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Abstract

We construct distributed broadcast encryption and registered attribute-based encryption (ABE) that support
an arbitrary polynomial of users from the succinct LWE assumption. Specifically, if we take A to be the security
parameter and N to be the number of users, we obtain the following:

+ We obtain a distributed broadcast encryption scheme where the size of the public parameters, user public/secret
keys, and ciphertexts are optimal (i.e., have size poly(A,log N)). Security relies on the poly(A, log N)-succinct
LWE assumption. Previously, this was only known from indistinguishability obfuscation or witness encryption.
All constructions that did not rely on these general tools could only support an a priori bounded number of users.

+ We obtain a key-policy registered ABE scheme that supports arbitrary bounded-depth Boolean circuit policies
from the poly(4, d,log N)-succinct LWE assumption in the random oracle model, where d is the depth of
the circuit computing the policy. The public parameters, user public/secret keys, and ciphertexts have size
poly(4,d,log N), which are optimal up to the poly(d) factor. This is the first registered ABE scheme with
nearly-optimal parameters. All previous schemes (including constructions based on indistinguishability ob-
fuscation, witness encryption, or evasive LWE) either have ciphertexts that scale with the policy size and
attribute length, or can only support a bounded number of users (with long public parameters and public keys
that scale with the number of users).

1 Introduction

In recent years, registration-based cryptography [GHMR18] has emerged as a popular paradigm for realizing advanced
cryptographic primitives without a trusted authority. In this work, we study two trustless cryptographic primitives:
distributed broadcast encryption and registered attribute-based encryption (registered ABE):

« Distributed broadcast encryption: In broadcast encryption [FN93], a sender can encrypt a message to
an arbitrary set of recipients with a ciphertext whose size scales sublinearly with the number of recipients.
Traditionally, broadcast encryption requires a central authority who issues decryption keys to each recipient
in the system. Distributed broadcast encryption [WQZD10, BZ14] removes the central authority. Instead,
each receiver independently generates their own public/secret key and publishes it in a public-key directory.
Thereafter, a sender can encrypt a message to an arbitrary set of public keys with a ciphertext whose size scales
sublinearly with the number of recipients.

+ Registered ABE: Attribute-based encryption [SW05, GPSW06] is a generalization of public-key encryption
that provides fine-grained access control to encrypted data. In key-policy ABE, decryption keys are associated
with a policy f while ciphertexts are associated with an attribute x. Decryption recovers the associated message
m only if the decryption policy is satisfied (e.g., if f(x) = 0). Like the case with broadcast encryption, the
standard notion of an ABE scheme assumes the existence of a central trusted authority that issues keys to users.
Registered ABE [HLWW23] removes this trusted authority. In this model, each user independently generates
their own public/secret key and publishes it to a public-key directory. Then, there is a process that aggregates
all of the individual public keys (with their associated decryption policies) into a succinct master public key



mpk. The aggregated master public key functions as the public key for an ABE scheme (i.e., one can encrypt
a message with respect to any attribute x with the guarantee that only registered users associated with an
accepting policy f can decrypt).

In both settings, the goal is to support the capabilities provided by broadcast encryption or attribute-based encryption
without needing to assume the existence of a trusted authority. In the traditional centralized versions of these
primitives, there is a central point of failure. If the adversary compromises the central authority, they immediately
compromise the security of every user in the system. Registration-based cryptography ensures that individual users
retain control of their secret keys and that trust is not concentrated in any single entity.

Bounded vs. unbounded. In the last few years, there has been a flurry of activity in constructing distributed
broadcast encryption [WQZD10, BZ14, KMW23, FWW23, GKPW24, CW24, CHW25] and registered ABE [HLW W23,
FWW23, ZZGQ23, AT24, GLWW24, CHW25, ZZC"25] from different cryptographic assumptions. Thus far, these
works can be categorized into two main categories:

« Unbounded constructions: The first class of constructions are those that support an arbitrary polynomial of
users. Namely, these are schemes where any number of users can join the system by posting their public key to
the public-key directory. This is the most natural formulation of these primitives (and an implicit requirement in
the original work introducing registration-based cryptography [GHMR18]). Constructing schemes that support
an arbitrary number of users has thus far relied on strong tools such as indistinguishability obfuscation [BZ14,
HLWW?23], witness encryption for NP [FWW?23], or strong non-falsifiable assumptions [ZZC*25].

« Bounded constructions: A second line of work has focused on direct algebraic constructions of trustless
cryptographic primitives that do not need general-purpose tools like indistinguishability obfuscation or witness
encryption. These constructions often have the advantage of being simpler, concretely-efficient, and in the case
of lattice-based schemes, plausibly post-quantum secure. However, with the exception of [ZZC*25], which
is based on private-coin evasive LWE, all of the constructions in this family [WQZD10, HLWW23, KMW23,
77GQ23, AT24, GLWW24, CW24, GKPW24, CHW25] make a significant compromise by assuming there is an
a priori maximum number of users that the scheme can support. Moreover, in these schemes, the parameters as
well as the size of each user’s public key grows linearly (or worse) with the maximum number of users. For
schemes with large number of users, the size of these parameters introduces significant overhead.

A major challenge in the study of trustless cryptography is developing new techniques that support an arbitrary
number of users from simple (and falsifiable) assumptions (and without relying on heavy machinery such as program
obfuscation or witness encryption).

1.1 Our Results

In this work, we develop new techniques for constructing distributed broadcast encryption and (key-policy) registered
ABE for general policies that support an a priori unbounded number of users. Security of both constructions relies on
the succinct LWE assumption [Wee24], and our registered ABE scheme additionally relies on the random oracle model.
The succinct LWE assumption is a simple and falsifiable lattice assumption (which is also implied by public-coin
evasive LWE). We now provide a brief comparison of our results with those from prior work (see also Tables 1 and 2).

Distributed broadcast encryption. Our first result is a distributed broadcast encryption scheme that supports
an arbitrary polynomial number of users from the poly(4, log N)-succinct LWE assumption, where A is the security
parameter and N is the total number of users. The size of the public parameters, the user public/secret keys, as well
as the ciphertext in our scheme are all poly(A,log N). Previously, this was only known from indistinguishability
obfuscation [BZ14] or from plain witness encryption [FWW23]. Compared to these approaches, our algebraic
approach is conceptually simpler. For instance, the [FWW23] construction relies on witness encryption together with
a function-binding hash function; this latter primitive in turn relies on fully homomorphic encryption. In contrast,
our approach for distributed broadcast encryption does not need any kind of homomorphic computation machinery.



Scheme Assumption lppl Ipk] Isk] |ct| TP PQ AD

[BZ14] iO + one-way function - 1 1 1 v X v
[FWW23] witness encryption + LWE 1 1 1 1 v / vt
[WQZD10] bilinear Diffie-Hellman exponent N N2 N 1 v X X
[KMW23] bilinear Diffie-Hellman exponent N N 1 1 X X r
[GKPW24]  generic bilinear group N N 1 1 X X X
[CW24] poly(A, N)-succinct LWE N? N 1 X v X
[CHW25]  poly(A, N)-succinct LWE" N¢2 N 1T X v/
This work poly(4,log N)-succinct LWE 1 1 1 1 X X

*These schemes were originally shown to satisfy semi-static security. Adaptive security can then be obtained by using the
Gentry-Waters compiler [GW09] in the random oracle model or the more recent Hsieh-Waters-Wu compiler [HWW25],
which gives adaptive security in the plain model.

Security of this scheme additionally relies on the random oracle model.

¥We can obtain a variant of this construction with transparent setup by using the recently-introduced decomposed LWE
assumption [AMR25]. We refer to Remark 4.13 for more details.

Table 1: Comparison with previous distributed broadcast encryption schemes. For each scheme, we report the size
of the public parameters pp, the user public key pk, the user secret key sk, and the ciphertext ct as a function of
the number of users N. For ease of comparison, we suppress poly (4, log N) factors, where A is the security parameter.
For each scheme, we also indicate whether the public parameters pp (if present) can be sampled with a transparent
setup (TP), whether it is plausibly post-quantum secure (PQ), and whether it is proven to be adaptively secure (AD).
We write iO to denote indistinguishability obfuscation [BGI*01].

Compared to direct algebraic constructions based on bilinear maps [WQZD10, KMW23, GKPW24] or succinct
LWE [CW24, CHW?25], our scheme is the only one that supports an unbounded number of users. In previous schemes,
both the size of the public parameters and the size of an individual user’s public key scale with the number of users
N. As we discuss more in Section 2.1, all of these schemes were bounded because each user’s public key needed to
include a “cross-term” for every other user in the system. A key technical contribution of this work is a new technique
for efficiently deriving the cross-terms from a succinct commitment. This enables algebraic schemes that support
an unbounded number of users. We provide a more detailed comparison in Table 1.

Key-policy registered ABE. Our second construction is a key-policy registered ABE scheme for general policies
(modeled as bounded-depth Boolean circuits) from the succinct LWE assumption in the random oracle model. Our
scheme supports an arbitrary number of users and moreover, has succinct ciphertexts (of size poly(4, d,log N), where d
is the depth of the circuit and N is the number of users). Notably, the size of the ciphertext does not scale with the size of
the policy circuit or with the length of the attribute. Prior to this work, the only scheme with this level of ciphertext suc-
cinctness is the scheme from [CHW?25] from succinct LWE (in the random oracle model), but that scheme only supports
a bounded number of users (and requires long public parameters and user public keys). The other constructions from
obfuscation [HLWW23], witness encryption [FWW23], or private-coin evasive LWE [ZZC*25] all have ciphertexts
whose size scales linearly with the attribute length. Thus, we obtain the first unbounded registered ABE scheme with
nearly-optimal ciphertext size (i.e., optimal up to the poly(d) factor). We provide a more detailed comparison in Table 2.

Concurrent work. In a concurrent and independent work, Abram, Malavolta, and Roy [AMR25] introduced the
decomposed LWE assumption, a weaker variant of the succinct LWE assumption, and show (among other things)
how to obtain a registered ABE scheme that supports general circuit policies in the plain model. We provide a brief
comparison of our two schemes:

« Bounded vs. unbounded: The [AMR25] registered ABE scheme relies on a structured reference string that
contains N secret keys for a (centralized) ABE scheme, where N is a bound on the number of parties. As a result,



Scheme Assumption Ippl Ipk| |sk| [ct] TP PQ AD

[HLWW23]  iO + SSB hash function 1 1 1 poly(ICl,|x]) v X v
[FWW23] witness encryption + LWE 1 1 1 poly(IC,|x]) v v X
[ZZC*25] private-coin evasive LWE poly(d) poly(d) poly(d)  poly(d,|x|) v v X
[CHW25] poly(A,d, N)-succinct LWE* N2 .poly(d) N -poly(d) poly(d) poly(d) X v X
This work  poly(4,d, log N)-succinct LWE* poly(d) poly(d) poly(d) poly(d) X X

*Security of these schemes are in the random oracle model.
*We can obtain a variant of this construction with transparent setup by using the recently-introduced decomposed LWE assumption [AMR25].
We refer to Remark 5.31 for more details.

Table 2: Comparison with previous (key-policy) registered ABE schemes that support general circuit policies. For
each scheme, we report the size of the public parameters pp, the user public key pk, the user secret key sk, and the
ciphertext ct as a function of the number of users N, the attribute x, and the policy circuit C. We write d to denote the
depth of the circuit C. We assume the decryption algorithm is provided the description of the policy circuit C as well as
the attribute |x| as input, so these do not necessarily have to be encoded as part of the secret key or the ciphertext. For
ease of comparison, we suppress poly(4, log N) factors, where A is the security parameter. For each scheme, we also
indicate whether the public parameters pp can be sampled with a transparent setup (TP), whether it is plausibly post-
quantum secure (PQ), and whether it is proven to be adaptively secure (AD). We write iO to denote indistinguishability
obfuscation [BGI"01] and “SSB hash function” to refer to a somewhere-statistically-binding hash function [HW15].

their scheme only supports an a priori bounded number of parties. Our scheme requires a structured reference
string whose size scales logarithmically with N, and thus, can support an arbitrary polynomial number of
parties. Supporting an unbounded polynomial number of parties is the central goal of this work. As noted in
Remark 5.31, we can also obtain a version of our scheme with a transparent setup (where the public parameters
now consist of a uniform random string) by using the decomposed LWE assumption from [AMR25].

- Security definition: The work of [AMR25] analyze security of their scheme under a “very selective” model
where the adversary has to choose its public keys before seeing the CRS and the honest parties’ keys. In
our setting, we consider the standard security definition for registered ABE where the adversary can register
malicious keys of its choosing (after seeing the CRS and the honest parties’ keys). The standard security model
for registered ABE captures adversarial strategies such as rogue-key attacks (see [RY07, BDN18] for examples
of rogue-key attacks in the context of aggregate signatures). Since the broader goal of registration-based
cryptography is to allow users to choose their own keys, it seems unreasonable to remove this capability from
the adversary. As discussed in more detail in [CHW25, §1.2], we are not aware of any generic techniques
that lifts a registered ABE scheme secure in the very selective model to the standard security definition for
registered ABE.

« Hardness assumption: Security of the [AMR25] construction relies on the decomposed LWE assumption in
the plain model whereas our registered ABE scheme relies on the succinct LWE assumption in the random
oracle model. The work [AMR25] show that the decomposed LWE assumption is a weaker assumption than
succinct LWE. As we note in Remarks 4.13 and 5.31, we can also modify our scheme to obtain security based on
the decomposed LWE assumption (and in fact, the resulting scheme would have the added benefit of having a
transparent setup). In either case, security of our registered ABE scheme would still rely on the random oracle.
Like [CHW25], we rely on the random oracle to handle the ability of the adversary to register malicious keys.

2 Technical Overview

In the following, let n, m, q be lattice parameters where m = O(nlog q). We use curly underlines to suppress low-norm
errors. Namely, we write s'A to denote s'A + €', where e is a low-norm error vector. For a matrix B € ZZX’” and



a target vector z € Z", we write y < B7'(z) to denote sampling y € Zg from a discrete Gaussian distribution
conditioned on By = z. We write G to denote the standard gadget matrix [MP12].

£-succinct LWE.  Our constructions rely on the succinct LWE assumption introduced by Wee [Wee24]. For a param-
eter £, the £-succinct LWE assumption asserts that the following distributions are computationally indistinguishable:

(B,s’B, W, T) and (B, u", W, T),

where B & ZZX’”, s & AR & Zg"x'", T is a random Gaussian matrix where [I[, ® B | W|T =1, ® G, and I, is the
identity matrix of dimension ¢. Equivalently, £-succinct LWE asserts that LWE is hard with respect to the (random)
matrix B given a trapdoor for the related matrix [I; ® B | W]. In the following, we will often refer to (B, W, T) as
the public parameters for a succinct LWE instance of dimension ¢.

Matrix commitment scheme. The key ingredient we use underlying our distributed broadcast encryption and
registered ABE schemes is the recent matrix commitment scheme by Wee [Wee25]. Specifically, the work of [Wee25]
shows that given the public parameters pp_,,, = (B, W, T) for a succinct LWE instance of dimension 2m? (i.e.,
W e Zé’”znxm and [I,,: ® B | W|T = I, ® G) and any matrix M € ZZXN , there is an efficient and deterministic
algorithm to compute a commitment C € Zg"™ and a low-norm opening Z™N such that

C-Vy=M-B-ZeZ¥, (2.1)

where Vy € is a fixed low-norm verification matrix that is publicly derived from pp_,,, and the width N. Wee
used the matrix commitment scheme to construct key-policy and ciphertext-policy ABE schemes for bounded-depth
Boolean circuits from the poly(A, d)-succinct LWE assumption, where d denotes the depth of the Boolean circuit.

mxN
Zq

2.1 Distributed Broadcast Encryption

We now show how to use matrix commitments to construct a distributed broadcast encryption scheme. In distributed
broadcast encryption, each public key is associated with an index i € N, and one can encrypt to any set of public keys,
provided that each key has a different index. When N = 24, we can interpret each index as an identity (or a hash of an
identity) and we say the scheme supports an arbitrary or unbounded polynomial number of users. The main technical
challenges for constructing a distributed broadcast encryption that support an unbounded number of users are twofold:

« First, the size of all of the scheme components (i.e., the public parameters pp, the user public key pk, the user
secret key sk, and the ciphertext ct) must all be bounded by poly (4, log N),

« Second, the running time of key-generation needs to be bounded by poly(4,log N), and that of encryption and
decryption must be bounded by |S]| - poly(A, log N), where S is the broadcast set.

As a warm-up, we first describe a scheme with short parameters (i.e., a scheme that addresses the first challenge),
but where the running time of key-generation time, encryption, and decryption is slow (i.e., scaling with poly(A, N)).

+ Public parameters: The public parameters for the distributed broadcast encryption scheme pp = (pp o> A, P)
consists of the public parameters pp,,,, = (B, W, T) for a succinct LWE instance of dimension 2m?, a matrix
A& ZZX'", and a vector p <~ Zg. The vector p can be viewed as a public key for a dual Regev encryption
scheme and the matrix A is used to program the challenge set into the public parameters in the security analysis.
Let Vy € Z;”XN be the low-norm verification matrix associated with pp_,,, and matrices with width N. Let

VN =1[vi]|-|vn] wherev; € Z;" is the i column of Vy.

« User key-generation: To generate a public key for a slot i € [N], the user samples r; <~ {0, 1}™. The public
key is t; = Br; + p — Av; and the secret key is ;.

« Encryption: Let S C [N] be a set of indices and let {(j,t;)}jes be a set of public keys. To encrypt a message
1 € {0,1} to this set of public keys, the encrypter proceeds as follows:



— Foreach je S, letC; e ZZX’” be the commitment to u; ® t; where u; € {0,1}" is the j™ standard basis
vector. Let Z; € Z;”XN be the respective opening. By Eq. (2.1), this means

CjVN = (ll; ®tj) — BZj.
If we parse Zj = [z | --- | zjn], then this means
CjVj:tj—BZj,j and Viij:CjVi:—BZjJi. (2.2)

We often refer to z;; for j # i as a cross-term since it recodes from B to the product C;v; of user i’s public
key C; with user j’s decryption component v;.

— The encrypter now samples an LWE secret s <- Zg and outputs the ciphertext

« Decryption: Take any user i € S. By Eq. (2.2), we have

T T
S (A+ ZjeS Cj) -vi & s Av; + ZjES STCJ'V,' = STAVi + STti - ZjeS STBZj’i.

Observe now that given the users’ public keys {(j, t;)} jes, the decrypter can compute z; ; itself (z;; is the ith
column of the opening Z; to the matrix u} ® t;). Next, using the fact that t; = Br; + p — Av;, and knowledge of
the secret key r;, the decrypter computes

s'(A+XesCj) - vi—s'B(ri — Xjes zji) ~ s'Av; +s"(Br; + p — Av;) — s'Br; = s'p.

A~

Subtracting this from s'p + b - | ¢/2] and rounding recovers the message .

By construction, the size of the public parameters pp, the users’ public/secret keys (pk, sk), and the size of the ciphertext
ct are poly (4, log N). However, the running time of key generation, encryption, and decryption is poly(A, N) because
they compute commitments and/or openings to matrices of width N. When N is super-polynomial, this means
key-generation, encryption, and decryption are no longer efficient algorithms. In order to support an arbitrary number
of users (or alternatively, an identity-based distributed broadcast encryption scheme) with N = 2%, we need to reduce
the running times of these algorithms to poly(4,log N). We discuss this below (after sketching the security analysis).

Arguing security. We consider selective security where the adversary declares the set S € [N] of challenge indices
at the beginning of the security game. To prove security from succinct LWE, we need to show how to simulate the
challenge ciphertext given (B, s'B, W, T). We do so by programming the matrix A and the public keys pk; for the
users i € S. Here, we crucially exploit the fact that the challenge ciphertext does not depend on the public keys
outside S (which are chosen adversarially). As an aside, we note that unlike standard broadcast encryption, we do
not need to explicitly simulate secret keys for users outside S, since malicious users outside the set S can register
any (possibly malformed) public key. The reduction has the following high-level procedure:

« Forall j € S, the challenger samples the public key as t; < Zg. By the leftover hash lemma, the honestly-
generated public keys t; = Br; + p — Av; are statistically indistinguishable from a uniform random vector
t; < Zg. Importantly, the public keys are now independent of A, and thus, the challenger can now sample
the public keys t; before it samples the matrix A.

« When setting the public parameters, the challenger embeds the challenge set into the public parameters. Namely,
after sampling the public keys t; <~ Z7 for the honest users j € S, the challenger now sets A = BRx — X ;c5 Cj,
where Ry ¢ {0, 1}™™ and C; is a commitment to the vector u} ® t;. It also sets p = Br, where r, < {0, 1}
Again by the leftover hash lemma, the distribution of A and p are statistically close to uniform, which coincides
with their distribution in the real scheme.



« With the above modifications, the challenge ciphertext can now be written as
ct = (sTB, s'(A+X;esCj), s'p+p- |_q/2J) ~ (sjg, sB-Ra, s'B-rp+p-[q/2] ),

which can be simulated from s'B. By the 2m?-succinct LWE assumption, s'B is pseudorandom given pp ., =
(B, W, T). This implies the ciphertext is pseudorandom and security holds.

We refer to Section 4 for the formal description of the construction and security analysis.

Local openings. To support N = 2% (i.e., an arbitrary polynomial number of users), we show how to implement
the key-generation, encryption, and decryption algorithms in poly(A,log N) time. The modification is purely algo-
rithmic and the modifications have no effect on the correctness or security analysis. Our approach relies on two key
observations:

« The above scheme only commits to sparse matrices (of the form u] ® t;). While this matrix has N columns,
only a single column is non-zero.

« The key-generation, encryption, and decryption algorithms only needs local access to the verification matrix
Vx and the openings Z;. In fact, each algorithm only reads a single column of the verification matrix V; or
the opening matrix Z;.

In Appendix A, we show that the [Wee25] matrix commitment scheme satisfies the following two properties:

« The commitment C € Z7*™ to a sparse matrix M € ZZXN with K non-zero columns can be computed in time
poly(m,log g,log N, K).

« There is an algorithm running in time poly(m,log g,log N) for computing the i" column of the verification
matrix Vy and an algorithm running in time poly(m,log g,log N, K) for computing the i column of the
opening Z; to a matrix M with K non-zero columns.

In some sense, the matrix commitment scheme from [Wee25] has a Merkle-tree-like structure where a commitment to
a matrix M = [M_ | Mg] is derived by first committing to its left half M; and its right half M, and finally committing
to the resulting commitments [C, | Cz]. We can efficiently commit and provide local openings for (exponentially-long)
sparse vectors with a Merkle tree, and the same is true for the matrix commitment scheme of [Wee25]. This yields
a distributed broadcast encryption scheme that supports N = 24 users.

Comparison with [CW24]. The structure of our distributed broadcast encryption scheme shares some similarities
with that from [CW24]. In our notation, the public keys in [CW24] consists of a (random) matrix C; together with
a collection of low-norm cross-terms z;; where Bz; ; = —C;v;. The secret key is a low-norm vector z;; where
Bz;; = p + Av; — C;v;. The public parameters include the matrices A, B, the target vector p, the vectors vy,..., vy,
along with a (sufficiently-large) succinct LWE trapdoor that is used to sample public keys C;, cross-terms z; j, and
secret keys z;;. From a structural perspective, the public/secret keys between our scheme and the [CW24] scheme
are very similar (and likewise for the ciphertexts). The key difference is the following:

« In [CW24], the key-generation algorithm jointly samples the public-key matrix C; together with the cross-terms
z; j. This leads to a scheme with O(N)-size public keys. Notably, there is no compact description of the cross-
terms needed for decryption (i.e., the terms z;; that recode from B to C;v;). Note that publishing the randomness
used to sample C; and z; ; for j # i is not sufficient since the randomness would also leak the secret key z; ;.

« In our scheme, the public key is simply a vector t;, and the associated public-key matrix C; and the cross-
terms z; ; are all deterministically derived from t; using the matrix commitment scheme. The secret key is the
randomness used to sample t;. Because the matrix C; and the cross-terms have a compact description, our
scheme supports an unbounded number of users. A key technical contribution of this work is showing that
the structure of the [Wee25] matrix commitments enables us to compress cross-terms (or alternatively, derive
cross-terms from a public procedure).



We note here that the need to include a cross-term for every other user is a standard feature in nearly all con-
structions of distributed broadcast encryption and registered ABE that do not go through obfuscation or witness
encryptions [WQZD10, HLWW23, KMW23, ZZGQ23, AT24, GLW W24, CW24, GKPW24, CHW25]. This is also the
main reason these schemes cannot handle an arbitrary number of users. While we still rely on the same type of
cross-term cancellation in this work, our use of matrix commitments enables a new compact description for these
cross terms. This enables schemes that support an arbitrary number of users.

Comparison with [FWW23]. Our distributed broadcast encryption construction also shares some high-level
similarities with the [FWW23] construction based on witness encryption. Both constructions embed a succinct
commitment (alternatively, a hash) of the public keys of the users in the broadcast set S in the ciphertext, and moreover,
in the security analysis, both reductions modify the distribution of the public keys for the users in S. In a bit more detail:

« In [FWW23], the commitment to the public keys is the instance used in the witness encryption ciphertext.
In their setting, the commitment is a (function-binding) hash of the users’ public keys. In our scheme, the
commitment to the public keys is J’ ;5 C; and we embed it as an LWE sample s'(A + X, ;c5 C;) in the ciphertext.
In both schemes, the commitment has a tree-like structure, and decryption relies on a local opening to the user’s
public key, which can be derived given just the public keys for the set S (along with the public parameters).

« In order to invoke semantic security of the witness encryption scheme in the [FWW23] security proof, they not
only modify the distribution of the public keys in S, and also rely on the commitment satisfying a “function bind-
ing” property (which can be based on LWE). In contrast, our security proof is simpler and follows by directly pro-
gramming the set S into the public parameters (e.g., setting A = — )’ ;s C;, after modifying t;, and thus Cj, to be
independent of A). This partitioning strategy (for arguing selective security) is a standard approach for analyzing
the security of (distributed) broadcast encryption schemes (c.f., [BGW05, KMW23, CW24]). On the flip side, we
note that the proof strategy in [FWW23] based on function-binding hash functions shows their scheme to satisfy
semi-static security; this can in turn be lifted to full adaptive security via the [GW09, HWW25] transformations.

2.2 Key-Policy Registered ABE

We can combine our techniques for distributed broadcast encryption with ideas from the recent work of [CHW25] to
obtain a key-policy registered ABE scheme with succinct ciphertexts in the random oracle model. In some sense, the
work of [CHW25] starts with the distributed broadcast encryption scheme from [CW24] and shows how to extend
it to a registered ABE scheme. In this work, we start from our new distributed broadcast encryption scheme (from
Section 2.1) and show how to apply the [CHW25] techniques to lift the scheme to a registered ABE scheme. Since
our underlying distributed broadcast encryption scheme supports an unbounded number of users, our registered
ABE scheme also achieves this property. The previous construction of [CHW25] only supports a bounded number of
users. Our techniques yield the first registered ABE scheme that can simultaneously support an arbitrary polynomial
number of users and which has succinct ciphertexts (see Table 2). Such a scheme was not previously known even
from witness encryption or indistinguishability obfuscation. Here, we provide a brief overview of how we augment
our distributed broadcast encryption scheme to obtain a (key-policy) registered ABE scheme.

Lattice-based homomorphic evaluation. Our construction relies on the classic homomorphic evaluation ma-
chinery from [GSW13, BGG*14]. Specifically, given a matrix A € ZZ”’", a Boolean function f: {0,1}f — {0, 1}, and
an input x € {0, 1}, there exists a low-norm matrix Ha fx such that

(A-x"®G) -Hapx =Ar - f(x) -G, (2.3)
where Ay is a matrix that only depends on A and f.
Registered key-policy ABE. We now describe the general structure of our key-policy registered ABE scheme.

Specifically, we describe a “slotted” registered ABE scheme where each key is associated with an index i € [N],
and instead of users joining the system dynamically, there is instead an aggregation algorithm that takes as input a



collection of N public keys pk;, ..., pky along with their associated policies fi, ..., fy and aggregates them together
into a master public key mpk and a set of helper decryption keys hsky, ..., hsky for the N users. To decrypt, the
user combines their secret key and their helper decryption key with the ciphertext. The work of [HLWW23] show
that the slotted primitive generically implies standard the usual notion of registered ABE (that supports dynamic
registrations) with only poly(A, log N) overhead. In this work, we focus exclusively on the simpler slotted primitive.

For ease of exposition, we describe our construction with long ciphertexts (that scale with the attribute length).
We can then apply the ciphertext compression approach from [Wee24, Wee25] to obtain a registered ABE scheme with
succinct ciphertexts. Essentially, instead of encrypting with respect to x’ ® G € ZZ”’” (as in the classic [BGG*14] ABE
scheme), we instead encrypt to a [Wee25] commitment Cx € ZZX’" to x'®G. We start with a basic version of the scheme:

+ Public parameters: The public parameters pp = (pp.om: A, P> {di }ie[n]) have essentially the same structure
as that for our distributed broadcast encryption scheme. Here pp_,,, = (B, W, T) are the public parameters for
a succinct LWE instance of dimension 2m?, A & ZZ”’” is the matrix used to embed the attribute, p < Z7isa
dual Regev public key (for encoding the message), and dy, ..., dy < Zy are vectors used for noise smudging
(in the security analysis). As described, the size of the CRS scales linearly with N, but since the d; vectors are
uniformly random, we can compress them by working in the random oracle model and setting d; = H; (i),
where H; is modeled as a random oracle.

« User key-generation: To generate a public key for a slot i € [N] and a function f, the user samples
r; < {0,1}™ and sets the secret key to be t; = Br; + p + AfG_l(d,-) € ZZ. The secret key is the randomness r;.

+ Key aggregation: Given a collection of public keys t;, . . ., ty for functions fi, . .., fn, the aggregation algorithm
computes commitments C; € ngm and openings Z; € Z;"XL to u] ® t; where u; € {0, 1}V is the i" unit vector.

It parses Z; = [z;1 | - -+ | zin]. The master public key mpk and helper decryption key hsk; for user i are defined
to be
mpk=C= ) C; and hski=2= ) 2 (2.4)
J€E[N] je[N]

« Encryption: To encrypt a message y € {0, 1} with attribute x € {0, 1}, the encryption algorithm samples
s ¢ Z} and outputs the ciphertext

ct = (sTB ,s'C,s"(A-x'®G), s'p+q/2] -/1). (2.5)
+ Decryption: To decrypt using a secret key r; for slot i and an associated function f; where fj(x) = 0, the
decrypter first computes
ST(A -x'® G) ' HA,f,x ~ ST(Af - f(X) . G) = STAf
by Eq. (2.3). Let Vi € ZQ"XN be the low-norm verification matrix associated with pp_,,,, and matrices of width

N. Write V = [vy | -+ | vy]. Then, using the fact that C; is a commitment to u] ® t; and Z; is the associated
opening, we appeal to Egs. (2.1) and (2.4) to write

S’\T/@ -V X ST Z CjVi = STti — ST Z BZj’i = STti - STBi.
JEIN] Jj€[N]

Finally, using the fact that t; = Br; + p + A¢G~'(d;), the decrypter can use its secret key r; to compute
s'C-v;i—s"(A-xX ®G) -Harx G '(d;) —s'B- (r; — 2)
~s"(Br;+p+ArG '(d;)) —s'B2 - s"A¢G™'(d;) — s'Br; +s'B2
=s'p.

Taking the difference with s'p + | g/2] - ; and rounding now recovers the message .



Arguing security. We consider attribute-selective security where the adversary commits to the challenge attribute
x at the beginning of the security game. To prove security from the succinct LWE assumption, we again need to show
how to simulate the challenge ciphertext (Eq. (2.5)) from (B, s"B, W, T). Since the adversary commits to the challenge
attribute x, we can use the strategy from [BGG"14] and program x into the matrix A (e.g., by setting A = BRA +x' ® G).
Now the reduction can simulate the attribute-embedding component in the challenge ciphertext as

s'(A-x"®G) ~s'BRy ~ s'B - Ra.

Similarly, the challenger sets p = Arp for a low-norm p. Then, it can simulate the message-embedding component
of the challenger ciphertext as

s'p+1q/2] -~ s"Bry+1q/2) -~ s'Bxy + 1g/2] - .

The difficult term is simulating s:/(j Here,C = Y, ie[n] Ci» where C; is the commitment to the public key of user i.
In registered ABE, these keys can be chosen maliciously. This is a major distinction between registered ABE and
distributed broadcast encryption. In distributed broadcast encryption, the keys that influence the challenge ciphertext
are honestly generated, so the reduction algorithm can program them so as to be able to simulate the challenge
ciphertext. This is not the case in registered ABE. We solve this problem by using the ciphertext re-randomization
technique from [CHW25]. The idea is to start with the following randomized aggregation algorithm:

« The aggregation algorithm samples C, <- Zg*™ together with low-norm vectors zy; € Zg' where Cov; = —Bzy;
for all i € [N]. We can view C as a random [Wee25] commitment to the all-zeroes matrix 0™V with opening
Zy=[z01 |- | zon]. We show that there is an efficient algorithm to sample C; together with Z; using the
succinct LWE trapdoor (see Section 5.1 and Theorem 5.9).

« The aggregated master public key is then mpk = C=Co+Y jen Cj and the corresponding helper decryption

key for user i is hsk; = z; = zy; + ZjG[N] Zj;.

It is not hard to see that this modification still preserves correctness of the scheme. Now, in the security proof, the
reduction algorithm will set Cy = BRg — . ;| x| C;j, where Rg is a low-norm matrix sampled by the reduction. This
allows the reduction to simulate the challenge ciphertext component as

s:/szsT Co+ Z Cj|=s"BRz ~s'B - Rg.
JjeIN]

Of course, there is still the caveat that the reduction algorithm now needs to simulate the low-norm vectors zy; where
Cyv; = —Bzy;. To do so, the reduction algorithm will first set d; = Brq, for a low-norm rq, known to the reduction.
Now, we consider two possibilities depending on whether a key for a slot i was honestly-generated (by the reduction
algorithm) or chosen maliciously by the adversary:

+ Suppose a slot i is associated with an honestly-generated key. Using again the fact that for all j # i, C;jv; = —=Bz;;
and C;v; = t; — Bz;;, we have

BREVi + ZiG[N] BZj’i = (CO + ZjE[N] Cj)Vl' + ZjE[N] BZj,,' =Cyv; +t;. (26)

When generating the keys for the honest users, the reduction algorithm programs the public key to be
t; = Br; + d; = Br; + Brg,. Combined with Eq. (2.6), this means

B- (I'di +1; — REV,' — ZjE[N] Zj,l') = tl' — C()Vl' — t,' = —C()V,'.

Zo,i

« Suppose a slot i is associated with an adversarially-chosen key t;. In this case, the associated policy f; is not
satisfied by the challenge attribute x (i.e., f(x) = 1). To construct z; in this case, the reduction algorithm will
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need to know a short r; such that t; = Br; + p + A;G™'(d;). As in [CHW25], we facilitate this by requiring
each public key include a non-interactive zero-knowledge (NIZK) proof of knowledge of the associated secret
key r;. The reduction algorithm in turn extracts the associated secret key from each public key chosen by the
adversary. In this case, since f(x) = 1,

BRA - Ha ;xG7'(d;)) = (A-x"®G) -Hp ,xG7'(d;) = (A, = G) - G™'(d;) = A;G™'(d;) - Bry,.

This means
t; =Br; +p+A;G™'(d;) = Br; + Br, + BRAHA £ xG ™' (d;) + Bry,.

By Eq. (2.6), we have

B- (l'd,- +71;+ Ip + RAHA,ﬁ,xG_l(di) - REVi - ZjE[N] Zj,,') =t; — C()Vi -t = —C()Vi

Zo,i

In both cases, the reduction algorithm is able to construct a low-norm z; such that Bz,; = —Cyv;. Thus, using this
procedure, the reduction algorithm can program Cy = BRz — ). jc|n| C; and simulate the challenge ciphertext. There
are two remaining issues we need to address:

« First, in registered ABE, we require aggregation to be deterministic. Following [CHW25], we can derandomize
the aggregation algorithm by having the real scheme sample (Co, Zo,1, - . ., Zo,n') using the random oracle (by hash-
ing the input to the aggregation algorithm). To implement this strategy, we require an “explainable” sampling
procedure for sampling (Co, Zo 1, - - -, Zo.N). Namely, given any (correctly-distributed) tuple (Cy, zo 1, - - -, Zo.N)>
there is an efficient algorithm that outputs a set of random coins to the sampling algorithm that would produce
the tuple. In Section 5.1 (Theorem 5.9), we show that the explainable discrete Gaussian preimage sampler from
[CHW?25] can be used in conjunction with the succinct LWE trapdoor to build such a sampler. To argue that
the reduction’s strategy for constructing z,; follows the same distribution as that output by the sampler, we
use a similar noise smudging argument as in [CHW25]. Specifically, the r4, component in each z; is sampled
from a sufficiently-wide (but still low-norm) Gaussian distribution so as to drown out the remaining low-order
terms. We give the details of the explainable sampler in Section 5.2 (see the proof of Theorem 5.14).

« Second, to achieve succinct ciphertexts that are independent of the attribute length, we use the compression
technique from [Wee24, Wee25]. Specifically, let Cx be a commitment to x" ® G, and let Z, be the associated
opening. Let Vy,, be the verification matrix associated with pp,,,,, and matrices of length #m. Then Eq. (2.1) says

CxVim = X' ® G — BZ,.

Sample By & ZZX’" and define A = —B(Vy,,. The attribute-embedding component s"(A — x" ® G) in the
ciphertext is now replaced by s"(By + Cx). The observation now is that

7y

18 5/ Cl |

] ~ —s'BZy — s"BoVy — 8'Cy Vi, = s"(A —x' ® G).
Thus s"(By + Cx) € Z' can be viewed as a compressed representation of s"(A — x' ® G).

We give the full details in Construction 5.11. Taken together, we obtain a key-policy registered ABE scheme with
succinct ciphertexts and which supports an unbounded number of users from the 2m?-succinct LWE assumption.

3 Preliminaries
Throughout this work, we write A € N to denote the security parameter. For a positive integer n € N, we write

[n] :=={1,...,n}. We write poly(A) to denote a function that is bounded by a fixed polynomial in A and negl(2) to
denote a function that is negligible in A (i.e., f(1) = negl(A) if f = 0(A7°) for all constants ¢ € N). For a finite set
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S, we write x & S to denote a uniform random draw from S. For a distribution D, we write x < 9 to denote a
sample from D. When A is a deterministic algorithm, we write x = A(-) to denote assigning x to the output of A.
We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. We say that two
distribution ensembles Dy = {Dy 1 }1er and Dy = {Dy 1} 1ew are computationally indistinguishable if for all efficient
adversaries A, there exists a negligible function negl(-) such that for all A € N,

|Pr[A(1, %) : x D] = Pr[A(1Y, x) 1 x — Dyl = negl(A).

We say that D, and D, are statistically indistinguishable if the statistical distance between D, 3 and D, , is bounded
by a negligible function negl(1), and that they are identical if the statistical distance is identically 0.

3.1 Lattice Preliminaries

We use bold uppercase letters (e.g., B, B) for matrices and bold lowercase letters (e.g., u, v) for vectors. We use
non-boldface letters for their components (e.g., v = [vy,...,0,]). For a matrix V € 7M1 gyver the integers, we write
[[V]] to denote the maximum absolute value of its entries. When V € ZZX",, we write [|[V]| := ||Vz||, where V5 € Z™"
is the matrix obtained by replacing each component of V with its integer representative in the interval (—q/2, q/2).
We write A ® B to denote the Kronecker product between matrices A and B. For matrices A, B, C, D with compatible
dimensions, we have
(A®C)(B®D)=AB®CD. (3.1)
For a matrix A, we write vec(A) to denote the vector obtained by concatenating the columns of A. We use the
following identity:
vec(ABC) = (C" ® A) - vec(B). (3.2)
Next, we recall the (generalized) leftover hash lemma from [DORS08]. We state the specific formulation from [ABB10]:

Lemma 3.1 (Generalized Leftover Hash Lemma [ABB10, Lemma 13, adapted]). Let n,m, q be integers such that
m > 2nlogq and q > 2 is prime. Then, for all fixed vectors e € Z7' and all k = poly(n), the statistical distance between
the following distributions is negl(n):

« (A,AR,e'R) where A & Z™ R & {0, 1)K,

« (A, U,e'R) where A & Z2*™ U & Z2K R & {0, 1}k,

Discrete Gaussians. We write Dz, to denote the discrete Gaussian distribution over Z with width parameter
o > 0. For a matrix B € ZZX”’ and a target Z € ZZX"I in the image of B, we write B,'(Z) to denote the ran-
dom variable Y « Dgf;”' conditioned on BY = Z mod q. For positive integers n,q € N and m > n[logq], we
write G, =1, ® g" € ZZX’” to denote the gadget matrix [MP12], where I, is the identity matrix of dimension n,
g =[12..., 2Mogql-1 o 0] € Z™. We write G;l(-) : ZZ — Z;” to denote the standard deterministic entry-wise
bit decomposition (and padding with Os if m > n - [log q]). When the context is clear, we omit the subscript n and
simply write G and G™!(-). We now recall some useful properties on the discrete Gaussian distribution that we will use:

Lemma 3.2 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). Let n, m, q be lattice parameters where m > 2nloggq.
For all but a negl(n)-fraction of matrices B € Z{*™, all o > logm, and all vectorsy € ZY in the column space of B,

Pr[|lu|| > Ymo :u « B !(y)] < 0(2™™).

In addition, for all A € N,
Pr{|x| = Vo : x « Dz,] < 274,

Lemma 3.3 (Gaussian Preimages [GPVO08]). Let n, m, q be lattice parameters where m > 2nlog q and q is prime. Let
o > log m. There exist a negligible function negl(-) such that for all but a negl(n)-fraction of matrices B € ngm, the
statistical distance between the following distributions is at most negl(n):

{(y,By):y(—D’ZZfU} and {(y,z):z&Z”,y&Bgl(z)}.

Moreover, this property holds when ¢ > logm and B = Gy,.
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Lemma 3.4 (Marginal of Gaussian Preimages [WW23, Corollary 2.11, adapted]). Let n,m, q be lattice parameters
where m > 2nlog q and q is prime. Let £, k = poly(n,log q). There exist a negligible function negl(-) such that for all but
aq "-fraction of matrices B € Z7*™, all matrices W € ZZ"X" and matrices C = [I, ® B | W], all target vectorsy € Z!"¢,
and all width parameters ¢ > 4log(¢m), the statistical distance between the following distributions is at most negl(n):

V2

{vive—C y)} and H ]: vi «— (I, ®B) ! (y — Bvy)

werk, |

Gadget trapdoors. We now recall the notion of a gadget trapdoor:

Lemma 3.5 (Gadget Trapdoor [Ajt96, GPV08, MP12]). Let n, m, q be lattice parameters with m > 3nlog q. There exists
efficient algorithms (TrapGen, SamplePre) with the following syntax:

« TrapGen(1",1™,q) — (B, T): On input the lattice dimension n, the width m, and the modulus q, the trapdoor-
generation algorithm outputs a matrix B € Z*™ together with a trapdoor T € Zg™.

« SamplePre(B,T,Z, ) — Y: On input a matrixB € ZZX’", a trapdoor T € Z(’I”xm, a target matrixZ. € ng"’, and
a width parameter o > 0, the preimage-sampling algorithm outputsY € Z;"X"/.

Moreover, the above algorithms satisfy the following properties:

+ Trapdoor distribution: If (B, T) « TrapGen(1", 1™, q), then the distribution of B is negl(n)-close to the uniform
distribution over ZZX”‘. Moreover, BT =G € ZZX’” and ||T|| = 1.

- Preimage sampling: For all matricesB € Zg*™, T € Zg™™, width parameters ¢ > 0, and all Z € ZZX”/ in the
image of B, the output Y <« SamplePre(B, T, Z, o) satisfies BY = Z.

« Preimage distribution: There exists a negligible function negl(-) such that for all B € Z;*™ and T € Zg*™
where BT = G, all 0 > m||T|| log n, and all targets Z € ZZX"', the output of SamplePre(B, T, Z, o) is negl(n)-close
to the distribution B;(Z).

Homomorphic computation. Our construction of registered ABE will rely on the lattice homomorphic evaluation
machinery from [GSW13, BGG*14].

Theorem 3.6 (Homomorphic Encodings [GSW13, BGG"14]). Let A be a security parameter and n, m, q be lattice
parameters where m > 2nlog q. Let F; 4 be a family of functions f: {0,1}* — {0, 1} that can be computed by a Boolean
circuit of depth d. There exists a pair of efficient algorithms (EvalF, EvalFX) with the following properties:

- EvalF(A, f) — Ay: On input a matrix A € ZZX[’" and a function f € F; 4, output a matrix Ay € Zg*™.

« EvalFX(A, f,x) — Ha sx: On input a matrix A € Z*'™, a function f € ¥4, and an input x € {0,1}', output
a matrix Ha f x € Z™™.

For all matrices A € Zg”’", functions f € F;q4, and inputs x € {0,1}¢, the matrices Af EvalF(A, f) and
Ha rx < EvalFX(A, f,x) satisfy the following properties:

« (A-X"®G) -Ha £x =Af—f(x) -G.

[Ha fx| < mO@.
Learning with errors. The learning with errors (LWE) assumption [Reg05] with parameters (n, m, g, y) states that

(B,s'B+e") ~ (B,c"),

where B & ngm, s & Zy e DZ’X, andc & zy.
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¢-succinct LWE. The ¢-succinct LWE assumption [Wee24] states that (B, s'B + €") is pseudorandom even given
a trapdoor for the matrix [I, ® B | W], where W < Zfl"xm. We give the formal statement below:

Assumption 3.7 (£-Succinct LWE [Wee24]). Let A be a security parameter and (n, m, g, ) be LWE parameters. The
(¢, 0)-succinct LWE assumption states that

(B,s'B+e’,W,T) ~ (B,c", W, T),

where B & Zyx™m, s & Zy e DZ’X, c& zy, W & Zflnxm, and T « [I;, ® B | W];1(I; ® G). We abbreviate the
assumption to £-succinct LWE when o = poly(4, £, m).

3.2 Matrix Commitments

Our constructions rely on the matrix commitments recently introduced in the work of Wee [Wee25]. Specifically,
a commitment to a matrix M € ZZXL with respect to B € ZJ>™ is a matrix C € Z*™ such that

C-Vi=M-B-Z (3.3)
where Vi, € Z;”XL is a fixed verification matrix that only depends on the dimension L and Z € Z;”XL is a short opening,.
The work of [Wee25] shows how to sample a commitment C to an arbitrary matrix M € ZZXL (for any L) given

pp = (B,W,T) where B € Z>™, W € Z2"'mm T e ZP™ ™™ and [Ly,e ® B | W] - T = Iz ® G. In this
context, T is a trapdoor for a succinct LWE instance with dimension 2m?. We now give the formal statement, and
for completeness, include the description of the algorithms from [Wee25, §3.2] in Appendix A:

Lemma 3.8 (Matrix Commitment [Wee25, adapted]). Let n, m, q be lattice parameters with m > 2nlog q. There exist
a triple of efficient and deterministic algorithms (Com™, Ver™, Open™) with the following syntax:

+ Com™ (pp,M) — C: On input public parameters pp and a matrix M € Z,’I’XL, output a matrix C € Zg*™.

« Ver™(pp, 11) — Vp: On input public parameters pp and the length parameter L, output a matrixVy € Z;"XL“qu].

« Open™ (pp, M) — Z: On input public parameters pp and a matrix M € ZZXL, output a matrix Z € Z;"xmlogq].

Moreover, for all pp = (B, W, T) where B € ZZX’”, W € Z‘ZI’"Z"X’", Te ZC(IZm2+1)m><2m3’ [y ®B | W] -T=1,:®G,all
parameters L € N, all matrices M € ZZXL, and setting C = Com™ (pp, x), VL = Ver™ (pp, 11), andZ = Open™ (pp, x),

C-Vi=M:-G.-B-Z and |IVL| < O(|IT||-m*logq) and |IZ|| < O(|IT||- m’logqlogL).

Remark 3.9 (Committing to M). The commitment relation (C:V, = M- Gy —B-Z) in Lemma 3.8 does not completely
match Eq. (3.3), but this is easy to fix by simply multiplying by Gzl (Ir). In this case, we have

C-Vp-G;'(Ip)=M-Gr-G;'(I1))-B-Z-G '(I})) =M-B-Z-G;'(I) .
[ — —_————
\NIL zL
Since the columns of G;'(I) have Hamming weight 1, the matrices V and Z are submatrices of V and Z, respectively.
This means ||V|| < |[V|| and ||Z|| < ||Z]|. Since Eq. (3.3) is more convenient to work with in our constructions, we
define algorithms (Com™2!, Ver™ Open™?!) as follows:

« Com™(pp, M): Output C = Com™(pp, M) € Zi*™.
« Ver™!(pp, 1*): Compute V| = Ver™ (pp, 1) and output V; = V} - G '(I1) € ZJ™*".
- Open™(pp, M): Compute Z; = Open™ (pp,M) and output Z = Z; - G;'(I;) € Zj>*.

Moreover, for all pp = (B, W, T) where B € ZJ*™, W € Z(ZI’"Z"X’", Te Z‘(12m2+1)m><2m3’ [Ly: ®B | W] - T = L,z ®G, all
arameters L € N, all matrices M € Z™*L and setting C = Com™ (pp, x), VL = Ver™ (pp, 1£), and Z = Open™ (pp, x),
p q g pPp pp p pp

C-Vi=M-B-Z and |V.]| <O(T||-m* logqg) and ||Z]| < O(||T] - m’ logglogL).
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Committing to sparse matrices. Our applications to distributed broadcast encryption and registered ABE relies
on the ability for users to commit to sparse matrices M € ZZXL where L is exponential (e.g., L = 2%), but where M only
contains a polynomial number of non-zero columns. This property allows us to construct schemes that support an a
priori unbounded number of users. When committing to exponentially-wide matrices, the verification matrix V;, and
the opening Z are also exponentially wide. Our applications also require an algorithm that provides local access to the
columns of V and Z. Namely, there is an efficient algorithm that runs in time poly(m, log ¢, log L) which can compute
the i column of the verification matrix V. Similarly, there is an algorithm that runs in time poly(K, m, log g, log L)
that computes the i column of the opening matrix Z, where K is the number of non-zero columns in the matrix
M. It is straightforward to adapt the construction from [Wee25, §3.2] to support these properties. We summarize
the properties we need in the following lemma, and provide a formal proof of it in Appendix A.1.

Lemma 3.10 (Committing to Sparse Matrices and Computing Local Openings). There exists a tuple of efficient
algorithms (ComSparse™, VerLocal™, OpenLocal™") with the following syntax and properties:

« ComSparse™(pp, M) — C: On input the public parameters pp (with lattice parameters n, m, q) and a matrix
M e ZZXL, ComSparse™ (pp, M) outputs C = Com™(pp, M) in time poly(K, m,logq,log L), where K is the
number of non-zero columns in M.

« VerLocal™(pp, L,i) — vr;: On input the public parameters pp (with lattice parameters n,m,q), the length
parameter L (in binary) and a column index i € [L], VerLocal™ (pp, L, i) outputs the i column vy ; € Zg of the

matrix Vy = Ver™(pp, 11) in time poly(m,log g,log L).

« OpenLocal™(pp,M, i) — z;: On input the public parameters pp (with lattice parameters n, m, q), a sparse matrix
Me ZZXL, and an indexi € [L], OpenLocal™(pp, M, i) outputs the i™ column z; € Zg of Z; = Open™(pp, M)
in time poly(K, m,log q,log L), where K is the number of non-zero columns in M.

4 Distributed Broadcast Encryption

In this section, we show how to construct an distributed broadcast encryption [WQZD10, BZ14] scheme from the
succinct LWE assumption. In distributed broadcast encryption, users choose their own public and secret keys and
post their public keys to a public-key directory. One can then encrypt a message to an arbitrary subset of public
keys with a ciphertext whose size scales polylogarithmically with the number of users in the broadcast set. Previous
distributed broadcast encryption schemes based on bilinear maps [KMW23, FWW23] or succinct LWE [CW24] could
only support a bounded number of users, where the size of the public parameters and individual public keys scale
linearly (or worse) with the bound on the number of users. We give the first distributed broadcast encryption scheme
from succinct LWE that supports an arbitrary polynomial number of users. Previous schemes that could support an
unbounded number of users relied either on indistinguishability obfuscation [BZ14] or witness encryption [FWW23].

Distributed broadcast encryption. We begin by recalling the notion of distributed broadcast encryption. Our
definition is adapted from the works of [BZ14, KMW23].!

Definition 4.1 (Distributed Broadcast Encryption [BZ14, KMW23]). Let A be a security parameter. A distributed
broadcast encryption scheme Ilpge is a tuple of efficient algorithms IIpge = (Setup, KeyGen, Encrypt, Decrypt) with
the following syntax:

« Setup(1*,N) — pp: On input the security parameter A and the number of users N (in binary), the setup
algorithm outputs the public parameters pp. We assume that pp contains 1* and N.

« KeyGen(pp,i) — (pk;, sk;): On input the public parameters pp and an index i € [N], the key-generation
algorithm outputs a public key pk; and secret key sk;.

1Some previous lattice-based schemes [CW24, CHW25] also required an IsValid algorithm that is used to (publicly) decide whether a user public
key is well-formed or not, and only required correctness/security to hold when encrypting to well-formed keys. Our distributed broadcast
encryption construction (Construction 4.2) will not require this property, so for ease of exposition, we omit this algorithm from the formal
syntax. The syntax we use matches that from [BZ14, KMW23].
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+ Encrypt(pp, {(i, pk;) }ies, ) — ct: On input the public parameters pp, a collection of public keys pk; and a
message p € {0, 1}, the encryption algorithm outputs a ciphertext ct.

+ Decrypt(pp, {(i, pk;) }ies, ct, (i*, sk;)) — p: On input the public parameters pp, a collection of public keys pk;,
a ciphertext ct, and a secret key sk;+ for an index i*, the decryption algorithm outputs a message p € {0,1}.

We require that Ilpgg satisfy the following properties:

. Correctness: For all parameters A, N € N, all pp in the support of Setup(1%, N), all sets S C [N], all indices
i* € S, all public keys pk; for i € S\ {i"}, and all messages p € {0,1},

(pk;s, ski+) < KeyGen(pp, i*)

Pr| Decrypt(pp, {(8, pki)bies, ot (% skin)) = s gL ot o, (G pk) bies ) |~ &
(G, pky) Hies,

« Selective security: For a security parameter A, a bound N, and a bit b € {0, 1}, we define the selective security
game between an adversary A and a challenger as follows:

— On input the security parameter 1* and the bound N, the adversary outputs the challenge set S* C [N].

~ The challenger samples pp < Setup(1%, N) and (pk;, sk;) < KeyGen(pp, i) for i € S*. Finally, it computes
ctp < Encrypt(pp, {pk;}ies+, b, S*) and sends (pp, {pk;}ies*, ctp) to A.

— At the end of the game, algorithm A outputs a bit b € {0, 1}, which is the output of the experiment.

We say the distributed broadcast encryption scheme is selectively secure if for all efficient adversaries A and
all bounds N < 2%, there exists a negligible function negl(-) such that for all A € N,

[Pr[b"=1|b=1]—Pr[b' =1]|b=0]| = negl(A)
in the selective security game.

« Succinctness: There exists a fixed polynomial poly(-, ) such that forall A, N € N, all subsets S C [N], all public
parameters pp in the support of Setup(1%, N), all public keys pk;, all messages € {0, 1}, and all ciphertexts
ct in the support of Encrypt(pp, {pk;}ies, i, S), it holds that |ct| < poly(4, log N).

Construction 4.2 (Distributed Broadcast Encryption). Let A be a security parameter and (n, m, g, y) be LWE param-
eters (that can be functions of A and N). Let o be a Gaussian width parameter. We construct a distributed broadcast
encryption scheme as follows:

. Setup(lﬂ, N): On input the security parameter A and the number of users N, sample
(B, Tp) « TrapGen(1",1™,q), W & Zémznxm

T < SamplePre([1I,,: ® B | W], [12m20®TB ],IZmz ®G,o0)

A& gmmp &g

If |T|| > vmo, then set T = [12m20®TB]. Let pp,, = (B,W,T) and output the public parameters pp =
(N, PPeom: A, P)-

+ KeyGen(pp, i): On input the public parameters pp = (N, pp.oms A, P) and an index i € [N], sample

I & {0, l}m
v; = VerLocal ™ (ppyms N, 1)

Output the public key t; = Br; + p — Av; € Zg and the secret key sk = ;.
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 Encrypt(pp, {(i, pk;)}ies, #1): On input the public parameters pp = (N, pp.om» A, p) where pp.,, = (B, W, T),
the public keys pk; =t; € ng’” and a message p € {0, 1}, sample the following:

s & Zg, e« D7 ,Di & {o,1}y™ ™ [ d, & {0,1}™.

If |le]| > v/my, then set e = 0™. Then, for all i € S, compute C; = ComSparse™" (pp.om, U ® t;), where
u; € {0, 1}V is the i unit vector. Output the ciphertext

ct= (STB+eT Y

A+ ZCi) +e'Dy, s'p+e'dy+|q/2] - p
i€eS

« Decrypt(pp, {(i, pk;) }ies, ct, (i*, ski+)): On input the public parameters pp = (N, pp s A, p) Where pp .., =
(B, W, T), the public keys pk; = t; € ZZX’”, the ciphertext ct = (cy, €5, ¢3), and a secret key sk;» = r;+ for an
index i* € S, the decryption algorithm first computes

Vi = Ver[-ocalmat(ppcom’ N, l*)
Vi€ S:z; = OpenLocal™ (pp..,» Ul ® t;, i*).

Finally, compute

[ =c3+ciry —chvy — E Iy
i€S

and output 0 if —q/4 < & < g/4 and 1 otherwise.
Theorem 4.3 (Correctness). Suppose q > N - O(m’ yolog qlog N). Then, Construction 4.2 is correct.

Proof. Take any A,N € N, any pp in the support of Setup(1%, N), any set S C [N], any index i* € S, any col-
lection of public keys {pk;};es\(i}, and any message y € {0,1}. Let (pk;,sk;) < KeyGen(pp,i*) and ct «
Encrypt(pp, {(i, pk;) }ies, ). Consider Decrypt(pp, {(i, pk;) }ies, ct, (i*, ski+)):

+ Let pp = (N, ppom A, p) Where pp_,, = (B, W, T). By construction of Setup, [I5,2 ® B | W]T =1, ® G and
ITIl < Vmo.

« By definition, pk;. = t; = Brj» + p — Av;» where r;» € {0,1}™ and v;+ = VerLocal™ (pp . N, i*).

« Let s, e, Dy, d, be the components sampled by Encrypt. By definition, |le|| < v/my and ||D]|, [|d2|| < 1. The
ciphertext can be written as

A+ZC,- +e'Dy, s'p+e’dy+q/2] - p].

ct = (¢}, ¢ 03) = (sTB +e', s
ics

« Let v;- and z;;+ be the vectors computed by Decrypt. For each i € S, let C; = ComSparse™! (pp ., U} ® t;). By
Remark 3.9 and Lemma 3.10, we have for alli € S

tis — BZi*,i* i=i"
C,-v,-* = . ”
—BZ,',,'* L#1.

Thus, we can now write
C;V,'* + Z CIZ,',,'* = STAVI'* + Z STCiV,'* + Z STBZi,i* + eTDlvi* + Z eTzi,i*
i€eS i€S i€S ieS
T -
=S (AVi* + ti*) + e
=s"(p+Bry) +é;.
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where €; = €'D1Vj + 2,5 €'z ;+. Then
g=c3+ciTp — vy — E clzi
i€S

=s'p+e'dy+|q/2] - p+sBry+e'ry —s"(p+Brp) —é

lg/2] - u+e'dy+e'ry —éy,
Let € = e'd, + e'r;» — é;. As long as [é] < g/4, correctness holds.
« We now bound |é|. First, for all i € S, by Remark 3.9 and Lemma 3.10,
lviell < O(ITI| - m* log g) < O(m**c log )
[li.|| < OCIITII - m log glog N) < O(m"*/*clog qlog N).

First, we bound |¢;]. Since ||e|| < v/my, we have

&1 < |le'Dyvi | + Z le"zi,|| < O(m” yologq) + N - O(m’ yolog glog N)
ieS
=N-0(m’yologqlogN).
Next,
|é] < |e"dy| + |e'ry| + |é,] < N - O(m’ yologgqlog N).
Setting g > N - O(m’ yo log qlog N) suffices for correctness. O

Theorem 4.4 (Selective Security). Supposen > A, m > 3nlogq, and o > O(m*logm). Then, under the (2m*, o)-
succinct LWE assumption with parameters (n,m, q, x), Construction 4.2 is selectively secure.

Proof. Take any N < 2% and any efficient adversary A for the selective security game. We now define a sequence
of hybrid experiments:

. Hyb(()b) : This is the selective security experiment where the challenger encrypts the bit b € {0, 1}. Specifically,
the game proceeds as follows:

— On input the security parameter 1* and the bound N, algorithm A outputs the challenge set S* C [N].

The challenger then samples pp < Setup(1*, N) by computing

(B, Tp) « TrapGen(1",1™,q),W & Zé’”znxm
T « SamplePre([I,,: ® B | W], [12m20®TB ]’IZmZ ® G, 0)
A &2 p & 2y,
If |T|| > Vmo, thenitsets T = [IZmZO®TB ] The challenger sets pp_,,, = (B, W, T) and pp = (N, pp.om» A, P)-
- Next, for each i € S, the challenger samples a public key by computing pk; < KeyGen(pp, i). Specifically,
for each i € S*, the challenger samples
r; < {0, 1}"™
v; = VerLocaImat(ppcom, N, i)
and sets pk; =t; = Br;+p — Av; € ngm.
— Finally, the challenger constructs the challenge ciphertext ct* « Encrypt(pp, {(i, pk;)}ie[n],b). Con-
cretely, the challenger starts by sampling

s 7Z, e DI

7 7 s D€ {0, 1} dy & {0, 1},
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If |le]] > +/my, then the challenger sets e = 0™. Then, for all i € S, the challenger computes C; =
ComSparse™! (ppom U ® t;). It defines the challenge ciphertext ct* to be

*

ct*=(s'B+e', s"

A+ Z Ci) +e'Dy, s'p+e'dy + |q/2] - b].
ies*

— The challenger gives (pp, { (i, pk;) }ies+, ct*) to A.

— At the end of the game, algorithm A outputs a bit b € {0, 1}, which is the output of the experiment.

. Hybib) : Same as Hyb((]b) , except when sampling the public parameters, the challenger samples

T & [IZm2 ®B | W];I(IZrnz ®G) and B & ngm.

. Hybgb): Same as Hybib) , except when sampling the public parameters, the challenger no longer checks the
condition ||T|| > +/mo. Similarly, when constructing the challenge ciphertext ct*, the challenger no longer
checks if |le]| > vmy.

. Hybgb): Same as Hybéb), except the challenger samples t; <- Zy~™ foralli € S*.

. Hybib): Same as Hyb.(b), except the challenger now sets A = BD; — }};.s C; and p = Bd,. Specifically, this
experiment operates as follows:
- On input the security parameter 1%, algorithm A outputs the bound N and a challenge set S* C [N].
— The challenger samples

R nxm R 2m’nxm
B « Zq ,W Zq
T — [Ippz ® B | W] ' (Iz2 ® G)
t; & Zgforallie S*
Dl (L {Os 1}m><ms d2 & {05 l}m
The challenger sets pp,,, = (B, W, T). For each i € S*, the challenger sets pk; = t; and also computes C; =
ComSparse™! (pp om, U} ®t;). The challenger sets A = BD; — ;5. C;, p = Bdy, and pp = (N, ppcoms A, P)-

— To construct the challenge ciphertext, the challenger samples s <- Zg and e — D%"X. It then defines the
challenge ciphertext ct* to be

A+ZC,-

i€S*

=(s'B+e', (s'B+e")Dy, (s'B+e")d; +[g/2] - b).

ct’ = (STB +e', s +e'Dy, s'pre'dy+[g/2] b

— The challenger gives (pp, {(i, pk;) }ses+, ct*) to A.
— At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

. : Same as , except the ¢ enger samples ¢; < and deflnes the challenge ciphertext to be
Hyb{": 8 Hyb'?, except the challenger samples ¢; & Z and defines the challenge ciph b

ct* = (c], ¢|Dy, c]ds + Lg/2] - b).

. Hybéb): Same as Hybéb), except the challenger samples c, <- Zy' and c; & Zg. The challenger defines the
challenge ciphertext to be ct” = (c], ¢}, c3). Notably, in this experiment, the adversary’s view is independent
of the bit b.
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We write Hybl@ (A) to denote the distribution of the output of Hybfb) with adversary A. We now analyze each pair
of adjacent distributions.

Lemma 4.5. Ifn > A, m > 3nlogq, and o > O(m® log m), then for all b € {0,1}, Hybéb) and Hybib) are statistically
indistinguishable.

Proof. By Lemma 3.5, || Tg|| = 1. As long as 0 > (2m? + 1)m || Tg|| log(2m?n) = O(m® log m), these two distributions
are statistically indistinguishable by Lemma 3.5. O

Lemma 4.6. Ifn > A, m > 2nloggq, q is prime, and ¢ > O(logm), then for all b € {0, 1}, Hybib) and Hybéb) are
statistically indistinguishable.

Proof. By Lemmas 3.2 and 3.4, with overwhelming probability over the choice of B <- ngm, we have that | T|| < Vmo.
By Lemma 3.4, we have that ||e|| < vmy with probability at least 1 — m - O(2™™). Thus, the conditions the challenger
checks in Hyb;b) hold with negligible probability so the two experiments are statistically indistinguishable. O

Lemma 4.7. Ifn > A, m > 2nloggq, and q > 2 is prime, then for all b € {0, 1}, Hyb;b) and Hybéb) are statistically
indistinguishable by

Proof. Specifically, by Lemma 3.1, the distributions (B, Br) and (B, t) where B <~ Zymx & {0, 1Y™m andt & zym
are statistically indistinguishable. Since |S*| = poly(4), the claim now follows by a standard hybrid argument. O

Lemma 4.8. Ifn > A, m > 2nloggq, and q > 2 is prime, then for all b € {0, 1}, Hybgb) and Hybib) are statistically
indistinguishable.

Proof. Specifically, invoking Lemma 3.1 with the error vector e € Z{' the challenger samples in Hybgb) and Hybib), we
can conclude that the distributions (B, BDy, e'D) and (B, A", e]D,) are statistically indistinguishable when B & ngm,

D; & {0,1}™%™, A* & Z%™. In Hyb " and Hyb{”, write A = A* - ;5. C;. When A* = BDy, we obtain the

distribution of A in Hybgb) and when A* & Zg*™, we obtain the distribution of A in Hybib) (since A" is sampled
independently of all other quantities in the experiment). Similarly, the distributions (B, Bd,, e'dz) and (B, p,e'd;)
are statistically indistinguishable when B <~ ZSX’", d, & {0,1}™,p & 2} and the claim holds. O

Lemma 4.9. Under the (2m?, o)-succinct LWE assumption with lattice parameters (n,m, q, x), for allb € {0,1}, Hybib)
and Hybgb) are computationally indistinguishable.

Proof. Suppose |Pr[Hybf1b) (A)=1] - Pr[Hybéb)(ﬂ) = 1]| > ¢ for some non-negligible . We use A to construct
an adversary B for the (2m?)-succinct LWE assumption:

1. On input the succinct LWE challenge (B, c¢;, W, T), algorithm B starts running algorithm A which outputs
the bound N = N(A) and the challenge set $* C [N].

2. Algorithm 8 sets pp.,, = (B, W, T) and samples D; < {0, 1}™ and d, < {0,1}™. Next, for each i € S*,
algorithm B samples pk; = P; ¢~ Z7*™ and computes C; = ComSparse™ (pp o, uj ® P;). Finally, algorithm
B sets A =BD; — Y ;cs: Ci, p =Bdy, and pp = (N, pp.om A, P)-

3. Finally, algorithm 8 constructs the challenger ciphertext as ct* = (c], ¢]Dy, ct]d; + [g/2] - b).

4. Algorithm 8 gives (pp, { (i, pk;) };es+, ct*) to A and outputs whatever A outputs.
By definition, the challenger samples B ¢ Z*™, W - Z(ZI'"Z"X’", and T « [I 2 ® B | W] (I, ® G). Thus,

algorithm B perfectly simulates pp according to the distribution of Hybib) and Hybéb). The remaining components

in the public parameters and the public keys are sampled exactly as in Hybib) and Hybéb). It suffices to consider the
challenger ciphertext:
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« If the challenger sets ¢] = s'B + e’ where s < Zgand e & DI , then algorithm B perfectly simulates the

X
distribution of Hybib).

« If the challenger samples ¢; < Zg, then algorithm B perfectly simulates the distribution of Hybéb) .

Thus, algorithm 8B breaks succinct LWE security with the same advantage . O

Lemma 4.10. Ifn > A, m > 2nloggq, and q > 2 is prime, then for allb € {0, 1}, Hybéb) and Hybéb) are statistically
indistinguishable.

Proof. Applying Lemma 3.1 with respect to the matrix [CBI ] the following distributions are statistically indistinguish-
able:
(B,c1,BD1,Bdy, ¢{Dy,¢jdy) and (B, ci, A%, p, ¢z, c3),
when B & ngm, cg & Z" Dy & {0,1}™™ dy, & {01}, A* & ZZX’”, p& ZZ, c, & Z(’]”, and c; & Z4. Applying
Lemma 3.1 again with respect to the matrix B, we conclude that the following two distributions are also statistically
indistinguishable:
(B,c1,A%,p,cz,c3) and (B, ¢y, BDy,Bdy, ¢z, ¢c3),

By a hybrid argument, we conclude that

(B, ¢1,BD;, Bdy, CIDI; Cldz) and (B, c;,BDy, Bdy, ¢z, c3)

O

are statistically indistinguishable. The left distribution maps to Hybéb) while the right distribution maps to Hybéb).

By construction, the challenger’s behavior in Hybéb) is independent of the bit b € {0,1}. Thus, Hybéo)(ﬂ)
Hybél) (A). The claim now follows by combining Lemmas 4.5 to 4.10.

Theorem 4.11 (Succinctness). Suppose mlogq = poly(n,log N). Then Construction 4.2 is succinct.

Proof. A ciphertext in Construction 4.2 can be written as (cy, ¢z, ¢3) where ¢, ¢; € Z{I" and c3 € Z,. Thus, the total
size of a ciphertext is O(mlog q) = poly(n,log N), as required. O

Parameter instantiation. We now describe one instantiation of the parameters in Construction 4.2 to satisfy
Theorems 4.3, 4.4, and 4.11. Let A be the security parameter and N be the maximum number of users. Take any
constant 0 < ¢ < 1. We instantiate the LWE parameters (n, m, q, y) and the width parameter o where

n= Alogl/F N

m = n - poly(4,log N)
x = poly(4,log N)

o =0(m*logm)

q =N - poly(A,log N)

and the (2m?, o)-succinct LWE assumption holds with LWE parameters (n, m, g, y). This corresponds to a succinct

LWE instance where the modulus-to-noise ratio is N - poly(A,log N) = 20(n) For this choice of parameters, we
obtain a distributed broadcast encryption scheme with the following properties:

lpp| = poly(4,log N) , |pk|=poly(4,logN) , |[sk|=poly(AdlogN) , |[ct|=poly(4 logN).

In particular, the size of the public parameters, the size of individual public/secret keys, and the size of the ciphertext
are optimal . Moreover, in the case where N = poly(1), then ¢ = poly(A). In this case, we can rely on succinct LWE
with a polynomial modulus-to-noise-ratio. We summarize our instantiation with the following corollary:
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Corollary 4.12 (Distributed Broadcast Encryption). Let A be a security parameter and N be the number of users. Under
the poly(A, log N)-succinct LWE assumption with a sub-exponential modulus-to-noise ratio, there exists a distributed
broadcast encryption scheme supporting up to N users where the size of the public parameters, the size of individual
public/secret keys, and the size of the ciphertext is poly(A,log N). Moreover, when N = poly(A), then security can be
based on the poly(A,log N)-succinct LWE assumption with a polynomial modulus-to-noise ratio.

Remark 4.13 (Transparent Setup via Decomposed LWE). Our distributed broadcast encryption scheme (Construc-
tion 4.2) makes black-box use of the [Wee25] matrix commitment scheme. Moreover, the cryptographic assumption
in the security proof (Theorem 4.4) can equivalently be restated as asking that

(PPeom: 5B +€") ® (PPeorm: ).

where pp ., = (B, W, T) is the public parameters for the matrix commitment scheme, s E 7N e — Dgf ,and ¢ & Z;”.
In [Wee25, Appendix C], Wee shows an alternative way to realize a matrix commitment scheme from the decomposed
LWE assumption introduced in [AMR25]. Specifically, the decomposed LWE assumption (with dimension £ and width
parameter o) along with LWE parameters (n, m, g, y) asserts that

(B,s'(W(I; ®RR) +vec(l;)' ® G) +¢',W,R) = (B,c', W,R),

where B & zZpm,s & Zy, W & ZZXfm, R « D%:[’”, e «— Dg;(”, and ¢ & Zgzm. Wee then shows that an analogous
matrix commitment scheme (satisfying the properties in Lemma 3.8) where the public parameters are given by
PPeor = (B, W, R), where W € ZZXZ"P, Re D£:2m3’ and

B = W(Lyean +vec(Ly,2)' ® G) € ZX4m, (4.1)
Then, the decomposed LWE assumption (with dimension 2m? and width parameter o) asserts that

(PPeom: 5B +€") % (PPeorm: ).

_ (R R x2m? x2m’ T x4m? . R 4m’ R rpdm’
where pp.,, = (B, W,R), W < ZZ m R« DZU m Be ZZ ™ asin Eq. (4.1), s < Zg,e — DZT')’(,andc & Zq’" .
As such, we can substitute this alternative instantiation for the matrix commitment in Construction 4.2 to obtain a
distributed broadcast encryption scheme from the decomposed LWE assumption with dimension 2m? and width param-
eter 0. Compared to the basic instantiation from Construction 4.2, this has the following advantages and disadvantages:

«+ Transparent setup: The public parameters pp,,,,, for the matrix commitment scheme in the above instantiation
can be described by W <~ ZZXZ"P and R « Di":z’”}. These can be derived from a uniform random string. The
remaining components of the public key in Construction 4.2 is a uniform random matrix A and a uniform
random vector p. Thus, this yields a construction with a transparent setup process. The construction based on
succinct LWE requires including the succinct LWE trapdoor T as part of the commitment parameters, which
results in the need for a structured string.

. Larger parameters: A downside of using decomposed LWE instead of succinct LWE is the matrix B € ZZ“’"S

now has width 4m® (compared to B € Z"*™ in Construction 4.2). Thus, the ciphertexts are longer in the modified
construction. Note though that this is a polynomial blowup in the parameter size (since m = poly(4,log N)).

5 Key-Policy Registered Attribute-Based Encryption
In this section, we show how to construct a registered key-policy ABE for general circuits from the succinct LWE

assumption in the random oracle model. Our construction combines ideas from the recent registered ABE construction
from [CHW25] with our distributed broadcast encryption scheme from Section 4.
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Slotted registered ABE. Similar to prior works on registered ABE [HLWW23, FWW23, ZZGQ23, GLWW24,
AT24, CHW25], we focus on the simpler “slotted” primitive introduced in [HLWW23]. In a slotted registered ABE
scheme, there is a fixed number of users N and each user is associated with a specific slot index. Instead of users
joining the system at arbitrary times, there is instead an aggregation algorithm that takes all N keys (together with
their associated policies) and aggregates them into a single succinct master public key. The work of [HLWW23]
show that a slotted registered ABE scheme implies the normal notion that supports dynamic registrations with
only polylogarithmic overhead (using a standard powers-of-two transformation implicit in earlier works such as
[GHMR18]). In this work, we focus exclusively on the slotted primitive because it is simpler to describe and construct.

Definition 5.1 (Slotted Key-Policy Registered ABE [HLWW23, adapted]). Let A be a security parameter and 7 be
a policy-family parameter. Let X = {X;};en be a family of attributes and ¥ = {¥;};en be a set of policies (where
each f € ¥, is a function f: F; — {0, 1}). Throughout this work, we adopt the convention that an attribute x € X;
satisfies a policy f € ¥ if f(x) = 0 (and does not satisfy the policy if f(x) = 1). A slotted key-policy registered ABE
scheme with attribute space X and policy space ¥ is a tuple of efficient algorithms IIsrape = (Setup, KeyGen, IsValid,
Aggregate, Encrypt, Decrypt) with the following syntax:

« Setup(1%,17, N) — pp: On input the security parameter A, the policy-family parameter 7, and the number of
slots N (in binary), the setup algorithm outputs the public parameters pp. We assume that pp implicitly defines
14,17, and N.

« KeyGen(pp, i, f) — (pk, sk): On input the public parameters pp, a slot index i € [N] and a function f € ¥,
the key-generation algorithm outputs a public key pk and a secret key sk.

« IsValid(pp, i, f, pk) — b: On input the public parameters pp, a slot index i € [N], a function f € ¥, and a
public key pk, the validity-checking algorithm outputs a bit b € {0, 1}.

« Aggregate(pp, (pky, f1), ..., (pky, fa)) — (mpk, hsky,. .., hsky): On input the common reference string pp,
a collection of N public keys pk;,..., pky, and their respective functions fi,..., f; € 77, the aggregation
algorithm outputs a master public key mpk and a collection of helper decryption keys hsky, ..., hsky. This
algorithm is deterministic.

« Encrypt(mpk, x, g) — ct: On input the master public key mpk, an attribute x € X, and a message p € {0,1},
the encryption algorithm outputs a ciphertext ct.

« Decrypt(sk, hsk, f,x,ct) — p: On input the secret key sk, a helper decryption key hsk, a policy f € #;, an
attribute x € X7, and a ciphertext ct, the decryption algorithm outputs a message y € {0, 1}.

Moreover, ITspape should satisfy the following properties:

« Completeness: Forall ,7 € N, all N < 24 all indices i € [N], and all policies f € 77,

. ] L pp < Setup(14,17,N)
Pr [IsValid(pp, i, f,pk) = 1: (pk, sk) — KeyGen(pp,i, f) | ~ 1

« Correctness: We say Ilsrape is correct if for all 4,7, all N < 24 all indices i € [N], all policies f; € 7=,
all attributes x € X, where f;(x) = 0, all pp in the support of Setup(1%,17, N), all {(. fi-pk;)} j2 where
IsValid(pp, j, fj, pkj) =1, and all messages p € {0,1},

Pr [Decrypt(ski, hsk;, f,x,ct) = p: ct « Encrypt(mpk, x, y) ] =1,
where (mpk, hsky, ..., hsky) = Aggregate(pp, pk;, ..., pky)-

. Compactness: There exists a polynomial poly(-, -) such that for all A,z € N, all N < 2%, all pp in the sup-
port of Setup(ll, 17,N), all (pky, fi), ..., (pky, f) where IsValid(pp, i, f;, pk;) = 1 for alli € [N], and all
(mpk, hsky, ..., hsky) in the support of Aggregate(pp, (pky, f1), ..., (pky, fv)), it holds that

|mpk| < poly(A4,7) and Vie [N]: |hsk;| < poly(4, 7).
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« Security: Let b € {0, 1} be a bit. For a policy-family parameter 7 € N, a slot number N, and an adversary A,
we define the following security game between A and a challenger:

— Setup phase: The challenger begins by sampling pp « Setup(1%, 17, N) and gives pp to A. The challenger
also initializes a counter ctr = 0 and an (empty) dictionary D to keep track of key-generation queries.

— Query phase: Adversary A can now issue the following queries:

» Key-generation query: In a key-generation query, the adversary specifies a slot index i € [N] and
a function f € 7. The challenger increments the counter ctr = ctr + 1 and samples (pk,, Sketr) <
KeyGen(pp, i, f). The challenger replies to A with (ctr, pk,,) to A and then adds the mapping
ctr = (i, f, pkeyys SKetr) to D.

» Corruption query: In a corruption query, the adversary specifies an index 1 < ¢ < ctr. In response,
the challenger looks up the tuple (i, f’, pk’, sk”) = D[¢] and replies to A with sk’.

— Challenge phase: Algorithm A now outputs a list of tuples (cy, fi, pk,), ..., (cn, fiv, pky) where either
¢; € {1,...,ctr} to reference a challenger-generated key or ¢; = L to reference a key outside this set. The
adversary also specifies a challenge attribute x* € X;. The challenger then checks the following:

« If ¢; € {1,...,ctr}, then the challenger looks up the entry D[¢;] = (i, f’, pk/, sk’) and checks that
i = i’. If not, the challenger outputs 0. Otherwise, the challenger sets pk; = pk’ and f* = f’. In
addition, if the adversary issued a “corruption” query on index c;, then the challenger additionally
checks that f”(x*) = 1 and outputs 0 if not.

« If ¢; = L, then the challenger checks that IsValid(pp, i, fi, pk;) = 1 and fj(x*) = 1. If so, then the
challenger sets pk; = pk; and f;* = f;. Otherwise, the challenger outputs 0.

ctr>

The challenger computes (mpk, hsky, ..., hsky) = Aggregate(pp, (pkj, fi') .. .. (pk}, fiy)) and replies
with the challenge ciphertext ct* «— Encrypt(mpk, x*, b).

— Output phase: At the end of the experiment, algorithm A outputs a bit b € {0, 1}, which is the output
of the experiment. If A aborts before this point, then the output of the experiment is 0.

We say that a slotted registered ABE scheme is secure if for all polynomials 7 = (1) and N = N (1), and all
efficient adversaries A, there exists a negligible function negl(-) such that for all A € N,

[Pr[b’=1:b=0] —Pr[b’ =1:b=1]| =negl(d)

in the above security game.

Relaxed security notions. We now describe two relaxations of the security definition in Definition 5.1.

Definition 5.2 (Attribute-Selective Security). We say a slotted registered ABE scheme Il;rae satisfies attribute-
selective security if the adversary must declare its challenger attribute x* € X; at the beginning of the setup phase
(before seeing pp).

Definition 5.3 (Security without Corruptions). We say a slotted registered ABE scheme IIrape satisfies security
without corruptions if the adversary in the security game of Definition 5.1 is not allowed to make corruption queries.

Remark 5.4 (Relationship between Definitions). While Definitions 5.2 and 5.3 relax the main security notion in
Definition 5.1, there are generic ways to transform a scheme satisfying the relaxed notions of security into one that
satisfies full security:

« First, if TIspape satisfies attribute-selective security, we can obtain an adaptively-secure scheme (where the
attribute is chosen in the challenge phase) via standard complexity leveraging [BB04]. Using complexity
leveraging will require assuming sub-exponential hardness, and moreover, the size of the scheme parameters
will scale with the attribute length.

« If IIranE satisfies security without corruptions, we can apply the generic transformation from [FWW23] to
obtain a scheme with security against adversaries that can make corruption queries in the random oracle model.
Since our base registered ABE scheme is already in the random oracle model, this transformation is essentially
free (the transformation itself only incurs constant overhead over the base scheme).
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5.1

Additional Building Blocks

Similar to the registered ABE scheme from [CHW25], our construction also relies on simulation-sound extractable
NIZK arguments, an explainable discrete Gaussian sampler, as well as a Gaussian preimage smudging lemma. We
review these notions below:

Simulation-sound extractable NIZKs. The first primitive we require is a simulation-sound extractable non-
interactive zero-knowledge (NIZK) argument for NP [BFM88, FLS90, Sah99, DDO*01]. Similar to [CHW25], we will
use the NIZK argument of knowledge to extract secret keys in the security analysis of the registered ABE scheme.
We give the definition below (taken mostly verbatim from [CHW25]):

Definition 5.5 (Simulation-Sound Extractable NIZK). A simulation-sound extractable NIZK argument ITy;zk for NP
is a tuple of efficient algorithms IInjzx = (Setup, TrapSetup, Prove, Verify, Sim, Extract) with the following syntax:

Setup(1) — crs: On input the security parameter A, the setup algorithm outputs a common reference string crs.

TrapSetup(1%) — (crs, td): On input the security parameter A, the trapdoor setup algorithm outputs a common
reference string crs and a trapdoor td.

Prove(crs, C,x, w) — m: On input the common reference string crs, a Boolean circuit C: {0, 1}" X {0, l}h —
{0, 1}, a statement x € {0, 1}", and a witness w € {0, l}h, the prove algorithm outputs a proof 7.

Verify(crs, C, x, 1) — b: On input the common reference string crs, a Boolean circuit C: {0,1}" x {0,1}"* —
{0, 1}, a statement x € {0, 1}", and a proof 7, the verification algorithm outputs a bit b € {0, 1}.

Sim(td, C,x) — z: On input the trapdoor td, a Boolean circuit C: {0,1}" x {0,1}"* — {0,1}, and a statement
x € {0,1}", the simulation algorithm outputs a proof 7.

Extract(td, C, x, ) — w: On input the trapdoor td, a Boolean circuit C: {0, 1}" X {0, 1}h — {0, 1}, a statement
x € {0,1}", the extraction algorithm outputs a witness w € {0, 1}" (or a special symbol _L).

We require that IIyzk satisfy the following properties:

Completeness: For all A € N, all Boolean circuits C: {0,1}" x {0, 1} — {0, 1}, all statements x € {0, 1}" and
witnesses w € {0, 1} where C(x, w) = 1,

crs « Setup(1%) _1

Pr |Verify(crs,C,x, ) =1: 7 Prove(crs,C.x,w) |~

Zero-knowledge: For a security parameter A, an adversary A, and a bit b € {0, 1}, we define the zero-
knowledge security game as follows:

- If b = 0, the challenger samples crs « Setup(1?) and if b = 1, the challenger samples (crs, td) «
TrapSetup(1%). The challenger gives crs to A.

— Algorithm A can now make adaptive queries of the form (C, x, w), where C: {0,1}" x {0,1}" — {0,1}
is a Boolean circuit, x € {0, 1}" is a statement, and w € {0, l}h is a witness.
» The challenger first checks if C(x, w) = 1. If not, the challenger responds with L.
» Otherwise, if b = 0, the challenger replies with 7 < Prove(crs,C, x,w). If b = 1, the challenger
replies with 7 « Sim(td, C, x).
— After A is finished making queries, it outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that Iy zk satisfies computational zero-knowledge if for all efficient adversaries (A, there exists a
negligible function negl(-) such that forall A € N, [Pr[d’ =1 | b =0] —Pr[d’ =1 | b = 1]| = negl(}) in the
zero-knowledge security game.
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+ Simulation extractability: For a security parameter A, and an adversary A, we define the simulation ex-
tractability games as follows:

The challenger starts by sampling (crs,td) < TrapSetup(1%) and gives crs to A. The challenger also
initializes an (empty) list Q.

Algorithm A can now make adaptive queries (C, x) where C: {0,1}"x{0, 1} — {0, 1} is a Boolean circuit
and x € {0, 1}" is a statement. The challenger replies with 7 < Sim(td, C, x) and adds (C, x, 7) to Q.

After A is finished making queries, it outputs a Boolean circuit C: {0,1}" x {0,1}* — {0, 1}, a statement
x € {0,1}", and a proof x.

— The challenger computes w = Extract(td, C, x, 7) and outputs b’ = 1if Verify(crs,C,x, ) =1, (C,x, 1) ¢ Q
and C(x, w) = 0. Otherwise, the challenger outputs »” = 0.

We say that IInjzk satisfies simulation extractability if for all efficient adversaries A, there exists a negligible
function negl(-) such that for all A € N, Pr[b” = 1] = negl(1) in the simulation extractability game.

The work of [DDO"01] show how to construct a simulation-sound extractable NIZK for NP from any NIZK for NP
together with a public-key encryption scheme (and a one-time signature scheme, which is implied by public-key
encryption). Both NIZKs for NP [PS19, Wat24, WW W25, BCD*25] and public-key encryption [Reg05] are known
from the plain LWE assumption.

Remark 5.6 (On Semi-Malicious Security). In our registered ABE construction (Construction 5.11), each user’s public
key includes a NIZK proof of knowledge of the randomness used to sample the key. Essentially, the NIZK serves
to provide a proof of well-formedness for public keys. A natural question is whether we can provide a more modular
description where we first show that the registered ABE scheme without NIZK proofs of well-formedness is secure
against semi-malicious adversaries. In this model, when the adversary specifies a public key in the challenge phase,
it must also reveal the key-generation randomness used to sample the key. We can then upgrade a scheme with
semi-malicious security to one with full security by requiring public keys to include a NIZK proof of knowledge of
the key-generation randomness; indeed, such a transformation was recently described in [LWW25] in the context
of multi-authority registered ABE. Unfortunately, this modular approach does not apply in our setting (for the same
reason it did not apply in [CHW25]). This is because in the security proof, the reduction algorithm needs to know
the key-generation randomness associated with adversarially-chosen public keys when it is simulating random oracle
queries (before the challenge phase). It is not meaningful to restrict the adversary to only query the random oracle
on inputs that are well-formed. As a result, our current proof strategy critically relies on the ability to extract the
key-generation randomness from any well-formed public key (as opposed to only the subset of public keys chosen
during the challenge phase). We refer to the proof of Theorem 5.14 for the full details.

Explainable Gaussian sampling. Our construction relies on the re-randomization technique introduced in
[CHW25]. Namely, the key-aggregation algorithm will sample and register a “dummy key,” and the randomness for
sampling the dummy key will be derived from the random oracle. In the security analysis, the reduction algorithm
programs the aggregation randomness in order to correctly simulate the challenge ciphertext. To implement this,
the work of [CHW25] relies on an explainable discrete Gaussian sampler for sampling from the distribution A_(z).
Specifically, there is an Explain algorithm that takes a preimage y «— A'(z) and outputs the randomness (for the
sampler algorithm) that would produce x. The work of [CHW25] observed that the Gentry-Peikert-Vaikuntanathan
preimage sampling algorithm [GPV08] is explainable (when instantiated with an explainable discrete Gaussian
sampler over the integers [LW22]). We give the formal definition and the required properties from [CHW25] below:

Definition 5.7 (Explainable Discrete Gaussian Preimage Sampler [CHW25, Definition 4.1]). Let A be a security
parameter, and n, m, q be lattice parameters. A (p, 01oss)-explainable discrete Gaussian preimage sampler IIpgs with
randomness length p and width parameter oy, is a pair of efficient algorithms IIpgs = (SamplePre, Explain) with
the following syntax:

. SamplePre(lA,A, T, z,0;r): On input the security parameter A, a matrix A € ZZX’”, a trapdoor T € quxm, a
target vector z € Z]}, a width parameter o > 0, and randomness r € {0, 1}”, the preimage sampling algorithm
outputs a vector y € Zg'.
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. Explain(lﬂ, 1°,A,T,z,y,0) — r: On input the security parameter A, the precision parameter k, a matrix
A€ ZZX’", atrapdoor T € Z"]"X'", a target vector z € Z, a preimage y € Z7', and a width parameter o > 0, the
explain algorithm outputs a string r € {0, 1}”.

Moreover, there exists a negligible function negl(-) such that for all A € N, all matrices A € ngm, trapdoors T € Z;"X’”
where AT = G, all targets z € Zy where ||z|| < 2%, and all width parameters o where ||T|| - 010ss < 0 < 2%, the following
two properties hold:

« Correctness: The following distributions are statistically indistinguishable:
{x «— SamplePre(1*,A,T,y,0)} and {x « ALl (y)).
Moreover, for all x in the support of SampIePre(ll, A, T,y, o), we have Ax = y.

« Explainability: For all ¥ € N, the statistical distance between the following distributions is bounded by
1/x + negl(A):

— Dsamplepre: Sample 7 & {0,1}? and y < SamplePre(1}, A, T,z o;r). Output (y, 7).

~ Deyplain: Sample r’ & {0,1}” and y « SamplePre(l’l,A,T, z,0;r')and r « Explain(ll, 1,A, T, 2y, 0).
Output (y,r).

Theorem 5.8 (Explainable Discrete Gaussian Preimage Sampler [CHW25, Theorem 4.2]). Let A be a security parameter,
and n, m, q be lattice parameters. There exists an explicit (p, oloss)-explainable discrete Gaussian preimage sampler where
p = poly(A, n,m,log q) and oyoss = 18m*/? log(mA) loglog q.

Explainable re-randomizer. Let pp = (B, W, T) be the public parameters for a matrix commitment scheme. To
apply the re-randomization technique from [CHW25] to prove security of our registered ABE scheme, we require
an explainable sampler for sampling from the following distribution:

C & gpxm
. q
{(C,yl, .. YN) yi B;l(—Cv,-) }
where V = [vy | ---vy] = Ver™(pp, 1V). To simplify the exposition of our main construction, we abstract out the

properties we require and then show how to build an explainable sampler for this distribution below:

Theorem 5.9 (Explainable Re-randomizer). Let A be a security parameter, n,m, q be lattice parameters, and p be a
randomness parameter. There exists a pair of efficient algorithms (Sample, Explain) with the following syntax:

« Sample(pp, 14,1V, 0;7) — (C,y4,...,yN): On input the public parameters pp, the security parameter ), the

dimension N, a width parameter ¢ > 0, and randomnessr € {0,1}", output C € ZZX”’ andyy,...,yN € ZZ‘.

« Explain(pp, 1%, 1%, (C, y1,...,yN), @) — r: On input the public parameters pp, a security parameter A, a precision
parameter k, a matrix C € ZZX’", vectors y1,...,yN € Z, and a width parameter ¢ > 0, output randomness
r e {0,1}~.

There exists a polynomial p = poly(A, N, n,m,log q) such that for alln > A and m > 2nlogq, for all but a negligible

vactions of matrices B € ,and a € nxm g gEmAmIm’ o L,:®B | W] -T=1IL,:®G, all
B € Z™, and all W € ZZ"'"™™ T € Z,;
parameters N € N, and setting pp = (B, W, T), the following properties hold:

« Sampling distribution: For all width parameters |T|| - O(m'*N®) < o < 2%, the statistical distance between
the following distributions is bounded by negl(A):

- (C,y1,...,yN) < Sample(pp, 141N, o r).

~ (Cy1,-..,yn) where C & Z7*™ andy; < B;'(~Cv;), and [vy | --- | vn] = Ver™ (pp, V).
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Moreover, for all (C,y1, ..., yN) in the support of Sample(pp, 1%, 1N, 0), it holds that By; = —Cv; and |ly;|| < Vmo.

« Explainability: There exists a negligible function negl(-) such that for all precision parameters k, dimensions
N € N, and width parameters ||T||-O(m'2N?) < ¢ < 2%, the statistical distance between the following distributions
is bounded by 1/x + negl(1):

— Dsample: Sampler < {0,1}* and (C,y1,...,yn) < Sample(pp, 141N, 63 7). Output (C,y1,...,YN»T).
— Dexplain: Sample v’ & {0,1}* and (C,yy,...,yN) < Sample(pp, 14,1V, 63 17). Then, sample the random-
nessr < Explain(pp,14,1%,(C,y1,...,yN), ). Output (C,y1,..., YN, 7).
Proof. We define the algorithms as follows:
« Sample(pp, 14,1V, o;r): On input the public parameters pp = (B, W, T), the security parameter A, the dimension
N € N, a width parameter ¢ > 0, and randomness r € {0, 1}”, the sampling algorithm proceeds as follows:

1. Compute Vi = Ver™(pp, 1V). Parse Vi = [v; | - - - | vy ] where each v; € Zg.

2. LetGy =Iy®G € ZZNX’"N, andletmy,..., m,yN € ZZN be the columns of Gy. Let M; € ZZXN be the
matrix where vec(M;) = m;. Then, for each i € [mN], compute the commitment C; = Com™(pp, M;) €
Z7*™ and the opening Z; = Open™(pp, M;) € Z(’]”XN.

3. Define the vector r; € Z;”N +k

_ vec(Z;) mN+
i = [G,‘,,ln(vec(Ci))] € ZqN g

LetR=[ry | --- | rpn] € Z™NHOXN,
4. Letk =nmTJlogq] andletD = [D; | --- | Di] € ngmk be the matrix where vec(D;) is the i column
of G,;. Now define the matrix A as follows:
B D(Ik ® V1)
. nNXx(mN+k
A= : e ZpN*(mN+k) (5.1)
B | D(Ix ® vy)
5. Sample
Y1
— DGS.Sample(lA,A,R,O"N, o;r1),
YN
Yo

where yy,...,yn € Z7 and y, € Z";. If |ly:ll > +/mo for any i € [N], then output C = 0™™ and
V1is..., YN = 0™. Otherwise, output the matrix C = D(y, ® I,;,) and the vectors yy,...,yn.

« Explain(pp, 1%, 1%, (C,y1, ..., yn), 0): On input the public parameters pp = (B, W, T), the precision parameter
k, a target (C,y1,...,yN), and a width parameter o, the explain algorithm proceeds as follows:

— Compute yo « SamplePre(Gpm, I, vec(C), o).

—Lety" = [y; | --- | yy | ygl". Compute A,R as in Sample(pp, 1,1V, ¢). By construction, A,R is a

deterministic function of pp. Output r « DGS.Eprain(l’l, 1%, A,R, 0"V, y,0).

We now show that (Sample, Explain) satisfy the requirements in Theorem 5.9.
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Sampling distribution. First, we argue that AR = Iy ® G. By Remark 3.9, for all i € [mN], C;VNy = M; — BZ;.
By Eq. (3.2), this means

m; = vec(M;) = (Iy ® B) - vec(Z;) + (Iy ® C;) - vec(Vy). (5.2)
Next, recall that D = [Dy | - - - | Dx] where D; € ZZX’”. For any vector x € Z, we have
D(x®1y) =D |- | Del(x@1p) = ) xDy.
ielk]
Then,
vec(D(x ® 1)) = vec Z xD; | = Z x; - vee(D;) = [vec(Dy) | - - | vec(Dg)] - X = G - x. (5.3)
iclk] ielk]
This means

vec(C;) = G - G, (vec(C;)) = vec(D(G,,h, (vec(Cy)) @ L,)).

Since C; and D(G,,},(vec(C;)) ® I,,,) are matrices with the same dimension, we conclude that

C; = D(Gy,p (vee(Cy)) ® Ln). (5.4)
Now,
DIk ® vy)
Ar; = (Iy ® B) - vec(Z;) + G, (vec(Cy)) by Eq. (5.1)
ID(Tx ® vn)
D(G; L, (vee(Cy) @ Ln)vs
= (Iy ® B) - vec(Z;) + by Eq. (3.1)
ID(Gj, %, (vec(Cy)) @ I, vy
= (Iy ® B) - vec(Z;) + (Iy ® C;)vec(Vy) by Eq. (5.4)
=m; by Eq. (5.2).
We conclude that AR = [my | - - - | m,,n]| = Gn, as required. By Remark 3.9, for all i € [mN],

I1Zi]l < O(||T|| - m” log glog N).
Thus, [R]| < O(|T|| - m” log qlog N). Let o] _ = 18(mN + k)*/*log((mN +k)A) loglogg < O(m*N?). Then,
IRIl - oy < IT]| - O(m"*N?).

If|R][-0y .. < |IT|-O(m"N°) < o < 22, the distribution of (y, y1,. . ., yn) output by DGS.Sample(14, A, R, 0"N, 5;r)
is statistically close to sampling
y1
— AJ(0™N). (5.5)
YN
Yo

We now characterize the distribution of (yo, y1, ..., yn). We proceed by a hybrid argument:

« Dy: Sample (yo, y1,---,yn) according to Eq. (5.5). Set C = D(y, ® I,,) and output (C,yy,...,yn) if for all
i € [N], llyill £ v/mo. Otherwise, if ||y;|| > v/mo for some i € [N], output (0™, 0™, ...,0™).
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o Dy: Sample yy « Dgg and set C = D(yy ® I,,). Then, for i € [N], sample y; « B_'(-Cv;). Out-
put (C,y1,...,yn) if for all i € [N], |ly:ll < /mo. Otherwise, if ||y;|| > +/mo for some i € [N], output
(0™m_ om ... om).

« D,: Sample C ¢~ Z7*™ and for each i € [N], sample y; < B,'(~Cv;). Output (C,yy,...,yn) if foralli € [N],
lly:ll < Vmo. Otherwise, if ||y;|| > Ymo for some i € [N], output (0™<™, 0™, ..., 0™).

« Ds: Sample C ¢ Zi*™ and for each i € [N], sample y; < B,'(—~Cv;). Output (C,y,,...,yn). In particular,
there is no additional check on the norms of yy, ..., ynN.
As argued above, when ||T|| - o10ss < @ < 2%, the output of Sample(pp, 14, 1V
show that D is statistically close to Ds:

, 0, 1) is statistically close to Dy. We now

« By Lemma 3.4, for all but a negligible fraction of matrices B € ZZX’”, the distribution of (yo,y1,--.,yN) is
statistically close to sampling yo «— Dz o« and y; < B_'(=D(Ix ® v;)yo). By Eq. (3.1), we can write
D(Ix ® vi)yo = D(yo ® I,)v; = Cv;.
This is the distribution in Dj.

« By Eq. (5.3), we can write vec(C) = vec(D(yo ® I,)) = Gpm - yo. In Dy, yo — D;U so by Lemma 3.3, Gy, * Vo
is statistically close to uniform over Z7™. Correspondingly, this means that the marginal distribution of C is
statistically close to uniform over ZZX’”, as required.

« By Lemma 3.2, for all i € [N], we have Pr[|ly;|| = Vmo] < O(2™™). Since m > 2A and N < 2%, the probability
that there exists i € [N] where |ly;|| > Vmo is at most 2*/2™ < 2. Thus, with overwhelming probability,
the vectors ||y;|| sampled in D all satisfy ||y;|| < Vmo, so D; and Dj are statistically indistinguishable.

The claim now follows by a hybrid argument. Finally, the worst-case guarantee that By; = —Cv; follows imme-
diately by the worst-case guarantee of IIpgs. Namely, the (yo,y1, .., yn) output by DGS.Sample always satisfies
yi = B(=D(Ix ® v;)yo) = B(—Cv;). The norm constraint is ensured by construction.

Explainability. We proceed via a hybrid argument. We start by defining a sequence of distributions:
« Dy: This is distribution Dsampte. Namely, sample r < {0,1}”, and (C,y1,...,yn) < Sample(pp, 11N, a;7).

Concretely, compute A, R as in Sample(pp, 14,1V, 5). Then sample
Y1
y=| " |« DGS.Sample(l’l, AR 0™ ;)
YN
Yo

where yi,...,yn € Zg' and y € Z";. Let C = D(yy ® I,). If there exists i € [N] where ||y;|| > v/mo, then set
C=0""andyy,...,yny = 0™ Output (C,yy,...,yn, 7).

« D;: Same as Dy except the distribution no longer checks the norm constraints ||y;|| > v/mo.

« D,: Same as D, except after sampling y and C, sample ' < DGS.Explain(14, 1%, A, R,0"V, y, o) and output
(Cy1,--- YN 1)

« Ds: Same as D,, except sample y « AZL(0™Y).

« Dy: Same as Ds, except instead sample y, «— Déa. Then set C = D(y, ® I,,,) and sample y; < B,!(—Cv;) for
each i € [N]. In this experiment, the vector y is still defined as

yi1
y=1-"1-
YN
Yo
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+ Ds: Same as Dy, except sample C <~ Z™ and yo < (Gum), ' (vec(C)).

+ Dq: Same as Ds except sample y; «— Dgg and set C = D(y}, ® I,,). Next, sample yy < (Gum), ' (vec(C)) and
for each i € [N], sample y; < B;!(-Cv;).

« D7: Same as Dg except sample

y1
: — A;](olll,\]).
YN
Yo
Then set C = D(yj ® I,,) and compute yo < (Gpm),'(vec(C)). Lety = [y] | -+ | yy | yol" and

r’ DGS.Eprain(lA, 1, A, R, 0"N, y, o) as before.

« Dg: Same as D; except sample

Y1
— DGS.Sample(1*, A, R, 0"V, ).
YN
Yo
Set C = D(y} ® I,,) and compute yo < (Gum);'(vec(C)). Lety = [y] | - | vy | yol" and 7’

DGS.Explain(l)‘, 1%, A, R, O"N,y, o) as before.
+ Dy: Same as Dy except sample yo «— SamplePre(Gm, I, vec(C), o). This is the distribution Dgyplain-

We now analyze each adjacent pair of distributions. As in the analysis of the sampling distribution, we assume that
IR[l - o7, < |IT|| - O(m'2N®) < o < 2, where 5/ _ = 18(mN +k)*/2log((mN + k)2) loglog g < O(m*N?).

« Distributions D, and D are statistically indistinguishable by the above analysis on the sampling distribution.

Distributions 9, and D, have statistical distance 1/x + negl(1) by the explainability property of IIpgs.

Distributions D, and Ps are statistically indistinguishable by the correctness property of Ilpgs.

Distributed D3 and D, are statistically indistinguishable by Lemma 3.4. Specifically, for all but a negligible
fraction of matrices B € ZZX’", the distribution of y < A;!(0"V) is statistically close to sampling y, < Dz, 5k
and y; « B;'(—Cv;) where C = D(y, ® I,,,). The former sampling procedure corresponds to D, while the
latter corresponds to D;.

Distributions D4 and Ds are statistically indistinguishable by Lemma 3.3. Specifically, by Eq. (5.3), we can
write vec(C) = vec(D(yo ® 1,,)) = Gum - yo. By Lemma 3.3, the following distributions are statistically
indistinguishable:

- (C,yo) where yq « DQU and C = D(yo ® L,).
- (C,yo) where C & Z*™, y; « (Gpm), ' (vec(C)).

The left distribution corresponds to D, while the right distribution corresponds to Ds.

Distributions D5 and Dy are also statistically indistinguishable by Lemma 3.3 (via the same argument as in
the previous case).

Distributions D and Dy are statistically indistinguishable by Lemma 3.4 (via the same argument as used to
argue indistinguishability of 9, and Ds).

Distributions D7 and Dg are statistically indistinguishable by the correctness property of Ilpgs.
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« Distributions Dg and Dy are statistically indistinguishable by Lemma 3.5.

By a hybrid argument, the statistical distance between Dy = Dsample and Dy = DEyplain can be bounded by
1/k + negl(A), as required. O

Gaussian preimage smudging. We will also need the following noise smudging lemma from [CHW25]:

Lemma 5.10 (Gaussian Preimage Smudging [CHW25, Theorem 4.3, adapted]). Let n, m, q be lattice parameters such
that m > 2nlogq and q is prime. Then, for all but a q~"-fraction of matrices A € Zg™™, for all vectorsy € Zy in

the column-span of A, all z € Zg', and all width parameters o > 22 \/m |\|z||, then the following distributions are
statistically indistinguishable:

{A;l(y+Az)} and {A;l(y)+z}.

5.2 Key-Policy Registered ABE Construction

In this section, we give our construction of a key-policy registered ABE scheme that supports arbitrary (bounded-
depth) Boolean circuits. Specifically, the scheme has short parameters and thus, can be used to obtain a registered
ABE scheme that supports an arbitrary polynomial number of users. All previous registered ABE schemes [HLWW23,
77GQ23, GLWW24, AT24, CHW25] that does not rely on indistinguishability obfuscation or witness encryption
could only support an a priori bounded number of users.

Construction 5.11 (Key-Policy Slotted Registered ABE). Let A be a security parameter and 7 be a policy-family
parameter. We define the following quantities:

+ Let (n,m, g, ) be LWE parameters (which may be functions of A, 7). Let m" = n[log g]. Let 614, 0a4¢ > 0 be
width parameters.

« Let £ = £(7) be the attribute length. Let X = {X;};eny where X; = {0, l}f(f) be the attribute space.
+ Let 7 be the family of functions f that can be computed by a Boolean circuit of depth at most d = d(7).

« Let Apgs be the security parameter for the explainable re-randomizer (Sample, Explain) from Theorem 5.9. Let
p = poly(Apcs, N, n, m,log q) be the randomness length from Theorem 5.9.

« LetTInizk = (NIZK.Setup, NIZK.TrapSetup, NIZK.Prove, NIZK.Verify, NIZK.Sim, NIZK.Extract) be a simulation-
sound extractable NIZK argument for NP. Let C,,ig be the Boolean circuit that takes a statement (i, A, d, p, B, t),
a witness 1, and outputs 1 if t = Br + AG™1(d) + p.2

« Let Hi: N — Zg and H,: {0,1}* — {0,1}” be hash functions (which we model as random oracles in the
security analysis).

We construct a key-policy slotted registered ABE scheme II;rape = (Setup, KeyGen, IsValid, Aggregate, Encrypt,
Decrypt) as follows:

« Setup(1%,17): On input the security parameter A and the policy family parameter 7, sample

CrsNizK < NIZK.Setup(l’l)
(B, Tp) < TrapGen(1",1™,q), W & szznxm
T < SamplePre([I,,: ® B | W], [IZmZO®TB ],IZmz ® G, 04)
BO (L ngm, P (l ZZ
If |T|| > y/moiq, then set T = [12m20®TB]. Let pp.,m = (B,W,T) and output the public parameters pp =
(crsnIZKs PPeom B0 P)-

Note that the circuit ignores the index i, but including it as part of the statement allows us to bind a proof to the specific index i (when appealing
to simulation-sound extractability).
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KeyGen(pp, i, f): On input the public parameters pp = (crsnizk, PPeoms Bos P), where pp ., = (B, W, T), com-
pute
d; = Hi(i) € Zy

ng = Vermat(ppcom, 1[m) € Z;nxem
A= —BoVem € szfm
Af =EvalF(A, f) € ngm.

(5.6)

Sample r < {0,1}™ and compute
t=Br+ArG '(d;) +p€eZ].

Compute a NIZK proof 7 « NIZK.Prove(Cyajig, (i, Af, d;, p, B, t), 7). Output the public key pk = (t, ) and the
secret key sk = (t,1).

IsValid(pp, i, f, pk): On input the public parameters pp = (crsnizk, PPcom> Bo» P) Where pp ., = (B, W, T) and
a public key pk = (t, ), compute d;, Ay according to Eq. (5.6) and output 1 if

NIZK.Verify(crsN|ZK, (i, Af, d;, p;B, t), 71') =1.
Otherwise, output 0.
Aggregate(pp, (pky, fi), ..., (pky, fv)): On input the public parameters pp = (crsnizk, PPeom» Bo. P) Where
PPeom = (B,W,T), a list of public keys pk, = (t;,711),...,pky = (tn,7n) and their associated policies
fi,- - -, fn, the aggregation algorithm computes for each i € [N],
C; = Com™ (pp 0l ® 1) € Al

Z; = Open™ (pp.om> Ui ® t;) € ZZXN,

where u; € Zf;’ is the i unit vector. The aggregation algorithm parses Z; = [zi1 | -+ | zin]. Next, it computes
the re-randomization terms

&= (pp. (pky, fi), - .-, (Pkys fN))

(Co, 20,1, - . ., ZoN) = Sample(ppeom, 17795, 1V, Oagg; Ho ().
Output mpk = Cy + ;e n) Ci and hsk; = (N, fi, 20 + X je n) 2j.1) foralli € [N].

Encrypt(mpk, x, 4): On input the master public key mpk = C, an attribute x € {0,1}/, and a message p € {0,1},
sample the following:

R
s« 7Z" e« DI}

q° 7 » ReRe, ¢ {0, 1}™™ 1, & {0,1}™.

If |le|| > v/my, then set e = 0™. Next, compute Cy = Com™(pp ;. X' ® G) € Z*™ and output the ciphertext
ct = (sTB +e', s'C+ e'Rz, s'(Bg+Cy) +e'Rp,, s'p+e'r, + [q/2] -/1) .

Decrypt(sk, hsk, f,x, ct): On input the secret key sk = (t,r), the helper decryption key hsk = (N, f, z), the func-
tion f, the attribute x € {0, 1}¢, and the ciphertext ct = (c}, ¢}, c3, c4), the decryption algorithm first computes

me — Vermat(ppcom’ 1€m) c Z(r]nxfm

Zx = Open™ (ppom X' ® G) € Z;"Xfm.
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Next, it computes the homomorphic evaluation matrices
A =-BoVip € Z™
Af =EvalF(A, f) € ngm
Hp .y = EvalFX(A, f,x) € Z™™
Finally, it computes d = H; (i) € Zj and

- -7y _
&= 1161 | | Hagas (@

Next, it computes v = VerLocal™ (pp_,.,, Nm, i) and the (noisy) encoding of the message
g=cq+ci(r—2) —cyv+as.
It outputs 0 if —q/4 < [i < q/4 and 1 otherwise.
Theorem 5.12 (Completeness). IfIINizk is complete, then Construction 5.11 is complete.

Proof. Takeany A,7 € N, any N < 24, any i € [N], and policy f. Take any pp = (crsnizk, PPeoms Bo» ) in the support of
Setup(1%,17, N) and any (pk, sk) in the support of KeyGen(pp, i, ). By construction, we can parse pp,,, = (B, W, T)
and pk = (t, 7) where

di = Hl(l) € ZZ

Vim = Ver™ (pp o, 1) € Z7™
A = —BoVym € ZX
Ar=EvalF(A, f) € ngm
t=Br+ArG™'(d;) +p € Z]
7« NIZK.Prove(Cyalid, (i, Af,d;, p, B, 1), 1),
and r € {0, 1}™. By design, Cyaiid ((i, Af, d;, p, B, 1), 1) = 1 so by completeness of TInjzx,
NIZK.Verify(Cvai¢, (i, Af, d;, p, B, 1), ) = 1.
Correspondingly, IsValid(pp, i, f, pk) outputs 1 and the claim holds. O
Theorem 5.13 (Correctness). Supposem > nlogq and suppose g > mOD) - y - (014 - Llog € + 0tg - N1og N + 0agg).

Proof. Take A,z € N, N < 24 any index i € [N], any policy f; € 7;, any attribute x € {0, 1}’ where f;(x) = 0, any
pp in the support of Setup(1%, 17, N), any (pk, sk;) in the support of KeyGen(pp, i, f;), any set {(J, f;, pk;)}jzi where
IsValid(pp, j, fj, pk;) = 1 for all j # i, and any message p € {0, 1}. Let

(mpk, hsky, ..., hsky) = Aggregate(pp, pk, ..., pky)
ct « Encrypt(mpk,x, y).

Then the following holds:

« First, pp = (crsnizks PPeoms Bos P) Where pp .., = (B, W, T). By construction, [I,2 ® B | W]|T =1I,,: ® G and
ITIl < Vmo.

o Let Vi = Ver™ (pp o 1™), A = =B V. For each j € [N], let Ay, = EvalF(A, f;) and d; = H(j).
« Since (pk;, sk;) is in the support of KeyGen(pp, i, f;), we can write pk; = (t;, 7;) where
t; = Br; +Aﬁ.G_1(di) +p

and sk; = (t;, ;) for some r; € {0,1}™.
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+ Consider the quantities constructed by the aggregation algorithm. For each j € [N], the aggregation algorithm

computes
C;= Commat(ppcom’ u} ®t))
Zj = Openmat(ppcom,u} ® tj)-
The aggregation algorithm parses Z; = [z;; | -- - | zjn]. Then it computes

&= (pp: (pky, 1) - ., (Pky )
(Co, Zo,l, ey ZO,N) = Sample(ppcom, 1)LDGS, 1N, O.agg;HZ(_E))-

The master public key mpk and helper decryption key hsk; is then defined to be

mpk:6=C0+ Z C; and hsk; =z =z; + Z Zj;.
Jj€IN] Jj€IN]

« Next, consider the ciphertext ct. By definition,
ct = (¢, ¢, ¢y, cq) = (STB +e', s'C+ e'Rg, s"(Bo+Cx) +eRp,, s’p+e'r, +q/2] - p.) ,
where Cx = Com™ (pp X' ® G), s € Zg, e — D£)(’ Rz, Rg, € {0, 1}™™ and rp € {0,1}™.
Consider now Decrypt(sk, hsk;, f;, x, ct):
« Let Vi = Ver™ (pp o 1°™) and Zx = Open™! (pp . X' ® G). By Remark 3.9, we have
Cx Veim=x"®G—-B-Z,.
Recalling that A = —B(V;p,, this means

_ZX

B|By+C4l -
[B | B ][_V[m

:|:—B'ZX—BO'V[m—CX'V(m:A—XT®G.

Let Hy f, x = EvalFX(A, fi, x). Since f;(x) = 0, we appeal to Theorem 3.6 to conclude that

(A—XT®G)-HAﬁ,XZAﬁ—ﬁ(X)-GZAﬁ..

Thus,
Sl el | 2| HapaG ' (d)
3 1 3 _me A, fi,x i
=s' [B | By + Cx] |:__V;n:| . HA,f,-,fol(di) + eT[Im | RBO] |:__V;n:| . HA,ﬁ,fol(di)
é
=s"A;G 1 (d)) +é;.
« Let Vy = [vq | - | vi] = Ver™(pp o 1V). For all j € [N], C; is a commitment to u} ®t;jand Z; is an

opening to u} ® tj. By Remark 3.9, C;Vy = (u}. ® tj) —BZ;, and in particular,

V_] #1i: CjVi = —BZj,i
Civi =t; - Bzi,i = BRI +AﬁG_1(di) +p - BZi,i.

35



By Theorem 5.9, we have that Bz j = —Cyv; for all j € [N]. Combining these two relations, we conclude

Evi + Bil = C()Vi + Z CjVi + BZO’i + Z BZj,i = CiVi =Br; + Af'G_l(d,) +p.

JEIN] JjeIN]
Thus,
ci(r; —%;) —cyv;+¢3 =s'(Br; — Bz; — Cv; + Aﬁ.G_l(di)) + &
=-sp+é
where

éz = eTri - eTi,- - eTREV,' + él.

Thus, we have
- T . . -
f=cy+cy(r; — %) —cyvi+C3

=s'p+erp+]q/2] -p-sp+e
=1q/2] - p+e'ry +é.
As long as |e'Tp + €| < g/4, correctness holds.
To complete, the proof, it suffices to bound the error |e'r, — €;].
« By definition, we have ||T|| < v/moiq and |le|| < v/my. In addition, Rg, Rg, € {0, 1}"*™ and r;, 1, € {0, 1}™.
« By Remark 3.9, for all j € [N], we have
[Vemll. IVl < O(IT] - m*log g) = O(o1am®/* log q)
I1Zll < O(IIT|| - m" log qlog(£m)) = O(cygm'>/? log qlog(¢m))
I1Z;ll < O(|IT|| - m’ log glog N) = O(a1gm**/* log glog N).

From Theorem 5.9, we have that [|zo ;|| < Vm0agg. Since 2; = zo; + X jc[ N Zj.i» this means

lzill < Nlzogll + Y l1zjill < Vmoagg + N - O(oram'™? log glog N).
JjeIN]

+ By Lemma 3.5, we have |[Ha x| < mO@.

+ By definition, é; = e"[1,, | Rg,] [ —_VZ;,L] . HA,ﬁ.,XG_l(d,-). This means

IA

&) < (\Wmy) - m - O(agm™? log glog(tm)) - (2m) - m°' D - tm - m
X

< mO@. owdfylogqlog?.

« Next é; = e'r; — e'2; — e'RgV; + €;. Then,

O(d)

|e2] < mP'D - gty log qlog € + m® xoagg + N - O(oraym’ log glog N).

Finally, [e"ry| < mymy.

If m > nlogg, setting

o(d) .

q>m X - (01g - tlogt + ayg - Nlog N + 0,5)

suffices for correctness.
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Theorem 5.14 (Attribute-Selective Security without Corruptions). Suppose Ilnizk is complete, zero-knowledge, and
simulation-sound extractable, and that the (2m?, o1q)-succinct LWE assumption holds with parameters (n, m, g, y). Sup-
posealson > A, m > O(nlogq), q > 2 is prime, y > logm, og > O(m*logm), dagg > A%V - 61q - mO@ - N3log ¢,
and Apgs > log 0agg. Then, Construction 5.11 satisfies attribute-selective security without corruptions.

Proof. Our proof follows a similar structure as the corresponding proof from [CHW25]:

« First, we replace the NIZK proofs in the keys sampled by the challenger with simulated proofs. For the
adversarially-generated keys, the reduction extracts an associated secret key.

- Next, we change the distribution of the honest keys. Instead of sampling them as t = Br + AfG™!(d;) + p,
they are replaced with t = Br + d;. In particular, the reduction algorithm no longer has a secret key for the
honestly-generated public keys.

» Next, we program the challenge attribute x into the public parameters (i.e., we set By — BRp, — Cx, where Cy
is a commitment to x" ® G and x is the challenge attribute).

« Then we use the explainable re-randomizer to program the challenge public keys into C,. Specifically, we
choose Cy such that the aggregated key C can be written as C = Cq + 3, ie;N] C; = BRc,, where Cj is the
commitment to the (adversarially-chosen) public key for slot i. Just as in [CHW25], the re-randomization term
Cy is chosen to “cancel” out the adversarially-chosen public keys. This is the critical step that enables the
reduction algorithm (to succinct LWE) to simulate the challenge ciphertext.

« Finally, we rely on succinct LWE to argue that the challenge ciphertext is pseudorandom.

We now give the formal argument. Take polynomials 7 = (1) and N = N(A) and let A be an efficient adversary
for the attribute-selective security game (without corruptions). In the security analysis, we model the hash functions
H; and H, as random oracles. For ease of exposition, we assume that A has the following properties:

« Algorithm A does not query H; or H; on the same input more than once.

« Algorithm A always queries H, on the tuple & = (pp, (pk,, f1), ..., (pky, fv)) associated with the challenge
query before entering the challenge phase.

Observe that both properties hold without loss of generality. Namely, any efficient algorithm A that does not satisfy
these properties can be generically compiled into an algorithm that does. Finally, let Q,, be a bound on the number
of random oracle queries algorithm ‘A makes (to either H; or H).

Hybrid experiments. We now define the sequence of hybrid experiments for our security analysis. Each experi-
ment is parameterized by a bit b € {0, 1} and a precision parameter k = k(A) (i.e., the input to the explainable sampling
procedure). For simplicity of notation, we omit the index k when the behavior of the experiment is independent of
the choice of .

. Hyb(()b) : This is the semi-malicious attribute-selective security experiment with challenge bit b:

- Setup phase: On input the security parameter 14, the policy-family parameter 17, and the number of
slots N, algorithm A outputs the challenge attribute x € {0, 1}*(?). The challenger samples

CrSNIzK NIZK.Setup(lA)
(B,Tg) « TrapGen(1",1™,q), W & Zé’"z"xm
T < SamplePre([1I5,: ® B | W], [12m20®TB ]’IZmZ ® G, 04)

R nxXm R n
By < Zq P — Zq.

If ||IT|| > y/moy4, then the challenger sets T = [12m20®TB ] Let pp.om = (B, W, T). The challenger gives the
public parameters pp = (crsnizk, PPcom» Bo» P) to A. The challenger also initializes a counter ctr = 0 and
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a dictionary D. In addition, whenever A queries H; on an index i € [N], the challenger responds with
d & Zg. Whenever algorithm A queries H; on a string { € {0, 1}", the challenger responds with a string
Y & {0,1}~.
— Query phase: When A makes a key-generation query on an index i € [N] and a function f, the
challenger increments the counter ctr = ctr + 1. Then it computes
d; = H,(i) € Zg
Vt’m — Vermat(ppcom, lt’m) c quxé’m
A= —BoVem € ngl’m
Af =EvalF(A, f) € ZZX'".

(5.7)

Then, it samples r <~ {0,1}" and computes
t=Br+AsG '(d)+peZ]

The challenger then computes 7 < NIZK.Prove(Cyajig, (i, Af, d;, p, B, t), 1) and responds with the public
key pk = (t, 7). The challenger adds the mapping ctr — (i, f, t) to D.
— Challenge phase: Let ((cy, f1, pk;). - - -, (cn, fn. pky)) be algorithm A’s challenge query. Foreachi € [N],
the challenger proceeds as follows:
« If ¢; € {1,...,ctr}, then the challenger looks up (i, f’, pk’) = D|¢;] and checks that i = i’. If not, the
challenger outputs 0. Otherwise, the challenger sets pk; = pk’ = (t;, 7;) and f* = f".
« If ¢; = L, then the challenger checks that f;(x) = 1. If so, it parses pk; = (t;, 7;). Then, it checks that
IsValid(pp, i, f;, pk;) = 1. If so, the challenger sets pk} = pk; and fi = fi- Otherwise, the challenger
outputs 0.

Next, for each i € [N], the challenger computes C; = Com™!(pp.,. u} ® t;) and the re-randomization

matrix Cy as
& = (pp, (pki, fi)s - s (Pkys f3))

y" = Ha(&") (5.8)
(Co, 70,1, . ., 20.N) = Sample(pp,y,, 17065, 17, Oaggs V')-
Finally, the challenger sets
C=Co+ ). C.
i€|N]

Next, to construct the challenge ciphertext, the challenger samples the following:

s& 7" e« DI

q° 7 » Re: R, & {0, 1™ | 1, & {0,1}™.

If [le]| > v/my, it sets e = 0™. Next, compute Cy = Com™(pp ,,, X' ® G) € Z*™ and the ciphertext
ct = (sTB +e', s'C+ e'Rg, s'(Bg+Cy) +e'Rp, , s'p+e'r, +[q/2] - b) .

The challenger gives ct to A.

— Output phase: At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is the output of the
experiment.

. Hybib) : Same as Hyb(()b) except at the beginning of the experiment, the challenger samples an index ind <~ [Q,,].
In the challenge phase, after the challenger computes £* according to Eq. (5.8), the challenger additionally
checks that algorithm A has made at least ind queries to H,, and if so, that the ind® query &nq € {0,1}*
algorithm A made to H; satisfies &g = £*. If this is not the case, then the challenger halts with output 0.
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. Hybgb) : Same as Hybib) except when responding to key-generation queries (on an index i and function f), the
challenger outputs 0 if IsValid(pp, i, f, pk) = 0.

. Hybgb): Same as Hybgb) except the challenger replaces the NIZK proofs in the key-generation queries with
simulated NIZK proofs:

— In the setup phase, the challenger samples (crsnizk, tdnizi) < NIZK.TrapSetup(lA).
— On each key-generation query, the challenger computes 7 «— NIZK.Sim(tdnizk, Cyaiid, (i, Ar, d;, p, B, 1)).

. Hybib): Same as Hybgb) except the challenger extracts secret keys for the public keys associated with the ind™
query &g to Hy. Specifically, the experiment proceeds as follows:

— During the setup phase, the challenger initializes an empty dictionary Dgy.

— Whenever A makes a key-generation query on an index i and function f, after the challenger samples
r < {0,1}™ and computes t = Br — A¢G~'(d;) — p, the challenger adds the mapping (i, Az, t) > (0,1)
to Dgy if (i, Ay, t) is not already contained in Dg.

When responding to the ind'h query &ind to Hy, the challenger proceeds as follows:

= Parse &ng = (pp”, (pki, f), ..., (pkiys fi7)), where pki = (t}, ). If &g does not have this form or pp* #
pp, then the challenger outputs 0. If IsValid(pp, i, f;*, pk}) = 0 for any i € [N], the challenger outputs 0.

— For each i € [N], the challenger computes A- = EvalF(A, 7). If (i, Ag+, t}) is not contained in Dy, the
challenger first checks that f*(x) = 1. If not, the challenger outputs 0. Otherwise, the challenger computes

I‘; = NlZK.Extract(thIZK, CvaIid> (i, Afz’ di, pPs B, t:f), ﬂ;)

Ifr; ¢ {0,1}™ or Br} # t] + Af’;aG’1 (d;) + p, then the challenger outputs 0. Otherwise, the challenger
adds the mapping (i, Aﬁ, t7) = (1,17) to Dgy.

If all of the checks pass, the challenger samples y* < {0, 1}” and responds with H,(&nq) := y*. In this exper-
iment, for every pk; = (t], 7;) and accompanying policy f;* in &ind, there is a mapping (i, Az-, t}) > (b}, 1])
in Dgy. The bit b} indicates whether r} was sampled by the challenger (in response to a key-generation query)

or if r} was chosen by the adversary.
. Hybéb): Same as Hyb(b), except when sampling the public parameters, the challenger samples

B&ZP™ and T [y ® B | W] (I, ® G).

Otd

. Hybéb): Same as Hybéb), except the challenger samples the matrices Rs, Rg, ¢ {0, 1}"*™ and r, <~ {0, 1}"" dur-
ing the setup phase instead. Then, the challenger computes Cy = Com™(pp_,.,, X' ® G). It sets By = BRp, — Cy
and p = Br,. When responding to a key-generation query (on an index i and function f), the challenger instead
sets t = Br + d;. The challenger still adds the mapping (i, Af,t) + (0,1) to Dy as before.

. Hybg,bK): Same as Hyb(b), except when the adversary makes the ind™ query &4 to H,, the challenger now
samples

y < {0,1}”
(C(): Z0 15 s ZO,N) = Sample(ppcom> 1ADGS> 1N; Oagg; Y)
y" «— Explain(pp.oms 1’1005, 1%, (Co, 20,15 - - - » ZO,N )5 Oagg)-

The challenger replies to A with y* (i.e., implicitly setting Hy(&ind) = y*).
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. Hyb( ). Same as Hyb except when responding to the ind™ query &4 to Hy, the challenger now samples

7,k °

C() & ngm and Vie [N] Zyj < B ( C()Vl)

where Vy = [vy | -+« | va] = Ver™ (ppom> 1V)-

. Hyb( ). Same as Hyb( ) except the challenger changes how it samples Cy and z,; when responding to the ind™
query §|nd to Hy. Spec1ﬁcally, let &ing = (pps (Pky, f7)s - - -5 (Pky» fy)) where pk; = (], 7). If &ng does not have
this form, then the challenger outputs 0 (as in Hybf1 ) and all subsequent hybrids). The challenger populates the
dictionary Dy usually the same procedure described in Hybib). Then, for each i € [ N], the challenger computes

C; = Com™ (ppym Ui ® t7)
Z; = Open™ (pp oo, U} ® t7)

The challenger parses Z} = [z;, | - - | z; y|. Next, the challenger sets Cy = BRz — ). ;¢ | C}. By construction,
if the challenger has not halted, we have for every i € [N], there exists a mapping (i, Aﬁ, t7) = (b}, 1}) in Dg.
Then, for each i € [N], it defines z,; as follows:

— Suppose (i, Afi*, t7) = (0,1;) in Dgi. Then, the challenger sets
Zy,; < B:Ta]gg (dl — B(R(A:Vl — 1‘:; + Z»/’G[N] Zj‘l))
— Suppose (i, Afi*’ t7) = (1,1}) in Dgy. Then, the challenger sets

20 B;, (di = B(Rgvi = 17 + (Zy + Re, Vo) Ha 1 xG 7 (d) = 1y + e 7)) )

The rest of the experiment proceeds as in Hybéljc).

. Hyb(b) Same as Hybu;) except the challenger changes how it samples zy; when responding to the ind"™ query
&ind to H,. As usual, let &ind = (pp, (Pky, /i), ... (pky, fyy)) where pk; = (t], 7).

— Suppose (i, Afr, t;) + (0,1;) in Dsk. Then, the challenger samples z; < B;algg (d;) and sets

2o =Zo,; — Rgvi+1; — Z Zj;.
jeIN]

— Suppose (i, A, t7) = (1,1;) in Dk Then, the challenger samples zo; < B, (dl) and sets

Zy; = i(),i - Révi + I‘l - (Zx + RBOV(’m)HA,ﬂ',xG71(di) + rp - Z Z;z
JjeIN]

. Hyb(b) Same as Hyb except when simulating d; = H; (i), instead of sampling d; <~ Z", the challenger

15" 10,k
instead samples Z,; < D7’ and sets d; = Bz, ;. When answering the ind® query to H,, the challenger uses

these values of Z; for all i egg[N ] instead of sampling them.

. Hybi?x Same as Hyb11 » except when sampling the public parameters, the challenger no longer checks the
condition ||T|| > 4/mao4. Similarly, when constructing the challenge ciphertext ct*, the challenger no longer

checks if |le]| > vVmy.

. Hyb13 .- Same as Hyb(;’!)x except when simulating the challenge ciphertext, the challenger now samples ¢ <~ Zg

and defines
ct=(¢", ¢'Rg, ¢'Ry,, ¢'rp +q/2] - b).
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. Hybii)xz Same as Hybg,)x except when responding to the ind™ query &nq to Hy, the challenger samples z,; as

follows:

— Suppose (i, Afi*, t7) — (0,1}) in Dgy. Then, the challenger sets

g

01— B5L, (4~ B(Revi — 1} + 2wy 23,)).
— Suppose (i, Afi*, t7) = (1,1}) in Dg. Then, the challenger sets

Zg,i < B(-_;alg (dz - B(REVI' - I‘l + (Zx + RBUV!‘m)H/\.f, .xG_l(di) —Ip+ ZjE[NJ Z“))

2

Note that this is equivalent to sampling
20, B;L (d,- ~ B(Rav; — T} + (Zy + Re, Vem)Ha <G (d) + T je ) 7)) + p) .
This latter expression only depends on p and not rp.

. Hybg’),c: Same as Hybii),c except when simulating the challenger ciphertext, the challenger samples ¢, <~ Z,
and outputs

ct = (&', &'Rg

C > ETRBO s 04) .

Notably, the challenger’s behavior in this experiment is independent of the bit b € {0, 1}.

We write Hybgb) (A) to denote the distribution of the output of Hyb}b) with adversary A. We now analyze each pair
of adjacent distributions.

Lemma 5.15. For allb € {0, 1}, Pr[Hyb{" (A) = 1] = g Pr[Hyby” (A) = 1].

Proof. By construction, the view of adversary A is identical in Hybéb) and Hybgb). By assumption, algorithm A
is guaranteed to query H; on &* prior to the challenge phase. Algorithm A makes at most Q,, queries to H; so let
ind* € [Qro| be the index of query &*. Since all the queries A makes to H, are distinct, with probability 1/Q,, over
the choice of ind <~ [Qy,], it will be the case that ind = ind*. The output in experiment Hybib) is 1 if and only if

ind = ind" and the output in experiment Hybéb) is 1. We conclude

1

Pr[Hyb!" (A) = 1] = Pr[Hyb{" (A) = 1 A ind = ind*] = — Pr[Hyb'" (A) = 1]. O

ro

Lemma 5.16. Suppose Ilyizk is complete. Then, for allb € {0,1}, Hybib)(?{) and Hybgb) (A) are identically distributed.

Proof. By Theorem 5.12, Construction 5.11 is complete so IsValid(pp, i, f, pk) = 1 for all pk in the support of
KeyGen(pp, i, f). Thus, the additional abort condition never triggers and the two experiments are identical. O

Lemma 5.17. Suppose IlNizk satisfies zero-knowledge. Then, for all b € {0,1}, Hybéb) (A) and Hybgb)(ﬂ) are
computationally indistinguishable.

Proof. Suppose |Pr[Hyb£b)(ﬂ) =1] - Pr[Hybéb) (A) = 1]| = ¢ for some non-negligible ¢. We use A to construct
an efficient adversary B that breaks zero-knowledge of Ty zk:

« Setup phase: At the beginning of the game, algorithm B receives a common reference string crsyjzx from
the zero-knowledge challenger. Algorithm B samples an index ind < [Qy,] and starts running A on input
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the security parameter 1%, the policy-family parameter 17, and the number of slots N. Algorithm A outputs
the challenge attribute x € {0, 1}¢(”). Algorithm B now samples

(B, Tp) « TrapGen(1", 1", ), W & Z2mmxm
T < SamplePre([I,,: ® B | W], [12m20®TB ],Izmz G, o1q)

R nxXm R n
By < Zq P <—Zq.

If ||T|| > /moy4, then algorithm B sets T = [12m20®TB ] Let pp.,,, = (B, W, T). Algorithm B gives the public
parameters pp = (CrsNizk, PPcom: Bo, P) to A. Algorithm 8B also initializes a counter ctr = 0 and a dictionary
D. In addition, whenever A queries H; on an index i € [N], algorithm B responds with d; & Zg. Whenever
algorithm A queries H, on a string & € {0, 1}*, algorithm B responds with a string y < {0, 1}.

+ Query phase: When A makes a key-generation query on an index i € [N] and a function f, algorithm
B increments the counter ctr = ctr + 1. Then it computes d;, Vi, A, Ar according to Eq. (5.7) and samples
r & {0,1}™. Algorithm B computes t = Br + AfG_l(di) + p and submits (Cyajig, (i, Af, d;, p, B, 1), 1) to the
zero-knowledge challenger. The zero-knowledge challenger replies with a proof z. Algorithm 8B responds to
A with the public key pk = (t, ) and also adds the mapping ctr — (i, f,t) to D. Finally, algorithm 8 checks
if IsValid(pp, i, f, pk) = 0 and outputs 0 if so.

« Challenge phase: Let ((c1, fi, pk;), ..., (cN. fa, pky)) be algorithm A’s challenge query. For each i € [N],
algorithm B proceeds as follows:

— If¢; € {1,...,ctr}, then algorithm B looks up (i’ f’, pk’) = D|[¢;] and checks that i = i’. If not, algorithm
B outputs 0. Otherwise, algorithm B sets pk; = pk” = (t;, 7;) and f;* = f;.

- If ¢; = 1, then algorithm B checks that f;(x) = 1. If so, it parses pk; = (t;, ;). Then, it checks that
NIZK.Verify(crsniz, (i, Ag.d;,p, B, t;), ;) = 1 where Af = EvalF(A, f;), and d; = Hy(i)). If the checks
pass, algorithm B sets pk; = pk; and f;* = f;. Otherwise, algorithm 8 outputs 0.

Next, for each i € [N], algorithm B computes C; = Com™!(pp_,.,,u] ® t;) and the re-randomization matrix

Cy as
& = (pp, (Pki, fi)s - -5 (Pkys f3))
y" =Hy(&)
(Co, 20,1 - - -, 2o,N) = Sample(ppoms 1#0cs 1N, Oages ¥V')-

If adversary (A has not yet made at least ind queries to Ha, or if its ind® query &g to H, satisfies &ng # &7,
then algorithm B outputs 0. Otherwise, algorithm 8 computes

C=Co+ Y Ci,s& 70, e DI, RgRp, & {0,1}™™, 1, & {0,1)™.

q > Z’X’
i€e|[N]

If [le|l > v/my, algorithm B sets e = 0™. Next, algorithm B computes Cx = Com™ (pp.o, X' ® G) € Z*™
and the ciphertext

ct= (sTB +e', s'C+ e'Rz, s'(Bg+Cx) +e'Rp,, s'p+e'r, +[q/2] - b) .
Algorithm 8B gives ct to A.

« Output phase: At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which B also outputs.

By construction, on every key-generation query, we have that
t=Br+A;G '(d;) +p,

so Cvalid ((i, Af, d;, p, B, 1), 1) = 1. We now consider two possibilities:

42



« Suppose the zero-knowledge challenger sampled crsyzk < NIZK.Setup(1%) and constructed the proofs 7 by
setting < NIZK.Prove(crsnizk, Cualids (i, Af, di, p, B, t), r). Then, algorithm 5 perfectly simulates an execution

of Hybgb) and outputs 1 with probability Pr[Hybgb) (A) =1].

« Suppose the zero-knowledge challenger sampled (crsyizk, tdnizk) NIZK.TrapSetup(lA) and constructed
the proof 7 by setting 7 « NIZK.Sim(tdnizk, Cvatid (i Ayr,d;, p. B, t)). Then, algorithm 8B perfectly simulates

an execution of Hybgb) and outputs 1 with probability Pr[Hybgb) (A) =1].
We conclude that algorithm 8 breaks zero-knowledge with the same advantage . O

Lemma 5.18. Supposen > A, m > 2nloggq, and q is prime. IfTINzk satisfies simulation-sound extractability, then for
allb € {0,1}, Hybgb) (A) and Hybib) (A) are computationally indistinguishable.

Proof. The only difference between Hyb;b) and Hybib) is the extra check that the challenger performs when respond-
ing to the ind™ query &nq to Hy. Specifically, the two experiments can only differ when the following occurs:

« Let ((c1, fi, pk;), ..., (en, f, pkyy)) be adversary A’s challenge query and &* be the challenger’s input to H
from Eq. (5.8). Then,

&ind = & = (pp. (Pky. /). - - Pk f3)-

where pk; = (t}, 7). Otherwise, the output in both experiments output 0. Moreover, it is also the case that
IsValid(pp, i, i pk;) = 1forall i € [N]. To see this, we consider two cases:

— Suppose ¢; € {1,...,ctr}. In this case, pk; was obtained as the result of an honest key-generation query
(on index i and function f;*). In both experiments, the challenger outputs 0 if IsValid(pp, i, f;*, pk;) = 0.

— Suppose ¢; = L. Then, the challenger in both experiments affirms that IsValid(pp, i, f;, pk}) = 1. In this
case, the challenger in both experiments sets f;* = f;. We conclude that IsValid(pp, i, f", pk}) = 1.

« For each i € [N], let Ag: = EvalF(A, f"). It must be the case that there exists some index i € [N] where
(i, Agr, t) is not contained in Dy at the time algorithm A queried H; on &pqg. If not, then the challenger’s
behavior in the two experiments is identical. Moreover, one of the following conditions must occur for one
such index i € [N] where (i, A, t}) is not contained in Dyy:

- ff(x) # 1;0r
— The extracted vector r; = NIZK.Extract(tdnizk, Cvalid> (i, Aﬁ_*, d;, p, B, t}), ;) satisfies either r ¢ {0,1}"™
or Br] #t] + AﬁG_l(d,-) +p.

Suppose |Pr[Hyb§b) (A)=1] - Pr[Hybib)(ﬂ) = 1]| = ¢ for some non-negligible ¢. Then, it must be the case that

in an execution of Hybgb), the above conditions hold with probability e. We consider the two possibilities:

- Suppose there exists some index i € [N] where (i, A, t}) is not contained in Dy and f"(x) # 1. In this case,
the challenger in Hybib) always outputs 0. We claim that this is the case with overwhelming probability in
Hybéb). Recall also that &,q = £*. By construction of £, we now have the following:

— Suppose ¢; € {1,...,ctr}. In this case, the challenger in Hybgb) sets pk; = pk’ where (7, f’, pk’) = D[¢;].
By construction, pk; = (t,7}) is the public key the challenger generated when responding to a key-
generation query on index i and function f” = f;*. Also, i = i’ as otherwise, the output in Hybéb) is also
0.In Hybéb), the challenger would then add the mapping (i, Af;, t7) to Ds. However, since (i, Af;s, t7) is
not contained in Dy at the time A made its ind™ query to H,, this case can only happen if the challenger
inserted the entry (i, As- t;) into Dk after algorithm A queried Hz on &ing. This can only happen if
the challenger sampled t; as the public key in one of the subsequent key-generation queries. However,
in a key-generation query, the challenger samples r ¢~ {0,1}" and then sets t = Br + A¢G~'(d;) + p.
Sincen > A, m = 2nloggq, and g > 2 is prime, the marginal distribution of Br is statistically close to

43



uniform over Zg. Thus, with overwhelming probability, it will be the case that t # t;. Since the adversary
can make at most a polynomial number of key-generation queries, we conclude by a union bound that
the probability that the challenger samples t* in a key-generation query (after A queries H; on &q) is
negligible so this case occurs with negligible probability.

— Suppose ¢; = L. In this case, the challenger in Hybéb) outputs 0 if f*(x) = 1.
We conclude that in this case, the challenger in Hybgb) also outputs 0 with overwhelming probability.

« Since the challenger’s behavior in Hybgb) and Hybib) is identical with overwhelming probability when f;" (x) = 0,
it must be the case that with probability ¢ — negl(1), f;"(x) = 1 and the extracted vector r; satisfies either
r; ¢ {0,1}" or t; # Br} + Af’_*G_l(d,-) + p. In particular, this means that C,,iq((i, Af,-*’ d;,p,B,t]),r]) = 0. We
show below that this implies an adversary B that can break simulation-extractability of ITyjzkx with the same
advantage ¢ — negl(2).

We now use A to construct an adversary 8 for the simulation-sound extractability game:

« At the beginning of the game, algorithm 8 receives a common reference string crsyjzk from the simulation-
sound extractability challenger. Algorithm B samples an index ind ¢~ [Qy,] and starts running A on input
the security parameter 1%, the policy-family parameter 17, and the number of slots N.

. Algorithm A outputs the challenge attribute x € {0, 1}*(). Algorithm B now samples

(B, Tp) « TrapGen(1",1™,q), W & ngznxm
T « SamplePre([I,,: ® B | W], [12m20®TB ],Izmz G, o)

R nxm R n
By & Zg"", p < Zy.

If || T|| > Vmoiq, then algorithm B sets T = [IZMZOMB ] Let pp.om = (B, W, T). Algorithm B gives the public pa-
rameters pp = (CrsNizk, PPeoms Bo» P) to A. In addition, whenever (A queries H; on an index i € [N], algorithm
B responds with d; & Zg. Whenever algorithm A queries H; on a string & € {0,1}", algorithm B responds
with a string y ¢~ {0, 1}*. Finally, algorithm 8 also initializes an empty dictionary Dyy.

« Whenever A makes a key-generation query on an index i € [N] and a function f, algorithm $ increments the
counter ctr = ctr + 1. Then it computes d;, V;, A, A¢ according to Eq. (5.7) and samples r ¢ {0, 1}". Algorithm
B computes t = Br +AfG’1(dl-) +p and submits (Cyalid, (i, Af, d;, p, B, t)) to the simulation-sound extractability
challenger and receives a proof 7. Algorithm B responds to A with the public key pk = (t, ) and adds the
mapping (i, A, t) = (0,r) to D if such a mapping does not already exist. Finally, algorithm 8 also checks
if IsValid(pp, i, f, pk) = 0 and outputs 0 if so.

« When A makes its ind™ query to H,, algorithm 8 parses &4 = (pp*, (pk3, /i), - - s (pky» fy)), where pk; =
(t;, ). If &ng does not have this form or pp* # pp, then algorithm B outputs L. Otherwise, algorithm B
samples a random index i* < [N] and and outputs (Cyaiig, (i, Ag,di,p,B, t2), 7).

« If A does not make ind™ queries to Hj prior to the challenge phase, algorithm 8B outputs L.

Since the challenger samples (crsnizk, tdnizk) < NIZK.TrapSetup(1*) and constructs the (simulated) proofs 7 as
7 < NIZK.Sim(tdnizk, Cyalid, (i, Ayr,d;,p,B, t)), algorithm 8B perfectly simulates an execution of Hybgb) and Hybib)
for A. By assumption, with probability £ — negl(1), the query &ng = (pp*, (pki, f{). ..., (pky. fx)) has the property
that there exists an index i € [N] where

. (i, Afi*’ t;“) ¢ Dsk. This means algorithm 8B did not query for a proof on (i, Afl_*, d;,p,B, t;‘).

. IsValid(pp*, i, f*, pk;) = 1 which means NIZK.Verify (crsnizx, (i, A, di, p, B, t]), ) =1
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+ The extracted vector r; = NIZK.Extract(tdnizk, Cyaiid; (i, Af;«,di, p.B,t}), ) satisfies either r; ¢ {0,1}™ or
t; # Br + Af,_*G’l(di) + p. In particular, this means C,jiq ((i, Af,-*’ d;,p,B,t}),r") = 0.

Observe that these precisely coincide with the winning conditions in the simulation-extractability game. Thus,
whenever i* = i, then algorithm B successfully breaks simulation-extractability. Since algorithm B samples i* < [N],
algorithm 8 breaks simulation-extractability with advantage at least (¢ — negl(1))/N, which is non-negligible since
N = poly(4). O

Lemma 5.19. Supposen > A, m > 3nloggq, and oyg > O(m3logm). Then, for all b € {0,1}, Hybib) (A) and
Hybéb) (A) are statistically indistinguishable.

Proof. The lemma follows from Lemma 3.5. Specifically, the claim follows from Lemma 3.5 as long as
o = (2m® + m) log(2m?n) = O(m* log m). O

Lemma 5.20. Supposen > A, m > 2nloggq, and q > 2 is prime. Then, for allb € {0, 1}, Hybéb) (A) and Hybéb) (A)
are statistically indistinguishable.

Proof. This follows by the leftover hash lemma (Lemma 3.1). First, consider the distribution of By in the two exper-

iments. In Hybéb), the challenger samples B, <~ Zg*™ whereas in Hyb(()b), the challenger samples Ry <~ {0, 1}*™
and sets By = BRg, — Cx. We claim that these two distributions are statistically close:

« First, suppose we sample By = By — Cx where By ¢ Zp*™. Since By is sampled independently of Cy, the
distribution of By remains uniform over ZZX’".

« By Lemma 3.1, the distributions
(B,BRg,,e'Rg,) and (B,Bj,eRp,)
are statistically indistinguishable when B &~ ZZX”’, Rp, < {0,1}™*™ and B, & ZZX’".

Combining the above statements, we conclude that the distribution of By in the two experiments are statistically
indistinguishable. Next, consider the distribution of p. By Lemma 3.1, the distributions

(B,Bry,e'r,) and (B,p,e'rp)

are statistically indistinguishable when B < ZZX"’, rp < {0,1}™, and p & Zj;. The left distribution maps to Hybéb)
while the right distribution maps to Hybgb). Finally, consider the key-generation queries:

« In Hybéb), the challenger sets t = Br+ A¢G~!(d;) + p where r < {0, 1}™.

« In Hybéb), the challenger sets t = Br + d; where r <~ {0, 1}™.

By the Lemma 3.1, the distribution of (B, Br) is statistically indistinguishable from (B, t*) where t* & Zg. The claim
now follows via a similar argument as used to analyze By. O

Lemma 5.21. Supposen > A, m > 2nlogq, and arg - O(m*/2N®) < 0,9, < 2'°%5. Then, for all polynomials k = k(1)
and all b € {0, 1}, there exists a negligible function negl(-) such that the statistical distance between Hybéb) (A) and
Hybg)bk) (A) is at most 1/x + negl(A).

Proof. By construction, in Hyb;,bk) (A) and Hybé,bk) (A), the challenger samples B < Zp*™ and sets T such that
IT|| < v/moid. The claim now follows by Theorem 5.9 (specifically, the explainability property). O

Lemma 5.22. Supposen > A, m > 2nlogq, and a4 - O(m*/2N?) < 0,4, < 2%°65. Then, for all polynomials x = k(1)
and allb € {0, 1}, Hyb;,bk) (A) and Hybé’bk) (A) are statistically indistinguishable.
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Proof. By construction, in Hyb;? (A) and Hybg{) (A), the challenger samples B < Zg*™ and sets T such that
IT|| < v/moiy. The claim now follows by Theorem 5.9 (specifically, the sampling distribution property). O

Lemma 5.23. Supposen > A, m > 2nlogq, and q is prime. Then, for all polynomials x = x(A) and all b € {0,1},
Hybé’bk) (A) and Hybg’bk) (A) are statistically indistinguishable.

Proof. By construction, the only difference between these two distributions is the distribution of Cy and z,; for
i € [N]. We show that these components are statistically indistinguishable:

« Since B & ZZX’" and Rg & {0, 1}™*™  the distribution of BRg is statistically close to uniform over ZZX’" by
the leftover hash lemma (Lemma 3.1). Thus, the distribution of Cy = BRg — 2 j¢[n Cjin Hybg’bx) is statistically
close to uniform over ngm, which coincides with the distribution of Cy in Hybél;)

« Consider z; for an index i € [N] where (i, Ag, t7) = (0,1}) in Dg. By construction, this means t; = d; + Br;}
where 1} € {0,1}™. Now,

C()Vi = BREV,’ - Z C;Vi.
JjEIN]

Since C} is a matrix commitment to u} ® t; and Z] is the associated opening, we appeal to Lemma 3.8 to
conclude that

V] * i: Cj-Vi = —BZ;J
Civ;=t; — Bzzi
=d; +Br} - Bz;f‘,i
. (b)
Thus, in Hyb9 o we have

Covi = BRgv; —d; — Brj + Z Bz}‘.’i
JEIN]

= —di+B RaVi—l'?+ Z Z’;,i .
JjEIN]
In this case, the distribution of zq; in Hybg? is precisely B;algg (—Cyv;), which matches the distribution in Hybgc).

« Consider z; for an index i € [N] where (i,A,t;) + (Lr;) in Ds. By construction, this means Br; =
t; +ApG7'(d;) +p and moreover f;*(x) = 1. Let Zx = Open™ (pp ;. X' ® G). Using the fact that A = ~BoVm,
we have

[B | By + Cy] - [__VZ;‘ ] =-BZyx —BoVim — CxVeim =A—x' ®G.

Let Ha £ x = EvalFX(A, f, x). Using the fact that By = BRg, — Cx, we now have

_7 .
B[L. | Rg,] - [_Vt’):n] “Hafrx = (A-x"®G) - Hafx = Ag: -ffx)-G= Ap - G.

This means we can write

AsG7'(di) = d; + B(—Zy — Rg,Vem)Ha ;G ™' (di). (5.9)
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Using the fact that p = Br,, we now have

Vj#i:Civ;=-Bz};
Civ;=t; — Bz} ii
=Br; + Afl_*Gfl(dl-) +p — Bz,
= Br +d; + B(~Zyx — R, Vim)Ha - xG ' (d;) + Brp, - Bz,
=d; +B(r] = (Zx +Rg,Vim)Ha 5 xG ™' (dy) + 1 — 2},

In this case,

C()Vi = BREVi — Z C;Vi = —di +B REVI' — I‘? + (Zx + RBOVl’m)HA,f;. X (d,) —Ip + Z
JEIN] jeIN]

Thus the distribution of z; in this case in Hybg, is precisely B_! ( Cov;), which is the distribution in Hyb(b).

Since the distribution of C, is statistically indistinguishable between Hybé? and Hybé? and zy; is constructed using
identical procedures, the two distributions are statistically indistinguishable. O

Lemma 5.24. Suppose oagg > A% - g4 - mO@ log g - (Nlog N +log(¢m)). Then, for all polynomials k = k(1) and
allb € {0,1}, Hybgb) (A) and Hyblok(ﬂ) are statistically indistinguishable.

Proof. This follows by the Gaussian preimage smudging lemma (Lemma 5.10), as long as o, is sufficiently large.
In the following analysis, it suffices to consider the setting where || T|| < ymoig. Otherwise, the output in both

experiments is 0. In HybﬁO)K, each zy; can be written as zy; = zo; + z ;. By Lemma 5.10, if 0,45 > @) . \/_”ZolH

then the distributions of zq; in Hyb( ) (A) and Hyb10 K(.?{) are statlstlcally indistinguishable. The claim then holds
by a hybrid argument over all N = poly(/l) indices i. It suffices to analyze ||z; || for each i € [N]:

« Suppose (i, Afl_*,t;‘) > (0,17) in Dy. In this case, z(’]’i = —Rgv; + T — Zje[NJ z;‘.’i. By Lemma 3.8,

vil| < o(J|IT|| - m* 1o = 0(ag - m**lo
[lvill (T gq) = O(od gq) (5.10)

-m”log qlog N) < O(ayq - m"/?log qlog N).
Since Rz € {0, 1}™™, 1} € {0,1}™, we conclude that
”Z(,),i” = ”—REV,' +I';< - ZjE[N] Z;,i” < O(No’td - m15/2 logqlogN)

« Suppose (i, Aﬁ,t:.‘) > (1,1}) in Dg. In this case,

zy; = —Ravi + 1] — (Zy + RBOng)HA’f,_*,XG_l(d,-) +1p — Z zj-)i.
JjeIN]

By Theorem 3.6, [|[Ha 7 x|l < mP@ By Lemma 3.8,

IVemll < OCITI - m*log q) = O(ota - m** log q)
IZ«ll < O(|IT|| - m” log glog(¢m)) = O(ata - m'"/* log q log(¢m)).

Next, Rg, € {0, 1}, Combined with Eq. (5.10), we can bound

||z('),l-|| < 01g - mP@ loggq - (Nlog N +log(tm)).
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If Oagg > A9 - G1q - mO @ log g - (Nlog N +log(fm)), then opgg > A°™V) - /m||zg¢|| for all i € [N] and the claim
holds. °

Lemma 5.25. Supposen > A, m > 2nloggq, q is prime, and o,g; > logm. Then, for all polynomials k = k(1) and all
b e{0,1}, Hyb(b) (A) and Hyb(b) (A) are statistically indistinguishable.

10,k 11,k

(b)

10,x°
and

Proof. The only difference between these two experiments is the distribution of (z;, d;) for each i € [N]. In Hyb
(b) m

11,x? Z,0agg
sets d; = BZ ;. Under the given conditions, these two distributions are statistically indistinguishable by Lemma 3.3. O

the challenger samples d; < ZZ and zg; « B;algg(di) whereas in Hyb the challenger samples zy; < D

Lemma 5.26. Supposen > A, m > 2nloggq, q is prime, y = logm, and oyq > O(log m). Then, for all polynomials
k =k(A) and allb € {0, 1}, Hyb(b) (A) and Hyb(b) (A) are statistically indistinguishable.

11,k 12,x

Proof. Follows immediately from Lemmas 3.2 and 3.4. O

Lemma 5.27. Suppose the (2m?, oiq)-succinct LWE assumption with lattice parameters (n,m, g, y) holds. Then, for all

polynomials k = k(A) and all b € {0, 1}, Hybi’;’)lc(ﬂ) and Hybg,)lc(ﬂ) is computationally indistinguishable.

Proof. Suppose |Pr[Hyb£12’,)K(ﬂ) =1] - Pr[Hybg,)K (A) = 1]| = ¢ for some non-negligible ¢. We use A to construct

an efficient adversary B for the (2m?, 614)-succinct LWE assumption:

« Setup phase: At the beginning of the game, algorithm B receives the challenge (B, ¢, W, T). Algorithm 8
starts running algorithm A on input 14, 17, and N. Algorithm A begins by outputting the attribute x € {0, 1}*.
Algorithm 8B sets pp_,,, = (B, W, T) and then samples the following:

(crsnizi, tdnize) < NIZK.TrapSetup(lA)
Cy = Com™ (ppoms X' ® G)
Ré, RBO (l {Os l}mxm ) rp & {03 l}m
By = BRg, — Cx, p = Bry,.

Algorithm B sets pp = (crsnizk, PPeom» Bo, P) and gives pp to A. Algorithm 8 also initializes a counter ctr = 0,
dictionaries D, Dy, and samples an index ind < [Qy,].

+ Queries to H;: Whenever A queries H; on an index i € N, algorithm 8 samples zy; < D7', and responds
sYagg

with H](l) = di = Bi(),,'.

+ Queries to Hy: Whenever A queries H, on an input ¢ € {0, 1}*, if this is not the ind" query to Hy, algorithm
B responds with y & {0,1}2. If it is the ind™ query, then algorithm B proceeds as follows:

— Algorithm B parses &ng = (pp*, (pki, fi7), - - -, (Pkis fy))» Where pk; = (t, 7). If &ing does not have this
form or pp* # pp, then B outputs 0. If IsValid(pp, i, f;*, pk;) = 0 for any i € [N], algorithm B outputs 0.
- Algorithm B computes V;p, = Ver™ (pp . 1°™) and A = =BV .
— For each i € [N], algorithm B computes Ay- = EvalF(A, f). If (i, Ass, tj) is not contained in Dqk,
algorithm B checks that f;*(x) = 1. If not, it outputs 0. Otherwise, algorithm 8 computes
r; = NIZK.Extract(tdnizk, Calids (i Ag, d;,p,B,t}), 7).

If ry ¢ {0,1}™ or Br} # t; + Afl_*G’l(di) + p, then algorihtm B outputs 0. Otherwise, the challenger adds
the mapping (i, Ag, t7) — (1,17) to Dg.
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— Algorithm B computes Vy = Ver™!(pp_, ., 1VV) and parses Vy = [v; | -+ | vx]. Now, for each i € [N],
algorithm B computes
C: = Com™ (ppoms u; ® t7)
Z; = Open™ (pp.om, u; @ ;)
It parses Z] = [z;.‘)1 | - | ZZN] and sets Co = BRg — X je[n] C’j“., For each i € [N], algorithm B defines
zy,; as follows:

« Suppose (i, Aff*’ t7) = (0,1;) in Dg. Then, it sets

~ * *
Zo; = Zoi — RaVi +1; — Z Zj;.
JEIN]

+ Suppose (i, Afs, t;) = (1,17) in Dsc. Then, it computes Zy = Open™(pp . X' ® G) and Hafox =
EvalFX(A, £, x) and sets

Zy; = iO,i — R(’ivi + I'? — (ZX + RBth’m)HA,fi*,xG_l(di) + I'P — Z Z;,i‘
JEIN]

Here, 2y; € Z is the value algorithm 8 sampled when responding to a query on H, (i). If algorithm A

has not yet made a query to H; on some index i € [N], algorithm 8 samples Z,; <~ D7’ and programs
2Oagg

H](l) = di = Bio,i.

— Finally, algorithm B computes

y* « Explain(pp o 1709, 15, (Co, 201, - - . ZoN)» Oagg)-
It responds to A with Hy(&ing) = v*

« Key-generation queries: Whenever A makes a key-generation query on an index i € [N] and a function f,
algorithm B samples r ¢ {0, 1}™ and sets t = Br +d;. It also computes Ay = EvalF(A, f) and d; = H;(i). Then,
it generates a (simulated) proof 7 « NIZK.Sim(tdnizk, Cyaiid> (i, Ay, d;, p, B, 1)) and responds to A with the
public key pk = (t, 7). Algorithm B adds the mapping ctr (i, f, t) to D and (i, Ay, t) > (0,r) to Dy if such a
mapping does not already exist. In addition, algorithm B checks that IsValid(pp, i, f, pk) = 1 and outputs 0 if not.

+ Challenge query: Let ((c1, fi, pk;), ..., (cn, fv, pky)) be algorithm A’s challenge query. For each i € [N],
algorithm B proceeds as follows:

— If¢; € {1,...,ctr}, then algorithm B looks up (i’ f’, pk’) = D|[¢;] and checks that i = i’. If not, algorithm
B outputs 0. Otherwise, it sets pk; = pk’ = (t;, 7;) and f* = f".

- If ¢; = 1, then algorithm B checks that fi(x) = 1. If so, it parses pk; = (t;, ;) and checks that
IsValid(pp, i, fi, pk;) = 1. If so, algorithm B sets pk; = pk; and f;* = f;. Otherwise, it outputs 0.

Let £ = (pp, (pky, i), - - -, (pkys fx)- If algorithm A has not made at least ind queries to H,, then algorithm
B outputs 0. Otherwise, let £, be the ind™ query algorithm A made to Hy. If &* # &4, then algorithm B
outputs 0. Otherwise, algorithm B constructs the challenge ciphertext as follows:

ct=(c", ¢Rg

G, ¢Rg,, &1y + [g/2] - b).

The challenger gives ct to A.

« Output: At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which algorithm B also outputs.
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If A is efficient, then algorithm B is also efficient by construction. By definition, the succinct LWE challenger samples
B & ZPXM W e Z‘ZI’"Z”X’", and T « [Iy,,2 ® B | W], '(I5,z ® G). Thus, algorithm B perfectly simulates the public

(b)
12,k

queries are also simulated exactly according to the specification of Hyb
of the challenge ciphertext:

and Hybg,)K. The random oracle queries and key-generation
(b)

12,k

parameters pp according to the specification of Hyb

and Hybg)),c. Consider now the distribution

« Suppose ¢" = s'B + e where s < Zgand e — DZI)(' Observe that when &,y = £*, we have that
BR; =Cy+ » Cj=C.
i€[N]
Similarly, by definition of By and p, we further have
BRg, = By + Cx
Br, = p.
Then, we can write
c=(s'B+e', s'BRz +€e'Rs, s'BRp, +€e'Rg, , s'Brp +e'r, + [g/2] - b)
= (sTB +e',s'C+ e'Rz, s'(Bg+Cx) +e'Rp,, s'p+e'r, +[q/2] - b) .

(b)

This is the ciphertext distribution in Hyb ," .

(b)

« Suppose ¢ < Zy. Then, the challenge ciphertext is distributed exactly as in Hyb,;",.

We conclude that algorithm B breaks the succinct LWE assumption with the same advantage e. O

Lemma 5.28. Suppose oagg > A2 - gy - mO@ log g - (Nlog N +log(¢m)). Then, for all polynomials k = k(1) and
allb € {0, 1}, Hybg’)lc(ﬂ) and Hybii),c(ﬂ) are statistically indistinguishable.

Proof. Follows by the same argument as the proof of Lemma 5.25 (via the Gaussian preimage smudging lemma). O

Lemma 5.29. Supposen > A, m > 2nloggq, and q > 2 is prime. Then, for all polynomials k = k(1) and all b € {0, 1},
Hyb(b) (A) and Hyb(b) (A) are statistically indistinguishable.

14, 15,k

Proof. By the leftover hash lemma (Lemma 3.1), the distributions (B, ¢, Arp, ¢'rp +b- [ g/2]) and (B, ¢, p,ca+b - [ q/2])
where B & ng’", ¢ & Zy, 1p & {013 p & 2y, and ¢4 & Zjg are statistically indistinguishable. The first

distribution corresponds to Hybii)K while the second corresponds to Hybil;,)K. O
Completing the proof. To complete the proof of Theorem 5.14, suppose
| Pr[Hybg” (A) = 1] = Pr[Hyby” (A) = 1]] = e(A)
for some non-negligible function. By Lemma 5.15, this means
PrlHyb{ () = 1] - PeHyb () = 1]] = 5. (511)
ro

Since Qr, = poly(A), the quantity £(1)/Qy, is also non-negligible. Thus, there exists a polynomial k(1) such that for
infinitely-many A € N, £(1)/Qro > 1/x’(A). Let k(1) = 3k’ (A). For i < 6, we write Hybg’? (A) to denote Hybgb) (A).
Moreover, since the challenger’s behavior in Hybgé’) is independent of the bit b € {0, 1},

Pr[Hyb!Y (A) = 1] = Pr[Hyb'} (A) = 1].
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By Lemmas 5.16 to 5.29, we now have for all A € N,

15
| Pr[Hyb{" (A) = 1] - Pr[Hyb{" (A) = 11| < 3" | Pr[Hyb;) (A) = 1] - Pr[Hyb;)

i+1,x
i=1

+|Pr[Hyb\Y (A) = 1] - Pr[Hyb'} (A) = 1]|

(A) =1]|
15
+ > [Pr[Hyb}) (A) = 1] = Pr[Hyb}}) (A) = 1]|
i=1
< 2/k(A) + negl(A).

However, this contradicts Eq. (5.11) which asserts that there are infinitely-many A € N where

) 1 3

Pr{Hyb! () = 1] - Pr[Hyb(" () = 1] = 2 > -2

| Pr[Hyb, * (A) = 1] = Pr[Hyb, " (A) = 1]| TR

Hence, we conclude that it must be the case that £(A) is negligible, and attribute-selective security holds. O

Parameter instantiation. We now provide one example instantiation of the lattice parameters for Construc-
tion 5.11 so as to satisfy Theorems 5.13 and 5.14. Let A be a security parameter and 7 be the policy parameter. Let
d = d(r) and ¢ = £(7) be the bound on the policy depth and the attribute length, respectively. Let N < 2* be the
number of slots. Let ¢ € (0, 1) be a constant. Then, we set

n = (Ad)"¢ - poly(log A, log d, log £, log N))
nd - poly(log A,log d,log £,log N)
poly(n,logd,log¢)

m
X
owd = O(m> logm)
Oagg = 29 0@ N3 og e
q= A2 p0d) poly(n, N, ¢,log d)
Abgs = (A +d) - poly(log A, log d, log ¢)

For this choice of parameters, g < 2"°  In this case, security relies on the (2m?, 6yq)-succinct LWE assumption
with LWE parameters (n, m, g, y); this corresponds to a sub-exponential modulus-to-noise ratio. We summarize our
instantiation in the following corollary:

Corollary 5.30 (Slotted Key-Policy Registered ABE). Let A be a security parameter and N < 2* be the number of slots.
Letd < 2 be a depth bound and ¢ < 2* be an attribute length. Then, under the poly (A, d)-succinct LWE assumption with a
sub-exponential modulus-to-noise ratio, there exists a slotted key-policy registered ABE scheme with N slots where the size
of the public parameters, the size of the individual public/secret keys, and the size of the ciphertext is poly (4, d,log N, log ?).

Remark 5.31 (Transparent Setup via Decomposed LWE). Similar to Remark 4.13, we can replace the matrix commit-
ment scheme in Construction 5.11 with the alternative instantiation from [Wee25, Appendix C] based on decomposed
LWE. This yields a key-policy registered ABE scheme that supports an unbounded number of users with a transparent
setup.
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A The [Wee25] Matrix Commitment Scheme

In this section, we recall the matrix commitment scheme from [Wee25, §3.2]. Let n, m, q be lattice parameters where
m > 2nlog q. In the following, we write

pp=(B,W,T) where [L,,z2®B|W]-T=1L,:QG,

where B € Zj*™, W € Z(ZI’”Z"X’", and T € Z((]Zm2+1)m><2m3. Next, we define the Split function that takes as input (pp, L)
where L < 2m and outputs submatrices Wy, T of W, T, respectively, such that

Uem ® B | W] -TL =11, ® G.
Specifically, the Split function operates as follows:
« Split(pp, L): On input pp = (B, W, T) and L < 2m, parse

1
w T
W = : and T= T ,
W(Zmz) Tgm ) .
T

—LT

where W) ¢ Zy*™ and TE?,ILT € ZZ’XL’”Z, and Ty € Z((IZm2+1)mx(2mz—Lm)m. The split function outputs

1
w T,
W, = e ZlémnXm and TL — T(L:m) c Z((ILm+1)m><LmZ.
W(Lm) LT

—LT

In the following, we parse Ty € ZéLmH)mXLmz as Tp = [E] where T € ZémZXLmz and T, € Z;"XL’"Z. In addition,
define
bits(M) := vec(G'(M)) € ZL™.
Let J; € {0, 1}tm**LMogq] be the fixed matrix from [Wee25, Lemma 4] where for all M € ZZXL,
(bits(M)® G) - JL =M - Gy.
The matrix commitment from [Wee25] is recursive, where the base case corresponds to committing to a matrix

M e ZZXL where L < 2m. Without loss of generality, when L > 2m, we always pad the width of M (with ze-

roes) to a value of L where L = 2F - ¢, for some k € N and ¢ € [2m]. The associated verification matrix and
openings can then be derived by truncating the corresponding matrices for the padded matrix. Specifically, if
C:[Vir | Var] = [Mir | Mr] =B« [Z1 | Zge], then C - Vip = My — B - Zyp.
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« Com™ (pp,M): On input pp = (B,W,T) and M € ZZXL:
- If L < 2m, output C = (bits(M)" ® I,)W € Zg*™ where (W, Tr) < Split(pp,L).

- IfL=2%.¢fork e Nand ¢ € [2m], parse M = [M, | M;] where Mg € ZZXL/Z, For p € {0, 1}, compute

Cp = Com™ (pp, Mg) € Zg™™. Output C = Com™ (pp, [Co, | C1]) € Zg"™.
« Ver™(pp, 1£): On input pp = (B,W, T) and L € N:

- IfL <2m,output Vp =T, -Jr € quxLUqu] where (W, Tr) < Split(pp, L).

— IfL=2%.¢fork € Nand ¢ € [2m], compute Vi = Ver™ (pp, 1L/2) and Vy,,, = Ver™ (pp, 12™). Output
Vi = Van (L ® G, (Vi ) € Zg 8],

« Open™(pp,M): On input pp = (B, W, T) and M € Z}**:

- If L < 2m, output Z = (bits(M)" ® LT, -] € Z;"XLUqu] where (Wp, Tr) < Split(pp,L).

~ IfL=2F.¢fork € Nand ¢ € [2m], parse M = [My | M;] where Mg € ZZXL/Z. For § € {0, 1}, compute
Zg = Open™ (pp, Mg) and Cg = Com™ (pp, Mg). In addition, compute V;,, = Ver™ (pp, 11/2). Finally,
compute Z’' = Open™ (pp, [Cy | C1]) and output Z=Z' - (I, ® G, (V1 /2)) + [Zo | Z1] € Z;"XLrlogq].

A.1 Committing to Sparse Matrices and Supporting Local Openings

In this section, we give a proof of Lemma 3.10 and show that the [Wee25] matrix commitment scheme supports
efficient commitment to sparse matrices, and moreover, there is an efficient algorithm to locally compute the columns
of the verification matrix and the opening matrix.

Committing to sparse matrices. To support commitment to sparse matrices, we first observe that for all
pp = (B,W,T) and all L € N, Com™ (pp, 0"*L) = 0™*™, Thus, we can define the ComSparse™!(pp, M) algorithm
as follows:

« ComSparse™(pp, M): On input pp = (B, W, T) and a sparse matrix M € Z}**:

— If M = 0™*L, return 0™,
— If L < 2m, output C = Com™ (pp, M).

— IfL =2%.¢fork € Nand ¢ € [2m], parse M = [M, | M, ] where Mg € ZEXL/Z. For f € {0, 1}, compute

Cp = ComSparse™" (pp, Mg) € Zg*™. Output C = Com™ (pp, [Cy, | C1]) € ZZF*™.

Since Com™ (pp, 0"F) = 0™ we have that ComSparse™!(pp, M) = Com™ (pp, M) = Com™3!(pp, M). It suffices
to analyze the running time of ComSparse™(pp, M). Take any matrix M € Z"™! where M contains at most K
non-zero columns. Throughout, we assume that the matrix M (and its submatrices) are encoded in a sparse for-
mat (e.g., the description length of M is poly(K, m,log g, log L)). We show that ComSparse™!(pp, M) runs in time
poly(K, m,log g, log L). It suffices to consider the case where L > 2m. Write L = 2X - £ where k € N and ¢ € [2m].
Without loss of generality, suppose that 2¢ > 2m (if not, we can alternatively write L = 2~1 . (2¢)). We now define
a complete binary tree 7~ with height k as follows:

« First, parse the matrix M = [Mg | - -+ | My«_,], where M; € Zg”. We associate the it" leaf node (from left to
right) of 7~ with the sub-matrix M;.

+ With each intermediate node ¢ in 77, let M;, Mj41, ..., M be the matrices associated with the leaf nodes in the
subtree rooted at o (from left to right). We associate the matrix My = [M; | - - - | M;] with o.
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We now compute the running time of ComSparse™, To do so, we associate a value t, with each node ¢ € 7,
where ¢, is the running time of ComSparse™(pp, M) and M,, is the (sparse) matrix associated with o. First, let T =
poly(K, m,log q,log L) be the running time needed to (1) check if M = 0; (2) partition M = [My | M;]; and (3) invoke
Com™(pp, -) on a matrix with width 2m. This corresponds to the non-recursive components of the recursive step.
Note that T also bounds the cost of a base case of the recursion. Then, we can define the running times ¢, as follows:

« If o is associated with the zero matrix or o is a leaf node, then t, < T.

« If 0 is an internal node associated with a non-zero matrix, let oy and oy be its left and right children. Then,
to < toy, +ilo, + 1.

Ogrr

We now show the following inductive invariant. For a node o € 77, let K,; denote the number of leaf nodes in the
sub-tree rooted at o that are associated with non-zero matrices, and let A, denote the height of the sub-tree rooted
at o (i.e., the length of the longest path in the sub-tree). Then, for all ¢ € 7, we show that t, < (1 + 2K,h,)T. We
show this inductively:

« Consider a leaf node o € 7. In this case, h, =0 and t, < T = (1 + 2K,h,)T.

- Consider an internal node o € 7 that is associated with the zero matrix. ThenK, = 0 and t, < T = (1+2K,h,)T.

« Consider an internal node ¢ € 7 that is associated with a nonzero matrix. This means K, > 1 Then,

ty < tg, + to,, + 1. By definition, hs,, = hy,, = hs — 1 and K, + K5, = K. Now, by the inductive hypothesis,

to Sto, o, +T
< (1+2Ky, (he —1)T+ (1+ 2K, (he —1)T+T
= (1+2K;hs)T +2(1 - K,)T
< (14 2K4h,)T,
since 1 - K, < 0.
By induction on 7°, we conclude for all o € 7, t, < (1+2K,h,)T. The running time of ComSparse™(pp, M) is then
bounded by (1 + 2Kk)T = poly(K, m,logq,log L), as required.

Local access to the verification matrix. Next, we show that given pp and L, we can compute any single column
of the verification matrix V. in time poly(m,log g, log L). We first define a local version of Ver™:

« VerLocal™ (pp, L, i): On input the public parameters pp, the length L € N in binary, and an index i < L [log q]:

— If L < 2m, compute Vy = Ver™ (pp, 1) and output the i" column vy ; of V.

- IfL = 2. ¢fork € Nand ¢ € [2m], first compute Vy, = Ver™(pp, 1°™) € Z;nXmelogq]' Parse

Vom = [Vamar | Vamer] where Vop 11, Vompr € Zgnxm[k’gq]. Then output
Vi = Vomur - G (Viy2,i) i < Lflogq]/2
L - .
Vomar - G (Viy2i-Lri0gq1/2) i > Llogql /2,

where vy /3; = VerLocal™ (pp, L/2,i) and V1 /2i_r[l0gq]/2 = VerLocal™ (pp,L/2,i— L [logq] /2).

First, we analyze the running time of VerLocal™. Let T(n, m, g, L) be the running time of VerLocal™ (pp, L, i) on any
set of public parameters pp with lattice parameters (n, m, q), length L, and any index i < L [log q].

« IfL < 2m, then T(n,m, q,L) = p;(m,log q) for a fixed polynomial p;.*

3Recall that we are only considering public parameters pp where m > 2nlogq. Thus, any polynomial dependence in the running time on n
can be absorbed by a poly(m) factor.
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o If L > 2m, then the running time is p,(m, log q,log L) + T(n, m, q, L/2) for some fixed polynomial p,.

Thus,
T(n,m,q,L) <logL - py(m,logq,logL) + p;(m,logq) = poly(m,logg,logL),

as required. It suffices to show that VerLocal™ (pp, L, i) is correct. We proceed by (strong) induction on L.
« If L < 2m, correctness holds by construction.
« Suppose L > 2m. By definition of Ver™, this means

G, (Vi2) 0

_ -1 — .
VL - V2m(12 ® Gm (VL/Z)) - [V2m,LT | V2m,RT] 0 Gr_nl (VL/Z) .
In particular, the i column vr; of V is then
o Vemar - Gl (Vi) i < Llogq] /2
Li= _ )
" | Vamr - G (VEj2i-Liogq1/2) i > Llogql /2,

where vy y; is the i row of Vi, = Ver™ (pp,L/2) and vy 5;—1[10gq]/2 is the (i — L [logq] /2)™ row of Vi /3.
By the inductive hypothesis,
Vi, = VerLocal™ (pp,L/2, i)
Vij2,i-Lllogq]/2z = VerLocal™ (pp,L/2,i— L [logq] /2)

The claim now follows by (strong) induction on L.

Given VerLocal™ (pp, L, i), it is straightforward to construct the local version of Ver™!:

« VerLocal™(pp, L, i): Output VerLocal™ (pp, L, (i — 1) [logq] + 1).

Correctness follows by construction. Namely, Ver™ (pp, L) outputs V; - G '(I.), where V, = Ver™(pp,L). By

construction, the i column of Gzl(IL) is the unit vector u(;j_1).[logq1+1 € Zglog qaIxL, Correspondingly, the it column

of Vi - Gzl(IL) is then the ((i — 1) - [log ¢] + 1)®-column of V7.

Computing local openings. Finally, combining the above two procedures, we obtain an analogous algorithm
for computing any single column of the opening Z = Open™ (pp, M) in time poly(K, m,log q,log L), where K is the
number of non-zero columns of M. We start by defining the algorithm OpenLocal™:

. enlLoca , M, i): On input = (B, W, 1), a sparse matrix € ,and an index i < o :
OpenLocal™ (pp, M, i): On input pp = (B,W, T p ix M ZZXL d an ind LTlogq]

- IfL < 2m, compute Z = Open™ (pp, M) and output the i column z; of Z.

— IfL = 2K-¢fork € Nand ¢ € [2m], parse M = [M, | M; | where Mg € Z;XL/Z. Then compute the following:
« For p € {0,1}, let Cg = ComSparse™(pp, Mg). Then compute Z’' = Open™ (pp, [Co | C1]). Parse
Z' = (2}, | Z},] where Z},, Z},, € Z]""°41,
+ Compute the vector v € Z7 as

. VerLocal™ (pp, L/2,1) i <Llogq]/2
vV =
VerLocal™ (pp,L/2,i — L[logql/2) i> L[logq]/2.

+ Compute the vector z € Zg' as

A OpenLocal™ (pp, My, ) i<L[logq]/2
Z=
OpenLocal™ (pp,My,i — L[logql/2) i> L[logq]/2.
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Output the vector
Z..-G;'(V)+2 i<L[logq]/2
Z; =
Yz -G () +2 i > LTlogql /2.

First, we analyze the running time of OpenLocal™. Let T(n, m, g, L, K) be the running time of OpenLocal™ (pp, M, i)
on any set of public parameters pp with lattice parameters (n, m, q), a matrix M € ZZXL with at most K non-zero
columns, and any index i < L [logq].

o If L < 2m, then T(n,m,q,L) = p;(m,log q) for a fixed polynomial p;.
o If L > 2m, then OpenLocal™ (pp, M, i) computes the following quantities:

- Computing ComSparse™"!(pp, Mg) for § € {0, 1}, requires time poly(K, m,log g,log L). Computing Z’
from Cy and C; requires time poly(m, log g).

— Computing the vector V requires time poly(m, log g,log L).
— Computing the vector Z requires time T(n,m,q,L/2,K).

— Computing the final output from Z’, ¥, and z requires time poly(m, log q).

The total running time in this case is then T(n,m,q,L/2,K) = p2(K, m,log q,log L) + T(n,m, q,L/2,K), where
p2 is a fixed polynomial.

This means
T(n,m,q,L,K) =logL - p2(K, m,logq,log L) + p1(m,log q) = poly(K, m,logq,logL).

To complete the proof, we show that OpenLocal™ (pp, M, i) is correct. Similar to the previous case, we proceed by
(strong) induction on L:

« If L < 2m, correctness holds by construction.

« Suppose L > 2m. Then, the opening algorithm Open™ (pp, M) computes éﬂ = Com™(pp, Mg) for p € {0, 1}.
and Z' = Open™ (pp, [Co | C1]). It also computes Z/; = Open™ (pp, M) for B € {0,1}, \N’L/z = Ver™ (pp, 1-/2),
and finally, sets Z=7- (I, @ G 1(Viy2)) + [Zo | Z1]. Consider the i column %; of Z. We can write it as

5 = Ziy Gyl (Vi) + 70 i < L[logq]/2
i 7 —l(y [ .
Zlw - G (Vij2i-Lllogq1/2) + Zri—Lllogq1/2 1 > L[logq] /2,

where Z = 1Z], | Z;T], Vi /2, denotes the it" column of VL/Q and Z ;, Z;; denote the i column of Zo and Zl,
respectively. Consider now OpenLocal™ (pp, M, i). By correctness of ComSparse™!, we have that

Cp = ComSparse™ (pp, Mg) = Com™ (pp, Mp) = é/;
for § € {0, 1}. This means
Z' = Open™ (pp. [Cy | C1]) = Open™(pp, [Co | C1]) = Z".
By correctness of VerLocal™, we have

V = VerLocal™ (pp, L/2,i) = Vi ifi <L[logq]/2
v = VerLocal™ (pp,L/2,i— L[logql/2) = Vij2i-L logq]/2 ifi > L[loggq]/2

By the inductive hypothesis, we have

z = OpenLocal™ (pp, My, i) = z; ifi < L[logq]/2
z = OpenLocal™ (pp,My,i — L [logql /2) = Z1; L[logq1/2 ifi > L[logq] /2.
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Putting the pieces together, we now have
2 =2, G, (V) +2=2[, - G} (¥121) + 20, = ifi < L[logq] /2
2; = Z}y - G (%) +2 = Zjyy - G (V12— Lllogq1/2) + Z1i-Lllogql/2 = Zi if i > L [logq] /2.
Thus for all i < L [log q], we have that z; = z;, and correctness holds.
Given OpenLocal™ (pp, L, i), it is straightforward to construct the local version of Open™at:
« OpenLocal™(pp, M, i): Output OpenLocal™ (pp, M, (i — 1) [log q] + 1).

Correctness via the same analysis as for VerLocal™" above.
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