
Learn more, but bother less: parameter efficient
continual learning

Fuli Qiao
Pennsylvania State University

fvq5015@psu.edu

Mehrdad Mahdavi
Pennsylvania State University

mzm616@psu.edu

Abstract

Large Language Models (LLMs) have demonstrated profound capabilities due to
their extensive pre-training on diverse corpora. However, LLMs often struggle with
catastrophic forgetting when engaged in sequential task learning. In this paper,
we propose a novel parameter-efficient approach for continual learning in LLMs,
which empirically investigates knowledge transfer from previously learned tasks to
new tasks through low-rank matrix parameters, enhancing the learning of new tasks
without significant interference. Our method employs sensitivity-based analysis
of low-rank matrix parameters to identify knowledge-specific parameters between
sequential tasks, which are used to initialize the low-rank matrix parameters in
new tasks. To maintain orthogonality and minimize forgetting, we further involve
the gradient projection technique that keeps the low-rank subspaces of each new
task orthogonal to those of previous tasks. Our experimental results on continual
learning benchmarks validate the efficacy of our proposed method, which out-
performs existing state-of-the-art methods in reducing forgetting, enhancing task
performance, and preserving the model’s ability to generalize to unseen tasks.

1 Introduction

Large Language Models (LLMs) [1, 5, 32, 40] have demonstrated exceptional performance across a
broad spectrum of tasks, significantly revolutionizing the landscape in diverse areas driven by artificial
intelligence. Full fine-tuning all the parameters of the pre-trained models becomes prohibitive in
adapting pre-trained models to a large number of downstream tasks. Thus, following LoRA [11],
multiple variants [24, 50] of low-rank adaptation have been proposed to prompt parameter-efficient
learning for LLMs. AdaLoRA [50] enhances the flexibility of low-rank matrices for various device
budgets by parameterizing the increments through singular value decomposition. It generalizes the
matrices, enabling layer-specific rank adjustments to meet different parameter constraints.

Despite the tremendous success of pre-trained models on static tasks, learning multiple sequential
tasks, known as continual learning (CL), still poses significant challenges [45]. There are two primary
challenges: (i) overcoming catastrophic forgetting, where a model’s performance on previous tasks
significantly deteriorates upon training with new data [28, 34], and (ii) facilitating forward transfer,
where knowledge from old tasks is harnessed to enhance the learning of new tasks. In the context of
LLMs, continual learning extends beyond merely enhancing linguistic and reasoning capabilities and
it encompasses a multi-faceted process, including continual pertaining [12], continual instruction [52],
and continual alignment [49].

While existing parameter-efficient tuning (PET) methods for CL [27, 31, 39, 43] have primarily
focused on mitigating the forgetting issue, they often overlook the equally important objective of
facilitating forward knowledge transfer. This transfer is crucial as it allows the model to leverage
previously acquired knowledge to better generalize to new tasks or domains. For instance, O-
LoRA [43], operating within the PET framework, proposes an orthogonal low-rank adaptation

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

for continual instruction. This method incrementally learns new tasks in an orthogonal subspace,
ensuring that the LoRA parameters from previous tasks remain fixed to minimize forgetting. Besides,
compared to full fine-tuning, LoRA inherently forgets less of the source domain, serving as a form of
regularization [2]. However, O-LoRA does not explicitly address knowledge transfer across different
tasks.

Figure 1: Comparison performance of the
model after training task T2 with different
layers replacement.

Focusing on knowledge transfer among tasks, many existing non-PET
knowledge transfer methods in CL, such as Progressive Network [37]
which tackles forward knowledge transfer, and CUBER [22] which
employs backward knowledge transfer, while having distinctive ap-
proaches to managing knowledge across tasks, they are not directly
applicable to the continual learning setting in the PET framework due
to their prohibitive computational costs. Although there have been
recent attempts at parameter-efficient fine-tuning of LLMs, these
methods have failed when applied to CL. For instance, while the
parametric knowledge transfer paradigm [53] in PET harnesses the
rich knowledge embedded within a teacher’s parameters by extracting
task-specific parameters and injecting them into a student model via sensitivity metrics, such methods
do not exist in CL for LLMs.

Table 1: Testing accuracy of T1 and
T2 after training T2 with different
layer replacements, highlighting the best-
performing strategy as shown in Fig. 1.

T1 (amazon) → T2 (yahoo)

no top 4 top 9 all

T1 15.4 15.0 16.6 0.2

T2 73.6 73.9 73.7 73.3

T1 (yahoo) →T2 (amazon)

no top 4 top 9 all

T1 46.8 50.7 39.1 42.5

T2 52.9 54.9 54.5 53.9

To investigate the impact of leveraging parametric knowledge in the
incremental learning of LoRA parameters on a new task, we conduct an
experiment where layers from the previous task’s LoRA-based layers
are simply replaced at the training initialization of the new task’s LoRA
layers, without a predefined strategy for selecting key parameters. The
results, presented in Tab. 1 and Fig. 1 using the pre-trained model T5-
large [32] with incremental LoRAs for Amazon Reviews and Yahoo
Answers [51], indicate that this simple layer replacement can enhance
performance. Notably, Tab. 1 reveals that the best replacement strategy
significantly improves the performance of both the new task T2 and
the old task T1 compared to scenarios with no replacement.

The aforementioned observations motivate that an ideal approach for
continual learning of LLMs in the PET framework should take the best
of both worlds by simultaneously overcoming catastrophic forgetting
and promoting forward transfer for enhanced generalization across
a continual stream of tasks. Motivated by these needs, we seek to
explore a new dimension in CL for LLMs:

How can we effectively inject knowledge from previous tasks into new tasks (for improving
generalization) while maintaining the orthogonality of each task’s low-rank subspaces (for

mitigating forgetting) to facilitate parameter-efficient continual learning?

To answer this question, we propose a novel all-for-all parameter-efficient approach for continual
learning in LLMs, which empirically investigates knowledge transfer from previously learned tasks
to new tasks using low-rank matrix parameters evaluated by sensitivity scores while maintaining
orthogonality via gradient projection techniques. We name this method LB-CL (Learn more but
bother less Continual Learning). Specifically, LB-CL first calculates sensitivity metrics for SVD-
based low-rank parameters of previous tasks to guide the injection of parametric knowledge into
new task parameters. Then, it supports incremental learning of new tasks in orthogonal subspaces by
preserving low-rank parameters of previous tasks. When transferring knowledge, LB-CL prioritizes
low-rank triplets (consisting of a singular value and its corresponding singular vectors) from past
tasks based on their sensitivity scores, enabling the new task to learn more from higher-scoring
triplets. To preserve the orthogonality of low-rank subspaces, we project the gradients of the new
task onto the subspaces formed by previously learned low-rank triplets, encouraging the new task to
deviate appropriately from more impactful triplets. Our experimental results validate that LB-CL
surpasses previous state-of-the-art methods on standard continual learning benchmarks. Moreover,
our analysis highlights the critical role of initialization strategies in promoting generalization through
effective parametric knowledge transfer, while also using low-rank orthogonal gradient projection to
mitigate catastrophic forgetting.

2

Training Data
(Task Tt+1)

Seed Samples

1⃝ Random
Sample

Pre-trained
Model W 0

+
V 1

Σ1

U1

+ · · ·+
V t

Σt

U t

+
V t+1

Σt+1

U t+1

2⃝ Inference

3⃝ Extraction +

V t+1
0

Σt+1
0

U t+1
0

4⃝ Injection 5⃝ Training

5⃝ Training
V
t+
1

Σ
t+
1

U
t+
1

V
t+
1

0

Σ
t+
1

0

U
t+
1

0

Student

Teacher

6⃝ Orthogonal
Gradient
Update

7⃝ Merge

frozen weights trainable weights

Figure 2: Overview of our LB-CL framework. Starting with the pre-trained model including SVD
weights of previous tasks, sensitivity metrics are calculated using a set of seed samples, facilitating
the extraction of task-specific knowledge. Subsequently, the extracted layer triplets initialize SVD
weights for the new task. Then, the new task is trained in an orthogonal subspace, employing
orthogonal gradient projection to minimize forgetting.

■ Summary of Contributions. This paper makes three key contributions: (1) A novel parameter-
efficient continual learning framework for LLMs that balances generalization through parametric
knowledge transfer and the mitigation of forgetting through low-rank orthogonal subspace learning for
new tasks; (2) Through comprehensive evaluations, our method demonstrates superior performance
over existing state-of-the-art approaches on standard continual learning benchmarks; and (3) We
provide an in-depth analysis that deepens our understanding of the dynamics of parametric knowledge
transfer within continual learning for LLMs, pinpointing critical factors that drive its effectiveness.

2 Continual Learning Maestro: Learn More but Bother Less
We consider a continual learning scenario where the learner is presented with a sequence of tasks
{T1, T2, . . . , TT } over time. Each task Tk is associated with a data distribution Dk and contains
a separate target dataset Sk = {(xk,i, yk,i)}nt

i=1 where xk,i ∈ Xk and yk,i ∈ Yk. The goal of
continual learning is to find a set of parameters θ ∈ Θ that can effectively solve all tasks up
to the current task Tk, while minimizing catastrophic forgetting of previously learned tasks. In
continual learning of LLMs, we are given a pre-trained model W 0, and would like to continually
fine-tune on a sequence of tasks, utilizing the incremental SVD-based low-rank matrix parameters
UkΣkV k to fine-tune on task Tk, where Uk ∈ Rd1×r and V k ∈ Rr×d2 represent the left/right
singular vectors and the diagonal matrix Σk ∈ Rr×r contains the singular values {λi}1≤i≤r with
r ≪ min (d1, d2). To enforce the orthogonality of U and V , i.e. U⊤U = V V ⊤ = I , we use the
regularizer: R(U ,V) = ∥U⊤U − I∥2F + ∥V V ⊤ − I∥2F. The continual learning model parameters
after fine-tuning on task Tk is: θk = W 0 +

∑k
m=1 U

mΣmV m. Our continual learning goal is to
optimize the following objective across all tasks:

max
θ

∑T

k=1

∑
(x,y)∈Tk

log pθ(y|x), (1)

where θ = W 0 +
∑T

k=1 U
kΣkV k. Our method contains two important stages: (i) Learning from

knowledge extraction and injection, which transfers knowledge from previously learned tasks to new
tasks by incremental SVD triplet sensitivity metric; (ii) Training in Orthogonal Subspaces, which
keeps the low-rank subspaces of new tasks orthogonal to those of old tasks. The detailed description
of our proposed method, LB-CL, is shown in Fig. 2.

■ Generalization and Forgetting Tradeoff of Low-rank Finetuning. Before delving into the
detailed steps of proposed algorithm, here we motivate these steps by investigating the forgetting and
generalization tradeoff of SVD based low-rank parameter-efficient methods in CL. The performance
of a CL algorithm is typically evaluated using two key metrics [3, 4, 16, 21, 23, 25] as defined below:
(i) Forgetting error: which quantifies the performance degradation on previously learned tasks after
acquiring a new task formulated as:

3

F(θ1, . . . ,θT) =
∑T−1

t=1
Lt(θT)− Lt(θt) (2)

where θt = W 0+
∑t

k=1 U
kΣkV k, Lt(·) is the generalization error on task Tt, and Lt(θT)−Lt(θt)

is the performance degradation (forgetting) on tasks Tt between the model after training on task Tt
and the model after training on the final task TT .

(ii) Generalization error: which measures the algorithm’s capability to effectively learn a new task
while preserving the knowledge gained from prior tasks defined as:

I(θ1, . . . ,θT) =
∑T

t=1
Lt(θt)− Lt(θ

∗
t) (3)

where Lt(θt)− Lt(θ
∗
t) measures the generalization gap between the CL model θt and the optimally

fine-tuned model θ∗
t = W 0 +U t

∗Σ
t
∗V

t
∗ on task Tt. The generalization of final model on all tasks

can be decomposed in terms of forgetting generalization errors as follows:∑T

t=1
Lt(θT)− Lt(θ

∗
t) = F(θ1, . . . ,θT) + I(θ1, . . . ,θT) (4)

It is crucial to note that the generalization error is based on the final model over all tasks, which
may not fully capture each task-specific optimal setting since each task could potentially achieve
better performance metrics when fine-tuned individually. Given the complexities in addressing our
generalization error due to limited theoretical support, we utilize initialization parameters to further
decompose the per-task generalization term on the left-hand side of Eq. 4. This involves measuring
the performance difference between the CL model θt after learning on tasks Tt and its initialization
θ
(0)
t , evaluated on task Tt as:

Lt(θT)− Lt(θ
∗
t) =

(
Lt(θT)− Lt(θt)

)
︸ ︷︷ ︸

(I): forgetting error

+

(
Lt(θt)− Lt(θ

(0)
t)

)
︸ ︷︷ ︸
(II): improvement by fine-tuning

+

(
Lt(θ

(0)
t)− Lt(θ

∗
t)

)
︸ ︷︷ ︸

(III): generalization of initial model

From this decomposition, it is clear that all three terms must be carefully calibrated to enhance the
overall performance of CL algorithm. In the context of SVD-based low-rank fine-tuning, we have:

• The term (I) captures the forgetting error. It is evident that models that undergo minimal changes
when fine-tuned to a new target domain will exhibit less forgetting of the source domain. This
automatically holds for fine-tuning with low-rank updating methods as it acts as a regularization.
This can be further amplified by fine-tuning in orthogonal subspace.

• The term (II) captures the performance of fine-tuning algorithm itself. Since fine-tuning with
low-rank updates is not capable of approximating full fine-tuning accuracy [2], and in order to
balance between stability (retaining old knowledge) and plasticity (acquiring new knowledge) we
need to leverage methods such as orthogonal gradient projection to better align with current task.

• The term (III) captures the generalization of the initial model. Since the knowledge transfer
from previous tasks happens through the initial model, naive averaging of low-rank models from
previous tasks might entail a dramatically poor generalization on the current task, in particular
when there is a larger domain shift among tasks. Consequently, the contribution of each task should
be proportional to its similarity to the current task, measured by leveraging effective discrepancy
estimation methods. We formulate this process as the parametric knowledge extraction:

β̂ = argmin
β

Lt

(
W 0 +

∑t−1

k=1
βkUkΣkV k

)
(5)

where β = [β1, . . . ,βt−1]⊤ extracts optimal coefficients approximating the influence of new task
data on each previous task SVD-based low-rank adapters. Then the parametric knowledge injection
in the CL model initialization for task Tt is constructed as follows:

θ
(0)
t = W 0 +

∑t−1

k=1
UkΣkV k +

∑t−1

k=1
α̂kUkΣkV k, where 1 + α̂k = β̂k (6)

In summary, while updating with low-rank models in CL can provide an implicit regularization
effect to mitigate the forgetting issue, their generalization capability is limited due to the low-rank
perturbation of parameters. This necessitates effective initialization to overcome the generalization
limitations of low-rank updates. Specifically, an initialization that can effectively capture the shared
knowledge across tasks based on their similarities to augment the knowledge captured by the pre-
trained model is required to facilitate knowledge transfer and improve generalization when performing
low-rank updates in a CL setting.

4

2.1 Learning from Knowledge Extraction and Injection

■ Sequential Task Low-rank Adapter. In our continual learning framework, for a pre-trained
weight matrix W 0, it parameterizes the incremental updates for task Tt by SVD-based low-rank
matrices: θt = θt−1 + ∆ = W 0 +

∑t−1
k=1 U

kΣkV k + U tΣtV t. Similar to [50], we define
Gt
l,i = {U t

l,∗i,λ
t
l,i,V

t
l,i∗} as the i-th triplet (i-th singular value and its vectors) of layer l for task

Tt, which is different from the dependent and not orthogonal doublet in LoRA-based low-rank
matrices. With the SVD-based flexible regularizer, the training objective for task Tt is represented as
Lt(U

t,Σt,V t) = Lt(U
t,Σt,V t)+γ

∑n
i=1 R(U t

i,V
t
i), where n is the number of weight matrices

and γ > 0 is the regularization coefficient.

■ Sensitivity of the Parameters. Parameter sensitivity quantifies the impact on the loss function
when a specific parameter is altered, typically set to zero, providing insight into the parameter’s
importance [14, 19, 26, 30, 53]. Consider a teacher model with parameters θ = [θ1, . . . ,θNt],
where Nt denotes the total number of parameters, the i-th parameter is θi = [0, . . . ,θi, . . . , 0]. The
sensitivity Si,j for sample xj from task T is calculated as Si,j = |θi∇θL(xj)| ≈ |L(θ)−L(θ−θi)|,
where the approximation uses the first-order Taylor expansion of L(·) at θi. Thus, we formulate
the sensitivity of each triplet of low-rank matrices, rather than each parameter of the model. By
masking the l-th layer i-th triplet Gk

l,i = {Uk
l,∗i,λ

k
l,i,V

k
l,i∗} of low-rank matrices for previous task Tk,

following [50], we can obtain the sensitivity score of the l-th layer i-th triplet of low-rank matrices
for previous task Tk, where k ∈ {1, . . . , t− 1}, on new data sample xt from new task Tt:

Sk
l,i = S(λk

l,i) +
1

d1

d1∑
j=1

S(Uk
l,ji) +

1

d2

d2∑
j=1

S(V k
l,ij) (7)

■ Knowledge Extraction and Injection. For simplicity in analysis and mathematical expression,
we assume that each layer within every task shares the same SVD-based low-rank adapter rank r. Our
first step is to assess the layers of the previous task Tk low-rank matrices where k ∈ {1, . . . , t− 1},
by Eq. 7, we calculate triplet-specific sensitivity scores in layer l and this layer sensitivity score is
represented as Sk

l =
∑r

i=1 S
k
l,i. To preserve the inherent structure of the tasks’ low-rank adapters, the

layers are subsequently mapped to the new task Tt adapter maintaining their original sequential order.
Having computed the sensitivity scores of all triplets for layer l in previous tasks {T1, . . . , Tt−1}, we
proceed to arrange them with weighted sensitivity scores to initialize the layer l in new task Tt:

Gt
l,i = {U t

l,∗i,λ
t
l,i,V

t
l,i∗} =

{
t−1∑
k=1

αk
l,iU

k
l,∗i,

t−1∑
k=1

αk
l,iλ

k
l,i,

t−1∑
k=1

αk
l,iV

k
l,i∗

}
(8)

where αk
l,i is the weight for the components of the triplet Gk

l,i, and αk
l,i =

Sk
l,i∑t−1

k=1 Sk
l,i

obtained from the

sensitivity founded in Eq. 7. By aggregating weighted triplets across layers, we derive the extracted
triplets from previous tasks’ adapters and inject these triplets into the new task’s adapter.

2.2 Training in Orthogonal Subspaces
We utilize the SVD-based adapter’s low-rank subspace to represent the gradient subspaces of previous
tasks, asserting that these parameters capture essential model update directions rather than just
numerical adjustments [43]. This hypothesis allows us to minimize interference with previously
learned tasks by training within a subspace orthogonal to that of the SVD-based subspace. We
approximate the layer l subspace for task Tk as the subspace consisting of the triplets Gk

l . To ensure
orthogonal to the previously learned tasks layer subspaces, we first project the gradients of layer
triplets of new task Tt onto the previously learned tasks layer subspaces spanned by {Gk

l }, where
k ∈ {1, . . . , t − 1}, and then make the gradients far away from these subspaces. The gradients of
layer l triplets of data xt from new task Tt become:

∇Gt
l
Lt(Gt

l ;xt) = ∇Gt
l
Lt(Gt

l ;xt)−
t−1∑
k=1

proj(∇Gt
l
Lt(Gt

l ;xt),Gk
l) (9)

where proj(u,v) = ⟨u,v⟩
⟨v,v⟩ v is the projection of u in the direction of v [7].

5

3 Experiments
3.1 Experimental Setup
Our experiments employ the encoder-decoder architecture of the T5-large and T5-base models [32],
consistent with previous work in CL for NLP. All experiments are conducted on NVIDIA A6000
GPUs, utilizing the DeepSpeed repository.

■ Standard CL benchmark. We evaluate our approach using a CL benchmark specifically designed
for language models. This benchmark comprises five text classification datasets: AG News, Amazon
Reviews, Yelp Reviews, DBpedia, and Yahoo Answers, as introduced by [51]. We adhere to the CL
setup for the T5 model as outlined in LFPT5 [31] and experiment with three different task orders
within this benchmark.
■ Large number of tasks. Our method’s efficacy is further tested on extended task sequences through
a comprehensive CL benchmark encompassing 15 datasets, as detailed in [35]. This benchmark
integrates tasks from three sources: five from the standard CL benchmark, four from the GLUE
benchmark (MNLI, QQP, RTE, SST-2), five from the SuperGLUE benchmark (WiC, CB, COPA,
MultiRC, BoolQ), and the IMDB movie reviews dataset. For each task, we train using 1000 randomly
selected samples and validate using 500 samples per class, following the methodology of [35].
■ Metrics. We define the testing accuracy on the task Ti after training on the task Tj as ai,j . The
main metric for evaluation is Average Accuracy (AA), calculated as the mean accuracy across all
tasks after training on the last task: 1

T

∑T
i=1 ai,T .

■ Baselines. We compare our method against various baseline approaches:

• SeqFT [6]: train all model parameters on a sequence of tasks (without adding any regularization
or replaying samples from the previous tasks).

• SeqLoRA: fixed-size LoRA parameters are trained on a sequence of tasks (without adding any
regularization or replaying samples from the previous tasks).

• IncLoRA: incremental learning of new LoRA parameters on a sequence of tasks (without adding
any regularization or replaying samples from the previous tasks).

• SeqSVD: fixed-size SVD parameters are trained on a sequence of tasks (without adding any
regularization or replaying samples from the previous tasks).

• Replay: fine-tune the whole model with a memory buffer, and replay samples from old tasks when
learning new tasks to avoid forgetting.

• EWC [13]: fine-tune the whole model with a regularization loss that prevents updating parameters
that could interfere with previously learned tasks.

• LwF [18]: constrains the shared representation layer to be similar to its original state before learning
the new task.

• L2P [44]: uses the input to dynamically select and update prompts from the prompt pool in an
instance-wise fashion.

• LFPT5 [31]: continuously train a soft prompt that simultaneously learns to solve the tasks and
generate training samples, which are subsequently used in experience replay.

• L-CL: incremental learning of new SVD parameters on a sequence of tasks with initialization and
SVD regularization.

• B-CL: incremental learning of new SVD parameters on a sequence of tasks with gradient projection
and SVD regularization.

• NLNB-CL: incremental learning of new SVD parameters on a sequence of tasks (with adding only
SVD regularization and without replaying samples from the previous tasks), also called IncSVD.

• ProgPrompt [35]: adopts task-specific soft prompts for each task, training distinct models per task
and using task IDs during inference.

• O-LoRA [43]: incrementally train new tasks in an orthogonal subspace while fixing the LoRA
matrices of previous tasks.

• PerTaskFT: train a separate model for each task.
• MTL: train a model on all tasks as multi-task learning, serving as the benchmark’s upper bound of

the performance limit.

3.2 Main Results
Tab. 2 presents a performance comparison of LB-CL and baseline continual learning methods across
two CL benchmarks. Following LFPT5, we report results from three random runs with different
task orders on the CL benchmark. For fairness, we use the same rank of the LoRA-based and
SVD-based matrix in each corresponding comparison experiment. To reduce computation time,

6

Table 2: Testing performance on two standard CL benchmarks with T5-large.
Standard CL Benchmark Large Number of Tasks

Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg
SeqFT 18.9 24.9 41.7 28.5 7.4 7.3 7.4 7.4

SeqLoRA 39.5 31.9 46.6 39.3 4.9 3.5 4.2 4.2
IncLoRA 63.4 62.2 65.1 63.6 63.0 57.9 60.4 60.5
SeqSVD 40.0 63.3 44.9 49.4 13.7 13.8 12.2 13.2
Replay 50.3 52.0 56.6 53.0 54.5 54.3 53.5 54.1
EWC 46.3 45.3 52.1 47.9 44.9 44.0 45.4 44.8
LwF 52.7 52.9 48.4 51.3 49.7 42.8 46.9 46.5
L2P 59.0 60.5 59.9 59.8 57.7 53.6 56.6 56.0

LFPT5 66.6 71.2 76.2 71.3 69.8 67.2 69.2 68.7
L-CL 75.3 73.5 71.9 73.6 66.5 64.0 69.0 66.5
B-CL 76.4 71.5 75.1 74.3 65.7 66.4 69.2 67.1

NLNB-CL 76.0 73.4 74.0 74.5 67.6 65.3 62.6 65.2
O-LoRA 74.9 75.3 75.9 75.4 70.5 65.5 70.5 68.8
LB-CL 76.9 76.5 76.8 76.7 68.4 67.3 71.8 69.2

ProgPrompt 76.1 76.0 76.3 76.1 78.7 78.8 77.8 78.4
PerTaskFT 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1

MTL 80.0 80.0 80.0 80.0 76.3 76.3 76.3 76.3

we reasonably focus on some high-level layers to narrow the searching range of exploring critical
parametric knowledge, since previous research, e.g. [43, 50], has already demonstrated that high-level
layers are important for model performance.

■ Results on Standard Continual Learning Benchmarks. Across all task orders of the standard CL
benchmark, LB-CL consistently surpasses previous methods by a significant margin. Notably, LB-CL
achieves performance improvements in all task orders compared to O-LoRA, the prior state-of-the-art.
Our approach demonstrates performance on par with multi-task learning and significantly exceeds
that of PerTaskFT. This indicates that LB-CL not only effectively prevents catastrophic forgetting but
also efficiently utilizes knowledge from prior tasks to enhance the learning of new tasks.

■ Performance with Large Number of Tasks. In a more demanding benchmark featuring a large
number of tasks, LB-CL surpasses the state-of-the-art, O-LoRA, in terms of average performance
across three task orders. Although ProgPrompt shows superior performance in managing long-
sequence tasks, its limitations are notable. ProgPrompt is strictly dependent on the tasks it has
been trained on and relies heavily on task IDs during inference, which restricts its generalization
capabilities and adaptability for use in LLMs. However, LB-CL does not use task ID during testing,
which keeps its generalization. It is important to note that nearly all existing continual learning
methods fall significantly short of the performance achieved by PerTaskFT and MTL, underscoring
that continual learning with a large array of tasks remains a formidable challenge.

3.3 Discussions

■ How do initialization and gradient projection effectively influence the performance of LB-CL?
We systematically evaluated the influence of two components: initialization and gradient projection.
The results across various orders and their average performances, as presented in the last rows in
Tab. 2, reveal distinct trends. L-CL, which employs only initialization, suggests that while this
component does provide a beneficial starting point for task learning, it falls short of maintaining
knowledge across tasks in Order 3. B-CL, utilizing only gradient projection, demonstrates slightly
higher performance than L-CL in Order 1 and Order 3. However, the absence of initialization limits
its effectiveness, particularly in establishing a robust foundation in Order 2. NLNB-CL, which neither
initializes nor employs gradient projection, surprisingly performs slightly better than both L-CL
and B-CL on average, but it does not excel in any specific order. This outcome suggests that the
model may possess inherent adaptive capabilities or rely on other compensatory mechanisms. LB-CL,
integrating both initialization and gradient projection, exhibits the highest overall performance with
consistent scores across all orders. This robust performance indicates that the synergistic contribution
of both components significantly enhances the model’s ability to effectively handle CL tasks.

7

■ How do different initialization strategies affect the performance? To elucidate the impact
of distinct initialization strategies, we compare two different initialization strategies motivated by
[29] to initialize new task Tt: (i) with previous tasks low-rank matrix triplets Gk, and (ii) without
the singular values Σk but leveraging {Uk,V k} where k ∈ {1, . . . , t − 1}. These strategies are
assessed using T5-large model over three task orders in the standard CL benchmark. Our results,
depicted in Fig. 3, reveal that utilizing only {U ,V } from prior tasks’ triplets surpass the full triplet
configuration in average performance across three task orders. While “with Σ” strategy exhibits peak
performance in Order 3, “without Σ” approach demonstrates better consistency and stability. This
suggests that excluding Σ may lead to a more robust generalization across diverse tasks, but it cannot
fully represent previously learnt tasks’ important subspaces, thus we use “with Σ” as the initialization
of LB-CL, and “without Σ” can be used as an improvement strategy in implementation. Furthermore,
both strategies outperform the performance of the O-LoRA method over these three orders.

Figure 3: Comparison of different initialization
strategies across three orders of standard CL
benchmark. The "Avg" value represents the aver-
age testing accuracy, illustrating how each strat-
egy stabilizes learning performance.

Figure 4: Impact analysis of seed sample quan-
tity on the performance in LB-CL, evaluated
across three orders of standard CL benchmark.
This investigation highlights the influence of ini-
tial seed samples on model effectiveness.

■ How does the number of seed samples affect the performance of the model? The number of
seed samples significantly influences the reliability and efficiency of the sensitivity score computations
derived from the teacher model. We explored the impact of varying the number of seed samples from
new tasks on the sensitivity of parameters from previous tasks. As illustrated in Fig. 4, increasing the
number of seed samples improves performance incrementally at a slight rate. Notably, the variance in
performance metrics is considerably lower with 4 and 8 seed samples. Based on these findings, we
have selected 8 seed samples as the optimal number for our hyperparameter setting.

■ How does the training computation cost perform? We compare the training computation cost
between LB-CL and O-LoRA in Tab. 3, using Order 1 in the standard CL benchmark with T5-large
model. Tab. 3 shows that the GPU memory consumption of both methods is similar, indicating
comparable resource efficiency during training. For the number of training parameters, we examine
a single layer and denote r as the rank of SVD-based and LoRA-based matrix, m as the input
dimension, and n as the output dimension of the layer. Given that r ≪ min(m,n), the number of
training parameters for both methods remains close, further highlighting their efficiency in parameter.

Table 3: Comparison of training computation cost between LB-CL and O-LoRA.
Method GPU Memory Num of training params/task
O-LoRA 24.82 GB r(m+ n)
LB-CL 28.28 GB r(m+ n) + r

■ What’s the distribution of parametric knowledge across layers of the model? We analyze
the distribution of parametric knowledge across the model’s layers to identify those most critical for
retaining task-specific information. In Fig. 5, our analysis of sensitivity and Fisher information on the
average of three task orders in standard CL benchmark, reveals that higher-level layers, particularly
in decoder layers, exhibit significant sensitivity. Particularly, the top 4 layers of the decoder are
notably sensitive, suggesting that focusing sensitivity analyses on these layers could represent the
entire decoder effectively, thus reducing computational demands. Validation with Fisher information
confirms that these high-level layers are crucial in both the encoder and decoder, especially the top
3 layers of the decoder. This alignment underscores that our sensitivity scores effectively identify
the most crucial layers for task-specific knowledge transfer. Given the time-intensive nature of

8

(a) Sensitivity Scores (b) Fisher Information

Figure 5: Comparison of sensitivity scores and Fisher information of encoder and decoder Layers,
and both results are the average results of three task orders in standard CL benchmark.

Fisher information calculations, our sensitivity score approach provides a more efficient alternative,
enhancing training efficiency by focusing on several critical high-level layers.

Table 4: Comparisons of different rank r of low-
rank matrix. This experiment is conducted based
on T5-large in standard CL benchmark.

Order
r-dim 1 2 3 avg

2 76.7 77.2 75.2 76.3
4 77.0 76.8 75.9 76.6
8 76.9 76.5 76.8 76.7

16 77.4 76.0 75.5 76.3

Std 0.25 0.44 0.60 0.18

Table 5: Comparisons of different models’ per-
formances across three task orders in standard
CL benchmark.

(T5-base) Order
Method 1 2 3 avg
O-LoRA 72.9 72.3 72.6 72.6
LB-CL 73.8 74.4 72.4 73.5

(T5-large) Order
Method 1 2 3 avg
O-LoRA 74.9 75.3 75.9 75.4
LB-CL 76.9 76.5 76.8 76.7

■ What’s the optimal rank r for LB-CL? To explore the impact of the rank r on the performance
of LB-CL, we conduct experiments using the T5-large model on the standard CL benchmark. The
results, presented in Tab. 4, examine how varying r affects the accuracy across different task orders.
It shows that increasing the rank r does not lead to a significant improvement in model performance.
Furthermore, the small standard deviations across different orders for each rank underscore the
model’s consistent performance, irrespective of rank variations. This suggests that by leveraging
more knowledge from previous tasks, our method allows the gradient space of the new task to diverge
more significantly from those of prior tasks, thereby enhancing stability across various ranks.

■ How do different pre-trained models influence performance? We investigate the impact
of model scale on performance by comparing T5-base and T5-large models using a standard CL
benchmark. We evaluate both our method and O-LoRA across three task orders. The results, presented
in Tab. 5, clearly demonstrate significant performance differences between the two model sizes and
the methods employed. For the T5-base model, LB-CL consistently outperforms O-LoRA. While for
the T5-large model, LB-CL significantly surpasses O-LoRA’s outcomes. Moreover, LB-CL shows
exceptional consistency across all task orders in the T5-large model, highlighting its robustness and
effectiveness when scaled up. This analysis confirms the influence of model size on the success of
different continual learning strategies, with LB-CL proving particularly effective in larger models.

4 Conclusion
In this paper, we investigate the balance between overcoming forgetting and achieving generalization
in the continual learning of LLMs, decompose the generalization error with the task low-rank matrix
initialization, then propose a novel framework, exploring parametric knowledge transfer between
tasks and utilizing the inherent forgetting less ability of low-rank matrix. Instead of storing extra task-
specific auxiliary parameters, we just utilize the low-rank parameters which would be merged into
the pre-trained model. Our experiments across standard CL benchmarks validate the effectiveness of
this approach. Furthermore, we analyze the critical factors influencing initialization in CL, providing
insights for further enhancements in this field.

9

Acknowledgment

This work is partially supported by NSF CAREER Award #2239374 and NSF EFMA Award #
2318101.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less
and forgets less. arXiv preprint arXiv:2405.09673, 2024.

[3] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European conference on computer vision (ECCV), pages 532–547, 2018.

[4] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–
113, 2023.

[6] Cyprien de Masson D’Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic
memory in lifelong language learning. Advances in Neural Information Processing Systems, 32,
2019.

[7] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for
continual learning. In International Conference on Artificial Intelligence and Statistics, pages
3762–3773. PMLR, 2020.

[8] Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Continual relation learning via episodic memory activation and reconsolidation. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6429–6440,
2020.

[9] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366,
2021.

[10] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In International conference on machine learning, pages 2790–2799. PMLR, 2019.

[11] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[12] Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew Arnold,
and Xiang Ren. Lifelong pretraining: Continually adapting language models to emerging
corpora. arXiv preprint arXiv:2110.08534, 2021.

[13] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[14] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

10

[15] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[16] Haoran Li, Jingfeng Wu, and Vladimir Braverman. Fixed design analysis of regularization-based
continual learning. In Conference on Lifelong Learning Agents, pages 513–533. PMLR, 2023.

[17] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. In International
conference on machine learning, pages 3925–3934. PMLR, 2019.

[18] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[19] Chen Liang, Haoming Jiang, Simiao Zuo, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu
Chen, and Tuo Zhao. No parameters left behind: Sensitivity guided adaptive learning rate for
training large transformer models. arXiv preprint arXiv:2202.02664, 2022.

[20] Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 23638–23647, 2024.

[21] Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization
of continual learning. In International Conference on Machine Learning, pages 21078–21100.
PMLR, 2023.

[22] Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Beyond not-forgetting: Continual learning
with backward knowledge transfer. Advances in Neural Information Processing Systems,
35:16165–16177, 2022.

[23] Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning. arXiv preprint arXiv:2202.02931, 2022.

[24] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation,
2024.

[25] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

[26] Ekdeep Singh Lubana and Robert P Dick. A gradient flow framework for analyzing network
pruning. arXiv preprint arXiv:2009.11839, 2020.

[27] Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Seungwhan Moon, Paul Crook, Bing Liu,
Zhou Yu, Eunjoon Cho, and Zhiguang Wang. Continual learning in task-oriented dialogue
systems. arXiv preprint arXiv:2012.15504, 2020.

[28] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[29] Nikhil Mehta, Kevin Liang, Vinay Kumar Verma, and Lawrence Carin. Continual learning
using a bayesian nonparametric dictionary of weight factors. In International Conference on
Artificial Intelligence and Statistics, pages 100–108. PMLR, 2021.

[30] Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. Advances in neural information processing systems, 1,
1988.

[31] Chengwei Qin and Shafiq Joty. Lfpt5: A unified framework for lifelong few-shot language
learning based on prompt tuning of t5. arXiv preprint arXiv:2110.07298, 2021.

[32] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

11

[33] Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia
Hadsell. Continual unsupervised representation learning. Advances in neural information
processing systems, 32, 2019.

[34] Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning
and forgetting functions. Psychological review, 97(2):285, 1990.

[35] Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad
Almahairi. Progressive prompts: Continual learning for language models. In The Eleventh
International Conference on Learning Representations, 2023.

[36] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Expe-
rience replay for continual learning. Advances in neural information processing systems, 32,
2019.

[37] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[38] James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and
Hongxia Jin. Continual diffusion: Continual customization of text-to-image diffusion with
c-lora. arXiv preprint arXiv:2304.06027, 2023.

[39] Chenyang Song, Xu Han, Zheni Zeng, Kuai Li, Chen Chen, Zhiyuan Liu, Maosong Sun, and
Tao Yang. Conpet: Continual parameter-efficient tuning for large language models. arXiv
preprint arXiv:2309.14763, 2023.

[40] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[41] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. Advances in neural information processing systems, 32, 2019.

[42] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[43] Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. arXiv
preprint arXiv:2310.14152, 2023.

[44] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
139–149, 2022.

[45] Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang Li, Guilin Qi, and Gholamreza Haffari.
Pretrained language model in continual learning: A comparative study. In International
conference on learning representations, 2021.

[46] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[47] Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 23219–23230,
2024.

[48] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. arXiv preprint arXiv:2106.10199,
2021.

12

[49] Han Zhang, Lin Gui, Yuanzhao Zhai, Hui Wang, Yu Lei, and Ruifeng Xu. Copf: Continual
learning human preference through optimal policy fitting. arXiv preprint arXiv:2310.15694,
2023.

[50] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, 2023.

[51] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

[52] Zihan Zhang, Meng Fang, Ling Chen, and Mohammad-Reza Namazi-Rad. Citb: A benchmark
for continual instruction tuning. arXiv preprint arXiv:2310.14510, 2023.

[53] Ming Zhong, Chenxin An, Weizhu Chen, Jiawei Han, and Pengcheng He. Seeking neural
nuggets: Knowledge transfer in large language models from a parametric perspective. In The
Twelfth International Conference on Learning Representations, 2024.

13

A Appendix

A.1 Additional Related Works

Continual Learning. Continual learning is a field focused on developing algorithms that can accu-
mulate and refine knowledge over time, particularly as they encounter non-stationary data streams.
The primary challenge in this domain is overcoming catastrophic forgetting, where the performance
of a model on old tasks significantly diminishes when trained with new data. To address this, existing
research has generally been divided into three main categories: (i) The rehearsal-based methods
utilize a memory buffer to retain data samples from previous tasks, incorporating techniques such
as experience replay [36], or constrained optimization to simultaneously train the model on current
and previous tasks [8, 25]. (ii) The regularization-based methods introduce additional terms into the
loss function to penalize changes in important model parameters, thereby limiting interference with
previously learned tasks [7, 13, 18, 38]. EWC [13] remembers old tasks by selectively slowing down
learning on the weights important for those tasks. OGD [7] constrains the parameters to move within
the orthogonal space defined by the stored gradients of previous tasks. (iii) The architecture-based
methods the aim is to minimize interference between tasks by dynamically expanding model capacity
or creating isolated components for each task [17, 33, 35, 37, 46]. Progressive Prompts [35] enhances
forward transfer and mitigates catastrophic forgetting by learning a distinct prompt for each new task
and sequentially appending these new task-specific soft prompts to the ones previously learned.

Parameter-efficient Tuning. Recent works on parameter efficient tuning (PET) [9] have shown that
training only a subset of model parameters can yield performance comparable to training the full
model, reducing computational demands and annotation efforts [10, 11, 15, 48, 50]. BitFit [48]
finds that updating only the bias-items during fine-tuning is very effective. Prompt tuning [15] uses
learnable ’soft prompts’ through back-propagation to condition frozen language models for specific
tasks. LoRA [11] uses low-rank adapters in adapting models to new tasks with minimal additional
parameters, and AdaLoRA [50] improves the performance of LoRA by adaptively allocating the
parameter budget based on the weight matrices importance score. While the majority of PET has
focused on learning one single task, there has been several efforts to apply PET to continual learning.
AdapterCL [27] introduces an individual adapter block for each task. LFPT5 [31] utilizes a large
soft prompt that is continuously trained on all tasks. O-LoRA [43] incrementally learns new tasks
in orthogonal subspaces while keeping the LoRA parameters learned from previous tasks fixed to
minimize catastrophic forgetting. InfLoRA [20] mitigates catastrophic forgetting by reparameterizing
pre-trained weights with a small set of parameters, enabling fine-tuning within a subspace to maintain
previous knowledge. The proposed MoE-Adapters and DDAS collaborate in [47] mitigates long-term
forgetting by dynamically expanding a pre-trained CLIP model with Mixture-of-Experts adapters and
preserves zero-shot recognition through a Distribution Discriminative Auto-Selector for routing in-
and out-of-distribution inputs. ConPET [39] adapts existing continual learning strategies, originally
developed for relatively smaller models to LLMs by incorporating PET with a dynamic replay
approach. While O-LoRA addresses catastrophic forgetting through its incremental learning within
orthogonal subspaces, it focuses on LoRA-based architecture rather than more general low-rank
matrices and does not explore the knowledge transfer across different tasks.

A.2 Implementation Details

All our experiments involving T5 models were performed on a server outfitted with four NVIDIA
A6000 GPUs, utilizing the DeepSpeed repository for implementation. For every sequence of tasks
across different orders, we standardized our experimental setup as follows: A constant rate of 1e-3
was maintained throughout the experiments. We used a total batch size of 32, distributed as 8 per GPU
to leverage the computational capabilities of all four A6000 GPUs efficiently. We set the dropout rate
at 0.1. We applied a regularization rate of 0.1 to the orthogonal matrices derived from the Singular
Value Decomposition (SVD). A rate of 0.0 was employed, indicating no additional penalty on the
model’s weights during training.

A.3 Datasets

Tab. 6 provides detailed information on the 15 datasets utilized in our continual learning (CL) experi-
ments, including the evaluation metrics used for assessment. Our selection encompasses datasets

14

from established benchmarks:: the standard CL benchmark [51], GLUE [42], and SuperGLUE
benchmarks [41], and added IMDB movie reviews dataset.

Table 6: The details of 15 datasets used in our CL experiments. NLI denotes natural language
inference, QA denotes questions and answers task. The first five tasks correspond to the standard CL
benchmark, all other tasks are used in long-sequence experiments.

Dataset name Category Task Domain Metric
1. Yelp CL Benchmark Sentiment Analysis Yelp Reviews Accuracy
2. Amazon CL Benchmark Sentiment Analysis Amazon Reviews Accuracy
3. DBpedia CL Benchmark Topic Classification Wikipedia Accuracy
4. Yahoo CL Benchmark Topic Classification Yahoo Q&A Accuracy
5. AG News CL Benchmark Topic Classification News Accuracy
6. MNLI GLUE NLI Various Accuracy
7. QQP GLUE Paragraph Detection QUora Accuracy
8. RTE GLUE NLI News, Wikipedia Accuracy
9. SST-2 GLUE Sentiment Analysis Movie Reviews Accuracy
10. WiC SuperGLUE Word Sense Disambiguation Lexical Databases Accuracy
11. CB SuperGLUE NLI Various Accuracy
12. COPA SuperGLUE QA Blogs,Encyclopedia Accuracy
13. BoolQA SuperGLUE Boolean QA Wikipedia Accuracy
14. MultiRC SuperGLUE QA Various Accuracy
15. IMDB SuperGLUE Sentiment Analysis Movie Reviews Accuracy

Table 7: Six different task sequence orders utilized in continual learning experiments. Orders 1-3
follow the standard continual learning benchmark as established by previous research, focusing
on a more traditional task sequence. Orders 4-6 customized for long-sequence experimentation,
encompass 15 tasks each and are structured according to the methodologies outlined in [35].

Order Model Task Sequence
1 T5-large,T5-base dbpedia→ amazon → yahoo → ag
2 T5-large,T5-base dbpedia→ amazon → ag→ yahoo
3 T5-large,T5-base yahoo → amazon → ag → dbpedia

4 T5-large mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

5 T5-large multirc → boolqa → wic → mnli → cb → copa → qqp → rte
→ imdb → sst-2 → dbpedia → ag → yelp → amazon → yahoo

6 T5-large yelp → amazon → mnli → cb → copa → qqp → rte → imdb→
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

A.4 Sensitivity Scores v.s. Fisher Information

In our analysis, we aim to elucidate the distribution of parametric knowledge intrinsic to different
task orders and compare the sensitivity scores with Fisher Information. The insights from Fig. 6,7,8
indicate the distributions of parametric knowledge across layers remains consistent among different
task orders. It suggests that regardless of the task sequence, the layer-wise distribution of parameters
critical for task performance does not significantly vary. Both sensitivity scores and Fisher Information
depict similar patterns, underscoring the robustness of our model’s learning mechanisms. Our findings
also highlight that higher-level decoder layers exhibit increased sensitivity compared to their lower-
level counterparts. This heightened sensitivity in the decoder suggests that these layers play a more
crucial role in refining the outputs, possibly due to their direct involvement in generating end task
results. Notably, the sensitivity scores of the encoder layers in task order 3 are higher than those
observed in the first two task orders. This variation could be attributed to the specific nature or
complexity of the tasks in order 3, which might demand more nuanced feature extraction capabilities
from the encoder layers.

15

Table 8: Instructions for different tasks
Task Prompts
NLI What is the logical relationship between the "sentence 1" and the "sentence 2"?

Choose one from the option.

QQP Whether the "first sentence" and the "second sentence" have the same meaning?
Choose one from the option.

SC What is the sentiment of the following paragraph?
Choose one from the option.

TC What is the topic of the following paragraph?
Choose one from the option.

BoolQA According to the following passage, is the question true or false?
Choose one from the option.

MultiRC According to the following passage, is the question true or false?
Choose one from the option.

WiC Given a word and two sentences, whether the word is used with the same sense
in both sentence? Choose one from the option.

(a) Sensitivity Scores (b) Fisher Information

Figure 6: Order 1: Sensitivity scores and Fisher information of encoder and decoder Layers

A.5 Comparison of ROUGE score

We compare Average ROUGE-L scores (measures the longest common subsequence between the
predicted and reference summaries, capturing sentence-level structure similarity) between O-LoRA
and LB-CL on the standard CL benchmark in Tab. 9. It shows that the ROUGE-L scores of LB-
CL achieve performance improvements across all three task orders of the Standard CL benchmark
compared to O-LoRA, demonstrating the effectiveness of LB-CL.

Table 9: Comparison of ROUGE score between LB-CL and O-LoRA
Method Order 1 Order 2 Order 3
O-LoRA 0.7902 0.7868 0.7859
LB-CL 0.8169 0.8090 0.7894

16

(a) Sensitivity Scores (b) Fisher Information

Figure 7: Order 2: Sensitivity scores and Fisher information of encoder and decoder Layers

(a) Sensitivity Scores (b) Fisher Information

Figure 8: Order 3: Sensitivity scores and Fisher information of encoder and decoder Layers

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we list our contributions.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: The paper has limitations, but those are not discussed in the paper.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

18

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present datasets, models, and implementation details in the experimental
section and appendix.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We use open-source datasets and models, but do not attach the code.

19

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present datasets, models, and implementation details in the experimental
section and appendix.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experimental results are not presented as error bars.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the details in the appendix.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We focus on the techniques.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the

21

https://neurips.cc/public/EthicsGuidelines

technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the datasets and baseline papers in the experiment section.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:
• The answer NA means that the paper does not release new assets.

22

paperswithcode.com/datasets

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Continual Learning Maestro: Learn More but Bother Less
	Learning from Knowledge Extraction and Injection
	Training in Orthogonal Subspaces

	Experiments
	Experimental Setup
	Main Results
	Discussions

	Conclusion
	Appendix
	Additional Related Works
	Implementation Details
	Datasets
	Sensitivity Scores v.s. Fisher Information
	Comparison of ROUGE score

