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Abstract

Bayesian reasoning in linear mixed-effects models (LMMs) is challenging and often
requires advanced sampling techniques like Markov chain Monte Carlo (MCMC).
A common approach is to write the model in a probabilistic programming language
and then sample via Hamiltonian Monte Carlo (HMC). However, there are many
ways a user can transform a model that make inference more or less efficient.
In particular, marginalizing some variables can greatly improve inference but is
difficult for users to do manually. We develop an algorithm to easily marginalize
random effects in LMMs. A naive approach introduces cubic time operations within
an inference algorithm like HMC, but we reduce the running time to linear using
fast linear algebra techniques. We show that marginalization is always beneficial
when applicable and highlight improvements in various models, especially ones
from cognitive sciences'.

1 Introduction

Bayesian hierarchical models account for complicated relationships in data by introducing hierarchical
structures [23]. Among hierarchical models, linear mixed effects models (LMMs) are widely used in
various scientific disciplines, including ecology B1], medicine [7], psychology [41], neuroscience
[77] and cognitive science [47]. Solving LMMs involves inferring latent variables, such as fixed
and random effects, based on the observed data. Fixed effects are shared by all observations, while
random effects vary across different groups within the data. LMMs are often implemented using
probabilistic programming languages (PPLs), which isolate inference from modeling: users write a
program representing the model and the PPL automatically executes a suitable inference algorithm.
Variants of Hamiltonian Monte Carlo (HMC) [L5] are dominant in many PPLs today and are widely
used for LMMs. For example, BRMS [8] is an influential R package that allows users to write
regression-style formulas that are automatically translated to Stan programs P] representing an LMM,
and then Stan’s HMC implementation is called to generate posterior samples.

We develop techniques that allow users to easily transform their models to analytically marginalize
random effect variables from LMMs to improve the efficiency of HMC. Marginalization has several
benefits. First, there are often pathologies in LMMs that hinder efficient HMC sampling. A notable
one is the “funnel” shape created by correlation between variance parameters and parameters for
fixed or random effects [45]. Marginalization [ 35] and other program transformations [26] have been
shown to be useful in addressing such pathologies. Second, marginalization reduces the number H of
latent variables for HMC. The complexity of HMC is aboutO(H **) [11, 46], so it is desirable to
run HMC on a subset of variables if marginalization can be done efficiently. Our methods enable
marginalization of random effects in LMMs with a linear Gaussian structure, which includes models
with normal and log-normal likelihoods as well as other likelihoods for continuous data based on

The code is available at https://github.com/Ili6924/hamiltonian_lme.git
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transforming a normal distribution. Note that our methods are not limited to HMC, and could be
applied to many inference algorithms.

There are several challenges to efficient marginalization. The automatic marginalization algorithm
of [35] can be applied to LMMSs but is limited to scalar random variables, so it requires users to
construct the LMM as a graphical model with separate variables for each effect and observation.
Another alternative is to model the relationships between effects and observations with a design
matrix and marginalize effects using properties of multivariate normal distributions. We call this the
“vectorized approach” since it can leverage vectorization to accelerate computations. Unfortunately,
vectorized marginalization leads to a dense covariance matrix over the observations and thus cubic
time for evaluating the log-density within HMC, when the log-density of the original could be
evaluated in linear time. Our main technical contribution is to accelerate vectorized marginalization
for LMMs using fast linear algebra: we show that marginalization for a single random effect can be
achieved with linear time complexity and can significantly accelerate HMC compared to both the
original model and non-vectorized marginalization.

We implement vectorized marginalization for LMMs in NumPyro P, 54] via simple classes users
can use to express their models. We evaluate our approach on a variety of real LMMs from past
scientific investigations, including nine models and datasets from cognitive sciences, and find that
marginalization is always beneficial. Our findings suggest that practitioners should marginalize
group-level effects whenever applicable in Bayesian hierarchical inference.

2 Background

To motivate our problem, we present an example model.In [72], a set of experiments were run to
examine the relationship between human pupil and attention load. A total ofN = 2228 measurements
of pupil sizes from M = 20 subjects were taken under different attention load levels. Specifically, in
the /th measurement, the pupil sizeYi € R* of subject 9i € {1, 2, ..., k} under attention load G; €
{0, 1, 2, 3, 4, 5jvas recorded. Pupil size can be assumed to have linear relationship ¥i =04 + 64C;
with respect to the attention load Ci, where both the slope ; and intercept & split into fixed and
random effects:

Yi=a+ug +cCi(B+ugp)+e €~N(0, 0%,

where @, B are variables for fixed effects andU.,. are variables for subject-specific random effects.
Bayesian hierarchical modeling assigns priors to each unknown variable:
a ~ N (1000, 500%), B~ N (0, 100), 0 ~ N * (0, 1000), T ~ N * (0, diag(100¢?, 1004)),
Lu ~ LKJCholesky(2, 1), [uj1+ Y21~ N (0, TLu LZT), j=1,2, .., k
A half-normal distribution (N * ) and an LKJ distribution (LKJCholesky) [36] are used as a prior on
the covariance matrix. Inference for the unknown parameters determining the relationship between

pupil size and attention load can be performed by writing a probabilistic program and running HMC.
For example, in NumPyro, the regression model for all measurements may be implemented as below.

numpyro.sample('y',dist. Normal(alpha+u[g][:,0]+c*(beta+u[g][:,1]),sigma),obs=y)

The code above uses advanced indexing and vectorization techniques innumpy where u,g,c,y are
all vectors or matrices. We further observe that, conditioned ona, 3, 0, T, L, the distribution of
all uj and allYi form a multivariate normal distribution. Theoretically it is possible to analytically
integrate u out from the model to improve inference efficiency. But it is not straightforward for users
to transform the probabilistic program to do so, and, as we will see, if done in the most obvious way,
may not make the model more efficient for HMC.

To be more clear about how marginalization can be implemented, we g @
rearrange the model into a canonical form that focuses on the random

effects. All observations are collected into the vectory = [y s ---» W 4
and random effects into the vector w=1[u 1,15 Uy 2, s Y1 Ukiz]T.
Then, we can write

U-N( E4), y~-N(Au+h, ), Figure 1: A tree-structured
W 2wy ( y) model conditioned on @.



where u, Zy, A, b, % are functions of a, 8, 0, T, ki g, G. Note that ¥i only depends on the entry
ug;, of u. The corresponding graphical model has a tree structure, as demonstrated in Figure 1.
This tree structure has several benefits: first, matrix multiplications like Au and ATy can be done
efficiently; second, we will see that it leads to a block-diagonal structure that facilitates efficient
inversion in a key matrix that appears later.

For more general LMMs with more than one class of random effects we generalize the canonical
form as

©-p@), WO-N(HI(O) Lu(®), i=12..L
° !
yO u, w,..u ~N Ai(O)u; + b(0), £,(0) (1)
i=1

where p(@) is the distribution for global variables (including fixed effects)p(ui |@) is the distribution
for random effects and p(y|®, w, ..., w) is the distribution for observations. Notationally this
generalization further adds an index to each random effect to specify its class. A user might specify
the model directly in this canonical form, or in another syntax (e.g., the formula syntax of BRMS)
that is compiled to this form. Each pair (ui, Ai) specifies a class of random effects for a particular
classification of the observations (e.g., by subject, age, gender, etc.). Each classification contains
multiple groups and different classifications are distinct from one another. Each observation belongs
to one group for each classification. The vector ui = [u ,-T1 , qT 21 ey I.Ik ; ]T contains random effects
for the /th classification (e.g., subject, age, or gender), consisting of K; groups (e.g., one subject, age,
or gender), with wij containing the random effects (e.g., slope and intercept) for the/ th group. We
denote the number of observations as dim(y) = N , and the number of random effects per group
as dim(uij ) = d. Any covariates—such as C; in the pupil size example—are considered constants
and not represented in the notation. In LMMs, the numberd is related to the number of covariates
and is usually small. The total number of random effects for w; is denoted as dim(ui) =M ; = k0.
The matrix A therefore has size N X M ; and encodes the group structure for wi by mapping
random effects (together with covariates) to observations. Each row of Ai encodes the assignment
of an observation to one group, so it has at most @ nonzero elements. Therefore, the complexity
of computing Aiui is O(Nd) , as A has at most N0 nonzero elements. Henceforth, we omit the
dependence on @ for H, Zy, A, b, Zy for simplicity.

Marginalizing ui It is possible to analytically marginalize variables in this model: since the mean
of'y is linear in each ui and all of these variables are normally distributed, the joint distribution of
(¥, w, ..., m) is also multivariate normal. We will focus for most of the paper on marginalizing the
random effects ui for a single / in order to leverage the tree structure mentioned earlier, but return in
Section 4 to the idea of marginalizing many effects. Locally, wi and y form the conditional distri-
bution p(ui, y|O, wi ) = p(ui|@)p(y|®, u-i, u). Marginalized MCMC rewrites this conditional
distribution as p(wi, y|©, Wi ) = p(y|®, u -i )p(ui|O, y, wi ), which reverses the dependence
between ui and y [35]. During sampling, ui is marginalized from the HMC procedure by using
p(y|O®, u-i ) as the likelihood function andp(®, u-i ) as the distribution of latent variables. After
HMC sampling, wi is recovered through ancestral sampling from p(ui |@, y, Wi ) given posterior
samples of (@, u-i ). The reversal requires analytical forms of p(y|®, u-i ) and p(wi |®, y, Wi ),
which can be obtained via standard marginalization and conditioning operations on multivariate
normal distributions [e.g., 6]

( |
X T
vio.ui ~N 7 Aju+Ali+b AL AT +E,)
.
(7 1 1

X
uwlOyu -N lmw+mly-" Aw-Ami-b ,a-MANE.) . @

JEi

where M = Z uiA,-T(AiZuiA,'T +Z y)_1 . Marginalization introduces the benefit of sampling in
a lower dimensional space, but the cost depends on the complexity of evaluating the log-density
functions of these two distributions in order to run HMC.



Table 1: Time complexities of different HMC approaches for the submodel involved in marginaliza-
tion. Initialization is done once before the HMC loop. The log density is computed within each step
of the leapfrog integrator. Recovery is performed for each sample from HMC.N is the number of
observations, M is the dimension for one class of random effects,D is the dimension for all classes
of random effects, L is the number of classes, d is the dimension for an effect of a group in a class.

Submodel Approach Initialization Log density Recovery
No marginalization - Oo(md 24 NLd) -
pui,yl® u-i) Naive marginalization - oM 3 +N 3 oM 3 +N 3
Marginalize with lemmas - OMd 2 +NLd+Nd 2) OMd 2+NLd+Nd 2)
No marginalization - o(Dd 2 + NLd) -
p(v, y|©) Naive marginalization - oD 3+N 3) oD 3+N 3)
Marginalize with assumptions oD 3 +NL 2d?2) O(D 2 +NLd) O(D 2 +NLd)

2.1 Challenges of multivariate marginalization

In practice, the original model usually has structure that makes evaluating its density very efficient,
which is lost by naive marginalization. For example the observations iny are usually condltlonally
independent, making Zy diagonal; also, Z; is usually block diagonal with blocks of size dxd.
So evaluating the den51ty p(ui, y|©, wi ) =p(u i|@)p(y|O, u1, ) requires O(k;d® + NLd) =
O(MiC? + NLd) time with the main operations being (1) 1nvert1ng and computing the determinant
of Zy and Zy; (2) computing the mean parameter of y. When Z ;i is diagonal, the complexity goes
down to O(M id + NLd) . However, it is more expensive to evaluate the density of the reversed model
in Equation (2). Computing ﬁ(y|@ u-i ) and p(u: |®, y, ui ) requires the inverting and computing
the determinant of the N X N “matrix A/ E4iA] + E y» which we denote by E for simplicity. For
the log likgbihood, we need to compute log p(y|®, wi ) = 1 5 det (E) - ;ZTE z + C, where
z=y- i Ajuw —Ailj —b. E isnot diagonal and without using additional structure

will trigger O(N 3) operations within each step of the leapfrog integrator within HMC. For the
recovery distribution p(ui |®, y, Wi ), E will be inverted when calculating M. Also, a Cholesky
decomposition for the covariance (I - MA i)Z ;i should be computed for sampling, which takes
O(M ?) time. These cubic time operations are prohibitively expensive for large datasets. ~ We
summarize the complexities of different approaches in Table 1. In Section 3, we discuss how to

marginalize one group of random effects with lemmas from linear algebra. In Section 4, we discuss
how to marginalize all random effects with additional assumptions.

3 Marginalization with fast linear algebra

We now show how to speed up calculations with the marginalized model using fast linear algebra
methods. In particular, we use the matrix inversion lemma and matrix determinant lemma together

with special structure in the relevant matrices. In this section, we sometimes omit the subscript / such

as for Ai and Z i for simplicity. The steps in log density evaluation and recovery are summarized in

Algorithm 1, and in Algorithm 2 in the appendix, with comments about their implementation and cost.
We mainly use sparsity and tree-structure in A to make operations faster. As an overview, computing

z takes O(NLd) time for L sparse matrix mult1pl1cat10ns of time O(Nd) each. Also, evaluating As

and AT t both take O(Nd) for any s RY and any t e RN . With tree-structure, we will see that

A’ Z A is block-diagonal and can be computed efficiently.

3.1 Matrix inversion and determinant lemmas in marginalization

The two main bottlenecks when evaluating log p(y|®, w-i ) are computing det(E) and ZE'z
With the matrix determinant lemma [32], we have that

det(E) = det(AZ 4A' + Ey)=det(E ;' + ATE[' A) det(E ) det(Ey). 3)
By the matrix inversion lemma or the Woodbury formula [53] we have that

E'=(AZ AT +Z)) " =E -EAE +ATES A)TATES.
Therefore,

ZE'z=2"2'z-Z A +ATES A TTATE 2 )



Algorithm 1 Evaluatmg log p(y|®, wi ). Each A is an N X M ; sparse matrix with Nd elements
and tree strucgyre. £, isN*N diagonal. £ is M XM block-diagonal with block size d.

Lz=y- 4 A/ u-AiHi-b DSparse matrix multiplication in O(NLd) time
2F=Z ]+ A’ z, TA DBlock diagonal computation in O(M + N)d ?) time
3 x=AT Z Az DSparse matrix multiplication in O(Nd) time
4: a=log det(F) +log det(Z ) + log det(Zy) PDeterminants in O(Md ?) time
s5:b=2" 2;1 z-x F'x DQuadratic form in O(N + Md) time
6: return ~ z(a+b) + C

By using the facts that £, is block-diagonal, £ is diagonal, and A has N0 nonzero elements, the
quantities det(Z ), det(Zy), z 2_1 z,and A 2_1 z can each be calculated in O(Md 2 + Nd)

time. Equat10ns (3) and (4) contaln the expressions F~' or det(F) forthe M XM  matrix
F=Z'+A Z 1A, which both require O(M 2) time when done naively. The following theorem

shows that these quantltles can be computed in O((M + N)d ?2) for LMMs.

Theorem 1. If Zy is diagonal, Zy is block-diagonal with blocks ofszze dxd thenF =% a4+
A’ z, “1 A is also block-diagonal with d % d blocks and computlngA zy 1A takes O(Nd 2)

Proof. The proof uses the tree-structure in A. For details, see Appendix B.1. O

Therefore, it is O((M + N)d ?2) to compute det(F) and F~' . Combined with other parts in the
formulas, the overall complexity is O(Md 2 + NLd + Nd ?). In LMMs, d is usually small, so the
complexity with marginalization can be viewed as the same as the complexity without marginalization.

3.2 Speeding up the recovery step

Different from evaluating log p(y|®, wi ), ancestral sampling from p(ui|®, y, Wi ) is only per-
formed once for each posterior sample. When sampling from p(ui |®, y, Wi ), computing M directly
is also costly. With the matrix inversion lemma, we have

M=% ,A"(AZ,A" +Z,)”
= AL - ATESAES +ATESA)TTATES! )

With this express1on the mean variable g + Mz, then is evaluated in O((M + N)d ?2), by computing
= +A Z A in the same way as Line 2 of Algorlthm 1. For the covariance variabl{l-MA)Z ,,
we have from the reversed application of the matrix inversion lemma that

(1-MAZX ,=%,-X,A'(AZ,A" +£,)"AZ,
=EJ+ATES A

Notethat F=Z ;)1 + A T 2;1 A is all block diagonal. For a block diagonal matrix with K blocks of

size d * d, the time complexity for a Cholesky decomposition is O(kd®) = O(Md 2). Combined
with the complexity of computing z, the recovery step takes O(Md 2 + NLd + Nd ?) time.

4 Marginalizing multiple effects with additional assumptions

We have shown that it is efficient to marginalize one class of random effects. =~ With additional
practical assumptions, it is possible to marginalize all classes of random effects for efficient HMC
inference. Instead of separating different classes of random effects, LMMs can also be written as
V-N@ Zy) y~NBV+b E ) whereB=[A 1, .., Alandv=[u To..od]. we
define that D = =1 M. The matrix inversion and determinant lemmas can still be applied

to marginalize v out, but the combined matrix B does not have the special structure of Aj we
exploited in Sectlon 3. More specifically, the computation of det(F) and the evaluation of F~' for
F=Z,'+B Zy1 B both become non-trivial. We introduce additional assumptions to show that
they can be solved faster in some special cases. For the general case, see the discussion section.



The assumption we make is that Zy =Tyl and £y = 7 I, where Ty, Ty are scalars that either belong
to @ or are fixed non-random parameters. This means that all effects share the same variance and all
observations share the same noise scale. These assumptions are not as restrictive as it may appear.
If the underlying distribution is wi ~ N (4 i, 1) where G is a fixed parameter, it is possible to
reparameterize this distributionas w; ~ N (0, 1), A; =0iAi, b =b + Bu i, and use u;, A;, b in
place of wi, A, b Then Z, becomes a scaled identity matrix. Also, in many models, the noise scale
for different observations is the same, making Z a scaled identity matrix as well.

In practice, if the assumptions are satisfied, marginalization can be done inO(D 2 + Nd) time with
O(D 3 + NL 20?) preprocessing. Details are provided in Appendix B.3.

5 Related Work

While many works aim to improve HMC directly [71, 30, 58, 73], a number of other works focus
on model transformation. Non-centered parameterization [49] is a widely used trick among MCMC
users to alleviate slow sampling in difficult posterior distributions. However, there is no general
way to know whether a non-centered parameterization will be beneficial [J6]. Variationally inferred
parameterization [26] proposes to learn a model parameterization from a specified family that will
lead to effective sampling. In Parno and Marzouk [52] and Hoffman et al. [33], preconditioners for
HMC are learned to transform the model to be approximately isotropic Gaussians. Marginalization
differs from reparameterization in that it reduces the problem dimension as well as potentially
alleviating difficult characteristics such as funnels, so it has two mechanisms to improve MCMC
efficiency. The Laplace approximation (LA) is one way to approximately marginalize variables in
MCMC [59, 40, 65], but it may be difficult to quantify the error or recover the marginalized variables.

Marginalization, or Rao-Blackwellization, has been an important topic in Bayesian inference and
probabilistic programming. In Gibbs sampling, marginalization is usually called collapsing [ 37].
Collapsed Gibbs sampling has been developed for latent Dirichlet allocation 6] and LMMs [50].
We explore marginalization in the context of HMC, which induces different considerations. Methods
with HMC do not have to make the conditional distributions of the marginalized model tractable.
Marginalization is also related to symbolic inference in probabilistic programming. Hakaru [ 44] and
PSI [21, 22] are systems for performing exact Bayesian inference by symbolically marginalizing
all latent variables. To marginalize discrete variables, Gorinova et al.[27] propose an information
flow type system. Another line of related work is delayed sampling [ 43, 3], which automates
marginalization of variables within Rao-Blackwellized particle filters B2]. Lai et al. [35] developed
an automatic system for marginalizing variables in HMC, but is limited to scalar variables so cannot
leverage vectorization and forces users to write models with univariate distributions.

Linear algebra tricks have been widely utilized in various machine learning algorithms, such as ridge

regression [68], Gaussian processes [61] and Kalman filters [60]. Recently, frameworks [62, 20, 57]
have been proposed to ease the implementation of fast linear algebras in machine learning algorithms.
Marginalization in Bayesian models may be an interesting application of those frameworks.

Fast and scalable inference for LMMs has been studied in the context of maximum likelihood
estimation [19], variational EM [24], Gibbs sampling [51] and numerical integration [28]. We are
the first to consider speeding up the inference of LMMs with HMC. There is also a recent trend
in integrating random effects into deep neural networks for correlated data p7] or personalization
[66, 64, 74] with parameters estimated by maximum likelihood.

6 Experiments

We conduct experiments on LMMs from various disciplines using the default no-U-turn sampler

(NUTS) [34] from NumPyro [5, 54], which has an adaptive step size with dual averaging, adaptive

and diagonal mass matrix, target acceptance probability of 0.8, and maximum tree depth of 10. For

the ETH instructor evaluation model, we set the maximum tree depth to 12 to overcome difficulties
performing inference without marginalization in preliminary experiments. For all models, we use

weakly informative priors unless specified. In general, our conclusion is insensitive to the choice of
hyperparameters and priors. For all experiments, we collect 10,000 warm up samples for tuning,
and 100,000 samples for evaluation, and evaluate performance via effective sample size (ESS) and

running time.



Table 2: Running time in seconds for HMC, with or without marginalization. Mean and standard
deviation over 5 independent runs are reported. Experiments are run on NVIDIA A40.

Method  No marginalization Marginalizeuws Marginalizeu2  Marginalizeus  Marginalize u
Time (s) 13417 (98) 5004 (1468) 2607 (3) 3071 (4) 631 (12)
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Figure 2: Average ESS for each variable on the instruction evaluation model with different HMC
strategies. Numbers above the sample size 100,000 indicate effective sampling.

6.1 Marginalization in cross-effects models

Cross-effects models are a type of LMM that have more than one class of random effects (i.e. L > 1).
Usually each observation belongs to one subject group (e.g. individuals, animals) and one item group
(e.g. questions, objects). The correlation among latent variables can create severely challenging

geometry that slows down the sampling of HMC. With our idea, it is possible to marginalize one or
more group of effects from the model, reducing the dimension of latent space for faster sampling and

better geometry.

ETH instructor evaluations An example cross-effects model describes university lecture evaluations
by students at ETH [ 4]. The dataset records N = 73421 ratings, where each rating ¥n comes
from student Sy for professor Pn teaching a course from department 0y, with t indicating whether
the professor is teaching outside their own department. There are a total of M4 = 2972 students,
M, = 1128 professors and M3 = 14 departments. We use a version of the model from the document
of Tensorflow probability [13]. The model is

Likelihood : yn ~ N (U 1,5, + Ugp, + U3g, + O+ Bt n, 02),
Prior : uq; ~N (0, 1), Uy; ~N (0, 1), Uz ~N(0,1), a~N(0,5), B~N(O, 1), o~N*(0,1),

where 1<i<M 1,1<j<M jsand1<k<M 3. Given the dataset, we wish to learn about the
latent variables uq, U, Uz, @, B and 0. HMC is the most direct way to sample those variables, but
the dimension and complicated relations make it inefficient. Marginalization can be applied to one of
the effects, uq, w2 or uz. We report the running time of sampling from the model with and without
marginalization in Table 2. We found that marginalizing any group of random effects improves the
sampling speed of HMC. However, the improvements are not necessarily predicted by the dimension
of marginalized variable: HMC is faster when marginalizingus than when marginalizingu even
though u¢ has 200-times higher dimension than us. In Figure 2, the ESS for each variable is reported.
Without marginalization, sampling u, and ug are both difficult compared to sampling u¢, and HMC
becomes more efficient when marginalizing either of these variables, so we conjecture that up and
u3 are responsible for the difficulty for sampling in the original model. In this model, all random
effects are independent and have the same variance, so Z, is a scaled identity matrix and we can
marginalize all random effects efficiently. This approach is observed to be the most efficient in our
experiments, despite having quadratic complexity inD . Overall, marginalization never hurts ESS,
and runs faster. We expect that any marginalization strategy works better than HMC in the original
model, a finding which will be consistent across experiments. Additional results of this experiment,

including trace plots and R diagnosis, are included in Figure 6 and Table 5 in the Appendix.

6.2 Marginalization vs reparameterization

To tackle bad geometry in statistical models, another model transformation is non-centered parame-
terization, or reparameterization [49]. Reparameterization converts the distribution ofz ~ N (i, 02)
into € ~ N (0, 1) and z=€0 + u . Reparameterization is especially useful for funnel shapes in
hierarchical models. We note that when applicable, marginalization is able to solve a broader class of
problems. We compare marginalization and reparameteriation on the grouse ticks model.
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Table 3: Compilation time T¢ and running time 7 in seconds for marginalized MCMC [35], with or
without vectorization. Mean and std across 5 independ runs are reported.

Model Tcof [35] Tr of[35] Tcofours Tr of ours
Electric company 552 (4) 1249 (95) 7(0) 252 (23)
Pulmonary fibrosis 727 (11) 2208 (80) 10 (1) 178 (3)

Grouse ticks The dataset [4] contains observations y of the the number of ticks on the heads of
red grouse chicks in the field. Each observation Yk comes from brood b in location /k during year
€k at altitude @k, where year and altitude give fixed effects, and there are random effects wuq and
u, corresponding to brood and location. There are N = 403 observations, M1 = 118 broods and
M, = 63 locations. We define the hierarchical model as follows:

Likelihood : Yk ~ N (U 1p, + U2, + Be€k + Badk; Gtz)
Prior : 4 ~ N (0, 1), 04 ~ HalfCauchy(5), H, ~ N (0, 1), O, ~ HalfCauchy(5),
Be ~ N (0, 1), Ba~N (0, 1), Uy ~N (1 92), Uy; ~N (u2 93), o ~ HalfCauchy(5),

wherei=1,..,M4,j=1,.., My, k=1, .., N and each Yk is observed. The correlation between
O and u creates the funnel shape that makes vanilla HMC inefficient. Nevertheless, it is possible to
apply either marginalization or reparameterization to each random effect. In Figure 3, we plot the
distributions of samples for variable pairs (01, Uy 1) and (02, U, 1) with different combinations of
marginalization and reparameterization. There is a difficult correlation between 0 and uy. After
applying marginalization or reparameterization to up, HMC manages to explore the funnel region (at
low values of 01). However, we find that only samplers that marginalizeu, report zero divergent
transitions after warm-up. Such behavior is consistent with different random seeds. See Table 6
in the Appendix. Also, the distribution of divergent samples is related to specific parameters when
reparameterizing Wy, implying that reparameterization introduces pathologies that create challenges
for HMC inference. In addition, we find that reparameterization does not improve the running time
of HMC, while marginalizing wy speeds up sampling by about 20%.

6.3 Benefits from vectorization

In theory, marginalization with LMMs can be done by constructing a graphical model for scalar
random variables and performing automatic marginalization as in [35]. But it is more efficient to
marginalize in a vectorized way. We demonstrate the benefits from vectorization in Table 3.Both
marginalization strategies are performed on two hierarchical linear regression models, the electric
company model [23] and the pulmonary fibrosis model [63]. We find that vectorized marginalization
is much more efficient for sampling from the two models.



Table 4: Specifications of the datasets from cognitive sciences. Details of each model are provided in
Appendix D. GPU models run on an NVIDIA RTX 2080ti GPU. CPU models run on one Intel Xeon
Gold 6148 processor.

dillonE1[12] dutch[17] eeg[48] english[69] £g05[29] mandarin[75] mandarin2[70] pupil[72] stroop[16]
N 2855 372 26176 768 672 547 595 2228 3058
L 2 2 2 2 2 2 2 1 1
M4 40 24 334 48 42 37 40 20 50
M 48 16 80 16 16 15 15 - -
Likelihood LogNormal Normal Normal Normal LogNormal LogNormal LogNormal Normal LogNormal
Device GPU GPU GPU CPU CPU CPU GPU GPU GPU

Method
No Marginalization
Marginalize u;
Marginalize u;

dillonE1l english gg05 mandarin  mandarin2 pupil stroop

Method
No Marginalization
Marginalize u;
Marginalize u;

ESS/iter
il

0.00 dillonE1l dutch eeg english 05 mandarin  mandarin2 pupil stroop

Average ESS/iter for latent variables

Figure 4: Experimental results for the 9 cognitive science datasets with and without marginalization.
Each experiment is performed 5 times with different random seeds. Marginalization usually improves
sampling speed measured by iterations per second (iter/s) and sample efficiency measured by ESS
per iteration (ESS/iter).

6.4 Applications in cognitive sciences

Hierarchical Bayesian inference with LMMs has wide applications in cognitive science [47]. We
highlight the effectiveness of marginalization with 9 datasets from cognitive science (Table 4). They
cover various settings, with one or two random effects, normal or log-normal likelihoods, on CPU
or GPU. Experiments that are slow on CPU are performed on GPU. Each dataset corresponds to an
LMM where both the intercept and the coefficient include random effects. Details of all the models
can be found in Appendix D. Results are summarized in Figure 4. Marginalization usually improves
the sampling speed of HMC and consistently improves efficiency measured by ESS per iteration.

7 Discussion

There are several promising directions for future work.

7.1 Marginalization vs Rao-Blackwellization

Marginalization is related to Rao-Blackwellization. This paper focuses on marginalization, which
improves the speed of obtaining samples from the remaining variables by improving mixing times,

reducing the cost per iteration, or both. Combining marginalization with Rao-Blackwellization

is an interesting avenue for future work. More formally, if one is interested in some expectation

Ew@u)yp@uy [f(O, u)]in an LMM, there is a Monte Carlo estimator

PN

E, = N e ', u),

where (@', u) ~ p(®, uly) and N is the sample size. Marginalization is a trick to improve the
efficiency of the posterior sampling, so that we can achieve the same estimation variance with smaller
N or less runtime . At the same time, we also have access to a conditional distribution that is useful
for Rao-Blackwellization. If the effects variable u can be marginalized we have both an approximate



posterior for p(@|y) and an analytical conditional distributionp(u|®, y). With Rao-Blackwellization
we have that Eg u) pe,uy) [F(©, W) =E e pely) [Eupuey (O, w)ll. Insuch case, another
Monte Carlo estimator can be constructed:

g X

°N
i=1

E, E

upuoy N(©', u),

where @' ~ p(O|y) . For some functions, such as those that are polynomial iru, the inner expectation
can be computed exactly using properties of Gaussians. In other cases, the inner expectation can be
estimated cheaply via Monte Carlo using exact samples from p(u|®i, y).

7.2 Marginalizing multiple effects in general models

In Section 4, we proposed to marginalize multiple classes of random effects by assuming a scaled
identity covariance matrix. To marginalize multiple effects in general models, a possibility is to
compute 2’ E™" z and estimate det(E) and the corresponding gradients with conjugate gradient
(CG) solvers [ 14, 20]. However, this approach uses stochastic estimators for the determinant and
gradients, which introduce bias into the HMC dynamics. These biases can be corrected through
pseudo-marginalization [2], but it is unclear how significantly the extra stochasticity will affect the
sampling. Another possible way to marginalize multiple effects for LMMs is to introduced the
balanced levels assumption [50]. We leave these ideas for future exploration.

7.3 Beyond normal likelihoods

In this work, we only consider normal or log-normal likelihoods, but our method can be easily gener-
alized to other deterministic transformation of normal likelihood. This implies that marginalization
can benefit regression with most continuous predictors given proper link functions. Another potential
future direction is to marginalize classification models with probit regressions [ 1]. Marginalization
will turn probit models into multivariate probit models as AZ yA" + Z y is a dense covariance
matrix, which may require a simulation-based method [ 10] or variational Bayes [ 39]. It will be
interesting to see how ideas from multivariate probit regression could be fit into an HMC pipeline. In
a broader context, marginalization is related to data augmentation techniques that "create" conjugacy
for non-normal likelihoods or non-normal effects. Those techniques were developed for Gibbs
sampling, e.g. [18, 55], but may also be useful for HMC.

7.4 Integration with probabilistic programming

We have developed a tool to speed up the HMC inference for LMMs. In our implementation, the
marginalized likelihoodp(y|®, u-i ) is defined as a special type of parametric distribution available
to the user, and the recovery distribution p(ui |®@, u-i , y)is a function called after sampling. In our
experiments, marginalization never hurt sampling efficiency measured by ESS/s, and usually helped.
Thus, it would be desirable to always marginalize one group of random effects when the model is an
LMM. Future work could aim to automatically apply such transformations to user-specified LMMs.
There are two possible high-level approaches. The first is to perform marginalization starting with
a model described using a high-level abstraction such as an R formula. Then, when compiling the
high-level model description into a concrete model (e.g., a probabilistic program), we can marginalize
one or more of the effects using our methods. The second is to perform marginalization starting with
a user-written probabilistic program representing an LMM. In this case, some compilation or program
tracing technique will be needed to convert the user’s program to a model representation suitable
for manipulation. For example, Lai et al. [35] used program tracing to construct a graphical model
representation that could be programmatically analyzed and transformed. To apply this methodology
to LMMs, a special parser would also be needed to match the models to LMMs.
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A Notation table

We summarize the important symbols used in the paper.

Symbols

Description

N

S
~ .
' =

~<

< < c

SO00XEOMMNES " "MMMTBDPTEEQF-H O S Q®»QIxQDr

Number of observations, and dimension ofy
Dimension for all effects in one class of mixed effects
Number of classes of mixed effects

Dimension for all mixed effects

Dimension for effects of a group in a class

Number of groups in a class

Intercept for linear regression

Slope for linear regression

Standard deviation

Random effects

Concatenated random effects

Observations

Covariates, or treatments

A prior variable sampled from half-normal distributions
A prior variable sampled from LKJ distributions
Grouping variables

Global variables, including priors and fixed effects
Mean of random effects

Design matrix for random effects

Concatenated design matrices

Intercept term in the canonical form for LMMs
Covariance matrix for a class of random effects
Covariance matrix for the observations

Covariance matrix for all random effects

Scale for Z, with the scaled identity assumption

Scale for Zy with the scaled identity assumption

A shared matrix in the reversed model

Difference between observation and mean of the marginalized likelihood
A dense N X N matrix that is difficult to directly compute
The core matrix after applying the two linear algebra lemmas
An intermediate matrix in the implementation

An intermediate vector in the implementation

A row of A

A column of A

A block of d columns of A

The eigenvector matrix for eigendecompsition of B'B
The eigenvalue matrix for eigendecomposition of B'B
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B Proofs and details

B.1 Proof of Theorem 1

We first review the tree structure of the matrix A. A is an N X M matrix where every block of d
columns corresponds to the effects for one group (e.g., an individual subject, age, school, or gender).
For example, if N =3 , k =2 and d = 2, one possible graphical model is as below.

Figure 5: A tree-structured model conditioned on ©.

Each uj € R?. If the coefficients are all 1s, then

1100
A= 1100
0011

To generalize, if for Yi, the grouping Varlable is i, then in the /th row of A, only A, ik canbe
nonzero forj=(g i — 1)d + 1 and k = gid. We consider three representations of the matrix A. By
rows,

[

rq
A= | _’_?J :
N
by columns,
A=(c © - cd),

and by blocks of d columns,

A= A 1g Agi2d - A g-1yar1kd
=(C; €z - Ck)

where each €i (i=1, 2, ..., k) is N X d . Now we restate and prove Theorem 1.

Theorem 1. IfZyis dzagonal Z u is block-diagonal with blocks OfSlze dxd then F=E J+
AT z, -1 A is also block-diagonal with d * d blocks and ComputmgA z, VA takes O(Nd ?) tlme

Proof. The theorem has two parts: (a) the property of F, and (b) the computation of F. We address
them with the three representations of A.

(a) F is block- dlagonal Because Z,, is block-diagonal, 2 - 1s also block- dlagonal with the same
sizes. Also, Zy is diagonal, so the block-diagonality of A’ Z A is the same as A" A. We consider
the column representation of A, then

[ arl

1
A'a=1%] @ ¢ - cq
Ci
{cjrc1 c;cz c;ck1
=lc2c1 c,C, - J

c/c, ¢c/c, .. ClcC«k
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For1<is<sk ,C/Ciisd*xd For1<i<js<k |,
T
Lc(}'—1)d+1

Ci-1)d+2 J 1)1 Cj-tya+2 - Gd

c/ci=
cy
The following lemma shows that C,-T Ci =0.

Lemma 1. Forany1<i<j<k and1<s,t<d, itholds that C(C—1)d+s Ci-1ya+t = 0.

Proof. The lemma can be proved by contradiction. Suppose °(7—1)d+s Cj-1)g+t <= 0 Then there

exists an index 7 such that §j—1yg+s [n]/~ 0 and €j-1)g+¢ [n]/= 0. This means that in the Nth row
of A,both A j-1)q+s and Ap j-1yg+t  are non-zero. This contradicts with the tree-structure where
only one group of 0 elements can be non-zero in a row. O

With the lemma, we have that AT A is block-diagonal, thus Z;" +A T 2;1 A is also block-diagonal
and each block isd x d

(b) The computation of AT 2;1 A is O(Nd ?). Since Z is diagonal, A =% ;1 A has the same
pattern of zeros and nonzeros as A. We consider the row representations such that

[
r
A=lr
r
Then
r N
ATA = ]« o |2 =T
ry i=1
note that each of rj and r; has d non-zero elements. So computing A’ A" is O(Nd 2). O

B.2 Pseudocode for recovery after marginalizing one group of random effects

Algorithm 2 Sampling from p(ui|©, y, ui )

z=y- i Ajy-Aili-b DSparse matrix multiplication in O(NLd) time
G=A' Z;‘ A PBlock diagonal computation in O(Nd ?) time
F=Z'+G PBlock diagonal computation in O(Md ?) time
u=pi+E,01-GF’ )ATZ;,1 z DSparse matrix multiplication in O((M + N)d) time
L = Cholesky(F™") DCholesky of block diagonal matrix in O(Md 2) time

return wi ~ Normal(u, LL").

B.3 Details of scaled identity covariance matrices

With the assumptions of scaled identity covariance matrices, all effects can be marginalized with a
preprocessing of the eigendecomposition of B'B.

(a) Preprocessing before HMC. We compute
B'B-ana’

In LMMs, the computation of B” B is O(NL 202)2, and the eigendecomposition of it is O(D 3). So
the overall complexity for preprocessing isO(D ° + NL 202). Compared with the HMC sampling

Each A/ A/ is O(Nd ?), as a corollary of Theorem 1.
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loop that takes thousands of steps and visits the model hundreds of times each step, the cost of
preprocessing is not expensive. In our attempt to marginalize all random effects for the instructor
evaluation model in Section 6.1, this step takes less than 10 seconds.

(b) Marginalized likelihood during HMC. During HMC sampling, the log density log p(y|O)
would be calculated, which is

1 1
log p(y|0@) = - 5 det (E) - ézTE_1 z+C

wherez=y - Bu—-b and E= BZ BT +Z y- The computation of z takes O(NLd) time. With
the two lemmas, we have

det(E) = det(X ;1 + BTz;1 B) det(Zy) det(Ey),
TE1, - v-1 T e -1 -1 Te-1py- 1R 51
zE z=z % 'z-zZ2,/B(z, +B Z,'B) B z 'z

A shared matrix in the formulas is F = £ ;1 + BT £, B. Then

1
Ty
With the trick, evaluating det(F) reduced to O(D) time as det(Q) = 1 . Also z' E' z becomes

1
F=2'+B'E'B=Q —I1+_—-A Q"
v

_ 1.1
z' E 1z=zTZ;,1z—zTZ;,1 BQ I+ —A Q'B'z'z
Tv Ty y

Note that BT £,z € R® can be computed in O(NLd) time, but its multiplication with Q" takes
O(D ?) time. Given that %I + %l\ is diagonal, the complexity of evaluating log p(y|®) once is
then O(D ? + NLd) .

(c) Ancestral sampling after HMC. In the recovery step, we perform ancestral sampling from
p(v|O, y). To efficiently generate samples, we give the following theorem.

Theorem 2. IfZ, =T, 1, Zy =7yl and B'B=QAQ ', then
viO,y~N(Hvey, Zvey )

where |
T 1 1. N7 o7
Hyoy =+ ~ B'-—QA —+ - Q' B’ z
viey T, T, T, T,
1 .
zvl@,y :Q T—I+ ?A QT.
v y

In Theorem 2, from 2z, we can apply matrix multiplications from right to left to get Hyj@y . The
whole computation takes O(D 2 + NLd) . To generate normal samples a Cholseky factorization for
1

Z ey isrequired. But %I + %I\ is diagonal, so it can be obtained inO(D ?) time as well.

Now we prove Theorem 2.

Proof. Hyey and ey can both be derived algebraically.
”v|0,y (s Mz
=u+Z ,B'(BE,B' +Z,) "z
T - - - T - - T -
=u+Z B (Z,)'-Z'B(X.'+B Z,'B)"'B £,")z
1

T
=u+ B - —B'B(E.'+B'£,'B)"'B)z
y y
Ty o7 _ 1 T 1 10 7 ot
y y v y
Ty o7 1 L P
=u+ Y(B' - —QA —1+ —A Q' B )z
T, T, T, T,
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Zv|°,y = (l - MB)Z v
=1-£,B"(BZ,B’ +X,)"'B)Z,
= +B'E,)'B)”

1 1T
:Q —1+ —A Q .
Tv Ty

19



C Additional experimental results

No marginalization Marginalize u; Marginalize wu. Marginalize usy Marginalize u

A D i o
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Figure 6: Trace plots for Uy 1, Uz 1 and @ of an interval of 1,000 sampling steps after warmup on the
ETH instructor evaluation model, using the same data as Figure 2 in the paper.

Table 5: Number of parameters (out of 4117) whoseR exceed a threshold for 1,000 samples from
HMC, with or without marginalization. Mean and standard deviation over 5 independent runs are
reported.

Threshold No marginalization = Marginalizeuws  Marginalizewz  Marginalizeus  Marginalize u

>1.01 186.80 (37.26)  295.60 (134.57)  11.80(6.05)  59.80 (37.35)  5.20(1.72)
>1.02 99.40 (18.91) 153.20(99.90)  6.20 (7.19) 9.80 (10.48) 0.00 (0.00)
>1.05 13.40 (6.83) 54.00 (51.99) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
>1.10 0.00 (0.00) 23.20 (24.51) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Table 6: Divergence (mean and standard deviation) out of 10,000 samples with different strategies
on the grouseticks model across 5 random seeds under different target probabilities. We use M1 to
represent marginalizing u{, M2 to represent marginalizing up, R1 to represent reparameterizing U4,
R2 to represent reparameterizing .

Transformation Number of divergence
No marginalization 42.60 (25.76)
M1 14.60 (13.85)
M2 0.00 (0.00)
MI, R2 22.60 (18.13)
M2, R1 0.00 (0.00)
RI, R2 431.60 (507.37)
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D Models and example probabilistic programs

We provide the details of the nine cognitive science datasets and their corresponding models and
probabilistic programs. We follow [47] and use maximal models with correlated varying intercept
and slopes for each of the datasets. The model for the pupil dataset is described in Section 2.

D.1 Agreement attraction in comprehension

The dataset (dillonE1) studies the effect of the agreement attraction phenomenon when reading a
noun with the auxiliary verb [12]. The predictor is

log(yi) =a+u 1,911 TU2g, 1 F tiB+u 1,912 T U2,g,; ,2) +€€~N(0, 02)-

Each experiment resultY; is from subject 94 ; on sentence 9> ;, with {i being the interference level
(i € {0, 1}). Bayesian hierarchical modeling assigns prior to the variables.

T, ~ N *(0, diag(5, 5)), L1 ~ LKICholesky(2, 1), T2 ~ N * (0, diag(5%, %)), L2 ~ LKJICholesky(2, 1),
a~N(0,10%), B~N(0,5%), 0~N *(0,#), uy; ~ N (0, TiLiL{T1), Ui ~ N (0, ToLoL; T>).

The probabilistic program in NumPyro is then

def model(n_sub, n_item, n_obs, g1, g2, treatment, obs):
alpha = numpyro.sample(‘alpha’, dist.Normal(0, 10))
beta = numpyro.sample('beta’, dist. Normal(0, 5))
sigma = numpyro.sample('sigma’, dist.HalfNormal(5))
sigma_u = numpyro.sample('sigma_u', dist.LKJCholesky(2))
tau_u = numpyro.sample('tau_u', dist.HalfNormal(5), sample_shape=(2, ))
sigma_v = numpyro.sample('sigma_v', dist.LKJCholesky(2))
tau_v = numpyro.sample('tau_v', dist.HalfNormal(5), sample_shape=(2, ))
s_u = jnp.matmul(jnp.diag(tau_u), sigma_u)
s_v = jnp.matmul(jnp.diag(tau_v), sigma_v)
u = numpyro.sample('u’, dist.MultivariateNormal(jnp.zeros((2,)), scale_tril=s_u), sample_shape=(n_sub,))
v = numpyro.sample('V', dist.MultivariateNormal(jnp.zeros((2,)),scale_tril=s_v), sample_shape=(n_item,))
numpyro.sample('y', dist.LogNormal(alpha + u[g1][...,0] + v[g2][...,0] +
treatment * (beta + u[g1][...,1] + V[g2][...,1]), sigma), obs=0bs)

We use u and V in the codes to represent the two random effects. The probabilistic program with
marginalization is similar. Suppose we marginalize u, our probabilistic program becomes

def model(n_sub, n_item, n_obs, g1, g2, treatment, obs):
alpha = numpyro.sample(‘alpha’, dist.Normal(0, 10))
beta = numpyro.sample('beta’, dist.Normal(0, 5))
sigma = numpyro.sample('sigma’, dist.HalfNormal(5))
sigma_u = numpyro.sample('sigma_u', dist.LKJCholesky(2))
tau_u = numpyro.sample('tau_u', dist.HalfNormal(5), sample_shape=(2, ))
sigma_v = numpyro.sample('sigma_v', dist.LKJCholesky(2))
tau_v = numpyro.sample('tau_v', dist.HalfNormal(5), sample_shape=(2, ))
s_u = jnp.matmul(jnp.diag(tau_u), sigma_u)
s_v = jnp.matmul(jnp.diag(tau_v), sigma_v)
u = jnp.zeros((n_sub, 2))
v = numpyro.sample('V', dist.MultivariateNormal(jnp.zeros((2,)),scale_tril=s_v), sample_shape=(n_item,))
numpyro.sample('y', MarginalizedMultivariateLogNormalGroupCoeff(alpha + u[g1][...,0] + v[g2][...,0] +
treatment * (beta + u[g1][...,1] + V[g2][...,1]), s_u, sigma, g1, treatment, n_sub, n_obs, u), obs=obs)

To marginalize v, the probabilistic program is

def model(n_sub, n_item, n_obs, g1, g2, treatment, obs):
alpha = numpyro.sample(‘alpha’, dist.Normal(0, 10))
beta = numpyro.sample('beta’, dist.Normal(0, 5))
sigma = numpyro.sample('sigma’, dist.HalfNormal(5))
sigma_u = numpyro.sample('sigma_u', dist.LKJCholesky(2))
tau_u = numpyro.sample('tau_u', dist.HalfNormal(5), sample_shape=(2, ))
sigma_v = numpyro.sample('sigma_v', dist.LKJCholesky(2))
tau_v = numpyro.sample('tau_v', dist.HalfNormal(5), sample_shape=(2, ))
s_u = jnp.matmul(jnp.diag(tau_u), sigma_u)
s_v = jnp.matmul(jnp.diag(tau_v), sigma_v)
v = jnp.zeros((n_item, 2))
u = numpyro.sample('u’, dist.MultivariateNormal(jnp.zeros((2,)), scale_tril=s_u), sample_shape=(n_sub,))
numpyro.sample('y', MarginalizedMultivariateLogNormalGroupCoeff(alpha + u[g1][...,0] + v[g2][...,0] +
treatment * (beta + u[g1][...,1] + V[g2][...,1]), s_v, sigma, g2, treatment, n_item, n_obs, v), obs=obs)

The probabilistic programs for the other models will be similar and we omit them for simplicity.
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D.2 English and Dutch Grammaticality illusion
The datasets (english [69], dutch [17]) study the VP-forgetting hypothesis 25] for different languages.
They use the same predictor and priors. The predictor is
Yi=a+uqg,, 1+U2g, 1+ti(B+Uqg, 2+U2g, 2)+€E€e~N(O, 0'2),
where 1 is the treatment variable and {; € {1, 1} . And the prior is
T, ~ N *(0,diag(12, %)), Ly ~ LKICholesky(2, 1), T2 ~ N * (0, diag(1?, 1)), L2 ~ LKJCholesky(2, 1),
a~N(0,10%), B~N(0,52), 9~N *(0,F), ur; ~N (0, TiLiL{ T1), uzx ~ N (0, T2LoL) T>).

D.3 Electrophysiological responses with N400 effect
In the study of language, the electroencephalography (EGG) responses with N400 effect is studied
[47]. Experimental results of subjects from the Edinburgh lab are collected [48]. The predictor is
Yi=a+U g, 1+Uzg, 1 +ti(B+Unrg, 2+ Uzg, 2)+6€ €~N(0, d?),
where {; is the treatment variable and {; € [0, 1] And the prior is
T, ~ N *(0,diag(20?, 2¢)), Ly ~ LKICholesky(2, 1), T2 ~ N * (0, diag(20%, 2¢)), L, ~ LKJICholesky(2, 1),
a~N(0,10%), B~N(0,10%), 0~N *(0,5F), uy; ~N (0, TiL1L T1), uzx ~ N (0, ToLoL) T).

D.4 Subjective and objective relatives

Grodner and Gibson [29] (gg05) studies the processing time difference between object relative clause

and subject relative clause sentences. The predictor is

l0g(yi) = G+ U 1,g,, 1+ Uzgy 1 +Usgy, 1 +Li(B+Unrg, 2+ Uzg, 2+ Usgy 1)+ € €~N(0,0%),

and the treatment variable {; e {-1, 1} . The third effect uz is related to different repeats of the
experiment and has only two groups. We consider the first two effects for marginalization to match
the other experiments. The prior for the variables is

T~ N *(0,diag(5%, &), T2 ~N *(0,diag(5% %)), T3~ N * (0, diag(5%, &)),
L, ~ LKJCholesky(2, 1), Lo ~ LKJCholesky(2, 1), L3 ~ LKJCholesky(2, 1),
a~N(0,10%), B~N(0,52%), a~N *(0, %),
ui; ~N (O, T/LiL{T4), uzx ~ N (0, ToLoL) T2), ugs ~ N (0, ToLsL] Ta).

D.5 Relative clause processing in Mandarin Chinese
The datasets (mandarin [75], mandarin2 [70]) are collected from experiments to study the effect of
relative clause type on reading time of Mandarin Chinese. In our model, the predictor is
log(yi) = a+u 14, 1+Usg, 1 +ti(B+U1g, 2+Usg, 2)+€€~N(0, 0%,
where {; is the treatment variable and {; € {-0.5, 0.5} . And the prior is
T, ~ N *(0,diag(5%, %)), Lt ~ LKICholesky(2, 1), T2 ~ N * (0, diag(5%, %)), L2 ~ LKJCholesky(2, 1),
a~N(0,10%), B~N(0,52), 0~N *(0,F), u; ~N (0, TiLiL{ T1), uzx ~ N (0, ToLoL; T).

D.6 The Stroop effect

The Stroop effect describes the change of response time between congruent and incongruent stimuli
[38]. The dataset is from Ebersole et al. [16]. Different from the other models, the noise scale for
each observation is also grouped. In our model, the predictor is

log(yi)=a+u g 1+ti(B+ug 2)+€ €~N(0, 0?), 0 =exp(Oa +Sg 1 +1i(08 +Sg 2)),
and the treatment variable is {j € {-1, 1} . Priors for the model are
T. ~ N 7 (0,diag(1, 1)), Ly ~ LKJCholesky(2, 1), To ~ N * (0, diag(1, 1)), Lo ~ LKJCholesky(2, 1),
a~N (6, 1.5%), B~N(0,0.01%), gz ~ N (0, 1), I ~ N (0, 1),
W ~N(0 TyLkuL.Tu), § ~ N (0, ToLoL) To).
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