Hopter’s suitability for resource-constrained microcontrollers
and real-time workloads.

2 Background

Microcontrollers are widely used in embedded systems, from sim-
ple home appliances [34, 49, 65] to complex automotive control
systems [28, 31, 40] and industrial automation [10, 46]. Many of
these systems are unmanned or mission-critical, making robustness
and the ability to recover from fatal errors essential. Due to cost
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and energy constraints, the hardware resources available on micro-
controllers are usually limited. They typically feature hundreds of
kilobytes to a few megabytes of flash for code and read-only data,
and tens to hundreds of kilobytes of SRAM for runtime data. Con-
sequently, operating systems designed for microcontrollers must
be lightweight.

Microcontrollers operate without virtual memory. All code runs
in a single physical address space where flash storage, SRAM, and
peripheral registers are mapped. The CPU typically executes in-
structions directly from the byte-addressable flash, called execute
in place (XIP), while function call stacks and mutable data reside
in SRAM. The code on microcontrollers usually has unrestricted
access to the entire address space, making the system prone to mem-
ory safety errors like buffer overflows and invalid pointer accesses,
which can lead to system instability or security vulnerabilities. Due
to the lack of isolation between application tasks and the operating
system, attackers can exploit memory safety vulnerabilities and
easily gain full control of the entire system.

Hardware-based memory protection, e.g., memory protection
unit (MPU) [2] on Arm and physical memory protection (PMP) [54]
on RISC-V, is available on high-end microcontrollers and has been
actively exploited by some embedded OSes, for example, Tock [41].
Unfortunately, hardware-based protection introduces overheads
in code size, memory usage, and runtime performance. MPU/PMP
allows developers to define up to 16 memory regions with selective
read, write, or execute permissions. However, each memory region
must be aligned and sized to the nearest power of two, leading to
wasted flash or SRAM due to internal fragmentation. Moreover,
employing an MPU or PMP requires system calls to switch privilege
modes via software interrupts, and arguments need to undergo
marshaling and be verified by the OS, adding performance overhead.
In contrast, in systems without such protection mechanisms, system
calls can be efficiently implemented as simple function calls. As
a result, popular embedded OSes such as FreeRTOS [1] consider
hardware-based protection optional, even if the system is written
in an unsafe language like C.

Rust Programming Language is a modern systems programming
language that provides memory and concurrency safety while of-
fering direct control over hardware. It presents a promising alter-
native to hardware-based protection without the significant over-
head incurred by managed languages. Rust has seen an increase in
adoption in OS development [8, 13, 14, 26, 50, 56] and embedded
systems [41, 55, 63].

Rust manages resources through its ownership model without us-
ing a garbage collector. Each value is owned by a variable, and when
the variable goes out of scope, the value’s drop handler, known as
destructor function in other languages, runs to release the resource.
Unlike other languages that usually make a copy or a reference
when assigning a value to a new variable, Rust by default moves the
ownership of the value from the old variable to the new one. The
old variable becomes inaccessible after the move. A function call
in Rust also by default moves the ownership of argument values
to the callee, which is then responsible for invoking the drop han-
dlers of these values. Consequently, the call stack is likely to reach
its maximum depth while calling drop handlers, a phenomenon
confirmed by our flight control system (§6.3).
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Rust enforces the ownership model and analyzes reference life-
times at compile-time to ensure memory safety, unless opted out
with the unsafe keyword. Importantly, the compile-time check re-
jects some common code patterns. For instance, a struct in Rust
may contain a reference only when the reference’s lifetime in the
syntactical scope outlives the struct’s. Such restrictions preclude
known implementations [47, 48, 57, 58] for zero-latency interrupt
handling, where a global serialization queue is necessary to store
pending operations containing references to various OS objects. To
solve this problem, Hopter introduces a novel mechanism called
soft-locks (§4.3) to achieve zero-latency interrupt handling.

Rust complements its compile-time check with a language ex-
ception mechanism called panic to forestall memory errors that
are detectable only at runtime, such as out-of-bounds array access.
Failed assertions through assert! or unwrap also lead to panics. A
panic terminates the normal execution flow of a Rust thread. On
resourceful systems such as personal computers, a panic is usually
followed by a stack unwinding procedure that iterates through the
function frames in the call stack and invokes the drop handlers
of live objects to reclaim resources. This allows subsequent recov-
ery from the error without restarting the entire system. However,
embedded Rust systems usually lack a stack unwinder [11, 12, 41]
and as a result, a panic will hang or reset the system. Worse, as-
sertions are common in embedded Rust code [30, 41]. For system
robustness, Hopter incorporates a stack unwinder optimized for
microcontrollers (§4.2).

A loophole of Rust’s memory safety guarantee is that function
call stacks can still overflow. Rust semantics assumes an infinite
stack space for each running thread, which is particularly unreal-
istic on microcontrollers. Common approaches to detecting stack
overflows, including stack protectors (canaries) [3, 32] and peri-
odic stack pointer inspection [4], are belated efforts. By the time
of detection, the system memory is already corrupted. Prior Rust-
based embedded systems either use MPU/PMP to forestall stack
overflows [41], accepting the associated overhead, or employ only
a single down-growing stack placed at the lower boundary of the
SRAM region [11, 12], which restricts scheduling patterns. Hopter
addresses this problem by running Rust code with finite-stack se-
mantics (§4.1), which not only prevents stack overflows but also
converts such errors into Rust panics to allow a unified recovery
procedure through unwinding and restarting.

3 System Development with Hopter

Before we present the design (§4) and implementation (§5) of
Hopter, we describe how a system developer may use it to develop
an embedded system with application code.

3.1 Development Model

Hopter is open-source and a system developer receives it as a Rust
library crate. Since Hopter supports threaded tasks and forsakes
hardware-based protection, it can interoperate with third-party
HAL libraries [29, 30], which significantly lowers the development
effort. The developer must write application code in Rust and use a
customized Rust compiler supplied by Hopter to build their system
that uses Hopter as a dependency. Downloading and registering
the customized compiler with cargo requires only three commands.
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#[main]

fn main() {
// Initialize resource for another task.
// Stored behind atomic reference counting so
// that the variable has the “Clone~ trait.
let res = Arc::new(init_resource());

// The entry closure then also has the “Clone trait.
// Can spawn the task as a restartable one.
task: :build()
.set_entry(move || another_task_main(res))
.set_priority(8)
.set_stack_limit(1024)
.spawn_restartable()
.unwrap();

}

Listing 1: Application code starts the execution from its main func-
tion marked by the #[main] attribute. Other tasks can be started
dynamically through the task builder pattern. When the entry clo-
sure has the Clone trait, the task can be spawned as a restartable one.

The developer compiles the system with cargo build as usual and
the Rust syntax remains the same.

Hopter expects application code to be benign, because applica-
tion code may use unsafe Rust that potentially introduces memory
errors. Hopter guarantees memory safety of the system as long as
all unsafe code used by the application is sound. This expectation is
similar to that of the popular FreeRTOS [1]; we consider it reason-
able since all source code to be compiled is usually available to the
system developer of a microcontroller-based embedded systems.
Hopter’s threat model is weaker than that of Tock [41] where ap-
plication code can be malicious and the OS must isolate itself using
hardware-based protection (See §2), along with its overhead.

3.2 Using Hopter Abstractions

Hopter provides three important abstractions for system developers
to achieve memory safety, fault tolerance, and interrupt handling
promptness. To implement application logic, a developer uses ei-
ther the restartable task or the fallible interrupt handler context
abstraction, which guarantees memory safety and allows recovery
from fatal errors. Fallible interrupt handlers have zero-latency in
response time to hardware events and can coordinate with tasks
through provided synchronization primitives. Here we elaborate
each of the three key abstractions: its benefits and how to use it.
Their design and implementation details will be presented in §4
and §5, respectively.

Restartable Tasks: The tasks running on Hopter are thread-based
and scheduled preemptively. They improve applications’ resilience
against fatal errors through automatic restarting. Applications on
Hopter spawn tasks with the builder pattern as shown in Listing 1,
providing the entry closure and specifying the attributes. The main
task is an exception that starts execution with the function marked
with the provided #[main] attribute, which usually initializes the
system and spawns other tasks. To enable automatic restarting, the
application task needs only ensure that its entry closure implements
the Clone trait and is started with the spawn_restartable() method.
The Clone trait allows Hopter to duplicate the entry environment
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// Initialized to “Some(_)" after booting.
// Spin lock used to satisfy interior mutability rule.
static TIMER: Spin<Option<CounterUs<TIM2>>>
= Spin::new(None);
static MAILBOX: Mailbox = Mailbox::new();

// Invoked periodically by the timer IRQ.
#[handler(TIM2)]
fn tim2_handler() {
TIMER.lock()
.as_mut().unwrap() // Unwrap “Option~
wait().unwrap(); // Acknowledge IRQ
// Resume the task.
MAILBOX.notify_allow_isr();
}

// Spawned as a task.
fn another_task_main() {
loop {
MAILBOX.wait(); // Block and yield CPU
// Do something else ...

3

Listing 2: Synchronization between a handler and task using a mail-
box. The interrupt handler is declared through the #[handler(...)]
macro. The handler has zero-latency response time while still being
able to call synchronization primitive methods. Peripheral access is
provided through a third-party HAL crate [30].

necessary to restart a task. A closure has the Clone trait if all of the
enclosed variables are Clone. Upon fatal errors like stack overflows,
out-of-bounds array accesses, and failed assertions, restartable tasks
terminate, release their resources, and automatically restart execu-
tion from beginning. Restartable tasks do not revert to an explicit
checkpoint. Instead, values stored in the heap or declared with
static persist across task restarts, while function local values are
dropped. If the entry closure is not Clone, the spawn() method is
still available to run the task, but the task will only terminate with
resources released upon fatal errors rather than restart.

Fallible Interrupt Handlers: The interrupt handlers on Hopter are
functions that respond to hardware interrupts (IRQ), sharing a sin-
gle interrupt stack and always preempting tasks or lower-priority
handlers. They improve system robustness by tolerating fatal errors
during interrupt handling. Applications declare interrupt handler
functions using the #[handler (IRQ_NAME)] attribute macro as shown
in Listing 2. A handler terminates upon fatal errors with resources
released, and will rerun if the interrupt is still pending. Hopter can-
not recover from interrupt stack overflows, due to the restrictions
of dynamic memory allocation within the interrupt context.

Synchronization Primitives: Hopter provides applications with
synchronization primitives in Rust struct types to facilitate inter-
context coordination. They allow synchronization between inter-
rupt handlers and tasks without compromising the zero-latency
response time to interrupts. Application code interacts with syn-
chronization primitives by calling defined methods. Listing 2 shows
an example of the synchronization between a timer interrupt han-
dler and a task using a mailbox. The hardware timer is accessed
through a third-party HAL crate [30].
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4 System Design

We next present the key design aspects of Hopter to realize mem-
ory safety, fault tolerance, and interrupt responsiveness. Hopter
employs a compiler-based mechanism to guarantee memory safety
for restartable tasks and fallible interrupt handlers. Notably, for
stack memory safety, Hopter executes Rust code with finite-stack
semantics (FS-semantics), facilitated by compile-time instrumented
code (§4.1). FS-semantics unifies runtime memory errors and other
fatal errors as Rust panics, allowing Hopter to apply a universal
recovery mechanism based on unwinding and restarting (§4.2).
Moreover, Hopter overcomes expressiveness challenges associated
with Rust, achieving zero-latency interrupt handling with a novel
mechanism called soft-locks (§4.3) to support the implementation
of synchronization primitives. Application logic remains agnostic
to both the compile-time instrumentation and OS-internal imple-
mentation, allowing existing Rust libraries to be used unmodified.

4.1 Rust with Finite-stack Semantics

Hopter executes Rust code with finite-stack semantics (FS-semantics)
to ensure stack memory safety and allow system recovery from
stack overflows. FS-semantics associates each Rust thread of execu-
tion with an implicit stack size. Hopter forestalls any function call
made without sufficient free stack space by raising a panic (§4.1.1).
In the exceptional case where an overflow occurs during the ex-
ecution of a drop handler, Hopter temporarily extends the stack
to finish the drop handler and raises the panic afterward (§4.1.2).
Hopter takes two steps to achieve FS-semantics:

4.1.1 Forestalling Stack Overflows. Hopter detects an impending
stack overflow by examining the free stack space before executing a
function body. This is achieved by a prologue of instructions emitted
by the compiler before the function body that allocates a stack frame.
The prologue computes the free stack size as the difference between
the current stack top indicated by the stack pointer and the stack
region boundary stored in a task-local variable BOUNDARY. If there
is insufficient free space, it traps into the OS for further diagnosis.
The execution of the function prologue requires at most 8 bytes of
reserved stack space on Arm.

Hopter raises a panic to the task experiencing a stack overflow.
The panic initiates stack unwinding that reclaims the resources
from the failed task to allow restarting it without leaked resources
or deadlock. In the common case, Hopter raises a panic immedi-
ately upon detecting an imminent overflow by the prologue. After
trapping, Hopter sets the program counter of the task to the stack
unwinder entry to start the unwinding.

In the rare case where the stack overflows during the execution
of a drop handler, Hopter extends the stack to finish running the
drop logic before raising a panic. This is because stack unwinding
must not start inside a drop handler, as doing so would skip some
code responsible for releasing resources. More precisely, Hopter
extends the stack and defers the panic if the function overflowing
the stack meets either of the following two criteria: (1) Is a drop
handler, or (2) Is called directly or indirectly by a drop handler.

Two separate mechanisms are required to check these criteria.
The first criterion is addressed by the function prologue, which
passes to Hopter whether the offending function is a drop handler.
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Checking for the second criterion requires drop handler instrumen-
tation. Whenever a drop handler starts executing, it sets the IN_DROP
task-local variable to true. The drop handler resets the variable to
false after finishing its logic. In the case of nested drop handler
invocations that occur with nested struct types, only the outer-
most one clears the flag before returning. Hopter can determine if
the second criterion is met by observing the value of the IN_DROP
flag. Note that the function prologue is still applied on top of the
instrumentation for drop handlers.

Hopter defers raising the panic if either of the criteria holds
upon overflow. It sets the OVERFLOWED task-local variable to true and
extends the stack, rather than raising a panic immediately. After
finishing the drop logic, the outermost drop function will check the
OVERFLOWED flag and raise the deferred panic if necessary.

Since any function can overflow the stack and initiate stack
unwinding under FS-semantics, this conflicts with some compiler
optimizations. The LLVM compiler backend infers the nounwind
attribute for functions and simplifies generated code based on it.
LLVM marks a function as nounwind if it satisfies the following two
conditions [42, 43]: (1) The function body contains no side-effect
instruction. (2) The function makes calls to only nounwind functions
or is a leaf function. LLVM then simplifies the code by omitting the
landing pads and unwind table entries if a call is made to a nounwind
function. However, if such a function call overflows the stack, the
stack unwinding will fail, causing a hang or system reset. Therefore,
Hopter disables these compiler optimizations for correctness.

4.1.2  Extending Stacks. Hopter leverages segmented stacks [35, 45,
67] to extend stacks on systems without virtual memory. A seg-
mented stack is a linked list of non-contiguous memory chunks
called stacklets. It dynamically allocates a new stacklet upon func-
tion calls if the remaining stack space is insufficient, and frees it
upon function return.

The function prologue (§4.1.1) facilitates stack extension by pro-
viding Hopter with the requested stack frame size and stack-passed
argument size. These two numbers are constants known to the
compiler during compilation and are embedded in the instruction
sequence as literals to avoid using extra registers. Hopter subse-
quently fetches the values by following the program counter prior
to the trap and then allocates a stacklet with a size no less than the
sum of the two numbers. If stack-passed arguments exist, Hopter
will also copy them to the newly allocated stacklet so that they are
adjacent to the callee’s stack frame. Finally, Hopter changes the
task’s stack to the new stacklet and resumes the task so that the
latter continues to execute the function body.

We note that the stack extension mechanism requires software-
based overflow detection. This is because the stack change must
happen before executing the function body. In contrast, hardware-
based protection typically detects the overflow after the function
body has started execution and accessed an invalid memory address.
Transferring execution to a new stacklet midway is very difficult
because copying a stack frame breaks internal references.

4.2 Recovery from Panics

Hopter supports recovery from Rust panics in both tasks and in-
terrupt handlers. A panic occurs due to an out-of-bounds array
access, a failed assertion, or a stack overflow under FS-semantics.
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When a task or an interrupt handler panics, Hopter terminates its
execution and reclaims allocated resources. The panic is isolated
within the context where it is raised and does not prevent the sys-
tem from continuing execution. If a task’s entry closure implements
the Clone trait, Hopter can automatically restart it upon a panic.
Thus, interrupt handlers on Hopter are fallible and tasks restartable.

4.2.1 Unwinding Stacks. Hopter integrates a stack unwinder to
reclaim resources upon panics, enabling graceful termination of
tasks or interrupt handlers and allowing subsequent recovery. The
unwinding procedure runs in the context of the panicked task
or interrupt handler, during which the scheduler can continue to
perform context switches and higher-priority interrupts can nest
atop. Logically, the unwinder forces the immediate return of active
functions when a panic occurs, starting from the top of the call
stack and proceeding until the entry function of a task or interrupt
handler returns. Local objects are dropped during this procedure.
Mechanically, the unwinder refers to the unwind table generated
by the compiler to restore registers and invoke small pieces of code
called landing pads. There are two types of landing pads: cleanup
pads, which call drop handlers, and catch pads, which terminate
the unwinding procedure.

Hopter’s stack unwinder differs from existing ones [36, 53, 64]
in two ways to support segmented stacks. First, Hopter’s unwinder
avoids making divergent function calls that never return. Since the
unwinder may be invoked to clean up a task experiencing a stack
overflow, it must extend the stack to execute its own logic. If the
unwinder made divergent calls, the stacklets used would not be
freed, leading to memory leaks. In contrast, prior implementations
typically make divergent calls to landing pads. Second, Hopter’s
unwinder recognizes stacklet boundaries and frees stacklets during
unwinding to prevent memory leaks. This is important because
a task’s stack may contain multiple stacklets, e.g., when an over-
flowing drop handler raises a deferred panic while running on an
extended stacklet.

4.2.2  Restarting Applications. With resources reclaimed by the un-
winder, Hopter can recover a panicked task by restarting it from its
entry closure. To enable restarting, Hopter requires the task’s entry
closure to implement the Clone trait so that it can safely duplicate
the closure’s enclosed environment. For interrupt handlers, Hopter
performs an exception return instead of re-executing the handler
after catching the panic. If the interrupt request is still pending, the
handler will automatically be invoked again.

To speed up recovery from task panics, Hopter implements the
concurrent task restart optimization proposed by [44]. This tech-
nique allows for immediate execution of a new instance of the pan-
icked task, running concurrently with the unwinding procedure of
the previous instance, thereby ensuring minimal unresponsive time.
Hopter reduces the task priority of the panicked instance to the low-
est, allowing unwinding to utilize idle CPU time. Rust’s ownership
model eliminates race conditions between the restarted instance
and the one being unwound. Application programmers may opt out
of concurrent restart to prevent the restarted task from observing
logically inconsistent data. In this case, Hopter performs a context
reuse optimization, reusing the task structure of the unwound task
for the restarted instance.
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4.3 Zero-latency Interrupt Handling

Hopter supports zero-latency interrupt handling, invoking the han-
dler function immediately upon receiving an interrupt. This is
possible because Hopter never disables interrupts. To prevent race
conditions between the interrupt handler and the preempted con-
text, Hopter adopts a novel mechanism called soft-locks that are
amenable to Rust’s compile-time check. These locks protect OS
data structures by serializing mutations from concurrent contexts,
allowing interrupt handlers in Hopter to interact with OS objects,
e.g., using synchronization primitives to notify tasks.

4.3.1 Algorithm Description. Soft-locks eliminate race conditions
caused by concurrent access from interrupt handlers. Acquiring a
soft-lock yields either full access or partial access to the protected
data structure. Code gets full access if the soft-lock is not already
acquired or otherwise partial access. Full access allows mutations to
all data structure fields, while partial access permits modifications
to only a subset of fields.

An interrupt handler receives partial access to record its intended
operations when a preempted context holds the full access. These
operations are deferred until the handler returns and the code with
full access completes its own operation. To further prevent race
conditions arising from concurrent task execution, the scheduler is
always suspended before acquiring a soft-lock, thus code running
within task contexts always receives full access. Because interrupt
handlers always preempt tasks and have strict priority, code with
full access resumes execution after the handler with partial access
finishes. Therefore, deferred operations can run without conflict
immediately after the code with full access finishes its logic.

Soft-locks encapsulate the protected data structure and maintain
two atomic boolean flags to track contention states and whether any
deferred operations are pending. Listing 3 shows the pseudo-code
for acquiring and releasing soft-locks. The locked flag indicates
whether the data structure is under contention, and the pend flag
indicates if there are deferred operations. The protected data struc-
ture must implement the AllowDeferredOp trait to specify which
fields are accessible through the full or partial accessor and the
code for running deferred operations. Upon releasing a soft-lock,
pending deferred operations are checked and executed if necessary
using the scoped full accessor, which makes it amenable to compile-
time checks. In the actual implementation, soft-locks are released
automatically through the drop functions of access guards instead
of manually.

4.3.2  Use Cases in Hopter. Soft-locks protect four data structures
in Hopter. Table 1 lists these data structures, along with the op-
erations under full or partial access and the deferred operations.
The wait queue provides the foundation to implement synchroniza-
tion primitives like mutexes, condition variables, semaphores, and
channels. The ready queue maintains ready tasks for the scheduler.
The mailbox is a lightweight synchronization primitive that allows
tasks to wait for a notification, optionally with a timeout. The sleep
queue stores sleeping tasks waiting for virtual timers to expire.
An interrupt handler may notify a task by removing it from the
wait queue or mailbox, adding it to the ready queue, and optionally
deleting it from the sleep queue.
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struct SoftLock<T> where T: AllowDeferredOp {
locked: AtomicBool, pend: AtomicBool,

}

fn acquire(sl: &SoftLock<T>) -> Access {
let prev_locked = sl.locked.swap(true);
if prev_locked { return Access::Partial; }
else { return Access::Full; }

}

fn release(sl: &SoftLock<T>, acc: Access) {
match acc {
Access::Partial => { sl.pend = true; }
Access::Full => {
loop {

let prev_pend = sl.pend.swap(false);
if prev_pend { acc.deferred_op(); }
sl.locked = false;
if !sl.pend { break; }
else { sl.locked = true; }

}

Listing 3: Pseudo-code for the acquire and release operation
on soft-locks. Protected data structures must implement the
AllowDeferredOp trait to specify what fields are accessible through
the Full or Partial accessor and what code to execute when run-
ning deferred_op(). Soft-locks return the Full accessor under no
contention or otherwise Partial. Deferred operations are executed
when releasing with the Full accessor. The loop avoids missing de-
ferred operations that come after the first check of the pend flag.

When a protected data structure is under contention, the han-
dler uses partial access to record its intended operations, which
are deferred for later execution. For example, consider a task that
blocks on a mailbox to wait for a hardware event. The task first
acquires full access to the mailbox to enter the placeholder H. If the
interrupt occurs during the modification of H, the handler will get
partial access to the mailbox that only allows it to increment the
notification counter x. After the handler returns, the task resumes
its operation, but will then notice the incremented counter when
releasing the full access. The task then decrements the counter and
cancels its blocking. In a different scenario where the interrupt oc-
curs after the task finishes its operation, the task will have already
released the full access and blocked itself. The handler will acquire
full access to the mailbox and unblock the task in H.

5 Implementation

We have implemented Hopter for Arm Cortex-M4 and Cortex-M0
architectures with approximately 15,000 lines of code. To use Hopter
for a system with a microcontroller of either architecture, a devel-
oper only needs to define an interrupt vector array, because Hopter
leverages existing HAL libraries for peripheral access. The imple-
mentation consists of two parts: compiler modifications and Rust
code for the library crate. Additionally, we implement Hopter’s fea-
tures in a hierarchy so that developers can make trade-offs between
their benefits and overheads.
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Table 1: OS data structures protected by soft-locks. Code gets full access to the data structure to perform one of the listed operations if the
soft-lock is not under contention. Code running in task context always gets full access. An interrupt handler gets partial access if the data
structure is being accessed in the preempted context, in which case the handler can access only the underlined fields to record its intended
operation. Deferred operations run immediately before the code releases full access.

Full access

l Data structure [ Fields [

Partial access Deferred operation ]

. Linked list L 1. Add atask to L Remove x high-priority tasks
Wait queue . - Increment x -
Counter x 2. Remove the highest priority task from L from L and clear x
Linked list L 1. Add atask to L
i L
Ready queue Lock-free buffer I 2. Remove the highest priority task from L Insertatask to 1 | Add tasks in I to L and clear L
. Task placeholder H || 1. Set H to hold a task or decrement x Clear H and decrement x if H
Mailbox . - Increment x . -
Counter x 2. Take the task from H or increment x - is not empty
Sleep queue Linked list L 1. Add atask to L Insert a task to D Remove expired tasks and tasks
P4 Lock-free buffer D 2. Remove expired tasks from L = | in D from L, then clear D

Most of the implementation is architecture-independent. Only
two small parts are not: the modification to the compiler to generate
the function prologue and the inline assemblies in the library crate.
Although all instructions supported by Cortex-MO are also legal
on M4, we use some M4-only instructions to reduce code size and
improve performance on M4. Because M0 lacks atomic instructions,
such as ldrex and strex, we implement atomic update operations
for Cortex-MO using global interrupt masking.

Compiler Modification. We modified both the rustc compiler
frontend and the LLVM backend to support FS-semantics, and we
have open-sourced the patches. To generate the function prologue
(§4.1.1), we added the split-stack attribute to all functions dur-
ing the intermediate representation (IR) emission stage in rustc.
This attribute triggers a prologue adjustment step in LLVM’s frame
lowering stage, which we further modified to produce our desired
prologue. To instrument drop handlers (§4.1.1), we modified the
drop elaboration step in the mid-level IR (MIR) stage of rustc. In
total, we added 260 lines of code to the frontend and 270 lines
to the backend. We also removed 30 and 110 lines from the fron-
tend and backend, respectively, to prevent optimizations based
on the nounwind attribute (§4.1.1). Finally, we modified 50 lines in
Rust’s core library to strip away unused debug information fields
in PanicInfo, which can reduce the compiled binary size by a few
kilobytes.

Library Crate. We implemented Hopter as a Rust library crate
consisting of approximately 12,200 lines of Rust code, of which
fewer than 1,000 are unsafe Rust. Hopter resorts to unsafe Rust
code only when certain functionalities cannot be expressed in safe
Rust, such as stack extension and dynamic memory management.
The unsafe code also includes inline assemblies for direct register
access, bootstrap and interrupt handler entry points, and primitive
memory operations such as memset. We also implemented two aux-
iliary library crates: one to provide Hopter with the #[main] and
#[handler] attribute macros, and the other to allow applications to
configure OS parameters. These consist of approximately 1,000 and
40 lines of safe Rust, respectively. In addition, Hopter depends on
open-source Rust library crates for implementing spin locks [66],
intrusive data structures [21], lock-free data structures [20], and
accessing CPU core peripherals [33]. Although these crates contain
unsafe code within their provided safe abstractions, they have been

. . Hopter

Drop handler instrumentation .
Hopter-unwind |®
Hopter-seg-stack ]
Hopter-soft-lock
Hopter-bare j

© Interrupt responsiveness @ Memory safety
® System robustness ®@+® Rust augmentation

Unwinder & tables & landing pads
Function prologue & runtime ®
©)

Soft-lock protecting critical sections

Figure 1: A breakdown of Hopter’s unique features. The bottom “bare”
version includes none of the components while the top includes
all. Each version in the hierarchy has one more feature included
compared to the one below it.

widely used and scrutinized by the Rust community with at least
millions of downloads of each.

Feature Hierarchy. We made each Hopter’s feature optional in a
hierarchical manner, as shown in Figure 1. The hierarchy starts from
the “bare” version that includes none of the features. Continuing
up, the “soft-lock” version enables zero-latency interrupt handling
by substituting soft-locks for interrupt masking in critical sections.
The “seg-stack” version ensures stack memory safety and allows
stack extension by generating prologues for each compiled function
and incorporating a stack extension runtime. The “unwind” version
supports resource reclamation upon Rust panic by incorporating the
customized stack unwinder. The compiler also generates unwind
tables and landing pads to assist the unwinder. Finally, the full
Hopter version enables system resilience against stack overflows by
instrumenting drop handlers and disabling compiler optimizations
based on the nounwind attribute.

Atomic Operations for Cortex-M0. Because M0 does not support
atomic instructions, particularly ldrex and strex, we implement
atomic update methods on Cortex-M0 by globally disabling in-
terrupts as Hopter needs these methods to implement soft-locks
and to use the standard reference counting type Arc. These are
compare-and-swap (CAS) and fetch-update (e.g., fetch_add), which
are defined as methods on atomic types, such as AtomicBool and
AtomicPtr, and atomic integer types, such as AtomicU32. Listing 4
shows the pseudo-code for the CAS logic. The code for the fetch-
update operations is similar. Overall, this adds around 900 lines of
code to the Rust core library.
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fn compare_and_exchange(
x: &mut AtomicU32, expect: u32, new: u32
) => (bool, u32) {
// Disable interrupts
let irg_disabled = is_irq_disabled();
disable_irq();

// CAS logic
let cur = x.val; let succ = false;
if expect == cur { x.val = new; succ = true; }

// Enable interrupts
if lirqg_disabled { enable_irq(); }
return (succ, cur);

3

Listing 4: Pseudo-code for the atomic compare and exchange op-
eration implemented for Cortex-MO0. The operation compares the
atomic integer’s current value with the expected value, and if they
match, store the new value. Disabling interrupts ensures the atomic-
ity of the operation.

Implementing atomic update operations by disabling interrupts
has a small impact on Hopter’s interrupt handling latency, con-
firmed by our measurement results (Figure 2). More importantly,
interrupts are disabled for only a short constant duration while exe-
cuting the atomic logic, which is less than 10 instructions. Therefore,
Hopter’s interrupt handling latency is still constant bounded.

6 Evaluation

Hopter aims to provide system memory safety, robustness, and
responsiveness, while requiring minimal application cooperation.
Because memory safety is achieved by construction, this section
quantifies robustness and responsiveness, as well as the overhead
brought by the unique design choices of Hopter. Specifically, we
seek to answer the following questions:

e (Q1 Overhead): What is the overhead introduced by Hopter in
order to achieve its objectives?

e (Q2 Size): Is Hopter light enough to support microcontrollers
with small flash and SRAM?

o (Q3 Responsiveness): Can Hopter support time-sensitive tasks
and interrupt handling?

o (Q4 Robustness): Can Hopter recover from more fatal errors than
other OSes and be fast enough for mission-critical applications?

6.1 Methods

We employ three orthogonal methods to answer these questions.

First, to quantify the impact by each of the features of Hopter,
we follow the hierarchy in Figure 1 and measure the statistics for
each listed variant.

Second, we compare Hopter with two well-known embedded
OSes: FreeRTOS [1], the most widely used embedded OS, and
Tock [41], the state-of-the-art Rust-based embedded OS. We de-
velop a set of microbenchmarks with controlled workload for all
three OSes. FreeRTOS employs no mechanisms to provide memory
safety or robustness against application errors, and is designed to
support high-frequency workloads and to be light-weight. Tock
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assumes application code can be malicious and employs hardware-
based protection.

Finally, in order to assess Hopter’s performance and overhead un-
der a realistic application and demonstrate its ability to recover from
errors under mission critical scenarios, we develop two embedded
systems using Hopter, a flight control system for the Crazyflie [6]
miniature drone and an Internet-of-Things (IoT) gateway.

6.2 Controlled Workload

We perform our micro-benchmarks with two evaluation boards:
the STM32F412G-Discovery board equipped with an Arm Cortex-
M4 CPU, 256 KiB SRAM, and 1 MiB flash, and the STM32F072B-
Discovery board with an M0 CPU, 16 KiB SRAM, and 128 KiB flash.
We configure the M4 CPU to run at 96 MHz and the M0 at 48 MHz,
and we enable the floating point unit on M4. We set the compiler to
optimize for speed (-03). For our experiments, we first build an LED
blinking application to show the minimum resource required when
developing with an OS. Next, we quantify system responsiveness
by measuring the latency of the task context switch and response
to interrupts. Finally, we demonstrate that Hopter can recover from
more complex scenarios than other OSes with a serial server task.

6.2.1 Minimum System (Q1/Q2). To measure the minimum hard-
ware resources required to run a system developed using the three
OSes under comparison, we build a blinking LED application, the
“hello world” program for the embedded world. We assume an
application programmer’s role, i.e., using the OS and hardware
abstraction layer (HAL) library as-is through their public APIs,
without modifying their internal implementation. We use the HAL
library from stm32-rs [30] and STM32Cube [61, 62] for Hopter and
FreeRTOS, respectively. Tock comes with its own HAL.

The minimum system columns in Table 2 list the flash and SRAM
size. The flash overhead of Hopter mainly comes from the stack
unwinder logic, the unwind table, the landing pads, and the drop
handler instrumentation. A minor overhead comes from the func-
tion prologue and stack extension runtime. The flash overhead
can be amortized with a more sophisticated application like the
flight control system (§6.3), for which we provide a more detailed
breakdown of its 56% flash overhead.

The minimum hardware resources required to run Hopter with-
out robustness features, i.e., the “bare”, “soft-lock”, or “seg-stack”
variants, are similar to those of FreeRTOS. The support for stack
unwinding and the drop handler instrumentation incur noticeable
overhead particularly in flash usage, but the numbers are still within
the lower tens of KiB. On the other hand, systems developed with
Tock requires significantly larger flash and SRAM as shown in Ta-
ble 2, because Tock is compiled separately from the application. The
compiler toolchain is unable to remove unused OS code at compile
time, resulting in the size bloat.

6.2.2  Task Scheduling and Interrupt Handling (Q1/Q3). To compare
the system responsiveness, we measure the following performance
metrics: the latency of a context switch between two tasks and the
latency to respond to an interrupt from a handler or task.
Context switch latency reflects the overhead for inter-task co-
operation. Hopter’s latency is on the same order of magnitude
as FreeRTOS’s, allowing it to support multiple cooperating tasks
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Table 2: Comparing Hopter to FreeRTOS and Tock, showing the overheads of Hopter’s components, and showing the overhead of implementing
atomic update operations by disabling interrupts. Hopter requires more flash than FreeRTOS mainly because it includes additional components
to improve robustness. Hopter requires significantly less flash and memory than Tock that compiles the OS code separately. Hopter has the

lowest and most consistent interrupt response latency, benefiting from the soft-lock. Hopter’s context switch performance and task notification
latency is close to FreeRTOS’s and an order of magnitude lower than Tock’s. Most flash and performance overhead of Hopter comes from the
components for robustness, while the responsiveness and safety components introduce only small overhead. Hopter provides all three features
on Cortex-MO like on M4, but the implementation of atomic update operations by disabling interrupts increases the latency of context switch

and interrupt handling by 20%.

Minimum system Latency (us) Feature

Flash (KiB) [ TSRAM (KiB) || * Task [ ** Interrupt | ** Interrupt-task || Responsive [ Safe [ Robust

FreeRTOS 13.70 3.76 8.0 2.20 (0.39) 12.76 (0.73) v ] % x

8 [Tock £147.5+ 6.60 | $66.53 +0.75 || 264.7 | 151.54 (26.03) 365.14 (26.71) x| v
Hopter 27.68 1.00 || 16.0 1.36 (0.01) 31.88 (2.44) v | v v

% Hopter-unwind 22.71 1.00 12.9 1.32 (0.03) 26.44 (1.96) v v x
£ | Hopter-seg-stack 12.60 0.84 13.0 1.20 (0.01) 27.24 (1.90) v v x
g* Hopter-soft-lock 10.05 0.75 12.6 1.16 (0.02) 25.48 (1.84) v X X
S [ Hopter-bare 9.12 0.49 155 5.26 (1.21) 28.30 (1.83) x| x x
£ | FreeRTOS (Mo) 12.36 375 19.2 4.88 (1.15) 29.50 (4.43) v ]| % x
§ [ FreeRTOS (M0 on M4) 13.32 375 73 2.12 (0.43) 12.22 (1.66) v | % x
Z [ Hopter (M) 25.60 0.92 487 3.18 (0.05) 76.20 (7.03) v | ¥ v
% | Hopter (M0 on M4) 25.67 0.92 19.9 1.64 (0.02) 38.64 (2.83) v | ¥ v

F: Excluding function call stacks, whose sizes are configurable. %: OS plus application size.
*: Average from 10,000 trials. **: Maximum and standard deviation from 10,000 trials.
MO: Measured on STM32F072B-Discovery (Cortex-M0). Others are measured on STM32F412G-Discovery (Cortex-M4).
MO on M4: Code is compiled with only MO instructions but runs on STM32F412G-Discovery (M4).

with frequencies up to 1,000 Hz (§6.3). Tock on the other hand is
substantially slower, because each context switch from a task to
another requires four context switches between the OS and appli-
cations, rendering Tock not suitable for performance-demanding
workloads. We compute context switch latency by running two
tasks performing context switches to each other using the most ef-
ficient synchronization primitive available, i.e., mailbox on Hopter,
task notification on FreeRTOS, and inter-process communication
(IPC) on Tock. The task column in Table 2 lists the average latency
by measuring 10,000 context switches using a hardware timer on
the microcontroller precise to 1 ps. Hopter’s latency is higher than
FreeRTOS’s mainly due to the use of safe Rust in implementing
task lists and bookkeeping the current running task. The optimized
organization and operations of task list found in FreeRTOS are
incompatible with Rust’s ownership model (see §2). However, an
8 pus overhead in context switch results in less than 1% CPU load
increase for a task running at 1,000 Hz.

We also measure the interrupt response latency, which deter-
mines if the system may miss an ephemeral event. The measured
board registers an interrupt handler to be triggered by a rising edge
on a general-purpose input/output (GPIO) pin. The handler simply
sets another GPIO pin to high to respond, either directly or by
notifying a high-priority task to do so. We program another board
to trigger the rising edge and measure the response latency with
precision of 0.02 ys.

The Interrupt column in Table 2 reports the maximum latency
observed in 10,000 tests in which the interrupt handler directly
responds to the interrupt, while the Interrupt-task column reports
that observed when the handler notifies a high-priority task to
respond. Since Tock does not support declaring an application in-
terrupt handler, we instead register the handler as a capsule in its
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0.0 ‘ : : : :
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Interrupt Response Latency on Cortex-M4 (ps)
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&
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Figure 2: Hopter’s interrupt response latency is almost constant
using soft-lock on Cortex-M4. Background workload causes slight
increase in latency due to the stress on instruction and literal cache.
Hopter’s latency on Cortex-MO has small variance due to how it
implements atomic operations on M0, namely disabling interrupts.
In contrast, FreeRTOS’s latency is sensitive to background workload,
because it masks interrupts inside its critical sections.

kernel space. The latency numbers are obtained when two other
tasks are context switching to each other as the system background
workload. Hopter has the lowest and most consistent latency when
responding in the interrupt handler, benefiting from the soft-lock
mechanism. When handling the interrupt with a task, Hopter be-
comes slower than FreeRTOS due to its slower context switch. In
both cases, Hopter is orders of magnitude faster than Tock.
Hopter’s soft-lock is effective in maintaining a consistent inter-
rupt response latency regardless of the background workload, as
shown in Figure 2. The slight increase in the number under load is
due to the eviction of cached instructions and literals in the ART
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Figure 3: Crazyflie 2.1, a commercial off-the-shelf miniature drone.
We implement a flight control system with Hopter to evaluate its
capability of supporting real-time applications.

accelerator for flash [59]. In contrast, FreeRTOS’s latency is sensi-
tive to the background workload. Masking interrupts in its critical
sections causes a delay in the interrupt response, and such a delay
will be exacerbated if the CPU runs at a lower frequency as on M0
or the OS is under heavier load.

Hopter is responsive when running on M0, because the atomic
update operations disable the interrupts for only a short constant
period. The slowdown on MO0 is mainly due to the CPU being less
performant than M4. To measure the overhead caused by the longer
function prologue and atomic update operations on M0, we run the
same experiments on the M4 board but compile the code using only
the instructions available on M0. Hopter’s latency of context switch
and interrupt response increases by 20%. FreeRTOS is slightly faster
when running the M0 code on M4 than when running the M4 code
because the M0 code does not preserve and restore floating-point
registers during task context switch.

6.2.3 Fatal Error Recovery (Q4). Hopter allows a faulty application
task to perform arbitrary cleanup logic during resource reclamation,
which enables the system to recover from more complex scenarios
and overcome the limitations of a simple task restart. We implement
an application as a proof-of-concept consisting of three tasks: A
serial server task that transmits data received from other tasks over
the serial interface, and two client tasks that periodically send data
to the server task. To prevent undesirable data interleaving between
sending tasks, a client task first acquires a lock on the server before
sending data and releases it after finishing.

We deliberately trigger an out-of-bounds array write in one client
task while it is holding the lock. In Hopter, the fault manifests itself
as a Rust panic, which causes the task to be restarted. During stack
unwinding, the unwinder invokes the drop handler of the lock guard
object to release the lock. After restart, both client tasks proceed as
normal. In contrast, on Tock, if the written address falls in the task’s
allowed address range, it becomes a silent data corruption within
the task. Otherwise, the Tock detects the fault and restarts the task,
but the lock will not be released, subsequently causing a deadlock.
Since FreeRTOS has no safety protection, the out-of-bounds write
either causes a system-wide data corruption, or triggers a hardware
fault that hangs or resets the system.

6.3 Drone Flight Control

We develop a flight control system with Hopter to measure its
overhead in resource usage and CPU load with a realistic appli-
cation, and to quantify the latency of interrupt response and task
recovery demonstrating its suitability for real-time workload. The
program runs with the commercially available Crazyflie 2.1 hard-
ware platform [6] as shown in Figure 3. The drone is powered by
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Figure 4: The flight control system consists of interrupt handlers
and periodical tasks running at high frequency. Tasks and handlers
synchronize through channels and semaphores. Peripherals are con-
nected via GPIO pins.

Table 3: Binary size, SRAM usage, and CPU load of the flight control
system. The SRAM usage excludes function call stacks, whose sizes
are configurable. The CPU load is the average of 100 measurements
when the drone is set to hover.

[ [ Flash (KiB) | SRAM (KiB) | CPU |

FreeRTOS 133.56 27.93 | 36.5%
Hopter 213.53 7.51 | 52.3%
Hopter-unwind 173.43 7.51 | 48.8%
Hopter-seg-stack 147.80 7.35 | 47.5%
Hopter-soft-lock 141.90 7.00 | 45.5%
Hopter-bare 136.95 652 | 48.4%

an STM32F405RG microcontroller, featuring a Cortex-M4F CPU
with a maximum clock speed of 168 MHz, 192 KiB of SRAM, and 1
MiB of flash storage.

We implement the flight control system in Rust, which consists of
around 10,000 lines of code. About 6,700 lines are peripheral driver
code manually translated from open-source libraries [9, 51, 52]. We
use the HAL library from stm32-rs [30] to access peripherals. The
flight control system contains 22 unsafe Rust statements, mostly
for interrupt configuration.

The flight control system includes seven periodical tasks that
collectively manage flight control as shown in Figure 4. Three tasks
are responsible for reading data from the inertial sensors, the height
sensor, and the optical flow sensor, respectively. Two of them read
through direct memory access (DMA). Subsequently, the State Es-
timator task obtains the collected data, through the data channel
synchronization primitive provided by Hopter, and computes the
drone’s position and attitude with the Kalman filter algorithm. Fi-
nally, the Stabilizer task utilizes the output from the estimator to
modulate the power distribution across the four propeller motors,
aiming to maintain the drone’s stability and follow the commands
sent from the commander task. For operational safety, the Watch-
dog task supervises other flight control tasks, and if any of them is
unresponsive for over a second, Watchdog will shut off all motors.

6.3.1 System Size and CPU Load (Q1/Q2/Q3). Table 3 shows the
flash and SRAM usage of the flight control system and the CPU
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load when the drone is set to hover. We break down Hopter’s flash
overhead as follows, where underlined numbers are constant, while
others grow with the binary size. The function prologue for stack
memory safety and the stack extension runtime each incur a flash
overhead of 3.14 KiB and 2.75 KiB, respectively. To enable resource
reclamation through unwinding, the stack unwinder adds 9.59 KiB,
the landing pads add 7.50 KiB, and the unwind table adds 8.53 KiB.
To allow recovery from stack overflows, instrumenting the drop
handlers increases the code size by 27.80 KiB and the unwind table
by 4.70 KiB. Disabling compiler optimizations based on the nounwind
function attribute increases the code size and the unwind table size
by another 2.97 KiB and 4.64 KiB, respectively.

We also compare against a FreeRTOS-based implementation with
a similar program structure. FreeRTOS’s version requires similar
flash storage as with Hopter’s “bare” variant. Its higher SRAM usage
is due to the use of larger static buffers, and its lower CPU load
is due to the availability of highly optimized math library and the
DMA driver implementation for the SPI bus to access the optical
flow sensor.

Hopter’s drop handler instrumentation (§4.1.1) incurs the largest
overhead in flash size and CPU load, which is counterintuitive since
the instrumented code appears to be short and applies only to drop
handler functions. However, we observe a cascading effect in the
generated code that leads to size bloat and CPU load increase. (1) If
the type of any field within a compound type implements Drop, the
drop handler of both inner and outer types will be instrumented. (2)
ARMv7, as a RISC architecture, must load the address of task local
variables into registers before accessing them, resulting in longer
instruction sequences. (3) There is more register spilling, further
increasing the length of the instruction sequence. (4) The larger
function body causes the compiler not to inline some drop han-
dler functions, resulting in more function calls and returns. (5) An
outlined function, in turn, includes additional prologue instructions.

However, drop handler instrumentation is indispensable for cor-
rect recovery from stack overflow despite the overhead. We perform
a static stack depth analysis for the seven flight control tasks, ignor-
ing indirect function calls through function pointers or trait objects
(0.1% of all calls). Five tasks reach their respective maximum stack
size inside a drop function. Without the instrumentation, initiating
stack unwinding inside a drop handler will cause a system reset.

6.3.2 In-flight Interrupt Response Latency (Q3). We measure the
interrupt response latency while setting the drone to hover, follow-
ing the same experimental setup as in §6.2.2. With soft-lock, the
maximum interrupt response latency over 10,000 measurements
is 1.04 ps with a standard deviation of 0.02 pus. However, without
soft-lock, the maximum latency rises to 7.56 ps with a standard
deviation of 0.57 ps, due to the critical sections that prevent the
system from responding to interrupts for an extensive period.
Prompt interrupt response is essential to support the radio on
the drone. The drone employs an nRF51822 chip that forwards
received radio packets to the main microcontroller via a universal
asynchronous receiver-transmitter (UART) serial interface at baud
rates of up to 2 Mbps. In the Syslink protocol [7] used by the drone,
the length of the packet is determined by the first four bytes, so
DMA can only be initiated after these bytes are received. Without
DMA, the system must respond immediately to the interrupt after
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Table 4: Recovery latency and stack unwinder workload for the
Stabilizer task upon fatal errors. The error is either a deliberate
panic! () or a stack overflow after some function recursions. Both
the task context reuse and concurrent restart optimization can speed
up the recovery upon panic and stack overflow. Concurrent restart
maintains a constant recovery latency regardless of the stack depth.

H Panic [ OF-recur-4 [ OF-recur-10

Unoptimized (ps) 197 268 402
Ctxt. reuse (us) 134 207 335
Concur. restart (ps) 189 192 190
# Stack frames 6 7 13
# Landing pads 2 6 12

the UART interface receives a byte. Considering that each data byte
carries an overhead of one start bit and one stop bit, an interrupt
response delay over 5 ps will cause an overrun of the receive shift
register [60], resulting in data loss. Only with soft-locks can the
radio module function correctly.

6.3.3  In-flight Fatal Error Tolerance (Q4). We deliberately introduce
panics into the flight control system while the drone is hovering
to assess Hopter’s ability to recover the system from them. The
drone has no visible disturbance when we introduce a panic into an
interrupt handler or to the flight control tasks except the Stabilizer
task. The drone rotates around 20 degrees along the yaw axis and
drops a few centimeters when the Stabilizer task panics, but can
still hover after the task restart. Stabilizer is the most sensitive to
fatal errors because it directly modulates the power of the motors.

We also measure the recovery latency of Stabilizer on different
fatal errors. For the panic test, we place a panic! () statement in the
code that updates the stabilizer states, simulating out-of-bounds
array access or a failed assertion. For the stack overflow test, we
insert a call to a recursive function that defines a local object with a
drop handler, which will overflow the stack after 4 or 10 recursions.
Table 4 lists the latency, as well as the number of stack frames to
unwind and landing pads to invoke for each test case. The recovery
latency is measured as the time elapsed between the occurrence of
the error and the execution of the entry function of the restarted
task instance. A stack extension incurs an additional 20 pus delay.

The measurement result demonstrates that both the task context
reuse and concurrent restart optimization can reduce recovery
latency. Task context reuse outperforms concurrent restart when
the stack is shallow, but concurrent restart enables faster recovery
by maintaining a constant latency when the stack is deep.

In all three cases, Stabilizer can recover before the next execution
interval. The observed disturbance to the drone is due to the new
Stabilizer task instance not having any command to follow. The
motors are kept at zero power until the next command is received.

6.4 IoT Gateway

We develop a gateway system for Internet-of-Things (IoT) devices
using the STM32F072B-Discovery board to showcase Hopter’s ro-
bustness against runtime errors, even on a Cortex-M0 microcon-
troller without an MPU. The gateway consists of a data plane and a
control plane, as shown in Figure 5. The data plane receives packets
from the inbound connection through an interrupt-driven UART
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Figure 5: The gateway consists of a data plane and a control plane.
The data plane forwards packets from the inbound connection to the
outbound one. The control plane can gather runtime statistics and
change forwarding rules. Errors in the control plane do not affect
the operation of data plane thanks to Hopter’s robustness features.

interface and forwards them to the outbound UART connection. As
part of the data plane, the Gateway task verifies the integrity of
received packets, updates runtime counters, and optionally mod-
ifies the packets according to the rules before forwarding them.
The control plane establishes a text-based control session through
another UART interface. Users can send commands to query the
number of forwarded and corrupted packets, count occurrences of
a specific byte pattern, reset the counters, and change forwarding
rules. The rules allow users to specify escaped bytes and to filter
packets based on their types. As part of the control plane, the Con-
sole task parses and executes the command, and responds to the
user.

The gateway uses an open-source HAL library [29], consisting
of 360 lines of Rust code, with only 8 lines unsafe for configuring
peripherals. The compiled binary requires 60.0 KiB of flash and
about 1.3 KiB of SRAM, excluding stacks. In comparison, an im-
plementation based on FreeRTOS requires 21.0 KiB of flash and
around 3.0 KiB of SRAM.

Hopter isolates data plane connections from fatal control plane
errors. To trigger an error, we make the Console task skip checking
the remaining free size of the buffer when receiving commands.
A long command will overflow the buffer, causing the Console
task to panic and restart. Meanwhile, the data plane continues to
forward packets without disruption. The packet forwarding latency
is unaffected by the panic recovery procedure. In contrast, the same
buffer overflow error will silently corrupt data or crash a FreeRTOS-
based system. Tock does not support this board due to the lack of
an MPU.

7 Related Work

Memory Safety with Rust: Similar to Hopter’s use of Rust, other
OSes have leveraged Rust for memory safety across both the kernel
and applications. Two recent works targeting PCs and servers, The-
seus [8] and RedLeaf [50], utilize Rust to achieve memory safety,
yet they still depend on the memory management unit (MMU)
to place a guard page to prevent stack overflows. RIOT [5], Em-
bassy [11], and RTIC [12] embedded OS, as well as the kernel space
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of Tock [41], employ Rust for memory safety on microcontrollers.
RIOT supports threaded tasks written in Rust, but similarly uses
MPU/PMP to set a guard region to prevent stack overflows. This
approach will not allow recovery from stack overflows, as discussed
in §4.1.2. Embassy, RTIC, and Tock’s kernel space employs a single
down-growing stack placed at the lower boundary of the SRAM
region to prevent stack overflows from corrupting memory. How-
ever, they support only restricted scheduling patterns and cannot
recover from stack overflows. In contrast, Hopter achieves memory
safety solely via software, supports arbitrary scheduling patterns
with threaded tasks, and can recover from stack overflows.

Fatal Error Recovery: Few embedded OSes for microcontrollers
offer a recovery mechanism related to Hopter’s capability of recov-
ering from fatal errors. Tock [41] can automatically restart a task
that failed due to memory access violations. Zephyr [27] can also
terminate a task upon such an error but require the application to
register an error handler separately. Neither supports automatic
cleanup for graceful task termination. In contrast, Hopter runs
application cleanup logic (drop handlers), allowing the system to
avoid subsequent errors such as deadlocks.

Zero-latency Interrupt Handling: Hopter employs soft-locks for
zero-latency interrupt handling, unlike previous embedded OSes
such as eCos [47], PEASE [58], PURE [57], and SMX [48], which split
interrupt handling into top and bottom halves to avoid OS interrupt
masking. The split design necessitates a global serialization queue
for deferred operations (bottom halves) that reference OS objects,
therefore requiring unsafe Rust because the compiler cannot verify
the lifetime of the references. Also, Hopter’s soft-lock can improve
performance by deferring operations only upon contention, which
is rare, thus reducing CPU load by mostly taking the fast path.

8 Conclusion

This paper describes Hopter, a Rust-based embedded OS designed
for microcontrollers. Hopter provides applications with memory
safety, system robustness, and interrupt responsiveness while re-
quiring minimal cooperation from them. Hopter forestalls stack
overflows and converts such errors into Rust panics by execut-
ing Rust code under FS-semantics using compile-time code instru-
mentation and runtime OS support. By unifying all fatal errors
as panics, Hopter performs stack unwinding to reclaim resources
from failed application tasks or interrupt handlers, and can auto-
matically restart failed tasks. To ensure timely response to inter-
rupts, Hopter incorporates a novel mechanism called soft-locks to
achieve zero-latency interrupt handling. Hopter is well-suited for
resource-constrained microcontrollers and supports error recov-
ery for real-time workloads. The mechanism for recovering from
stack overflows is also applicable to processes running in a server,
and soft-locks can be useful in reducing the latency to respond to
process signals.
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