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Abstract

Scene understanding systems analyze visual contexts by de-
tecting objects, their attributes, and the interactions among
them to provide a holistic interpretation. Understanding
a scene requires analyzing multiple salient regions within
a single video frame. Recently, Vision-Language Models
(VLMs) have emerged as powerful tools for scene under-
standing, leveraging learned world knowledge to enable de-
ployment without specialized training or fine-tuning. How-
ever, deploying VLMs in real-time applications is challeng-
ing due to their high computational and memory require-
ments, which limit processing throughput.

We propose SimCache, a novel software-based caching
mechanism that optimizes VLM-based scene understanding
systems by reducing redundant computations. SimCache
stores the embedding representation of a salient region and
its detected activity, enabling reuse of VLM computations
for similar regions in future frames. Specifically, SimCache
exploits two types of redundancy: (1) temporal locality,
reusing computations for similar regions across adjacent
frames, and (2) semantic locality, reusing computations for
visually distinct regions that represent the same activity at
different times. SimCache includes a multi-tier cache archi-
tecture with specialized cache search and refinement poli-
cies to exploit redundancy efficiently and accurately. Ex-
periments on action recognition datasets demonstrate that
SimCache improves system throughput by up to 9.4x and
reduces VLM computations by up to 24.4x with minimal
accuracy loss.

1. Introduction

Scene understanding requires analyzing visual scenes to
identify objects, their attributes, and the interactions be-
tween them. It is a critical component of real-world appli-
cations such as autonomous driving, robotics, surveillance,
and industrial automation, where real-time decision-making
is essential. For instance, autonomous vehicles must detect
and react to hazards in real time to ensure safe navigation,
while surveillance systems continuously analyze scenes to

monitor activities and detect anomalies. However, achiev-
ing real-time scene understanding is inherently challenging,
as it involves processing multiple objects and their interac-
tions within each frame. For instance, a single surveillance
video frame might include several people and the objects
they carry, each requiring separate analysis to determine
their interactions. Therefore, constructing an accurate and
structured representation of the scene requires decomposing
the frame into multiple salient regions and processing them
efficiently to meet real-time constraints.

In recent years, Vision-Language Models (VLMs) have
been increasingly deployed in scene understanding sys-
tems [16, 18, 21, 22, 27]. Unlike traditional deep learning
methods that require domain-specific training, VLMs gen-
eralize across diverse scenarios by leveraging pre-trained
world knowledge. Despite these advantages, deploying
VLMs for real-time scene understanding remains challeng-
ing due to their high computational cost. Large VLMs (e.g.,
13B or 34B parameters) exceed the memory capacity of a
single workstation GPU with 24 GB memory, making local
deployment impractical. Even smaller VLMs (fewer than
7B parameters) exhibit very low throughput, thereby limit-
ing the number of frames that can be processed in real time.

Figure | illustrates a typical VLM-based scene under-
standing system, which processes a video stream frame by
frame to generate insights in the form of a scene graph.
The system follows a three-stage pipeline. First, an ob-
ject detector identifies objects within a video frame. Next,
a salient region identifier dynamically selects regions in a
frame that may contain significant interactions between ob-
jects. Finally, these salient regions are fed into a VLM
to identify the interaction between object pairs, producing
structured triplets in the form of (subject, relationship, ob-
ject). Despite its advantages, the system’s main bottleneck
is the high computational cost of VLMs, making it diffi-
cult to meet real-time constraints. For instance, LLaVA-
1.5-7B [14], a state-of-the-art VLM, can process only four
salient regions per frame (with batching) at a throughput of
just 0.4 FPS on an NVIDIA RTX 3090 Ti GPU. This con-
straint severely limits the deployment of VLM-based scene
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Figure 1. An overview of a VLM-based scene understanding system, which consists of three key steps: (1) object detection, (2) salient

region identification, and (3) relationship extraction using a VLM.

understanding in real-time applications such as autonomous
driving and surveillance, where analyzing every salient re-
gion is essential.

A common approach to improving VLM processing
throughput is to use uniform [22] or adaptive [2] frame-
skipping strategies to avoid processing similar frames.
While these methods improve throughput, they introduce
accuracy trade-offs since skipping frames can lead to in-
formation loss. Moreover, frame-skipping strategies reduce
the number of processed frames, leaving open the challenge
of efficiently processing frames that are not skipped. Com-
plementary to previous work, our work exploits two key
forms of redundancy in video streams at the region level: (1)
temporal locality, where adjacent frames often contain min-
imally changed regions, and (2) semantic locality, where
certain regions reappear across time, describing the same
activity despite visual variations. Processing these redun-
dant regions results in unnecessary computational overhead,
significantly impacting system efficiency.

In this paper, we introduce SimCache, a caching mecha-
nism designed to optimize VLM-based scene understand-
ing systems by reducing redundant computations. Sim-
Cache minimizes redundant VLM computations on salient
regions by caching their outputs and reusing them for tem-
porally and semantically similar regions in future frames.
To achieve this, SimCache computes an embedding repre-
sentation for each salient region and uses it as a key for
cache lookup and updates. Our approach features a multi-
tier cache architecture consisting of: (1) a temporal cache,
which stores region embeddings and VLM outputs from the
last N frames to exploit temporal locality, and (2) a seman-
tic cache, which maintains embeddings and the correspond-
ing outputs over longer intervals to exploit semantic local-
ity. Additionally, we propose specialized cache search and
refinement policies to further enhance the efficiency and ac-
curacy of cache operations. Our experiments demonstrate
that SimCache improves throughput by up to 9.4x and re-
duces VLM computations by up to 24.4x, while maintain-
ing accuracy on the UCF-101 action recognition dataset.

2. Scene Understanding Systems: Challenges
and Opportunities

This section provides an overview of conventional VLM-
based scene understanding systems, discusses key chal-
lenges in their deployment, and highlights opportunities for
improving their efficiency.

2.1. VLM-based scene understanding

A typical VLM-based scene understanding system (Fig-
ure 1) consists of three main components - an object de-
tector, a salient region identifier, and a VLM - which we
describe below.

Object Detector. Each video frame is first processed by an
open-vocabulary object detector to obtain bounding boxes
for objects of interest. These detectors can identify objects
based on arbitrary textual queries, unlike traditional closed-
vocabulary object detectors, which can recognize only a
fixed set of object classes. Additionally, the list of target
objects can be dynamically configured depending on the
deployment scenario. Although open-vocabulary object de-
tection provides flexibility, it is not the primary bottleneck
in a scene understanding system. For instance, YOLO-
World [5], a lightweight open-vocabulary object detector
used in VisionGPT [22], processes frames at 66.67 FPS
with a latency of 15 ms per frame on an NVIDIA RTX
3090 Ti GPU, demonstrating that object detection can be
performed in real time.

Salient Region Identifier. After detecting objects, the
salient region identifier selects object pairs that are likely
to interact, as processing all (;‘) possible pairs would be
computationally expensive. The system prioritizes regions
where interactions are more likely to occur by computing
a score based on spatial attributes such as position, dis-
tance, relative size, and intersection area, following tech-
niques like RECODE [12]. If a pair’s score exceeds a pre-
defined threshold, a proposal region is formed by merging
their bounding box coordinates. This region is then ana-
lyzed by the VLM to determine the relationship between
the objects. Since these computations primarily involve ba-
sic geometric operations, the salient region identifier adds



GPU Memory Throughput

Model Batch Size (GB) (FPS)
1 4.29 3.04
2 4.83 2.28
Moondream-2 [1] 4 5.89 1.53
8 8.01 0.90
16 12.23 0.49
32 20.74 0.26
64 OOM -
1 15.81 1.42
LLaVA-1.5-7B [14] 2 17.50 0.77
4 20.86 041
8 OOM -

Table 1. Comparison of GPU memory usage and throughput (FPS)
for different batch sizes on the Moondream-2 and LLaVA-1.5-7B.

negligible computational overhead.
VLM. The final step involves using the VLM to infer rela-
tionships between objects within a salient region. The VLM
processes each salient region alongside a textual prompt,
such as: "What is the [subject] doing with the [object]?
Possible answers include [relationship 1], [relationship 2],
and [relationship nj]. Please choose one.” The VLM
response is then used to construct a scene graph for down-
stream vision applications, including action recognition and
question answering.

Notwithstanding their advantages, VLMs present two
significant computational challenges in scene understand-
ing systems. First, they must process all salient regions in
a frame, but their batch processing capacity is limited by
memory constraints. Table 1 shows that even lightweight
models like Moondream-2 (a 1.87B parameter model') can
process at most 32 regions per frame, while LLaVA-1.5-7B
can handle only four regions per frame on an NVIDIA RTX
3090 Ti GPU. This restriction severely limits the number of
relationships that can be extracted per frame. Second, scene
understanding systems must operate in real-time, but VLM
throughput is too low to meet these requirements. Even with
a batch size of 1 (Table 1), Moondream-2 and LLaVA-1.5-
7B achieve only 3.1 and 1.4 FPS, respectively—far below
standard video frame rates (e.g., 30 FPS). These challenges
necessitate novel approaches to optimize VLM-based scene
understanding.

2.2. Opportunities: Localities in Video Streams

Streaming videos exhibit inherent redundancies, where
many regions remain unchanged over time or reappear peri-
odically. For instance, in surveillance systems with station-
ary cameras, the background and static objects, such as fire
hydrants, remain the same over time. Additionally, certain
events, such as a person carrying a briefcase, occur repeat-
edly. These redundant regions do not need to be processed
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Figure 2. Illustration of key locality types in video streams: (1)
temporal locality, and (2) semantic locality.

by VLMs multiple times in a scene understanding system.
In this work, we identify two key localities in video streams
— temporal locality and semantic locality — that can be ex-
ploited to reduce redundant computation and alleviate com-
putational bottlenecks.

Temporal Locality. Temporal locality refers to the scene
invariance across consecutive frames in a video. Since
the scene does not change instantaneously, adjacent frames
often contain minimal variation. This property has been
widely exploited in video compression [20, 24]. Figure 2 il-
lustrates two instances of temporal locality in video streams,
where consecutive frames depict the same activity. Skip-
ping computations on temporally similar frames enhances
system efficiency while preserving accuracy.

Semantic Locality. Semantic locality refers to the recur-
rence of visually distinct yet semantically equivalent scenes
describing the same activity or event. Unlike temporal lo-
cality, which occurs only between adjacent frames, seman-
tic locality can occur at any point in a video. As shown
in Figure 2, two non-consecutive frames are semantically
similar because they contain two different individuals per-
forming the same activity. These regions convey identical
information, despite their differences in appearance, posi-
tion, or lighting. By recognizing and reusing computations
on semantically similar regions, the system can skip addi-
tional computations, significantly improving efficiency.

3. SimCache

To optimize VLM-based scene understanding, we introduce
SimCache, a caching mechanism that reduces redundant
computations by leveraging both temporal and semantic lo-
cality in video streams. SimCache minimizes the number
of regions processed by compute-heavy VLMs by storing
and retrieving previously computed outputs for similar re-
gions. SimCache consists of three key components: (1)
an embedding generator that computes feature representa-
tions for salient regions, (2) a cache manager that handles
retrieval and updates, and (3) a multi-tier cache architec-
ture with novel policies for efficient storage, lookup, and
replacement. Figure 3 provides an overview of SimCache
within the VLM-based scene understanding pipeline.
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Figure 3. Integration of SimCache into the VLM-based scene un-
derstanding system.

3.1. Embedding Generator

The overall goal of the embedding generator is to obtain
a feature representation of salient regions that enables effi-
cient comparison and facilitates skipping computations for
similar regions. Raw pixel-based comparisons are highly
sensitive to minor variations in appearance, such as light-
ing changes. Instead, embeddings capture the underlying
activity or interaction within a salient region rather than its
exact pixels. This enables SimCache to detect and reuse
cached outputs for visually distinct but semantically similar
regions, improving efficiency. Given a salient region SR’
at time step ¢, we compute its embedding e’ using a neural
network feature extractor f such that et = f(SR?), f:
RHAXWX3 _y Rd where et is the d-dimensional vector that
captures the contextual interaction between the objects in a
salient region. These embeddings are then used as keys for
cache lookups and updates, enabling efficient reuse of prior
VLM outputs for similar regions.

3.2. Cache Manager

The cache manager is responsible for retrieving and updat-
ing cache entries. Given a salient region embedding, the
cache manager searches for similar embeddings in the cache
by computing a similarity metric such as cosine similarity or
L1/L2 distance between the query embedding and all entries
in the cache. It determines whether a cache hit occurs by
checking if the similarity score exceeds a predefined thresh-
old or by performing majority voting among the Top-k se-
lected embeddings. Upon a cache hit, the system retrieves
the previously computed VLM output, reducing redundant
computation. If not, the salient region is processed by the
VLM. After obtaining the relationship between objects in a
salient region, either through a cache hit or from the VLM,
the cache manager uses this result to update and refine the
cache entries.

3.3. Cache Architecture

Figure 4(a) illustrates the cache architecture of SimCache,
which employs a multi-tier structure comprising a temporal
cache and a semantic cache to efficiently retrieve relation-
ships given an embedding.

Temporal Cache. The first-tier cache, the temporal cache,
stores embeddings and their corresponding VLM outputs

W

Algorithm 1 Cache Search

Require: embedding e, subject s, object o, parameter k
Ensure: cache_hit, relationship r
1: cache_hit < False,r < None

2: topg-scores, topy_rels < search(cachel[s|[o], e, k)
3: rels < unique(topy_-rels), u < {}

4: for j € rels do

5: ul7] < mean({topy_scoresli]|topy_rels[i] = j})
6: end for

7o {ispld] | pli] > 7}

8: if u = o then

9: return cache_hit,r

10: end if

11: sort_by_descending_scores(t)

12: 7, score < p[0]

13: valid + all(|score — uli]| > 6 Vi £ 1)

14: cache_hit < valid

15: return cache_hit,r

for a fixed window of the most recent N frames. It is de-
signed to exploit temporal locality in videos, where adja-
cent frames contain minimal variation. Our analysis shows
that approximately 85% of frames exhibit high similarity to
the immediately preceding frame. By explicitly designing
the cache to exploit temporal locality, we reduce the search
space and enable efficient retrieval.

Semantic Cache. The second-tier cache, the semantic
cache, stores embeddings and outputs from a longer his-
torical window to exploit semantic locality. Unlike the tem-
poral cache, which focuses on short-term redundancy, the
semantic cache captures repeated activities or interactions
that occur throughout the video. The semantic cache stores
the entries in a partitioned structure with a unique cache for
each subject-object pair, as shown in Figure 4(a). This hi-
erarchical structure enables targeted searches, as each pair
of objects is identified at the object detector stage. Conse-
quently, it eliminates the need for filtering based on subject-
object pairs, thereby reducing the search complexity.

3.4. Cache Policies

Search Policy. Our cache search policy aims to enhance
retrieval accuracy while minimizing negative cache hits. A
negative cache hit occurs when the ground-truth relation-
ship or action of the query embedding differs from the re-
lationship retrieved from the cache. Traditional image re-
trieval methods often use k-nearest neighbors (kNN) search
with majority voting, but this approach is prone to negative
cache hits. While a static similarity threshold can reduce
negative cache hits, it is often very restrictive, thereby lim-
iting potential cache hits. To address this, we propose a
search policy as described in Algorithm 1. Given a query,
our approach retrieves the Top-k most similar embeddings,
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Figure 4. Overview of SimCache’s multi-tier cache architecture and workflow. (a) The multi-tier cache consists of a temporal cache and a

semantic cache. (b) Search workflow. (c) Update workflow.

groups them by relationship type, and discards groups with
an average similarity below a dynamic threshold 7. To fur-
ther distinguish between filtered relationships that are close
in similarity, we apply a secondary static threshold §. This
two-step filtering search policy jointly optimizes for high
cache hit rates while minimizing negative cache hits.

Dynamic Similarity Threshold Determination. A static
similarity threshold fails to adapt to evolving video scenes,
leading to poor cache hit rates. To mitigate this, we use a
dynamically computed threshold 7 (Algorithm 2) that ad-
justs periodically based on the entries in the cache. Specifi-
cally, we compute a separate threshold for each relationship
by taking the mean of the pairwise similarity matrix of the
corresponding cached embeddings. Each row of this matrix
contains similarity scores between a single embedding and
all other embeddings within the same relationship category,
thereby capturing intra-class similarity distribution. This al-
gorithm is invoked whenever the cache is refined, enabling
the system to adapt to scene variations and maintain high
cache hit rates.

Refinement Policy. To accommodate new entries when the
cache reaches full capacity, we propose a cache refinement
algorithm that enforces both intra- and inter-relationship di-
versity. Specifically, it prevents the cache from being dom-
inated by highly similar entries within a single relationship
category or overrepresented by one particular relationship.
Our approach (Algorithm 3) utilizes k-means clustering to
selectively evict redundant embeddings for each relation-
ship type. Entries for a given relationship are considered for
eviction only if their count exceeds a minimum threshold
m. If this condition is met, similar embeddings within that
relationship are clustered, and redundant ones are evicted.
The number of clusters is determined by the cache retention
rate a. We then form % clusters and retain the entries closest
to the cluster centroids, thereby maintaining a diverse and
representative set of cache entries.
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3.5. Overall Workflow

Figures 4(b) and (c) illustrate the overall workflow of the
proposed multi-tier cache architecture, which handles both
search and update requests. For a search request, Sim-
Cache employs a random dropout mechanism, introducing
a forced cache miss with probability p. This dropout mech-
anism ensures periodic cache updates with entries validated
by the VLM. The query is then searched hierarchically—
first in the temporal cache using a Top-k similarity search
with a static threshold, and then in the semantic cache using
Algorithm 1. If a cache hit occurs, the retrieved relation-
ship is returned, bypassing VLM computations. Otherwise,
salient regions corresponding to the cache misses are for-
warded to the VLM for inference. Each search request trig-
gers a corresponding update. By default, new embedding-
relationship pairs are stored in the temporal cache to retain
recent frame embeddings. Only VLM-validated entries are
promoted to the semantic cache, ensuring high-quality en-
tries and preventing cache pollution. The temporal cache
follows a FIFO eviction policy, while the semantic cache is
managed using Algorithm 3. Algorithm 2 recalibrates simi-
larity thresholds each time the semantic cache is refined for
adaptive cache management.

4. Experimental Results

In this section, we first describe the experimental setup, then
present our main results, perform qualitative analysis, and
finally conduct ablation studies.

4.1. Experimental Setup

Datasets. We evaluate SimCache on two action recogni-
tion datasets: UCF-101 [19] and an in-house human-object
interaction dataset. UCF-101 consists of 101 categories of
human-object interactions, where each video primarily de-
picts a single activity. Each clip contains only one possible
human-object relationship. For instance, a video labeled



Algorithm 2 Dynamic Threshold 7 Determination

Require: subject s, object o
Ensure: thresholds 7
1D T < {}
: rels < get_relationships_from_cache(s, o)
: for r € rels do
embs + get_embeddings_from_cache(r)
scores <— compute_pairwise_similarity (embs)
T[r] < mean(scores)
: end for

2
3
4
5:
6
7
8: return 7

Algorithm 3 Cache Refinement with K-Means Clustering

Require: cache_retention_rate o
Require: min_entries_per_relationship m
1: for all s, 0 € get_subject_object_pairs() do

2 rels < get_relationships_from_cache(s, o)

3 for r € rels do

4: embs <— get_embeddings_from_cache(r)

5: n, < embs.size()

6 k <+ max (min(n,, m), [an,])

7 labels, centroids < KMeans(embs, k)

8 repidr < UF_ {arg min |embs[j] —

j:labels[j]=i

centroidsli]||2}

9: evictidx < {0,1,2,...,n, — 1} \ rep_idx

10: evict_entries(evict_idx)

11: end for

12: end for

person playing guitar exclusively depicts that action, with-
out instances of a person near a guitar but not playing it. In
contrast, our internal dataset captures more complex inter-
actions in which multiple relationships are possible between
the same object pair. For example, it includes both playing
and non-playing scenarios for a person and a guitar, requir-
ing fine-grained recognition of activity changes.
Implementation Details. We implement SimCache us-
ing FAISS [7] for efficient similarity search and storage of
embeddings. We use cosine similarity to compare feature
embeddings. The VLM-based scene understanding system
is built with PyTorch [17] and Hugging Face [25], using
YOLO-World [5] for open-vocabulary object detection and
either Moondream-2 [1] or LLaVA-1.5-7B [14] for relation-
ship identification. SimCache utilizes embeddings gener-
ated from MobileNet-V3-Large [11] or ViT-Base/Large [6],
depending on the scenario and deployment constraints. All
experiments are conducted on an NVIDIA RTX 3090 Ti
GPU (24GB memory).

SimCache Cache Configurations. Unless stated other-
wise, we use the following cache settings for all experi-
ments. The temporal cache operates with a window size

W
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N

Throughput # Salient regions
VIM Method (FPS) processed by VLM
Moondream-2 Baseline 10.82 244
SimCache 48.32 (4.5x 1) 10 (24.4x )
Baseline 5.02 244
LLaVA-LSTB i Cache 4723 94x 1) 10 (24.4x |)

Table 2. Comparison of throughput and VLM computations on the
UCF-101 dataset across two methods using two VLMs.

of N = 5 and a static similarity threshold 7 = 0.9. The se-
mantic cache stores 30 entries per subject-object pair and
retrieves the Top-k£ (kK = 5) similar embeddings using a
dynamic threshold with 6 = 0.05. For cache refinement,
we use clustering with a cache retention rate of & = 0.5
and a minimum eviction threshold of m = cache_size/2.
On UCF-101, we disable the random dropout rate (p = 0),
whereas on our internal dataset, we set p = 0.10.
Evaluation Metrics. We report the following metrics: (1)
throughput, measured as the number of frames processed
per second by the VLM-based scene understanding system;
(2) number of salient regions processed by the VLMs; (3)
cache hit rate, defined as the fraction of queries that suc-
cessfully retrieved a relationship from the cache; and (4)
negative hit rate, defined as the fraction of cache hits that
were retrieved incorrectly.

4.2. Main Results

We first evaluate SimCache on UCF-101, presenting the
results in Table 2. As a baseline, we use dynamic frame
skipping to remove visually redundant frames, demonstrat-
ing how SimCache complements such strategies for addi-
tional gains. We select a subset of 10 classes from UCF-
101 (25 videos per class, totaling 250 videos). We apply
Pyscenedetect [4] to perform dynamic frame skipping, re-
sulting in one representative frame per video. These frames
are then processed through the VLM-based scene under-
standing system, followed by SimCache. Our results show
that the baseline system processes 244 salient regions (out
of 250) using the VLM, while failing to detect objects in
six frames. SimCache recognizes all actions while process-
ing only a single frame per class, reducing VLM queries
to 10 salient regions and incurring no negative cache hits.
This result demonstrates the ability of SimCache to gener-
alize across visually diverse frames depicting the same ac-
tivity, enabling efficient scene understanding with minimal
VLM queries. Overall, SimCache achieves a 4.5 x and 9.4 x
throughput improvement on UCF-101, with a 24.4x reduc-
tion in VLM computations. Additionally, it enhances frame
skipping by further minimizing redundant computations on
semantically similar regions.

Next, we evaluate SimCache on our internal dataset with
the Moondream-2 VLM (Table 3). In contrast to UCF-
101, we process all frames in the baseline method without



Method Embedding  Throughput # Salient reg(;ons ‘ Runtime Breakdown (seconds) ‘ Cache Hit Rate(%)
etho Model (FPS) I:OC‘?ISJS;I Object VLM Embedding Cache Overall/Temporal
y Detector Generator Operations /Semantic
Baseline 9.71 54968 | 578 (10.9%) 4719 (89%) 0 0 | -
MB-V3-L  36.2(3.7x 1) 5808 (9.5x ) 579 (40.7%) 547 (38.4%) 286 (20.1%) 6.47 (0.5%) 89.4/90.3/93.9
SimCache ViT-B 332(3.4x 1) 5711 (9.6x 1) 581 (37.5%) 539 (34.8%) 422(27.2%) 5.22(0.3%) 89.6/94.7/92.4
ViT-L 26.96 (2.8x 1) 5701 (9.6x |) 584 (30.6%) 542 (28.4%) 772 (40.5%) 5.85(0.3%) 89.6/95.9/90.6

Table 3. Performance comparison of SimCache and the baseline system on the internal dataset (using Moondream-2), reported in terms of
throughput, number of VLM computations, cache hit rate, and runtime breakdown across different embedding generator models.

# Correct Predictions

Action Baseline SimCache
SN MB-V3-L  VIT-B  ViT-L

Playing guitar 27 25 26 26
Climbing ladder 23 22 21 24
Sitting chair 30 25 30 28
Writing whiteboard 28 26 27 28
Lifting suitcase 26 24 27 29
Total 134 | 122 133 135

Table 4. Action recognition accuracy comparison for each method
across a selected subset of actions.

frame skipping. We assess different embedding generators
(MobileNet-V3 Large, ViT-Base, and ViT-Large) to ana-
lyze their impact on SimCache’s performance. We observe
that larger embedding models increase the temporal cache
hit rates due to their ability to capture fine-grained details.
However, they slightly reduce overall throughput due to the
increased computational effort required for embedding gen-
eration. To evaluate cache hit accuracy, we reprocess all
cache hits using the VLM to determine whether they are
positive or negative hits. We find that the negative cache
hit rates are 14%, 10%, and 7% for MobileNet-V3 Large,
ViT-Base, and ViT-Large, respectively. However, this eval-
uation assumes VLM predictions are perfectly accurate. To
ensure a fair comparison, we randomly sample 30 frames
from five selected actions and manually annotate them. Ta-
ble 4 shows that SimCache with ViT-Base and ViT-Large
performs comparably to the baseline. Furthermore, com-
pared to the baseline, where nearly 90% of processing time
is spent on VLM computations, SimCache reduces this to
30%-40%, significantly alleviating the computational bot-
tlenecks in scene understanding. Notably, cache search and
update operations account for fewer than 0.5% of the total
processing time.

4.3. Qualitative Results

For qualitative evaluation, we visualize the Top-k retrieved
salient regions for selected queries from UCF-101 and our
internal dataset. First, we demonstrate the ability of Sim-
Cache to exploit semantic locality. Figure 5 presents a query
image and its top-5 most similar images retrieved from the
semantic cache. Despite visual variations in appearance and
background, all retrieved images depict the same relation-
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Figure 5. Qualitative analysis of SimCache exploiting semantic
locality in the UCF-101 dataset.
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Figure 6. Qualitative analysis of SimCache on an internal dataset,
illustrating its ability to differentiate between fine-grained rela-
tionships where existing methods fail.

ship, allowing the query image to bypass redundant VLM
computations by reusing this relationship. Second, we high-
light the advantages of SimCache’s proposed search pol-
icy over naive Top-k majority voting. Figure 6 presents a
query image depicting the relational triplet person-standing
near-chair, along with its top-5 retrieved images. Among
these, four images correspond to person-sitting-chair, while
only one correctly represents the ground truth. Major-
ity voting would therefore misclassify the query image as
person-sitting-chair. To address this, our search algorithm
(Algorithm 1) computes the average similarity score for
each relationship category, yielding u[sitting] = 0.61 and
p[standing near] = 0.67. Since the difference exceeds the
predefined threshold 6 (|u[standing near] — p[sitting]| =
0.06 > 6, where § = 0.05), SimCache correctly classifies
the query as person - standing near - chair, demonstrating
its robustness in distinguishing fine-grained relationships.

4.4. Ablation Results

To analyze the individual components of SimCache, we
conduct ablations on cache design choices, including archi-
tecture and policies. For these experiments, we use ViT-
Base as the embedding generator model, Top-k majority
voting as the default search policy, and LRU as the default
replacement policy. First, we examine the effectiveness of
the multi-tier cache architecture, as shown in Table 5. The



Cache Hit Negative Avg. Query
Configuration Rate (%) Hits (%) Search Time (ns)
Only Temporal 82.82 1.37 5.95 (1x)
Only Semantic 88.2 9.74 26.06 (4.4x)

SimCache 89.0 3.09 7.45 (1.25%)

Table 5. Comparison of different cache architectures.

. Hit Negative
Search Policy Rate (%)  Hits (%)
k=3 80 57
Top-k Majority Voting | k=5 82 58
k=17 82 59
7=06 74 26
Static Threshold T=0.7 63 18
7=08 45 5
Dynamic Threshold ‘ k=5 ‘ 63 10

Table 6. Ablation study on cache search policies.

results indicate that using only the temporal cache leads
to a lower cache hit rate, whereas relying on the semantic
cache alone results in a higher rate of negative cache hits.
Our multi-tier cache architecture effectively combines the
strength of both approaches. Furthermore, in our multi-tier
cache architecture, fewer than 7% of requests are directed to
the semantic cache, resulting in only a 25% increase in aver-
age search time per query compared to the temporal cache.
Additionally, as the frame sampling rate increases, the tem-
poral cache hit rate declines, necessitating the use of the se-
mantic cache, as higher sampling reduces temporal redun-
dancy. Next, we evaluate our proposed cache search algo-
rithm. For these experiments, we consider only SimCache
with the semantic cache, comparing it with various alter-
natives, as shown in Table 6. We observe that Top-k£ ma-
jority voting achieve high cache hit rates with high errors,
whereas static thresholding is more restrictive but results in
fewer negative hits. Our algorithm remains on the Pareto-
optimal frontier of cache hit rate and accuracy, demonstrat-
ing its ability to effectively balance accuracy and efficiency.
To perform a standalone evaluation of our clustering-based
cache refinement policy, we compare the t-SNE visualiza-
tions of the embeddings in the cache before refinement and
after applying different policies, including clustering, LRU,
and FIFO (Figure 7). We observe that the cache remains
balanced after clustering, whereas with LRU and FIFO, the
cache is dominated by entries corresponding to a single re-
lationship. This result demonstrates the effectiveness of
our algorithm in maintaining cache diversity, enabling Sim-
Cache to adapt quickly to new scenarios.

5. Related Works

Frame Skipping. Existing VLM-based scene understand-
ing systems utilize uniform frame sampling techniques to
manage computational complexity by skipping computa-
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Figure 7. Comparison of t-SNE visualizations of various cache

refinement algorithms.

tions on temporally similar frames. For instance, Vi-
sionGPT [22] invokes an LLM call only every 30 frames,
while another work [21] samples five frames at regular in-
tervals as input for a VLM in robot manipulation tasks.
Many video understanding systems [8, 13, 15, 23, 28]
also employ uniform frame sampling to reduce compu-
tational cost. ViTA [2], a video analysis system, lever-
ages PySceneDetect [4] to adaptively skip frames. While
these methods focus entirely on skipping computations at
the frame level, SimCache instead reuses computations at a
finer granularity (the region level) by leveraging both tem-
poral and semantic locality in videos.

Caching. GPT-Cache [3] introduces a caching mechanism
to store and retrieve LLM responses, reducing both cost
and response time for repeated queries. While GPT-Cache
shares similarities in principle, SimCache additionally pro-
poses efficient search and refinement algorithms to mini-
mize negative cache hits, ensuring more accurate and effi-
cient retrieval. Potluck [9] introduces a caching method-
ology to reuse computational results across applications,
while FoggyCache [10] extends this approach across de-
vices. However, both of these approaches operate at the
frame level, whereas SimCache caches at the region level to
achieve fine-grained reuse. Additionally, DeepCache [26]
explores caching activations across convolutional layers
within a DNN, exploiting both temporal locality and model
properties for intra-model caching.

6. Conclusion

We introduce SimCache, a caching mechanism designed
to optimize VLM-based scene understanding systems. By
storing and reusing VLM outputs, we reduce redundant
computations and address computational bottlenecks. Sim-
Cache generates an embedding for each salient region and
stores it alongside the corresponding VLM output. Ad-
ditionally, SimCache includes a multi-tier cache archi-
tecture that exploits two inherent redundancies in video
streams: temporal and semantic locality. Experimental re-
sults demonstrate that SimCache improves throughput by
up to 9.4x, reduces VLM computations by up to 24.4x,
and maintains competitive accuracy in action recognition
tasks.
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