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ABSTRACT

Despite the widespread exploration and availability of parcellations for the functional
connectome, parcellations designed for the structural connectome are comparatively limited.
Current research suggests that there may be no single “correct” parcellation and that the
human brain is intrinsically a multiresolution entity. In this work, we propose the Continuous
Structural Connectivitity-based, Nested (CoCoNest) family of parcellations—a fully data-
driven, multiresolution family of parcellations derived from structural connectome data. The
CoCoNest family is created using agglomerative (bottom-up) clustering and error-complexity
pruning, which strikes a balance between the complexity of each parcellation and how well it
preserves patterns in vertex-level, high-resolution connectivity data. We draw on a
comprehensive battery of internal and external evaluation metrics to show that the CoCoNest
family is competitive with or outperforms widely used parcellations in the literature.
Additionally, we show how the CoCoNest family can serve as an exploratory tool for
researchers to investigate the multiresolution organization of the structural connectome.

AUTHOR SUMMARY

In this work, we derive a family of structural connectivity-based parcellations, called the
CoCoNest family, based on a continuous representation of structural connectivity. This family
is created using agglomerative clustering to grow a fully binary tree and then error-complexity
pruning to greedily derive subtrees that balance complexity and goodness of fit. The CoCoNest
family is evaluated with a comprehensive collection of internal and external evaluation
metrics across two independent datasets and compared with widely used parcellations. Our
results show that members of the CoCoNest family are competitive with other parcellations
and often achieve superior performance. We show that the CoCoNest family can serve as an
exploratory tool for investigations into the multiscale nature of the structural connectome.
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INTRODUCTION

The human connectome has long inspired critical research within the field of neuroscience
(Brodmann, 1909; Elam et al., 2021; Hagmann et al., 2008; Leergaard & Bjaalie, 2022;
Marin-Padilla, 1983; Sporns, Tononi, & Kötter, 2005; Yeo et al., 2011). The exploration of
the human connectome has deepened in recent years due to advances in noninvasive brain
imaging techniques. These advances have spurred the collection of massive brain imaging
datasets (e.g., the Human Connectome Project (HCP) and the Adolescent Brain Cognitive
Development (ABCD) study; Casey et al., 2018; Van Essen et al., 2013), which have enabled
and enriched connectome research. A crucial step in connectome research involves parcellat-
ing the brain into discrete regions of interest (ROIs) that are both spatially and neurobiologi-
cally coherent. This collection of ROIs, also called a parcellation or an atlas, is essential
because it reduces the complexity of the connectome data while preserving important features
relevant to analyses. Parcellations enable researchers to easily explore the organization of the
brain, unravel interactions between brain regions, and study how the connectome relates to
the overall brain function and behavior (Glasser et al., 2016; Gosnell, Fowler, & Salas, 2019;
Hirsiger et al., 2016; Yeo et al., 2011). Additionally, by viewing the ROIs as nodes and the
connection strengths between them as edges, parcellations form a link between human
connectome research and the expansive literature on network analysis (Fornito, Zalesky,
& Bullmore, 2016; Sporns et al., 2005; J. Wang et al., 2010, 2015).

Connectomes are primarily categorized into two modalities: the functional connectome
and the structural connectome. The functional connectome serves as a map of the dynamic
organization of the brain, where dependencies between activation patterns, measured using
functional MRI (fMRI), are used to quantify the connection between ROIs. The structural con-
nectome serves as an anatomical map, where the presence of interconnecting pathways of
white matter fiber tracts, uncovered using diffusion MRI (dMRI) and tractography, are used
to quantify the connection between ROIs.

When analyzing the connectome, researchers typically choose between an anatomical and
a connectivity-based parcellation. Anatomical-based parcellations (Desikan et al., 2006;
Destrieux, Fischl, Dale, & Halgren, 2010) are facilitated by neuroanatomy experts who man-
ually identify anatomical landmarks. These parcellations contain neurobiologically meaningful
parcels that are relevant for clinical applications. However, such parcellations are often con-
structed from small cohorts of subjects that may limit their generalizability. Furthermore,
because these parcellations do not directly use connectome data, they may be limited in cap-
turing characteristics unique to the functional or structural connectome. These limitations,
along with the collection of massive brain imaging datasets, have motivated the creation of
connectivity-based parcellations that directly use functional or structural connectivity data.
Recent work in connectivity-based parcellations has predominantly focused on the use of
functional connectome data. However, there is a general consensus that the structural archi-
tecture of the brain plays a critical role in its functional dynamics (Van Essen, 2013; Passingham,
Stephan, & Kötter, 2002). This notion, together with recent advances in structural connectome
reconstruction (St-Onge, Daducci, Girard, & Descoteaux, 2018; Van Essen et al., 2013), has
inspired deeper explorations of the structural connectome, necessitating the construction of
parcellations from structural connectome data.

In this paper, we propose a method for constructing a rich, multiresolution family of par-
cellations from structural connectome data. This approach leverages recent advances in struc-
tural connectome reconstruction to uncover the white matter architecture, explicitly strikes a
balance between the complexity of the connectome data and the preservation of high resolution

Parcellation:
A partitioning of the brain into
discrete regions of interest called
parcels.

Structural connectome:
A comprehensive map of
interconnecting white matter fiber
tracts between brain regions.

Diffusion MRI (dMRI):
An imaging technique that maps the
diffusion of water molecules in
biological tissue.

Tractography:
A method that leverages dMRI data
to reconstruct white matter fiber
tracts.
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connectivity patterns and facilitates tractable investigations of the multiresolution nature of the
structural connectome. To achieve this, we start by leveraging a recently developed tractography
algorithm called surface-enhanced tractography (SET), which has been shown to decrease
gyral bias and better approximate the underlying white matter structure (St-Onge et al.,
2018). Subsequently, we use a continuous representation of structural connectivity (SC) (Cole
et al., 2021; Consagra, Cole, & Zhang, 2022; Gutman et al., 2014; Mansour L., Seguin, Smith,
& Zalesky, 2022; Moyer, Gutman, Faskowitz, Jahanshad, & Thompson, 2017), which provides
a rigorous statistical framework for modeling white matter fiber track endpoints and constructs
dense, high-resolution SC matrices. Starting with the high-resolution SC data, we use a con-
ventional agglomerative (bottom-up) clustering algorithm to construct a full binary tree that
aims to reflect the hierarchical organization of the structural connectome. We then use
error-complexity pruning (Breiman, Friedman, Olshen, & Stone, 1984; Chou, Lookabaugh,
& Gray, 1989) to iteratively remove branches from this tree in a greedy fashion, balancing
the complexity of the tree with its fit to the high-resolution connectome data. This procedure
creates a nested sequence of subtrees where each subtree corresponds to a member of our
multiresolution parcellation family. This allows users not only to choose the desired complex-
ity of the parcellation but also to explore the interactions and distinctions between multiple
resolutions of the structural connectome. In addition, we draw on a collection of internal and
external evaluation metrics from the literature to assess the consistency of our parcellation
with neurobiological intuition and its performance in typical downstream tasks across two
independent datasets.

Our internal and external evaluation results demonstrate that members of our proposed
family of parcellations, which we call the CoCoNest family, are competitive or outperform
several widely used parcellations in the literature. Additionally, we make CoCoNest easy to
reconstruct and access in the most popular template spaces. The code and data used to create
the CoCoNest family are freely available at https://github.com/sbci-brain/CoCoNest.

MATERIALS AND METHODS

Figure 1 illustrates the pipeline used to create the CoCoNest family. We began by downloading
high-quality imaging data from the HCP (Van Essen et al., 2013). These imaging data were
processed using a comprehensive pipeline called the Surface-Based Connectivity Integration
(SBCI) pipeline, recently developed by Cole et al. (2021). For each subject, SBCI performed
standard image preprocessing steps and outputted a high-resolution SC matrix based on a con-
tinuous representation of SC. Each element of these matrices quantifies the density of white
matter fiber tracts between two vertices on the brain’s surface. These subject-specific, high-
resolution SC matrices were then averaged to obtain a high-resolution, group-averaged SC

matrix, denoted as �S
0
. �S

0
was then fed into an agglomerative clustering algorithm, which cre-

ated a full binary tree. This tree aims to both group together vertices with similar SC patterns

and capture the multiresolution nature of the SC data in �S
0
. Finally, we pruned this tree by

adopting an error-complexity pruning approach, developed by Breiman et al. (1984). This
pruning procedure resulted in the nested, multiresolution sequence of parcellations that we
call the CoCoNest family. The sections below explore each step in more detail.

Data and Preprocessing

Data. CoCoNest was constructed using high-quality dMRI and structural MRI (sMRI) data
from 897 healthy, young adults (ages 22–35 years) who participated in the HCP (Van Essen
et al., 2013). The HCP provides rich subject-level data on brain connectivity, behavior, and

Continuous representation of
structural connectivity:
A representation of structural
connectivity as a continuous function
across the brain’s surface.

Full binary tree:
A hierarchical, tree-based data
structure in which each node has
either zero or two children nodes.

Internal parcellation evaluation:
A method for evaluating a
parcellation based solely on the
intrinsic properties of the parcels.

External parcellation evaluation:
A method for evaluating a
parcellation using auxiliary or
external information.
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genetics. Minimally preprocessed data from this study can be accessed at https://db
.humanconnectome.org/. Details on the data collection and the minimal preprocessing steps
can be found in Van Essen et al. (2013).

Image data processing and connectome extraction. The dMRI and sMRI data were processed
through a recently developed neuroimaging pipeline called the SBCI pipeline (Cole et al.,
2021). This pipeline consists of dMRI preprocessing, cortical surface extraction, and structural
connectome reconstruction steps. A brief overview of these steps is provided below.

Starting with minimally preprocessed dMRI and sMRI data, SBCI follows standard image
preprocessing steps. The dMRI data are skull stripped, bias-field corrected, cropped, intensity
normalized, and resampled to 1-mm isotropic resolution using tools from MRtrix3, Advanced
Normalization Tools (ANTs), and the Sherbrooke Connectivity Imaging Lab toolbox (Scilpy).
Subsequently, the sMRI data are registered to the dMRI space and then processed using Free-
Surfer’s recon-all. SBCI then computes voxel-wise fiber orientation distribution function
(fODF) estimates, using Dipy’s implementation of constrained spherical deconvolution
(Tournier, Calamante, & Connelly, 2007). These fODF estimates are then fed into a recently
developed probabilistic tractography algorithm called SET (St-Onge et al., 2018), which

Figure 1. Pipeline for creating the CoCoNest family of parcellations. (A) The first step in the pipeline is acquiring high-quality dMRI imaging
data from a homogeneous group of subjects (such as the HCP). (B) The dMRI data are then fed into a recently developed neuroimaging pipe-
line called the SBCI pipeline, which outputs subject-specific, high-resolution SC matrices by leveraging a continuous model of SC. (C) These
connectivity matrices are then averaged together to create a group-averaged, high-resolution SC matrix, �S

0
. (D) Next, �S

0
is fed into an agglom-

erative clustering algorithm to produce a full binary tree. (E) Subsequently, an error-complexity pruning algorithm is used to create a nested,
multiresolution sequence of parcellations. (F) Each member of the CoCoNest family can be displayed on the brain’s surface and used in SC
analyses.
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incorporates information about the geometry of the white surface to improve tractography
results. The SET algorithm has been shown to reduce gyral bias in SC and limit the amount
of false-positive connections output from tractography.

Let Ω ¼ W1 ∪ W2 be the union of two white matter surfaces, W1 and W2, corresponding to
the left and right hemispheres of the brain (as shown in the top panel of Figure 2A). In this
context, the set Ω × Ω represents all possible pairs of endpoints for white matter tracts that
interface with the white matter boundary. The output of the SET algorithm is then a subset

of Ω × Ω, denoted by eO ¼ fðep1
1; ep1

2Þ; … ; ðepq
1; epq

2Þg, where each pair of points ðepi
1; epi

2Þ indicates
the ending positions of white matter tracts on Ω, and q is the total number of endpoint pairs.

Since W1 and W2 are homeomorphic to S2, SBCI parametrizes them using spherical coordi-

nates. Let (p1, p2) be the image of ep1; ep2ð Þon S21∪S22 under the homeomorphism. Then, we can

denote the set of reparameterized ending points as O ¼ p1
1; p

1
2

� �
; … ; pq

1 ; p
q
2

� �� �
, and with a

slight abuse of notation, we let Ω ¼ S21∪S22, as shown in the bottom panel of Figure 2A.

Following the construction of Consagra, Cole, Qiu, and Zhang (2023), for a single subject,
SBCI models the streamline endpoints O as an outcome of a stochastic point process on Ω × Ω
with an integrable but unknown intensity function S : Ω × Ω → [0, ∞). This function is defined
as follows: For any two measurable regions E1 ⊂ Ω and E2 ⊂ Ω, let N(E1, E2) be the number of
streamlines ending in (E1, E2). Then, S satisfies the following equation:

E N E1; E2ð Þ½ � ¼
Z
E1

Z
E2

S x; yð Þdx dy < ∞: (1)

The latent function S is referred to as continuous connectivity and is considered in multiple
works (Cole et al., 2021; Consagra et al., 2022; Mansour L. et al., 2022; Moyer, Gutman,
Faskowitz, et al., 2017). In SBCI, a kernel-based algorithm is employed to estimate S from
the endpoints O. The white surfaces output by FreeSurfer contain over 120,000 vertices. To

Figure 2. (A) The white matter surface meshes and their inflation to spheres, which are utilized in the CoCoNest pipeline. These meshes
contain 4,121 vertices on the brain’s surfaces. A kernel-based algorithm is employed to estimate the continuous structural connectivity func-
tion S from the endpoints O derived from SET. (B) The continuous structural connectivity as a 4,121 × 4,121 matrix after the log transformation.

Network Neuroscience 1443

CoCoNest parcellation of the human cerebral cortex

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/8/4/1439/2480474/netn_a_00409.pdf by guest on 25 July 2025



reduce computational complexity, down-sampled white matter surfaces (see Figure 2A) with
M = 4, 121 vertices are created by minimizing the induced Hausdorff distance between the
full and down-sampled meshes (Cole et al., 2021). SBCI then computes function values S(x,
y) for x and y in the 4,121 downsampled vertices (see Figure 2B for one example of S ).

In our parcellation pipeline, we excluded from the matrix S 446 vertices that correspond to
the corpus callosum, as identified by Glasser et al. (2016), as the corpus callosum is often
treated separately in connectivity analyses.

Thus, we obtained a 3,675 × 3,675 high-resolution SC matrix for each of the 897 subjects in
HCP. The connectivity values in these matrices were highly skewed, with a large number of
weak connections and very few strong connections. To prevent our method, and several of the
evaluation metrics, from being dominated by these extreme values, we scaled and log-
transformed each of the connectivity values, S ’ = log ((105 × S + 1). These transformed SC
matrices were then averaged to produce a high-resolution, group-level SC matrix, denoted
�S
0
(see Figure 1C). Averaging serves to enhance the signal-to-noise ratio of the SC values and

yields a group-level SC representation.

For more details on the SBCI pipeline, see Cole et al. (2021) and the accompanying Github
repositories at https://github.com/sbci-brain/.

Tree Creation

Using �S
0
, we measured the similarity of SC patterns across the cortical surface, at multiple

levels of granularity, that is, resolutions. At the highest resolution, we considered the similarity
between SC patterns at the level of individual vertices. We then iteratively merged these ver-
tices into parcels to measure the similarity of SC patterns at coarser resolutions. This was car-
ried out using a standard agglomerative clustering algorithm. In the first stage of this algorithm,
each of the 3,675 vertices is assigned to its own distinct parcel. In subsequent stages, the most
similar parcels are merged, until all parcels are merged into a single parcel. The result of this
algorithm is a full binary tree, or dendrogram, where each parcel has either zero or two chil-
dren (Rosen, 2011). The final parcel, with no parent, is called the root node; parcels with two
children are called internal nodes, while parcels with no children are called terminal nodes.
Figure 3A illustrates these concepts.

We quantified the similarity between two parcels Ei and Ej using the average linkage func-
tion, defined as follows:

D Ei ; Ej
� � ¼ 1

jEi‖Ej j
X
x2Ei

X
y2Ej

d x; yð Þ; (2)

where jEij and jEjj represent the number of vertices in parcels Ei and Ej, respectively, and d(x, y)
is the similarity between vertices i and j. The similarity d(x, y) was measured using the
Euclidean distance between the SC profiles of vertex x and vertex y,

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3;675
z¼1

�S
0
x; zð Þ − �S

0
y ; zð Þ

� �2

vuut : (3)

This similarity captures the intuition that the two vertices are similar if they have similar SC to
other regions, and dissimilar if their connectivity to other regions are substantially different.
Thus, at each stage of the algorithm, the two parcels with the highest similarity, or the smallest
D(Ei, Ej), were merged. We found that the average linkage function and Euclidean distance

Network Neuroscience 1444

CoCoNest parcellation of the human cerebral cortex

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/8/4/1439/2480474/netn_a_00409.pdf by guest on 25 July 2025

https://github.com/sbci-brain/
https://github.com/sbci-brain/
https://github.com/sbci-brain/
https://github.com/sbci-brain/
https://github.com/sbci-brain/
https://github.com/sbci-brain/
https://github.com/sbci-brain/


metric performed better than other popular choices, for example, Ward’s linkage, centroid
linkage, and correlation distance (see Supporting Information Section S2). Figure 1D shows
a visualization of the full binary tree constructed using the average linkage function and
Euclidean distance metric. Throughout the rest of the paper, we call this tree the full CoCoNest
tree and denote it as Tmax.

Tree Pruning

In order to derive a family of parcellations from Tmax, we make use of tree pruning—a popular
technique that has been widely studied in classification and regression trees, vector quantiza-
tion, and signal compression (Breiman et al., 1984; Chou et al., 1989; Gersho & Gray, 1991;
Quinlan, 1993).

We define the branch Tt as the subset of Tmax consisting of the node t and all of its descen-
dant nodes. To prune Tt from Tmax, we delete all descendants of t from Tmax, leaving t itself in
place. After pruning, t becomes a terminal node, and a new tree Tmax − Tt is formed. Figure 3C
illustrates a single branch being pruned from a tree. If a tree T is obtained by iteratively pruning
branches from Tmax, then T is called a “pruned subtree” of Tmax, and this relationship is written
as T ⪯ Tmax. A parcellation is derived from a pruned subtree T by treating the vertices in a
terminal node of T as a distinct parcel. Thus, by iteratively pruning Tmax, we can create a
set of parcellations.

A dendrogram visually represents the results of a hierarchical clustering algorithm: The
height of each node indicates the similarity between the two clusters, called parcels in this
paper, that are being merged at that node. The most popular method of tree pruning is carried
out by horizontally “cutting” the dendrogram at a fixed height, that is, collapsing all of the
nodes below this fixed height into terminal nodes. This cutoff height effectively sets a limit
on the maximum D(Ei, Ej) allowable for merging parcels. The limit is often determined by
the desired number of parcels, that is, the user will choose a cutoff height such that no more
than K parcels remain.

However, this form of tree pruning does not actively balance the core goals of a parcella-
tion: reducing the complexity of the connectome data while preserving meaningful patterns in
the data. Instead, to prune Tmax, we adopt the error-complexity pruning method introduced by
Breiman et al. (1984) and further generalized by Chou et al. (1989). This method iteratively
prunes a tree in a greedy fashion, reducing its complexity while seeking to minimize its loss of
fit, or error, to the data. We will first discuss how we quantify the fit and complexity of a tree

Figure 3. An example of a full binary tree (or dendrogram). (A) A full binary tree T rooted at the root node {t0} along with six internal nodes {t1,
t2, t3, t4, t5, t6} and eight terminal nodes {t7, t8, t9, t10, t11, t12, t13, t14}. An example of the branch Tt1 rooted at node t1 is shown in (B). Tt1
consists of the node t1 along with all of its descendant nodes. (C) An example of Tt1 being pruned from T. Pruning a branch Tt from T corre-
sponds to collapsing all nodes below t and making t a terminal node.

Tree pruning:
A technique for removing branches
from a tree data structure.
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T ⪯ Tmax; then, using these concepts, we will provide a brief overview of how we carry out
error-complexity pruning to derive a nested, multiresolution family of parcellations.

To measure how well a tree T fits the high-resolution SC data in �S
0
, we first quantify the fit of a

node t 2 T. Let Vt be the set of vertices on the brain surface that are merged into node t and let nt
be the number of vertices in Vt. To evaluate how well the node t fits the high-resolution SC data

in �S
0
, we consider the average SC between the vertices in Vt, �st ¼

P
x;y2Vt

�S
0ðx; yÞ=ð2� ðnt

2
ÞÞ

(with the convention that �S
0
x; xð Þ ¼ 0) and the average SC between a vertex in Vt and a vertex y

not in Vt, �st ;y ¼ P
x2Vt

�S
0
x; yð Þ=nt . With these definitions, we define the fit of t as follows:

R tð Þ ¼
X

x;y2Vt

‖�S
0
x; yð Þ − �st‖

2 þ
X
x2Vt

X
y∉Vt

‖�S
0
x; yð Þ − �st ;y‖

2: (4)

The quantity R(t) measures the error between �S
0
and a lower resolution SC obtained by treating the

vertices in Vt as a single parcel and averaging their SC patterns. More specifically, the first term
quantifies the error incurred when the average SC within Vt is used as a substitute for the original

connections in �S
0
. Similarly, the second term quantifies the error incurred when the SC between a

vertex inVt and a vertex outsideVt is set to the average SC of all vertices inVt to that external vertex.

The fit of T ⪯ Tmax to �S
0
is then obtained by adding together the fits of its terminal nodes,

R Tð Þ ¼
X
t2~T

R tð Þ; (5)

where eT denotes the set of terminal nodes in T. The fit, or error, of the full tree R(Tmax) is 0, reflecting

the fact that each terminal node of Tmax contains a single vertex in �S
0
. We measure the com-

plexity of a tree T ⪯ Tmax by its number of terminal nodes, jeT j. Thus the low error of Tmax is
offset by its high complexity. The error-complexity measure of T is given by the following:

Rα Tð Þ ¼ R Tð Þ þ αjeT j; (6)

where α ≥ 0 balances the error and complexity of T. For a given α, error-complexity pruning
seeks to find a subtree T ≺ Tmax that minimizes Rα(T ). If α is 0, then the full tree Tmax will
minimize R0(T ). As the complexity parameter α increases, the minimizing subtree T will
have fewer terminal nodes. For a sufficiently large α, the minimizing subtree will simply be
the root node of Tmax.

Since it is computationally infeasible to explore every combination of pruning decisions to
find the subtree that minimizes Rα(T ), a method called weakest link cutting is used to facilitate
error-complexity pruning.

At each stage of the pruning algorithm, weakest link cutting prunes the branch Tt * that leads
to the smallest decrease in the error-complexity function, Rα(T − Tt) − Rα(T ). This is equivalent
to pruning the branch Tt * that minimizes the following:

R Tð Þ − R T − Ttð Þ
jT − Tt j − jT j ; (7)

where only the branches rooted at nonterminal nodes are considered. This minimizing branch
is called the weakest link since it has the smallest impact on the change in the error-complexity
function.

Tt * is then pruned to create a new tree T1 = Tmax − Tt *. Subsequently, the method finds a
new weakest link in T1 and prunes the corresponding branch. This process is repeated until
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only the root node remains. More details on this algorithm can be found in Breiman et al.
(1984).

The result of this algorithm is a nested sequence of subtrees Tmax ≻ T1 ≻ T2 ≻ … ≻ root.
The terminal nodes of each each subtree in this sequence yields a distinct parcellation of
the cortical surface. We call the resulting nested, multiresolution sequence of parcella-
tions the CoCoNest family. The pruning procedure tends to remove two terminal nodes at
a time during the early stages of the algorithm, while larger cuts are made in the later
stages, as illustrated in Figure 9. Thus, although a parcellation of any fixed size (number
of terminal nodes) K is not guaranteed, the CoCoNest sequence still spans a wide range of
resolutions.

Quantifying Parcellation Performance

In this section, we use several metrics for quantifying the quality of a given parcellation.
We divide these metrics into two categories: internal evaluation and external evalua-
tion. Internal evaluation metrics measure the performance of a parcellation based on
properties intrinsic to the parcels themselves, such as the size of a parcel, without ref-
erence to external information. In contrast, external evaluation metrics rely on auxiliary
or external information, like a subject’s performance on a cognitive test. In the Results
section, we used these metrics to assess the performance of members of the CoCoNest
family and to compare its performance with other parcellations commonly used in the
literature.

Several of the metrics are based on the idea of converting a high-resolution SC matrix to a
parcel-based SC matrix. Let A ¼ E1; E2;…EKf g denote a parcellation of Ω with K parcels. We
can define the connectivity strength between parcels Ei and Ej as the average number of
streamlines per unit area square. This is approximated through the equation:

S 0A Ei ; Ej
� � ¼

X
x2Ei ;y2Ej

S 0 x; yð ÞΔxΔy

jEi‖Ej j ; (8)

where Δx and Δy are the average areas associated with each vertex on the respective
spheres, that is, Δx ≈ Δy ≈ 8π/3, 675, assuming the vertices are uniformly distributed
on Ω, and jEij and jEjj denote the total area of parcels Ei and Ej, respectively. We call
S 0A the parcel-based SC matrix. The parcel-based SC matrix captures the idea that a

parcellation of the brain reduces the complexity of SC data by merging the SC patterns
of vertices.

Internal Evaluation Metrics. We considered seven internal evaluation metrics: (a) approxima-
tion error, (b) 1-Wasserstein distance, (c) parcel homogeneity, (d) Calinski-Harabasz index,
(e) proportion of contiguous parcels, (f ) entropy, and (g) stability. Their definitions are given
below.

Approximation error. A parcellation merges the connectivity patterns of vertices by grouping
them into parcels. This merging reduces the dimension of the high-resolution data at the cost
of losing vertex-level connectivity information. Ideally, a parcellation should parcellate the
high-resolution data in a way that minimizes this information loss. To quantify this loss, we
created a metric called approximation error. Recall that S 0A is the parcel-based SC matrix

derived from the parcellation A. Ideally, this parcel-based connectivity should resemble the
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connectivity patterns present in the full-resolution connectivity data in �S
0
. However, a direct

comparison between S 0A and �S
0
is difficult due to their differing dimensions: S 0A is a K × Kmatrix

and �S
0
is a 3,675 × 3,675 matrix.

To overcome this, we create a new matrix denoted �S
0
A , which upscales the connectivity

data in S 0A to match the dimension of �S
0
. Suppose vertex x is assigned to parcel E and vertex

y is assigned to parcel E’. Then, �S
0
A x; yð Þ, the connectivity between vertex x and y in the

resolution-matched matrix, is given by S 0A E ; E 0ð Þ. Additionally, we set the diagonal elements

in �S
0
A to zero to match the diagonal elements in �S

0
. Finally, we define the approximation error,

AE Að Þ, as follows:

AE Að Þ ¼ ‖�S
0 − �S

0
A‖F ; (9)

where ‖ ⋅ ‖F denotes the Frobenius norm. Parcellations with a lower AE decrease the

resolution of the data while preserving the connectivity patterns present in �S
0
. Addition-

ally, we computed AE at the subject level, providing a quantitative measure of how well
a given parcellation preserves patterns in the subject-specific, high-resolution SC
matrices.

1-Wasserstein distance. The distribution of connectivity values in �S
0
characterizes the variability

of SC, and a parcellation should result in a resolution-matched matrix �S
0
A that preserves this

distribution. A common metric for quantifying the difference between two distributions is the
Wasserstein distance. Given P and Q as probability measures on ℝ with cumulative distribu-
tion functions F(x) and G(x), respectively, the 1-Wasserstein distance W1 can be written as
follows:

W1 P ;Qð Þ ¼
Z 1

0
F−1 tð Þ − G−1 tð Þ		 		 dt
 �

: (10)

In our context, P and Q are probability measures associated with the connectivity distributions

of �S
0
and �S

0
A, respectively, and F and G are their corresponding empirical cumulative distribu-

tion functions. We used the 1-Wasserstein distance to assess the similarity between the con-

nectivity distributions of �S
0
and �S

0
A. A lower value of W1 indicates that the resolution-matched

matrix preserves the connectivity distribution of the high-resolution SC data. The subject-level
1-Wasserstein distance was also computed to provide a quantitative measure of how well a
given parcellation preserves the connectivity distribution of subject-specific, high-resolution
SC matrices.

Parcel homogeneity. Vertices within a parcel should have similar connections to other
vertices; in other words, the SC profiles within a parcel should be homogeneous. To
measure this, we followed Craddock et al. (2012) and computed the average Pearson’s
correlation between every unique pair of vertex SC profiles within a parcel Ek: �r Ekð Þ ¼P

x≠y ;x;y2Ek rð�S
0ðx; _Þ; �S

0
y ;_Þ
� �

=ð ni
2
Þ;, where �S

0ðx; _Þ and �S
0ðy ; _Þ represent the SC profiles of ver-

tices x 2 Ek and y 2 Ek, respectively, ni is the total number of vertices in Ek, and r denotes
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the Pearson’s correlation. “Parcel homogeneity” is then defined as the average of these
values across all parcels in a parcellation A,

Parcel Homogeneity Að Þ ¼ 1
K

XK
k¼1

�r Ekð Þ: (11)

This parcel homogeneity metric takes values in [−1, 1]. Higher parcel homogeneity values
indicate that the SC profiles of vertices within a parcel are similar, whereas lower values
indicate that vertices within a parcel tend to have distinct connections to other vertices.

Additionally, we computed parcel homogeneity at the subject level, by replacing �S
0
with S’,

to measure how homogeneous within-parcel SC profiles are in subject-specific SC matrices.

The Calinski-Harabasz index. While we expect vertices within a parcel to have homogeneous
SC patterns, we also expect vertices in different parcels to have distinct SC patterns. To quan-
tify this, we applied the Calinski-Harabasz index (CH), also known as the variance ratio cri-

terion. Let nk be the number of vertices in parcel Ek, let μ be the 1 × 3,675 row-wise mean of �S
0
,

and let μEk be the 1 × 3,675 row-wise mean of the rows in �S
0
that correspond to the vertices in

k-th parcel. Given a parcellation A ¼ E1; E2;…; EKf g, CH Að Þ is calculated as follows:

CH Að Þ ¼

XK
k¼1

nk μEk − μ
�� ��2= K − 1ð Þ

XK
k¼1

X
x2EK

�S
0
x; :ð Þ − μEk

��� ���2= n − Kð Þ
; (12)

where �S
0
x; :ð Þ is the SC profile of vertex x. The numerator of Equation 12 is the between-parcel

sum of squares, and the denominator is the within-parcel sum of squares. Higher values of CH
indicate that the parcellation A contains vertices that are more spread apart, in terms of their
connectivity profile, between parcels than within parcels. We also computed the CH at the
subject level.

Proportion of connected parcels. The structural connectome is known to be spatially contigu-
ous, that is, parcels should not be internally disconnected or split across the cortex. A parcella-
tion with many disconnected parcels does not properly capture this property of the structural
connectome. Given the adjacency matrices associated with the surface meshes introduced in
the Image Data Processing and Connectome Extraction section (see Figure 2A), we also com-
puted the proportion of connected parcels within a parcellation using a Depth-First Search
(DFS) algorithm. For each parcel in the parcellation, the DFS algorithm starts at an arbitrary
vertex within the parcel and iteratively explores its neighbors, via the surface mesh adjacency
matrix. If every vertex within a given parcel can be reached from any starting vertex via DFS,
then the parcel is considered connected. By performing this analysis, we can quantify the pro-
portion of connected parcels in the parcellation. A higher value indicates that the parcellation
contains a greater number of connected parcels.

Entropy of parcel sizes. Parcellations with a highly nonuniform distribution of parcel sizes con-
centrate connectivity information unevenly across the cortical surface. Such parcellations may
be restricted in capturing a wide variety of connectivity patterns. Entropy serves as a natural
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metric to quantify the uniformity of parcel sizes. Let pk denote the proportion of vertices in
parcel k. The entropy of a parcellation A is defined as follows:

H Að Þ ¼ −
XK
k¼1

pk log2 pkð Þ
log2 Mð Þ ; (13)

where M is the total number of vertices being parcellated, K is total number of parcels, and
log(M ) serves as a normalizing factor. The entropy H Að Þ ranges from 0 to 1. High values of H
correspond to more uniformly distributed parcel sizes. This indicates that the parcellation is not
dominated by large parcels and that the parcels are diverse, possibly capturing a wider variety of
patterns in the data. Intuitively, the entropy of a parcellation is expected to increase as the
number of parcels increases, albeit at the cost of increasing the complexity of the parcellation.

Adjusted mutual information. We also used the adjusted mutual information (AMI) to compare

the parcel assignments of two parcellations: A ¼ E1; E2;…; EKf g and ~A ¼ f~E1; ~E2;…; ~E ~Kg,
denoted as AMIðA; ~Ag. Let pA Ekð Þ and ~p ~A E~k

� �
be the proportion of vertices in parcel Ek of

A and parcel E~k of ~A, respectively, and let pA~AðEk ; E~kÞ be the proportion of vertices common

to parcels Ek and E~k . Then, the MI is given by the following.

MI A; ~A
� �

¼
XK
k

X~K
~k

pA~A Ek ; E~k
� �

log
pA~A Ek ; E~k

� �
pA Ekð Þp~A E~k

� � :
There are potentially two problems with this form: (a) Two completely randomized parcellations

may have nonzero MI values, and (b)MIðA; ~AÞ tends to increase as the number of parcels inAor
~A increases. For these reasons, it is popular to use a generalized hypergeometric model of ran-
domness, that is, the two parcellations are assumed to have been chosen at random with the
constraint that they retain their number of parcels and their number of vertices within each parcel
(Hubert & Arabie, 1985). Under this model, the expected MI E MIð Þ can be derived (Vinh, Epps,

& Bailey, 2009). To adjust MIðA; ~AÞ, we follow Hubert and Arabie (1985) and Vinh et al.
(2010):

AMI A; ~A
� �

¼
MI A; ~A

� �
− E MI A; ~A

� �� �
max H Að Þ;H ~A

� �n o
− E MI A; ~A

� �� � ; (14)

where H Að Þ is defined in Equation 13. If A and ~A are identical, then the AMI value is 1. If the

MI between A and ~A equals the expected MI due to chance alone, then the AMI will be 0. We
consider two parcellations to be similar if they have a high AMI and dissimilar if their AMI is low.

Stability. A method for parcellating the brain should be stable across homogeneous groups of
subjects. To quantify the stability of CoCoNest, we randomly created 10 batches of 100 sub-
jects from the 897 subject considered. Each of these batches was then fed into the CoCoNest
pipeline (see Figure 1) to create 10 nested families of parcellations. We then used the AMI, as
detailed above, to quantify how similar these nested families were to each other and to the
CoCoNest family constructed using all 897 subjects.

External Evaluation Metrics. We use the following two external evaluation metrics to assess par-
cellation performance.
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Trait prediction. An important task in connectome studies is to understand the relationship
between brain connectivity and various demographic, behavioral, or physiological traits
(Gosnell et al., 2019; Hirsiger et al., 2016; Smith, 2016; Zimmermann, Griffiths, & McIntosh,
2018). A derived brain parcellation should facilitate such analysis tasks. To evaluate this, we
predicted selected behavioral traits available from the HCP beginning with different parcel-
lations. These traits included score on reading recognition test (reading) number of correct
responses on the Penn Matrix test (fluid intelligence), number of correct responses on the
Penn Line Orientation test (spatial orientation), number of correct responses on the Penn
Word Memory test (verbal episodic memory), score on the openness to experiences section
of the Five Factor Model (openness), and gender. The variable names in parenthesis follow
the convention of Ooi et al. (2022). Since our primary goal was to compare all parcellations
under a straightforward and efficient predictive model, rather than identifying the optimal
model for linking brain connectivity to human traits, we opted to use three simple models:
principal component regression (PCR), ridge regression, and support vector regression (SVR)
with a linear kernel. For PCR, a ridge regression model was used to predict y with the derived
PC scores.

In our experiments, for each parcellation, each subject’s high-resolution SC matrix was
converted into a parcel-based SC matrix. The log transformation was omitted to achieve
better prediction results, and thus, S(x, y) replaced S’(x, y) in Equation 8. We followed the
standard convention and set self-connections in the parcel-based SC matrix to 0. The
parcel-based SC matrix for each subject was then vectorized to derive a N × K(K − 1)/2
matrix, where N is the number of subjects and K is the number of parcels in the considered
parcellation. To predict a selected trait y, the data were randomly split 50 times into train-
ing (80%) and testing (20%) sets. In each split, each of the three considered models were
trained, with their hyperparameters (e.g., the number of PC scores to retain for PCR or the
penalty parameter in ridge) chosen using fivefold cross-validation. Subsequently, the testing
set was fed into the trained model to predict the values of the response y. The model’s perfor-
mance was evaluated using the Pearson correlation between the measured and predicted y
values. The performance of a parcellation across the 50 data splits is summarized by the mean
and the standard error of the mean of the correlations. To assess a parcellation’s performance in
predicting gender, we used a logistic regression (LR) model with PC scores (PCLR), L2-regularized
LR, and a linear support vector classifier (SVC). The performance was measured using the AUC
area under the receiver operating characteristic (ROC) curve.

A parcellation that is well-suited for exploring the relationship between brain connectivity
and subject-level traits should have a strong predictive power for those traits.

Test–retest identifiability. SC has been shown to be highly reproducible (Bonilha et al.,
2015; Prčkovska et al., 2016; Zhang et al., 2018), that is, SCs generated by the same indi-
vidual are notably more similar than SCs derived from different individuals. We draw on a
metric, known as neural identifiability (NIA), introduced by Mansour L., Tian, Yeo, Cropley,
and Zalesky (2021) to assess how well a parcellation preserves this inherent reproducibil-
ity of SC. To define NI, we made use of the imaging from 897 subjects from the HCP,
where 37 of these subjects underwent an additional imaging session at a later date.
We designate the SC data derived from the initial scans from the 897 subjects as the test
dataset and the SC data derived from the subsequent second scans from the subset of 37
subjects as the retest dataset. To calculate NIA for a given parcellation A, we first con-
structed a parcel-based SC matrix, using Equation 8, from each of the full-resolution test
and retest datasets.

Network Neuroscience 1451

CoCoNest parcellation of the human cerebral cortex

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/8/4/1439/2480474/netn_a_00409.pdf by guest on 25 July 2025



Let S 0 ið ÞA denote the parcel-based SC matrix of subject i. We defined the similarity RA i; jð Þ
between the parcel-based SC matrices of subject i and j as the average correlation coefficient
between the corresponding rows of both matrices.

RA i; jð Þ ¼ 1
K

XK
k¼1

corrðS 0 ið ÞA Ek ; :ð Þ; S 0 jð ÞA Ek ; :ð Þ: (15)

We then averaged the 37 intrasubject and 37 × 897 intersubject similarities, denoted �R
intra
A and

�R
inter
A , respectively. The Cohen’s D effect size was then used to define NIA.

NIA ¼ j�Rintra
A − �R

inter
A j

s
; (16)

where s is the pooled standard deviation of the similarities. A parcellation that achieves a
higher NI score better separates the intrasubject from the intersubject similarities, and thus
parcellates the structural connectome more reliably. Such a parcellation creates a distinguish-
able SC “fingerprint” for an individual and effectively reflects the high reproducibility of SC.

Validation on an external dataset. A good parcellation of the structural connectome should cap-
ture meaningful SC patterns across diverse populations. To assess this, we evaluated the per-
formance of CoCoNest on the ABCD study dataset (Casey et al., 2018).

To do this, we first downloaded dMRI and sMRI data from 493 subjects who participated in
the ABCD study. Details on the minimal processing pipelines and acquision protocols can be
found in Casey et al. (2018) and Hagler et al. (2019). To avoid interscanner effects, we only
considered subjects who were scanned using a Siemens manufactured scanner. The down-
loaded ABCD imaging data were then processed through the SBCI Pipeline (see the Image
Data Processing and Connectome Extraction section). As before, the SBCI pipeline performed
standard preprocessing steps and output a high-resolution SC matrix for each subject based on
a continuous representation of SC.

The performance of a parcellation was then measured using a collection of the introduced
internal evaluation metrics introduced in the Quantifying Parcellation Performance section,
namely, approximation error, 1-Wasserstein distance, the Calinski-Harabasz index, and parcel
homogeneity. For external evaluation, we predicted selected behavioral traits available from
the ABCD study. These traits included vocabulary, fluid intelligence, fluid cognition, crystal-
lized cognition, reward responsiveness, and gender. These variable names follow the conven-
tion of Ooi et al. (2022).

RESULTS

We used high-quality imaging data from the HCP to construct a multiresolution family of
CoCoNest parcellations based on structural connectome data.

Figure 1E shows the subtrees corresponding to three members of the CoCoNest family with
9, 68, and 360 terminal nodes. Figure 1F displays the parcellations derived from these subtrees

along with the corresponding parcel-based representation of �S
0
, derived using Equation 8.

We used the internal and external evaluation metrics described above to evaluate the per-
formance of members of the CoCoNest family, and to compare CoCoNest with the widely
used parcellations in the literature, including the anatomical-based Desikan (Desikan et al.,
2006) and Destrieux (Destrieux et al., 2010) parcellations; the structural connectome-based
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Brainnetome parcellation (Fan et al., 2016); the functional connectome-based Yeo-17 (Yeo
et al., 2011), Gordon (Gordon et al., 2016), and multiresolution Schaefer (Schaefer et al.,
2018) parcellations; and the multimodal Glasser parcellation (Glasser et al., 2016).

Internal Evaluation Results

The comparison results for the internal evaluation metrics are shown in Figure 4. Higher values
in the proportion of contiguous parcels, entropy, and CH index indicate better performance;
these are shown in the top panel. Conversely, lower values of W1 and logAE indicate better
performance; these are shown in the bottom panel.

The results show that members of the CoCoNest family containing more than 100 parcels
possess several desirable characteristics. Firstly, they feature homogeneous, uniformly sized,
and connected parcels, as indicated by the proportion of connected parcels and the entropy of

parcels. Secondly, these parcellations preserve high-resolution SC patterns in both �S
0
and

subject-specific high-resolution SC data, as seen in the log AE measure. Thirdly, they have a
much higher ratio of between-parcel variation to within-parcel variation (as measured by CH)
compared with the other parcellations considered. Lastly, CoCoNest members outperform the
other parcellations with similar sizes in both the mean per-subject AE and the mean per-
subject W1 metrics, indicating that CoCoNest members better preserve high-resolution SC pat-
terns in subject-specific data.

We found small deviations from connectedness in several parcels in the considered parcel-
lations from the literature (e.g., a single parcel in the Desikan parcellation). These deviations

Figure 4. Results of the internal evaluation metrics for assessing parcellation performance. The top panel shows the internal validation per-
formed on the average connectivity matrix, �S

0
, while the bottom panel shows the validation performed on the subject-specific connectivity data.

For these metrics, members of the CoCoNest family are competitive with, and often superior to, widely used parcellations in the literature. In the
figure, “CH” denotes the Calinski-Harabasz index, “AE” denotes the approximation error, and “W1” denotes the 1-Wasserstein distance.
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are a result of small errors incurred during downsampling from the high-resolution white mat-
ter surfaces (see the Image Data Processing and Connectome Extraction section). Examples of
such small deviations are given in the Examples of Non-connected Clusters section of the
Supporting Information.

Figure 5A shows the AMI between selected members of the CoCoNest family and other
parcellations with a similar number of parcels. The Yeo-17 and Gordon parcellations show
the most dissimilarity to the other parcellations, which is expected since they were constructed
using fMRI data. We found moderate similarity (AMI ≈ 0.60) between CoCoNest family mem-
bers and the Desikan, Destrieux, Brainnetome, Glasser, and Shaefer parcellations. Figure 5B
overlays members of the CoCoNest family (outlined in black) on top of the Glasser parcella-
tion. The color scheme of the Glasser parcellation allowed us to visualize how parcels from
the CoCoNest family overlap with known anatomical and functional regions. For example, the
CoCoNest member with 17 parcels contains large parcels covering the visual and sensorimo-
tor regions of the brain. As the number of parcels increase, CoCoNest members are character-
ized by elongated parcels along the sensorimotor regions of the brain, similar to the Glasser
parcellation, and larger parcels in the frontal lobe. Additionally, members of the CoCoNest
family show a high degree of symmetry, with parcels on the left hemisphere mirroring the
shape and size of similarly located parcels on the right hemisphere.

Figure 6 shows the stability of the CoCoNest procedure, as measured by the AMI between
members of CoCoNest families derived from different subsets of the 897 subjects. Here, we
include results for CoCoNest-5, CoCoNest-50, CoCoNest-100, CoCoNest-250, and
CoCoNest-1000. The parcellations were remarkably similar, with the AMI value exceeding
0.9 for every parcellation size greater than 50 parcels. These results show that CoCoNest par-
cellations are robust and stable across homogeneous groups of subjects.

External Evaluation Results

Figure 7 shows the trait prediction and neural identification performance of members of the
CoCoNest family and the other parcellations considered. With a similar number of parcels,
CoCoNest family members consistently outperformed the other parcellations considered
across all prediction models. Additionally, after 250 parcels, the performance of CoCoNest
members tends to plateau. From the NI metric, we found that members of the CoCoNest family
were competitive in reflecting the high reproducibility of SC, and thus creating a more

Figure 5. (A) The AMI between popular parcellations in the literature and the CoCoNest family member with a similar number of parcels. (B)
CoCoNest members (outlined in black) overlaid on top of the Glasser parcellation (in color). The color scale of the Glasser parcellation follows
Glasser et al. (2016).
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distinguishable SC fingerprint for an individual. It is interesting to note that although the Yeo-17
parcellation was constructed using functional connectome data, it provides an SC fingerprint
competitive with CoCoNest members and the Desikan atlas.

Validation on the ABCD Dataset

Figure 8 shows the trait prediction results using data downloaded from the ABCD study. Echo-
ing the results of the HCP external validation, we found that members of the CoCoNest family
were simultaneously competitive with the other parcellations considered and often showed
superior performance across all prediction models. Additionally, as in the HCP external vali-
dation, we found that the CoCoNest member with 250 parcels consistently achieved the best,
or close to the best, performance across the considered resolutions. All parcellations consid-
ered were competitive in the internal evaluation metrics, with CoCoNest achieving marginal
improvements in performance. These internal validation results can be found in Supporting
Information Section S1.

Additionally, a natural question is whether a family of CoCoNest parcellations derived from
the ABCD data, referred to as CoCoNest_ABCD, outperforms the proposed CoCoNest family,
derived from the HCP data, when validated using the ABCD data. Our findings indicate that
CoCoNest_ABCD parcellations indeed show moderately better performance across both internal
and external evaluation metrics. These results are reported in Supporting Information Section S1.2.

CoCoNest as an Exploratory Framework

The nested structure of the parcellations in the CoCoNest family can provide a valuable frame-
work for exploratory analyses into the organization of the structural connectome. To give an
example, consider the final stages of the error-complexity pruning procedure shown in

Figure 6. Color map showing the AMI between members of the CoCoNest family derived from 10 batches of 100 subjects using the
CoCoNest parcellation pipeline. Each of these parcellations was also compared to the CoCoNest member constructed from the full set
of 897 subjects. Higher AMI values indicate greater similarity between the parcellations.
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Figure 9. Notably, CoCoNest does not separately partition the left and right hemispheres as
might be expected. Rather, it merges the frontal and parietal lobes of both hemispheres into
one parcel (Parcel 3 in Figure 9), while merging the temporal and occipital lobes of the left
hemisphere separately from those on the right hemisphere (Parcels 1 and 2 in Figure 9). This
approach suggests that the tree creation and pruning procedures identify similar SC patterns in the
frontal and parietal lobes across both hemispheres, but disparate patterns in the occipital and tem-
poral lobes. This division of lobes is consistent with existing literature that highlights functional
differences between the left and right temporal lobes (Chan et al., 2009; Scott, Blank, Rosen, &
Wise, 2000). As this example illustrates, by navigating the family of CoCoNest parcellations,
researchers can gain a better understanding of the structural variations between brain regions
and can investigate how these variations might correlate with functional roles.

The error-complexity pruning algorithm used to construct the CoCoNest family aims to
strike a balance between the complexity of a parcellation and how well it represents the
high-resolution SC data �S

0
. For each terminal node in a subtree corresponding to a CoCoNest

member, we calculated the number of branches pruned from the full CoCoNest tree to arrive

Figure 7. Results of predicting different human traits and neural identification using parcel-based SC matrices generated by different parcella-
tions. For predicting human traits, the mean predictive performance (correlation between predicted and reported values) over 50
training/testing splits is plotted versus the number of parcels in each parcellation. The error bars represent the standard error of the mean.
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at that node. A large number of branches pruned in a brain region suggests that many splits

were eliminated. This elimination is done to balance complexity with accuracy. In other

words, the higher the number of pruned branches in a region, the less distinct the SC profiles

in that region are. Figure 10 shows this calculation for members of the CoCoNest family with

roughly 10, 100, 250, 500, and 1,000 parcels.

We observe that, across various resolutions, the CoCoNest pruning procedure favors prun-
ing parcels in regions including the occipital, precentral, postcentral, and temporal lobes. This
suggests that combining the SC patterns in these lobes reduces the complexity of the connec-
tome data while still preserving high-resolution SC patterns. When conducting SC analyses
using the CoCoNest family, researchers can use the number of pruned branches below a par-
cel to inform hypotheses about which parcels possess crucial SC patterns.

As mentioned earlier, a parcellation serves as a natural bridge between neuroscience and
network science. By treating the parcels as nodes and the structural connections as edges, SA
can be viewed as a weighted network with K nodes. In order to showcase how members of the
CoCoNest family can be used as an exploratory tool in network-based analyses, we used them
to investigate the rich club effect in the structural connectome. To carry out a more interpret-
able analysis, the log transformation introduced in the Image Data Processing and Connec-
tome Extraction section was omitted for this task.

Figure 8. Trait prediction results using the ABCD dataset for each parcellation. The mean predictive performance (correlation between pre-
dicted and reported values) over 50 training/testing splits is plotted versus the number of parcels in each parcellation. The error bars represent
the standard error of the mean.
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Recall that the degree of a node in a network is measured by the number of outgoing con-
nections that it has to other nodes. Similarly, the weighted degree of a node is the sum of the
weights of these outgoing connections. Rich clubs in networks are high degree nodes that are
more strongly connected to each other than nodes of lower degrees. Previous work has shown
that the structural connectome strongly displays the rich club effect (Grayson et al., 2014; Liu
et al., 2021; van den Heuvel, Kahn, Goñi, & Sporns, 2012; van den Heuvel & Sporns, 2011). We
follow (van den Heuvel & Sporns, 2011) and use the normalized, weighted rich club coefficient
to probe for the rich club effect in the structural connectome. A normalized rich club coefficient
greater than 1 for successive values of k indicates the presence of the rich club effect.

Figure 11 shows the weighted degrees of each parcel on the cortical surface, the normal-
ized rich club coefficients, and the identified rich club nodes for networks derived from

Figure 9. Visualization of the final stages of the error-complexity pruning procedure. Colors and numbers represent distinct parcels on the
brain’s surface. Numbers with a subscript indicate a parent–child relationship between parcels. CoCoNest aims to group brain regions based
on similar structural connectivity patterns and separates those with differing patterns. The last parcellation before reaching the root node contains
three parcels: it parcellates the frontal lobe of both hemispheres together, while separating the temporal and occipital lobes of the left hemisphere
from those on the right. These structural connectivity patterns may give rise to the similar and distinct functional roles of these brain regions.
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CoCoNest-150, CoCoNest-250, and CoCoNest-500. In general, we found that parcels in the
frontal and parietal lobes showed lower weighted degrees, whereas parcels in the occipital
lobe showed higher weighted degrees. For all three members, we found evidence of the rich
club effect. Notably, the rich club nodes across these members include parcels that overlap

Figure 11. A multiscale network analysis with three members of the CoCoNest Family (CoCoNest-150, CoCoNest-250, and CoCoNest-500).
(A) The weighted degree of each parcel on the cortical surface. Parcels in the frontal and parietal lobes were characterized by lower weighted
degrees, whereas parcels in the occipital lobe showed higher weighted degrees. (B) The rich club curve. The region shaded in gray indicates
the rich club regime where ϕw

norm remains greater than one for successive values of k. Each member of the three CoCoNest family members
displayed evidence of the rich club effect. (C) The rich club nodes on the cortical surface (represented as red balls), along with the connections
between them (represented as blue line segments). Rich club nodes across these three members include parcels that overlap with the superior
frontal cortex, somatosensory regions, and the inferior parietal lobe across both hemispheres.

Figure 10. A visualization of the number of branches pruned from the full CoCoNest tree to arrive at the parcels in various CoCoNest
members.
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with the superior frontal cortex, somatosensory regions, and the inferior parietal lobe across
both hemispheres. These findings are similar to previous work (Grayson et al., 2014; Liu et al.,
2021; van den Heuvel et al., 2012; van den Heuvel & Sporns, 2011). We also found similar
results using the other considered external parcellations (see Supporting Information Section
S3). Additionally, we found that nodes in the anterior portion of the frontal lobe and the pos-
terior portion of the occipital lobe showed variable rich club status across the three resolutions.
For instance, while no rich club nodes were found in the anterior portion of the frontal lobe
while analyzing the network created by CoCoNest-250, rich club nodes were present in these
areas when analyzing the networks created by CoCoNest-150 and CoCoNest-250. Further
details on this rich club analysis can be found in Supporting Information Section S3. These
observations highlight how network-based insights into the structural connectome can vary
with resolution, demonstrating CoCoNest’s usefulness for conducting tractable, multiscale
analyses of the structural connectome.

Selection and Sharing of CoCoNest

Since each member of the CoCoNest family corresponds to a unique subtree within the full
CoCoNest tree, the CoCoNest family enables researchers to explore the multiresolution nature
of the structural connectome. While the hierarchical structure may offer enhanced insights into
brain organization, researchers may be interested in using just a single resolution, or a CoCoNest
member, for their analyses. According to the internal and external validation results in Figures 4
and 7, larger CoCoNest parcellations tend to show diminishing improvements in performance
after about 250 parcels. Therefore, if one is seeking a single-resolution parcellation for the HCP
data considered above, a natural candidate is CoCoNest-250 (shown in Figure 12) which per-
forms well on both the internal and external evaluation metrics.

Every member of the CoCoNest family can be freely accessed at https://github.com/sbci
-brain/CoCoNest. Additionally, the repository contains scripts to convert any member of the
CoCoNest family to the fsLR-32 k, fsaverage, and MNI152 template spaces. The repository also

Figure 12. CoCoNest-250, the member of the CoCoNest family with 250 parcels. We found that
CoCoNest-250 showed competitive performance, not only among other members of the CoCoNest
family but also compared with other widely used parcellations in the literature. For researchers
seeking a single-resolution parcellation, we recommend CoCoNest-250 for its competitive
performance.
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contains the scripts used to create the CoCoNest family from SBCI-processed brain connec-
tivity data.

DISCUSSION

In this work, we leveraged recent advances in structural connectome reconstruction, as well
existing techniques from hierarchical clustering and error-complexity pruning, to construct a
nested, multiresolution family of parcellations, called the CoCoNest family. The CoCoNest
family provides researchers with insights into the structural connectome across multiple reso-
lutions. The multiresolution nature of the CoCoNest family is naturally aligned with the current
consensus in the literature on the multiscale nature of the brain. Through an extensive battery
of internal and external evaluation metrics, we have shown that the CoCoNest family is simul-
taneously competitive with widely used parcellations in the literature, including the Yeo-17,
Desikan, Destrieux, Brainnetome, Gordon, Schaefer, and Glasser parcellations (Desikan et al.,
2006; Destrieux et al., 2010; Fan et al., 2016; Glasser et al., 2016; Gordon et al., 2016;
Schaefer et al., 2018; Yeo et al., 2011). In particular, CoCoNest members with a similar num-
ber of parcels as these widely used parcellations often show superior performance in a num-
ber of unsupervised and predictive metrics.

Additionally, there are several alternative methods for creating a connectome-based parcel-
lation. These methods can be broadly categorized into gradient-based methods (Cohen et al.,
2008; Gordon et al., 2016; Schaefer et al., 2018; Wig et al., 2014), which identify abrupt
changes in connectivity across the cortical surface, and statistical clustering methods, which
cluster regions based on similar connectivity patterns. Widely used statistical clustering
methods include mixture models (Baldassano, Beck, & Fei-Fei, 2015; Golland, Golland, &
Malach, 2007; Kong et al., 2019; Lashkari et al., 2012; Moyer, Gutman, Jahanshad, & Thompson,
2017; Roca et al., 2010; Yeo et al., 2011), k-means clustering (Flandin et al., 2002; Kahnt, Chang,
Park, Heinzle, & Haynes, 2012; Salehi, Karbasi, Shen, Scheinost, & Constable, 2018), and spectral
clustering (Chen et al., 2013; Craddock et al., 2012; Fan et al., 2016; Thirion, Varoquaux,
Dohmatob, & Poline, 2014). These methods typically produce a single parcellation with a
predefined number of parcels. However, recent work has revealed the multiscale nature of
human brain connectivity, where the interactions and distinctions between scales are thought
to be critical to the overall functionality of the brain (Bassett & Siebenhühner, 2013; Betzel &
Bassett, 2017; Meunier, Lambiotte, & Bullmore, 2010; R. Wang et al., 2019). As opposed to
generating a sequence of predefined number of parcels and using the aforementioned
methods, hierarchical clustering approaches, like the proposed CoCoNest, have been used
to better represent the multiscale nature of the connectome (Blumensath et al., 2013;
Cammoun et al., 2012; Diez et al., 2015; Eickhoff et al., 2011; Gallardo, Wells, Deriche,
& Wassermann, 2018; Kurmukov et al., 2020; Michel et al., 2012; Moreno-Dominguez,
Anwander, & Knösche, 2014). This approach represents parcels as being composed of smaller
subparcels, thus capturing both the interactions and distinctions between scales. Here, we call
this spatial, multiscale representation of the connectome a multiresolution representation to
highlight its nested structure and to distinguish it from the temporal and topological scales
of brain networks often studied (Betzel & Bassett, 2017).

The main decisions in these hierarchical parcellation methods center on creating a hierar-
chical structure from connectome data and deriving parcellations from this structure. A simple
approach is to iteratively merge nearby vertices in high-resolution structural connectome data
to form a hierarchical structure (Cammoun et al., 2012). However, this method does not allow
the structural connectome data itself to directly influence the resulting hierarchical structure.
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Modularity maximization algorithms, particularly the Louvain algorithm, have also been com-
monly used to create hierarchical structures from structural connectome data (Diez et al.,
2015; Kurmukov et al., 2020). Yet, this approach has been shown to be limited in capturing
partitions with small clusters, especially when used with dense, high-resolution data (Fortunato
& Barthélemy, 2007). Additionally, implementations of hierarchical clustering for structural con-
nectome data predominantly focus on subject-level parcellations (Kurmukov et al., 2020;
Moreno-Dominguez et al., 2014). However, aggregating individual hierarchical structures
or computing a consensus hierarchy is challenging and often avoided, making group-level
analysis of the organization of the structural connectome difficult. Finally, many existing par-
cellations have not undergone rigorous validation by both internal and external metrics
across independent datasets. In this work, we have shown that parcellations derived using
the CoCoNest framework effectively address the above limitations.

Despite the advantages of the CoCoNest framework, there are several limitations. First,
CoCoNest relies solely on the density of white matter fiber tracts between brain regions. In
order to fully characterize the structural connectome, it may be important to include additional
information about the SC between vertices. For example, considering the shape and curvature
of these tracts could offer a more nuanced characterization of each connection. Second,
CoCoNest is built on the population-averaged high-resolution SC matrix. Such averaging
may distort SC characteristics found at the subject level. Exploring more refined methods to
construct a consensus SC matrix for a population might enhance the ability of CoCoNest to
characterize the structural connectome. Similarly, incorporating measures of uncertainty aris-
ing from the variability of SC may yield a more rigorous notion of similarity between SC pat-
terns. Lastly, CoCoNest is completely deterministic, which restricts our ability to study the error
in the CoCoNest tree or explore alternative trees that were likely to be generated from the data
(Peixoto, 2023). Leveraging tools from the literature on hierarchical random graphs (Briercliffe,
2023) or nested stochastic block models (Peixoto, 2014) may provide avenues for further anal-
yses and facilitate statistical inference on nested parcellations like the CoCoNest family.

As the CoCoNest family was constructed using dMRI data, it is important to note that
numerous challenges exist in accurately uncovering the underlying white matter architecture,
which could impact any subsequent analysis, including our proposed CoCoNest family.
Tractography algorithms strive to infer global connectivity from local diffusion information.
This approach will inevitably produce false-positive and omit true-positive fiber tracts
(Maier-Hein et al., 2017; Rheault, Poulin, Caron, St-Onge, & Descoteaux, 2020). Addition-
ally, the complex geometry of these tracts may produce diffusion signals that generate biases
in tractography. For example, overlapping fiber bundles with independent endpoints have
been shown to produce invalid structural connections (Maier-Hein et al., 2017) (also called
the bottleneck effect; Rheault et al., 2020). Moreover, the reconstructed fiber tracts can have
arbitrary endpoints inside of the brain rather than on the cerebral cortex, the number of
short-range fiber tracts may be overestimated, and significant gyral bias can occur (Reveley
et al., 2015; Rheault et al., 2020; St-Onge et al., 2018). To mitigate the influence of these
biases on the CoCoNest family, we have used high-quality imaging data from the HCP and
SET, which has been shown to reduce such biases. However, we acknowledge that our
method is not entirely immune to these limitations. As brain imaging technology and tracto-
graphy algorithms evolve, it is important to reevaluate parcellations derived from any
method of structural connectome reconstruction.

We have made all members of the CoCoNest family freely available, along with the
code used to construct the entire family, at https://github.com/sbci-brain/CoCoNest. In
general, the methodology presented in this work can be used to create a “CoCoNest”-like
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parcellation from any SC matrix. The choice of similarity and linkage functions and the
error-complexity objective function are flexible. However, we believe our method works
best with dense, high-resolution SC matrices (as produced from the SBCI pipeline; Cole
et al., 2021).
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