
Multi-Authority Registered Attribute-Based Encryption

George Lu
UT Austin

gclu@cs.utexas.edu

Brent Waters
UT Austin and NTT Research
bwaters@cs.utexas.edu

David J. Wu
UT Austin

dwu4@cs.utexas.edu

Abstract

Registered attribute-based encryption (ABE) enables fine-grained access control to encrypted data without a

trusted authority. In this model, users generate their own public keys and register their public key along with a set

of attributes with a key curator. The key curator aggregates the public keys into a short master public key that

functions as the public key for an ABE scheme.

A limitation of ABE (registered or centralized) is the assumption that a single entity manages all of the attributes

in a system. In many settings, the attributes belong to different organizations, making it unrealistic to expect that a

single entity manage all of them. In the centralized setting, this motivated the notion of multi-authority ABE, where

multiple independent authorities control their individual set of attributes. Access policies are then defined over

attributes across multiple authorities.

In this work, we introduce multi-authority registered ABE, where multiple (independent) key curators each

manage their individual sets of attributes. Users can register their public keys with any key curator, and access

policies can be defined over attributes from multiple key curators. Multi-authority registered ABE combines the

trustless nature of registered ABE with the decentralized nature of multi-authority ABE.

We start by constructing a multi-authority registered ABE scheme from composite-order pairing groups. This

scheme supports an a priori bounded number of users and access policies that can be represented by a linear secret

sharing scheme (which includes monotone Boolean formulas). Our construction relies on a careful integration of ideas

from pairing-based registered ABE and multi-authority ABE schemes. We also construct a multi-authority registered

ABE scheme that supports an unbounded number of users and arbitrary monotone policies using indistinguishability

obfuscation (and function-binding hash functions).

1 Introduction

Attribute-based encryption (ABE) [SW05, GPSW06] is a generalization of public-key encryption that enables fine-
grained access control to encrypted data. In a (ciphertext-policy) ABE scheme, each user’s key is associated with a set
of attributes (e.g., “faculty in the math department” and “resident in California”) while ciphertexts are associated
with policies (e.g., “residents in Georgia” and “faculty in Computer Science”). Only users whose attributes satisfy
the ciphertext policy are able to decrypt and learn the message. While ABE augments public-key encryption with
expressive fine-grained decryption capabilities, it also radically changes the trust model. Instead of users generating
their own individual keys, ABE assumes there is a central trusted authority who is responsible for generating the
decryption keys for each user. The central authority possesses a long-term secret used for key generation, and if this
long-term key is ever compromised or exfiltrated, the attacker immediately gains the ability to decrypt all ciphertexts
in the system.

Registration-based cryptography. The work of Garg, Hajiabadi, Mahmoody, and Rahimi [GHMR18] introduces
the concept of registration-based encryption as an alternative approach to augment public-key encryption with
fine-grained decryption capabilities without needing to rely on a trusted party. Specifically, [GHMR18] consider the
setting of identity-based encryption (where secret keys and ciphertexts are associated with identities and decryption

1

succeeds as long as the identities associated with the ciphertext and the secret key match). Instead of a trusted
authority generating decryption keys, in registration-based encryption, users generate their own public/private
key-pairs (just as in traditional public-key encryption). Then, the user registers their public key (along with their
identity) with a key curator. The key curator’s job is to aggregate all of the individual users’ keys into a single short
public key that functions as a public key for an identity-based encryption scheme. While the key curator is a central
authority, it does not possess any secrets. The entire key aggregation process is a deterministic and transparent
procedure. Thus, anyone can audit the state of the key curator and verify that it is behavior correctly.

Since the work of [GHMR18], many works have explored constructions of registration-based encryption from
different cryptographic assumptions as well as new designs with better concrete efficiency [GHM+19, GV20, CES21,
GKMR23, DKL+23, FKdP23]. The concept of registration-based cryptography has also been extended to the setting of
attribute-based encryption [HLWW23, FWW23, ZZGQ23, GLWW24, AT24, CHW25, ZZC+25, WW25], functional
encryption [FFM+23, BLM+24, DPY24, PS25], broadcast encryption [BZ14, FWW23, GLWW23, KMW23, CW24,
GKPW24, CHW25, WW25], and traitor tracing [BLM+24].

Registered ABE. In this work, we focus on registered ABE, a notion first introduced in the work of Hohenberger,
Lu, Waters, and Wu [HLWW23]. In this setting, users generate their own public/private keys and then register their
public key together with a set of attributes with the key curator. Typically, we consider the key curator to be an
administrator that controls a set of attributes for an organization or a domain. When a user registers their public key,
the key curator would determine (possibly in collaboration with the user) which set of attributes are most appropriate.
As a concrete example, a company might run a registered ABE scheme to manage keys for their employees. When an
employee registers their public key with the system, the system administrator would assign the employee a set of
attributes according to their role and access control permissions within the company. Using registered ABE in place
of vanilla ABE ensures that there is no central point of failure within the system (e.g., the system administrator does
not have any secrets of its own).

The challenge: cross-domain policies. Standard registered ABE works well when there is a single key curator
responsible for a collection of attributes within their particular domain. However, in many applications, access policies
might cross domain boundaries. For a concrete use case, one can imagine a collaborative research project between
multiple universities and government agencies. Here, access to sensitive data could be dictated by a combination of
institutional affiliation and role within each organization (e.g., faculty at a university with a government clearance).
To support such policies with standard registered ABE, we would require a single key curator that is responsible for
managing attributes for both institutions, which would in turn require coordination between the two. A more natural
solution would be to allow the two entities to individually manage their own attributes, but still support encryption
to policies that involve attributes across multiple domains.

Multi-authority ABE. A sequence of works [Cha07, LCLS08, MKE08, CC09, LW11] have shown how to extend
vanilla ABE to the multi-authority setting. In a multi-authority ABE scheme, there are many key-issuing authorities
and each authority is only responsible for issuing keys for the attributes in their domain. Moreover, during encryption,
the user can encrypt to policies defined over attributes from different authorities. Notably, the fully decentralized
scheme of Lewko and Waters [LW11] allows anyone to be an authority and does not require any interaction between
authorities. However, much like standard ABE, each authority still retains a long-term master secret key in order to
issue keys.

Registered multi-authority ABE. In this work, we introduce a generalization of registered ABE to the multi-
authority setting. In this model, anyone can become a key curator. Each key curator has a set of attributes that they
manage, and users can register their public key with any number of key curators. We do not require any coordination
between key curators. During encryption, one can specify an access policy over any collection of attributes, which
can involve attributes from multiple independent key curators. As usual, decryption is successful only if the user
possesses a set of attributes that satisfy the access policy. Multi-authority registered ABE thus combines the trustless
nature of registered ABE with the support for cross-domain policies in multi-authority ABE.

2

1.1 Our Contributions

In this work, we formally initiate the study of multi-authority registered ABE.

Definitions and construction blueprint. Our first contribution is a formal definition that combines the features of
multi-authority ABE [LW11] with registered ABE [HLWW23]. We then describe a general template for constructing
multi-authority registered ABE by starting from a “slotted” version of the primitive (similar to [GHMR18, HLWW23])
that does not support dynamic registrations. In this model, we assume that all of the users register at the same time
and there is a key-aggregation algorithm that combines their public keys into the public key for a particular authority.
In the single-authority setting, it is straightforward to lift from the slotted scheme to the standard variant where users
can dynamically register using a power-of-two approach. The analogous transformation is much more complicated in
the multi-authority setting because each user can register for a different subset of authorities, and we do not allow any
coordination between authorities. Nonetheless, we show in Section 6 that using cover-free sets, we can generically
transform any slotted multi-authority registered ABE scheme into a full multi-authority registered ABE scheme. This
allows us to focus on constructing the simpler slotted notion of the primitive in the rest of the paper.

Slottedmulti-authority registeredABE frompairings. Next, we show how to construct a slottedmulti-authority
registered ABE scheme using composite-order pairing groups. Our scheme supports an a priori bounded number of
users (as is the case for all pairing-based registered ABE schemes [HLWW23, ZZGQ23, GLWW24, AT24]) and access
policies that can be described by a monotone Boolean formula (or more generally, any policy that admits a linear
secret sharing scheme). Our construction leverages ideas from the original registered ABE scheme from [HLWW23]
together with the multi-authority ABE scheme from [LW11]. A notable feature of our (slotted) multi-authority
registered ABE is that we do not need to rely on the random oracle model (in contrast to pairing-based multi-authority
ABE schemes such as [LW11]). We refer to Section 2 for a more detailed technical overview of our construction as
well as a discussion of how the semantics of multi-authority registered ABE allows us to achieve security in the
plain model (without random oracles). Note that multi-authority registered ABE does not imply multi-authority ABE
(just as registered ABE does not imply standard ABE), so our results do not imply a multi-authority centralized ABE
scheme without random oracles.

Multi-authority registered ABE from obfuscation. Our pairing-based construction inherits several of the
limitations that apply to all pairing-based registered ABE schemes: (1) it needs a large structured common reference
string; (2) it supports a restricted set of policies (e.g., monotone Boolean formulas); and (3) it imposes an a priori
bound on the total number of users. To show that it is feasible to overcome all of these limitations, we also
construct a multi-authority registered ABE scheme using indistinguishability obfuscation and function-binding hash
functions [FWW23]; the latter can be built from the learning with errors (LWE) assumption. Our obfuscation-based
construction has a transparent (i.e., public-coin) setup process and supports arbitrary policies and an arbitrary number
of users.

2 Technical Overview

In this work, we define the notion of multi-authority registered ABE and give constructions from bilinear groups
and indistinguishability obfuscation. Similar to multi-authority ABE [LW11], we assume that each user has a unique
(global) user identifier gid. The user identifier will be used to tie the decryption keys (across different authorities)
together. We also assume that each authority has a unique authority identifier aid. For ease of exposition, we focus
on the setting where each authority manages just one attribute. This way, we can view policies as functions over
authorities. We begin with the syntax of a multi-authority registered ABE scheme (and refer to Definition 4.1 for the
full definition):

• GlobalSetup(1_) → (gpp, gep): The global setup algorithm takes the security parameter _ and outputs the
global public parameters gpp and a (compact) set of global encryption parameters gep.

3

• KeyGen(gpp, gid) → (pkgid, skgid): The key-generation algorithm uses the global public parameters gpp and
the user identifier gid to generate a public/secret key-pair.

• RegPK(gpp, aux, gid, pkgid) → (mpk′, aux′): The registration algorithm uses the global public parameters gpp,
the current state of the key curator aux, the user identifier gid, and the associated public key pkgid, and outputs
a new master public key mpk′ and curator state aux′. We require this algorithm to be deterministic (so that it
is possible to audit the key curator).

• UpdateKey(gpp, aux, gid) → hskgid: The update algorithm takes the global public parameters gpp, the curator
state aux, and the identifier gid for the user requesting an update, and outputs a helper decryption key hskgid.

• Encrypt(gep, ((enc, i), {(aid,mpkaid)}aid∈(enc ,<) → ct: The encryption algorithm take the global encryption
parameters gep, a set of authority identifiers (enc, a policy function i defined over those authorities, the master
public keys mpkaid associated with the authorities aid ∈ (enc, and a message<, and outputs a ciphertext ct.

• Decrypt(gpp, (, {(aid, skaid,gid, hskaid,gid)}aid∈(, ct) →<: The decryption algorithm takes in the global public
parameters gpp, a set of authority identifiers (, and the secret keys skaid,gid and helper decryption keys hskaid,gid,
and a ciphertext ct, and outputs the message<.

The correctness requirement is that any user registered with a set of authorities that satisfy the access policy associated
with a ciphertext can successfully recover the message. Security says that any set of users who individually do not
satisfy the access policy cannot learn anything about the encrypted message.

Slottedmulti-authority registeredABE. Much like in [HLWW23], our constructions of multi-authority registered
ABE will proceed in two steps: (1) we first construct a “slotted” version of the primitive; and (2) we show how to
generically upgrade the slotted primitive to the full primitive. The slotted multi-authority registered ABE scheme
makes the following simplifying assumptions:

• The slotted scheme supports a fixed number of users ! (which is provided as an explicit parameter to the setup
algorithm GlobalSetup).

• The scheme supports one-shot aggregation rather than incremental updates to the public key. Instead of the
RegPK,UpdateKey algorithms, the slotted scheme has a single Aggregate algorithm that takes as input the
global parameters gpp, and a set of ! public keys pk1, . . . , pk! for user identifiers gid1, . . . , gid! . The aggregate
algorithm outputs a succinct master public key mpk and helper decryption keys hsk8 for each of the users.

• Finally, the key-generation algorithm is associated with a specific slot index 8 ∈ [!]. Namely, in the slotted
multi-authority registered ABE scheme, the KeyGen algorithm takes a slot index 8 ∈ [!] as input instead of the
user identifier (the user identifier is now specified during aggregation).

The correctness requirement for the slotted scheme states that decryption is successful whenever a user is registered
with a set of authorities that satisfy the ciphertext’s access policy, and moreover, the associated public keys are
all registered to the same slot (across all authorities). The security requirement is that the adversary cannot learn
anything about an encrypted message if there is no single gid∗ and slot 8∗ for which the adversary possesses an
authorized set of secret keys. In Section 6, we show how to compile any slotted multi-authority registered ABE
scheme into a standard multi-authority registered ABE scheme. We also provide an overview of this transformation
later in this section.

Multi-authority registered ABE from pairings. Our first construction of a slotted multi-authority registered ABE
will use composite-order pairing groups. In this setting, we have a cyclic group G of composite order # = ?1?2?3?4
(where ?1, ?2, ?3, ?4 are distinct primes). By the Chinese Remainder Theorem, this group decomposes into a product
of groups G1 × G2 × G3 × G4 where |G8 | = ?8 . This group will also be equipped with an efficiently-computable
non-degenerate bilinear map 4 : G × G→ G) . We refer to Section 3.1 for a formal definition.

We start with a simplified description of the slotted registered ABE scheme from [HLWW23]. This construction
will only support an and policy on two attributes a0 and a1 (i.e., the policy a0 ∧ a1). While this is a toy example, it will

4

suffice for illustrating some of the technical challenges involved in generalizing this to the multi-authority setting.
The [HLWW23] construction technically works over composite-order pairing groups, but for ease of exposition, we
just focus on the action in the G1 subgroup and omit the extra randomizing factors from the other subgroups (the
extra components are only needed for security, not correctness). Below, we write 6 to be the generator of G1.

• Common reference string: The common reference string includes a description of the group description
along with the following components.

– General components: The CRS contains random group elements ℎ r← G and / = 4 (6,6)U where
U

r← Z# .

– Slot components: For each slot 8 ∈ [!], the CRS contains elements

�8 = 6
C8 , �8 = 6

UℎC8 , *8 = 6
D8

where C8 , D8
r← Z# . These terms are used in both encryption and decryption. Having independent elements

for each slot is necessary to defend against collusion attacks between users registered to different slots.

– Cross terms: Finally, for each pair of slots 8 ≠ 9 ∈ [!], the CRS includes cross-terms,9,8 = 6
C8D 9 , which

are used for decryption.

• User keys: To sample a public key for slot 8 , the user samples A8
r← Z# , and computes)8 = 6

A8 and +9,8 = �
A 9
8

for 9 ≠ 8 ∈ [!]. The public and secret keys are then

pk =
(
)8 , {+9,8 } 9≠8

)
, sk = A8 .

• Aggregation: To aggregate a collection of ! public keys pk8 = ()8 , {+9,8 } 9≠8) together with their associated

attributes (8 ⊆ {a0, a1} into a single master public key, the key curator computes an aggregated public key)̂
and for each 1 ∈ {0, 1}, an attribute-specific encryption key *̂1 (associated with the attribute a1):

)̂ =

∏
8∈[!]

)8 , *̂1 =

∏
8∈[!]:a1∉(8

*8 .

Finally, the key-curator computes a set of “cross terms” which will be important for decryption:

+̂8 =
∏
9≠8

+9,8 , ,̂8,1 =

∏
9≠8:a1∉(9

,9,8

The final master public key and helper decryption keys consists of the group elements

mpk =

(
)̂ , {*̂1}1∈{0,1}

)
, hsk8 =

(
+̂8 , {,̂8,1}1∈{0,1}

)
.

• Encryption: To encrypt a message `, the encryptor samples randomness B r← Z# , and two group elements
ℎ0, ℎ1 such that ℎ0ℎ1 = ℎ. Then, the encrypter constructs the following components:

– Message-embedding components: �1 = ` · /
B and �2 = 6

B .

– Slot-specific blinding: �slot =)̂
−B .

– Attribute-specific blinding: For each 1 ∈ {0, 1}, �a�rib,1 = *̂ −B
1

.

The final ciphertext is then (�1,�2,�3,0,�3,1) where
1

�3,0 = ℎ
B
0 · �slot · �a�rib,0 , �3,1 = ℎ

B
1 · �slot · �a�rib,1.

Recall that we are considering the conjunction policy a0 ∧ a1.

1Here, we slightly diverge from the construction of [HLWW23] by bundling the slot-specific and the attribute-specific components together (in
�3,0 and�3,1). The work of [HLWW23] separate these into separate terms.

5

• Decryption: For a user in slot 8 ∈ [!] to decrypt, they should satisfy two requirements: (1) they know the
secret key for the public key for slot 8 , and (2) slot 8 is registered to both attributes. These correspond to being
able to remove the slot-specific and attribute-specific blinding components respectively. To decrypt, the user
first computes

�1

4 (�2, �8)
=

` · 4 (6,6)UB

4 (6,6)UB4 (6, ℎ)BC8
=

`

4 (6, ℎ)BC8
.

This yields the message blinded by 4 (6, ℎ)−BC8 . To cancel out the 4 (6, ℎ)−BC8 term, we observe that �3,0,�3,1

essentially contain an additive secret sharing of ℎB . Pairing with �8 yields 4 (6, ℎ)
BC8 . However, pairing �3,0,�3,1

with �8 also result in additional terms 4 (�8 , �slot) and 4 (�8 , �a�rib,1), respectively, which need to be removed as
follows:

– Slot check: First, we have

4 (�8 , �slot) = 4
©­
«
6C8 ,

∏
9∈[!]

6−BA 9
ª®
¬
= 4 (6,6)−BC8

∑
9 ∈ [!] A 9 .

We can equivalently write this as

4 (�8 , �slot) = 4 (6,6)
−BC8

∑
9≠8 A 9 · 4 (6,6)−BC8A8 ,

which we can express as follows:

4 (�2, +̂8) = 4

(
6B ,

∏
9≠8

6C8A 9

)
= 4 (6,6)BC8

∑
9≠8 A 9

4 (�2, �
A8
8) = 4 (6

B , 6C8A8) = 4 (6,6)BC8A8

This means
4 (�8 , �slot) · 4 (�2, +̂8) · 4 (�2, �

A8
8) = 1.

– Policy check: Next, we have

4 (�8 , �a�rib,1) = 4
©­«
6C8 ,

∏
9∈[!]:a1∉(9

6−BD 9 ª®¬
= 4 (6,6)

−BC8
∑

9 ∈ [!]:a1∉(9
D 9 .

If the user (for slot 8) is authorized (for the policy a0 ∧ a1), then they possess attributes a0 and a1. In this
case, for all 1 ∈ {0, 1}, a1 ∈ (8 . This means { 9 ∈ [!] : a1 ∉ (9 } = { 9 ≠ 8 : a1 ∉ (9 }. Now, by definition of

,̂8,1 , we have

4 (�2,,̂8,1) = 4
©­«
6B ,

∏
9≠8:a1∉(9

6C8D 9 ª®¬
= 4 (6,6)

BC8
∑

9 ∈ [!]:a1∉(9
D 9 .

This means
4 (�8 , �a�rib,1) · 4 (�2,,̂8,1) = 1.

Putting everything together, for 1 ∈ {0, 1}, the decrypter first computes

�a1 = 4 (�3,1, �8) · 4 (�2, +̂8�
A8
8 ,̂8,1)

= 4 (ℎB1, �8)4 (�slot, �8)4 (�a�rib,1, �8)4 (�2, +̂8)4 (�2, �
A8
8)4 (�2,,̂8,1)

= 4 (ℎB1, �8).

Finally, the decrypter outputs

�1

4 (�2, �8)
· �a0 · �a1 =

`

4 (6, ℎ)BC8
· 4 (ℎB , �8) =

`

4 (6, ℎ)BC8
· 4 (6, ℎ)BC8 = `.

6

Independent aggregation. First, we observe that the aggregation algorithm in the above scheme already is naturally
decomposable. An authority (with associated attribute a) can take a collection of public keys pka,8 = ()a,8 , {+a, 9,8 } 9≠8)

and compute the aggregated terms)̂a, *̂a, +̂a,8 ,,̂a,8 as in the single-authority scheme. When it comes time to encrypt,
the encrypter can compute the ciphertext components �1,�2 exactly as above. For the slot-specific and attribute-
specific components �slot and �a�rib,1 that comprise �3,1 , the encrypter would then use the aggregated components
)̂a1 , *̂a1 from the relevant authority a1 .

Preventing user collusion. The main security challenge in the multi-authority setting is preventing the adversary
from combining key components for different user identifiers gid acrossmultiple authorities to decrypt an unauthorized
ciphertext. Of course, for correctness, the user should be able to combine key components for a common user identifier.
In multi-authority ABE, the standard approach to prevent collusion is to use a hash � (gid) of the user identifier
as a source of common randomness to tie together the secret keys issued by different authorities for the same
gid [LW11, RW15, DKW21, DKW23, WWW22]. With the exception of [WWW22], the hash function is modeled as a
random oracle in the security analysis.

In the registration-based setting, the secret keys are chosen by the user rather than a central authority. Thus, to
bind the user keys to a particular gid, the key curator uses � (gid) to derive the common randomness for each gid at
aggregation time. In particular, the key curator now computes the attribute-specific encryption key *̂a as

*̂a =

∏
8∈[!]

� (gida,8),

where � (·) outputs a group element in G1 and gida,8 is the user identifier registered to authority a on slot 8 . An
important distinction between the single-authority scheme sketched above and the multi-authority scheme is the fact
that in the attribute-specific encryption key, every slot index 8 ∈ [!] must be associated with some term � (gidaid,8).
This will be important to prevent collusion attacks (where a user tries to mix and match components associated with
different authorities). We contrast this with the single-authority setting where it was sufficient for the key curator to
omit*8 for any slot 8 associated with an user that does not possess the associated attribute. Finally, a straightforward
way in the multi-authority setting for ensuring every slot is associated with some gida,8 is to have the key curator
associate a dummy key with any unused slot.

Returning now to the construction, in the ciphertext, to ensure �a�rib,1 only cancels out when the decrypter uses
the same user identifier gid, the encryptor additionally samples B0

r← Z# and computes

�a�rib,0 = *̂
B0
a0 , �a�rib,1 = *̂

−B0
a1 .

The key observation is that � (gida0,8)
B0 and � (gida1,8)

−B0 cancel out only when the same gid is associated with slot 8 .

Removing the random oracle. While the above change prevents collusion between users with different user
identifiers, it introduces additional obstacles for correctness. This is because in addition to computing the attribute-
specific encryption key *̂a, each key curator also needs to compute the (aggregated) cross terms ,̂a,8,1 to allow users
to efficiently cancel out the attribute-specific blinding terms during decryption. In the single-authority scheme, the
key curator computes ,̂8,1 from the cross-terms,9,8 = 6

C8D 9 in the CRS. In our multi-authority scheme, we have

replaced the attribute-specific encryption key *̂ =
∏
8∈[!]:a∉(8 *8 with *̂a =

∏
8∈[!] � (gida,8), so it is no longer clear

which cross terms we would include in the CRS to ensure correctness. Indeed, the choice of cross terms seemingly
depends on the set of potential user identifiers.

However, we observe that in the (slotted) registration-based setting, our requirements on the hash function �
are in fact much weaker than that in the non-registered setting. This is because in regular multi-authority ABE,
authorities have the ability to issue secret-key components for any number of user identifiers, and the ability to find
any nontrivial algebraic relationship between the hashes of any pair of distinct identifiers could compromise security.

In the slotted registered setting, the slot-specific components already prevent keys registered to different slots
from being combined in a way that enables decryption. Suppose we hone in on a single slot. In this example where
the policy is a conjunction of two attributes, the decrypter can essentially use at most two different gid’s to try and
decrypt (one for each authority/attribute appearing in the challenge ciphertext). Thus, it suffices to rule out algebraic

7

relations between only two gid’s. As such, we can instantiate the hash function � with a (keyed) 2-universal hash
function

� (®*8 , gid) = *8,0 ·*
gid
8,1

where ®*8 = (*8,0,*8,1) and we sample ®*8
r← G2 for each slot 8 . This way, we can simultaneously give out ® 8, 9 =

(*
C 9
8,0,*

C 9
8,1) and compute the cross terms as

,̂8 =

∏
9≠8

� (® 9,8 , gid8) =
∏
9≠8

� (®* 9 , gid8)
C8 .

More generally, for policies involving % attributes, we would use a %-universal hash function. Putting everything
together, our slotted multi-authority registered ABE scheme (for policies involving up to 2 attributes) is defined as
follows:

• Common reference string: The common reference string includes a description of the group description
along with the following components:

– General components: The CRS contains random group elements ℎ r← G and / = 4 (6,6)U where
U

r← Z# .

– Slot components: For each slot 8 ∈ [!], the CRS contains elements

�8 = 6
C8 , �8 = 6

UℎC8 , ®*8 = (6
D8,0 , 6D8,1)

where C8 , D8,0, D8,1
r← Z# . The slot components �8 , �8 serve the same purpose as in the single-authority

scheme, and ®*8 is the hash key used to protect against collusion attacks involving multiple gid’s.

– Cross terms: Finally, for each pair of slots 8 ≠ 9 , the CRS includes ® 9,8 = (6
C8D 9,0 , 6C8D 9,1), which are used

for decryption.

• User keys: User keys are computed exactly as in the single authority scheme, where the user samples A8
r← Z#

and computes)8 = 6
A8 and +9,8 = �

A 9
8 for 9 ≠ 8 . The public and secret keys are then

pk =
(
)8 , {+9,8 } 9≠8

)
, sk = A8 .

• Aggregation: To aggregate a collection of public keys pka,8 =
(
)8 , {+9,8 } 9≠8

)
along with their associated user

identifiers gida,8 , the key curator (associated with the attribute a) first computes)̂a =
∏
8∈[!])8 . To encode the

gid’s associated with each slot, the key curator computes

*̂a =

∏
8∈[!]

8,0 ·
gida,8
8,1

Finally, the key curator also computes the cross terms

+̂a,8 =
∏
9≠8

+9,8 , ,̂a,8 =

∏
9≠8

 9,8,0
gida,8
9,8,1

The final master public key and helper decryption keys consists of group elements

mpka =)̂a, *̂a , hska,8 = +̂a,8 ,,̂a,8

• Encryption: To encrypt a message ` under the access policy a0 ∧ a1, the encryptor first parses the two
attribute master public keys

mpka1 =)̂a1 , *̂a1

and samples randomness B, B0
r← Z# , along with two group elements ℎ0, ℎ1 such that ℎ0ℎ1 = ℎ. It the constructs

the following components:

8

– Message-embedding components: �1 = ` · /
B and �2 = 6

B .

– Slot-specific blinding: �slot,0 =)̂
−B
a0

and �slot,1 =)̂
−B
a1

.

– User-identifier-specific blinding: �gid,0 = *̂
B0
a0 and �gid,1 = *̂

−B0
a1 .

The final ciphertext is then (�1,�2,�3,0,�3,1,�4) where

�3,0 = ℎ
B
0 · �slot · �gid,0 , �3,1 = ℎ

B
1 · �slot · �gid,1 , �4 = 6

B0 .

• Decryption: To decrypt, a user in slot 8 starts by computing

�1

4 (�2, �8)
=

` · 4 (6,6)UB

4 (6,6)UB4 (6, ℎ)BC8
=

`

4 (6, ℎ)BC8
.

As in the single authority scheme, the user can compute 4 (�8 ,�3,0�3,1) to obtain 4 (6, ℎ)
BC8 with extraneous terms

of the form 4 (�8 , �slot) and 4 (�8 , �gid,1). Similar to the single-authority scheme, these terms can be removed via
the following procedures:

– Slot check: This process proceeds almost exactly as the single-authority version, where we use the fact
that

4 (�8 , �slot,b) · 4 (�2, +̂a1 ,8) · 4 (�2, �
A8
8) = 1.

Note that computing 4 (�2, �
A8
8) requires knowledge of the secret key A8 .

– Policy check: Although the definition of �gid is different from �a�rib in the single-authority setting, we
can still write

4 (�8 , �gid,0) = 4
©­
«
6C8 ,

∏
9∈[!]

6B0 (D 9,0+D 9,1gida0, 9
)ª®
¬

= 4 (6,6)B0C8
∑

9 ∈ [!] (D 9,0+D 9,1gida0, 9
)

4 (�8 , �gid,1) = 4
©­
«
6C8 ,

∏
9∈[!]

6−B0 (D 9,0+D 9,1gida1, 9
)ª®
¬

= 4 (6,6)−B0C8
∑

9 ∈ [!] (D 9,0+D 9,1gida1, 9
)

In addition, for 1 ∈ {0, 1},

4 (�4,,̂a1 ,8) = 4 (6,6)
B0C8

∑
9≠8 (D 9,0+D 9,1gida1 ,9

)
.

This means

4 (�8 , �gid,0) · 4 (�4,,̂a0,8)
−1

= 4 (6,6)B0C8 (D8,0+D8,1gida0,8)

4 (�8 , �gid,1) · 4 (�4,,̂a1,8) = 4 (6,6)
−B0C8 (D8,0+D8,1gida1,8)

When gida0,8 = gida1,8 , then

4 (�8 , �gid,0) · 4 (�4,,̂a0,8)
−1 · 4 (�8 , �gid,1) · 4 (�4,,̂a1,8) = 1.

Taken together, the decrypter first computes

�a0 = 4 (�3,0, �8) · 4 (�2, +̂a0,8�
A8
8) · 4 (�4,,̂a0,8)

−1,

�a1 = 4 (�3,1, �8) · 4 (�2, +̂a1,8�
A8
8) · 4 (�4,,̂a1,8).

Then it outputs
�1

4 (�2, �8)
· �a0 · �a1 = `.

9

Slotted to standard multi-authority registered ABE. To lift a slotted multi-authority registered ABE scheme to
a normal multi-authority ABE scheme (which supports dynamic user registration), we apply a similar “powers-of-two
transformation” as in [GHMR18, HLWW23]. However, the lack of coordination between authorities introduces several
additional complications. Recall the notion of slotted (multi-authority) registered ABE imposes a few important
limitations compared to the standard primitive:

• Handling dynamic registrations. The scheme supports one-shot aggregation rather than incremental
updates to the public key. In the single-authority setting, this is handled by instantiating : = log! schemes
where the 8th scheme supports 28 users. By updating the master public keys associated with each scheme only
when a multiple of 28 keys are registered, we ensure that the number of key updates for any individual user is
logarithmic. At encryption time, the encrypter encrypts to all : such schemes under the same access policy. In
the multi-authority setting, users may register their attributes with different authorities in an arbitrary order
and moreover, a single user’s keys might end up in different sub-schemes across different authorities (e.g., as
part of the 8th master public key for one authority, and the 9 th master public key for a different authority). Thus,
rather than having : independent master public keys, we additionally need our schemes to support a policy
over all of the : sub-schemes maintained by each authority. The challenge now is that our slotted approach
assumes the number of slots is the same across authorities, but the powers-of-two approach assumes authorities
maintain schemes with differing number of slots.

We solve this problem by padding (and virtualization). Namely, each authority in our scheme functions as :
“authorities” for the underlying slotted scheme (that supports ! users). At any point in time, the 8th scheme
contains a maximum of 28 users, and the remaining slots will be filled by “dummy keys” (included as part of
the public parameters). This mimics the powers-of-two approach (which ensures users only need to retrieve
polylogarithmically-many decryption updates), but has the additional property that there is only a single slotted
scheme at all times; the authority is just managing (1 + log!) virtual authorities. When encrypting to an access
policy i , we replace it with an augmented policy i ′ where each instance of the authority aid is replaced with
the tuple

∨
8∈[:] (aid, 8), where (aid, 8) is the identifier for the 8

th virtual authority maintained by authority aid.

• Synchronizing slots across authorities. The key-generation algorithm for the slotted scheme is tied to
a specific slot 8 ∈ [!]. In the single-authority setting, the user first uses the CRS components to compute
the message blinded with the slot-specific randomness (specifically 4 (6, ℎ)BC8), before using their secret key to
remove this term. In the multi-authority setting, without any additional coordination, users may be assigned
different “slots” for each authority and consequently, generate incompatible key components that are insufficient
for decryption. At the same time, since each slot for any given authority can only map to a single user, we
cannot hope to map arbitrary user identifiers into a polynomial number of slots without collisions. Our solution
is to use a cover-free family of sets (i.e., families of sets where no set is contained within the union of # other
sets within the family) [KS64, EFF85]. Specifically, each gid is associated with a set �gid in the cover-free set
system. When generating a key, the user would generate |�gid | copies, one for each slot 8 ∈ �gid and register all
|�gid | copies with the key curator (if another user has already registered their key in slot 8 , then the key curator
skips the key). The cover-free property ensures that for any gid∗ appearing in a given ciphertext, there always
exists some slot 8∗ where gid∗ is the only gid mapped to that slot. This ensures decryption correctness and only
incurs polynomial overhead (in the total number of slots).

Security analysis. We prove security of our construction using the dual system methodology [Wat09, LW10],
where we step through a hybrid sequence and gradually replace the challenge ciphertext and the slot parameters (in
the CRS) with semi-functional versions. The invariant is that keys associated with semi-functional slots can decrypt
normal ciphertexts and keys associated with normal slots can decrypt semi-functional ciphertexts. However, keys
registered to semi-functional slots cannot decrypt semi-functional ciphertexts. Once the ciphertext and all of the slots
are in the semi-functional mode, we have removed the adversary’s ability to decrypt the challenge ciphertext, and
can directly argue semantic security. While this high-level blueprint has been successfully used to realize many forms
of ABE [Wat09, LW10, LOS+10, LW11, HLWW23, ZZGQ23, GLWW24], we highlight some of the technical challenges
unique to our setting:

10

• Enabling post-challenge corruptions: In registered ABE, the adversary can corrupt registered users at any
time and obtain their secret key. This can happen before as well as after seeing the challenge ciphertext. In
prior works on single-authority registered ABE, there was no need to consider post-challenge corruptions. This
is because once the adversary requests the challenge ciphertext, the adversary has fully determined which set
of registered users can and cannot decrypt. The work of [HLWW23] thus shows how to generically convert any
adversary that makes post-challenge corruption queries into one that corrupts all unauthorized users before
requesting the challenge ciphertext. Thus, without loss of generality, in normal registered ABE, there is no
need to separately handle post-challenge corruption queries. In multi-authority registered ABE, this approach
no longer applies and security against adversaries only making pre-challenge corruption queries does not
appear to generically imply security against adversaries that can make post-challenge corruption queries (see
Remark 4.7).

Fortunately, the bulk of the dual system argument is compatible with these post-challenge corruption queries.
The main exception to this is handling a “proof of well-formedness” attached to the public keys in our scheme
to ensure an adversary does not submit public keys outside the support of KeyGen. In [HLWW23], these proofs
are built using an explicit algebraic validity-check mechanism, while in [ZZGQ23], they attach a quasi-adaptive
non-interactive zero-knowledge (NIZK) proof to each public key. In both cases, these proofs of well-formedness
are tied to the particular construction and need to be carefully integrated into the security analysis. While
it seems plausible that these approaches generalize to the multi-authority registered ABE setting and still
allow us to prove security against post-challenge corruption queries, we opt for a simpler and more modular
approach. Namely, we first consider security against “semi-malicious” adversaries that are constrained to only
registering keys that are in the support of the honest key-generation algorithm (i.e., in the security game, the
adversary provides the key-generation randomness used to sample any key it chooses). We then show that
our dual-system proof strategy is sufficient to prove semi-malicious security even against adversaries that can
make post-challenge corruption queries. Finally, we show that any semi-maliciously-secure scheme can be
generically lifted to full security using standard (simulation-sound) non-interactive zero-knowledge (NIZK)
proofs of knowledge [Sah99, DDO+01].

• Delayed gid programming. When executing a dual-system proof strategy for multi-authority ABE (c.f.,
[LW11]), one typically switches the decryption keys from normal mode to semi-functional mode through a
sequence of hybrids. Each hybrid focuses on switching the keys associated with a single gid∗. For instance, in
the [LW11] analysis, to switch the keys associated with gid∗ from normal to semi-functional, their strategy
is to program � (gid∗) to output an element in G1 × G2 (i.e., introduce a G2 component into � (gid∗)). This
introduces an additional blinding factor into the secret keys associated with gid∗, which allows the reduction
to replace a normal key for gid∗ with a semi-functional one. Before moving on to the next gid∗∗ ≠ gid∗, they
need to first restore � (gid∗) to outputting an element of G1. Otherwise, they cannot switch keys associated
with gid∗∗ to semi-functional ones. In our construction, we replace the random oracle � with a keyed hash
function. This means the public parameters is already committing to the value of � (gid) before knowing
exactly which user identifiers gid the adversary will query in the security proof. Thus, executing a similar
proof strategy [LW11] would require the adversary to pre-commit to the gid’s for which it will require keys.
This leads to a statically-secure scheme.

To prove adaptive security in this work, we instead rely on a delayed programming strategy. Like [LW11], we

inject additional randomness into the hash key ®*8 (for slot 8). We then use this randomness in conjunction with
the encryption randomness to program the user-identifier-specific blinding factors �gid,1 that appear in the
challenge ciphertext. The key observation is that the challenge ciphertext is constructed after the adversary has
selected the user identifier gid8 associated with each slot 8 . We refer to Sections 5.2.4 and 5.2.5 for more details.

An unbounded scheme via obfuscation. To demonstrate the feasibility of multi-authority registered ABE that
can support an unbounded polynomial number of users as well as general circuit access policies, we construct such a
scheme from indistinguishability obfuscation (8O). Our construction shares a similar high-level structure with the
obfuscation-based registered ABE scheme in [HLWW23]. Namely, the master public key mpka for each authority

11

(with attribute a) is a hash of the (gid, pk) pairs registered to that authority while the ciphertext is an obfuscated
program with the relevant authority master public keys mpka, the access policy � , and the message ` embedded
inside. The obfuscated program takes the following inputs:

• a set of attributes (that satisfies the policy (i.e., � (() = 1);

• a user identifier gid∗;

• a public key pk∗a for each a ∈ (together with the associated secret key sk∗a;

• local openings of (gid∗, pk∗a) to mpka for all a ∈ (

The obfuscated program checks that the policy is satisfied, that the secret keys are valid, and that the local openings are
valid. If all of the conditions pass, then the program outputs the message `. We give the formal details along with the
security proof in Section 7. Notably, we leverage function-binding hash functions [FWW23] to avoid a subexponential
security loss in the reduction (i.e., which would be incurred by a proof strategy that iterates over every possible user
identifier gid). Our proof technique here relies on function-binding hash functions for a new class of predicates which
we call unique-block-selection predicates (see Definition 7.3). We show how to construct function-binding hash
functions for this family of predicates using a leveled homomorphic encryption scheme in Appendix C; our approach
follows the same structure as earlier constructions of somewhere statistically binding hash functions [HW15] or
function-binding hash functions for disjunctions [FWW23]. In addition, to support post-challenge corruption queries,
we replace the public-key encryption scheme in the above sketch with a non-committing encryption scheme.

3 Preliminaries

We begin by introducing the notationwe use in this work. Many of our conventions are taken directly from [HLWW23].
We write _ to denote the security parameter. For a positive integer = ∈ N, we write [=] to denote the set {1, . . . , =},
[0, =] to denote the set {0, . . . , =}, and Z= to denote the integers modulo =. For a set (, we write 2(to denote the
power set of (. For a finite set (, we write G r← (to denote sampling an element uniformly at random from (. We use
bold uppercase letters (e.g., A,B) to denote matrices and bold lowercase letters (e.g., u, v) to denote vectors. We use
non-boldface letters to refer to their components (e.g., v = [E1, . . . , E=]

T). We write poly(_) to denote a function that
is bounded by a fixed polynomial in _ and negl(_) to denote a function that is > (_−2) for all 2 ∈ N. We say an event
occurs with overwhelming probability if its complement occurs with negligible probability. We say an algorithm is
efficient if it runs in probabilistic polynomial time in its input length.

Access structures and linear secret sharing. We recall the definition of monotone access structures and linear
secret sharing which we use in this work. Our presentation is taken verbatim from that of [HLWW23].

Definition 3.1 (Access Structure [Bei96]). Let (be a set and let 2(denote the power set of ((i.e., the set of all subsets
of (). An access structure on (is a set A ⊆ 2(\ ∅ of non-empty subsets of (. We refer to the elements of A as the
authorized sets and those not in A as the unauthorized sets. We say an access structure is monotone if for all sets
(1, (2 ∈ 2

(, if (1 ∈ A and (1 ⊆ (2, then (2 ∈ A.

Definition 3.2 (Linear Secret Sharing Scheme [Bei96]). Let Φ be a set of parties. A linear secret sharing scheme over
a ring Z# for Φ is a pair (M, d), whereM ∈ Zℓ×=

#
is a “share-generating” matrix and d : [ℓ] → Φ is a “row-labeling”

function. The pair (M, d) satisfy the following properties:

• Share generation: To share a value B ∈ Z# , sample E2, . . . , E=
r← Z# and define the vector v = [B, E2, . . . , E=]

T.
Then, u = Mv is the vector of shares where D8 ∈ Z# belongs to party d (8) for each 8 ∈ [ℓ].

• Share reconstruction: Let (⊆ Φ be a set of parties and let �(= {8 ∈ [ℓ] : d (8) ∈ (} be the row indices

associated with (. LetM(∈ Z
|�(|×=
#

be the matrix formed by taking the subset of rows inM that are indexed

by �(. If (is an authorized set of parties, then there exists a vector 8(∈ Z
|�(|
#

such that 8T

(
M(= e

T

1, where
e
T

1 = [1, 0, . . . , 0] denotes the first elementary basis vector. Conversely, if (⊆ Φ is an unauthorized set of parties,

12

then e
T

1 is not in the row-span of M (i.e., there does not exist 8(∈ Z
|(|
#

where 8T

(
M(= e

T

1). Equivalently, when
(is unauthorized, there exists a vector v∗ ∈ Z= where the first component E∗1 = 1 such that M(v

∗
= 0 (i.e., the

vector v∗ is orthogonal to the rows of M associated with the attributes in ().

3.1 Composite-Order Pairing Groups

We now recall the notion of a composite-order pairing group along with the primary cryptographic assumptions we
use in this work.

Definition 3.3 (Four-Prime Composite-Order Bilinear Group [BGN05]). A (symmetric) four-prime composite-order
bilinear group generator is an efficient algorithm CompGroupGen that takes as input the security parameter _ and
outputs a description (G,G) , ?1, ?2, ?3, ?4, 6, 4) of a bilinear group where ?1, ?2, ?3, ?4 > 2_ are distinct primes, G and
G) are cyclic groups of order # = ?1?2?3?4, 6 is a generator of G, and 4 : G × G→ G) is a non-degenerate bilinear
map (called the “pairing”). We require that the group operation in G and G) as well as the pairing operation be
efficiently computable.

Notation. Let G be a cyclic group with order # = ?1?2?3?4 and generator 6. In the following, we will write
G1 = 〈6

?2?3?4〉 to denote the subgroup of G of order ?1. We define G2, G3, G4 analogously. By the Chinese Remainder
Theorem, if 61, 62, 63, 64 are generators of G1,G2,G3,G4, respectively, then 61626364 ∈ G is a generator of G, and
moreover, every element ℎ ∈ G can be uniquely written as 6G11 6

G2
2 6

G3
3 6

G4
4 where G1 ∈ Z?1 , G2 ∈ Z?2 , G3 ∈ Z?3 , and

G4 ∈ Z?4 . More generally, for 8, 9 ∈ {1, 2, 3, 4}, we write G8, 9 = 〈6
/?8? 9 〉 to be the subgroup of G of order ?8? 9 . We

define G8, 9,: analogously. In the following description, we will say ℎ ∈ G has a non-trivial component in the G8
subgroup if G8 ≠ 0.

Generalized subgroup assumptions. Security of our construction relies on several variants of the subgroup
decision assumptions introduced by Lewko and Waters [LW10] for constructing adaptively-secure (hierarchical)
identity-based encryption, and subsequently by Lewko et al. [LOS+10] for constructing adaptively-secure attribute-
based encryption. The first four assumptions are special cases of the generalized subgroup decision assumption from
Bellare et al. [BWY11]. Lewko and Waters previously showed that all of the assumptions hold in the generic bilinear
group model. The specific assumption we require are a subset of the assumptions from [GLWW23, Assumption 5.2].

Assumption 3.4 (Subgroup Decision Assumptions [LW10, GLWW23]). Let CompGroupGen be a four-prime
composite-order bilinear group generator. Let (G,G) , ?1, ?2, ?3, ?4, 6, 4) ← CompGroupGen(1_), # = ?1?2?3?4,
G = (G,G) , # , 6, 4), and 61

r← G1, 62
r← G2, 63

r← G3, and 64
r← G4. We now define several pairs of assumptions

D0,D1 where each distribution D1 = (�,)1) consists of a set of common components � together with a challenge
element)1 . We say that such an assumption holds with respect to CompGroupGen if for all efficient adversaries A,
there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[A(�,)0) = 1] − Pr[A(�,)1) = 1] | = negl(_),

where the probability is taken over the choice of the common components � , the challenge element)1 , and the
adversary’s randomness.

Assumption 3.4a: Sample A r← Z# , and let

� = (G, 61, 63, 64) ,)0 = 6
A
1,)1 = (6162)

A .

Assumption 3.4b: Sample B12, B23, A
r← Z# , and let

� = (G, 61, 63, 64, (6162)
B12 , (6263)

B23) ,)0 = (6163)
A ,)1 = (616263)

A .

Assumption 3.4c: Sample B12, B24, A
r← Z# , and let

� = (G, 61, 63, 64, (6162)
B12 , (6264)

B24) ,)0 = (6164)
A ,)1 = (616264)

A .

13

Assumption 3.4d: Sample U, B, Z1, Z2, A
r← Z# , and let

� =

(
G, 61, 62, 63, 64, 6

U
16
Z1
2 , 6

B
16
Z2
2

)
,)0 = 4 (61, 61)

UB ,)1 = 4 (6,6)
A .

Remark 3.5 (Equivalence of Assumption 3.4b and Assumption 3.4c). Observe that Assumption 3.4b and Assumption
3.4c are equivalent up to relabeling of the primes ?3, ?4. For clarity in our reductions, we describe these as separate
assumptions.

4 Multi-Authority Registered ABE

In this section, we formally introduce the concept of multi-authority registered ABE. Our definition combines the
trustless feature of registered ABE [HLWW23], where individual users choose their own public/private keys, together
with the decentralized nature of multi-authority ABE [Cha07, LW11], where different and independent authorities
manage the attributes and public keys associated with their respective domains. For ease of exposition, we focus
on the setting where each authority has one attribute. This readily extends to the setting where we implement an
authority with attributes using single-attribute authorities. In our model, we associate each authority with a
unique authority identifier aid and each user with a unique user identifier gid. By associating a single attribute with
each authority, we can view an access policy as a mapping from a set of authority identifiers onto a Boolean value
(that indicates whether the policy is satisfied or not). We now give the formal definition:

Definition 4.1 (Multi-Authority Registered ABE). Let _ be a security parameter. Let AU = {AU_}_∈N be a family
of authority identifiers, GID = {GID_}_∈N be a family of global user identifiers, and Φ = {Φ_}_∈N be a family
of access policies. We model each access policy ((, i) ∈ Φ_ as a Boolean-valued function i : 2(→ {0, 1} over a set
of authority identifiers (⊆ AU_ . A multi-authority registered ABE scheme ΠMA-RABE with authority identifiers
AU, user identifiers GID, and policy family Φ is a tuple of efficient algorithms ΠMA-RABE = (GlobalSetup,KeyGen,
RegPK,UpdateKey, Encrypt,Decrypt) with the following syntax:

• GlobalSetup(1_) → (gpp, gep): On input the security parameter _, the global setup algorithm outputs a global
set of public parameters gpp and a set of succinct global encryption parameters gep. We assume the global
public parameters gpp and global encryption parameters gep implicitly contain a description of the security
parameter 1_ and the message spaceM (where |M| ≥ 2).

• KeyGen(gpp, gid) → (pkgid, skgid): On input the global public parameters gpp and the user identifier gid, the
key-generation algorithm outputs a public/secret key-pair pkgid and skgid.

• RegPK(gpp, aux, gid, pkgid) → (mpk′, aux′): On input the global public parameters gpp, a (possibly empty)
state aux, a user identifier gid, and a public key pkgid, the registration algorithm deterministically outputs an
updated master public key mpk′ and updated state aux′.

• UpdateKey(gpp, aux, gid) → hskgid: On input the global parameters gpp, a state aux, and a user identifier gid,
the update algorithm deterministically outputs a helper decryption key hskgid.

• Encrypt(gep, ((enc, i), {(aid,mpkaid)}aid∈(enc ,<) → ct: On input the global encryption parameters gep, an
access policy ((enc, i) ∈ Φ_ consisting of a set of authority identifiers (enc ⊆ AU_ and a predicate i : 2(enc →
{0, 1}, the corresponding authority master public keys {(aid,mpkaid)}aid∈(enc , and a message ` ∈ M, the
encryption algorithm outputs a ciphertext ct.

• Decrypt(gpp, (, {(aid, skaid,gid, hskaid,gid)}aid∈(, ct) → `: On input the global public parameters gpp, a set of
authorities (⊆ AU_ , the corresponding set of secret keys skaid,gid, helper decryption keys hskaid,gid for the
authorities in (, and a ciphertext ct, the decryption algorithm either outputs a message `, where ` ∈ M ∪ {⊥}
is either a message or a special symbol ⊥ to indicate a decryption failure.

14

Remark 4.2 (Bounded Setup and Restricted Policy Families). We say a multi-authority registered ABE scheme
supports an a priori bounded number of users if GlobalSetup additionally takes a bound 1! and we only require
correctness where there is a maximum of ! registered users for each authority. Additionally, GlobalSetup can also
optionally take in an explicit policy index describing the class of access policies that the scheme supports. When
unspecified, this is assumed to be a function of the security parameter.

Correctness. Correctness for a multi-authority registered ABE scheme requires that any user who has registered
with a set of authorities (⊆ AU_ that satisfies a ciphertext’s access policy i (i.e., i (() = 1) should be able to decrypt.
This is irrespective of the behavior of malicious users. Much like in multi-authority ABE, to distinguish between
different users and prevent collusion across users, we assume that each user has a unique identifier gid, and we only
support decryption with groups of keys issued under the same gid.

Update efficiency. Like other registration-based primitives [GHMR18, HLWW23, FFM+23, DPY24], when new
users join the system, existing users will periodically need to request (and update) helper decryption keys from
different authorities. Over the lifetime of the system, the number of updates each user needs to request should be
small (as a function of the total number of users). While previous approaches modeled this by requiring that the total
number of updates a user needs to make be polylogarithmic in the total number of registered users, we consider
a more general approach in this work. For example, our approach can capture fine-grained policies such as a user
should only have to update their key if at least) users joined the system since their last update, and moreover, the
total number of updates each user has to make remain polylogarithmic in the total number of registered users.

To capture this more general notion of update efficiency, we introduce an IsReady : N3 → {0, 1} function that
determines whether a particular decryption key (skaid,gid, hskaid,gid) can be used to decrypt a given ciphertext ct
(encrypted with respect to the master public keympkaid) or if an update is necessary. Specifically, the IsReady function
takes as input three parameters (4, 3, ℎ) defined as follows:

• The 4 parameter is associated with the master public key mpkaid and corresponds to the total number of users
registered with authority aid at the time mpkaid was generated.

• The 3 parameter corresponds to the number of users registered with authority aid immediately after user gid
registers with authority aid.

• The ℎ parameter corresponds to the number of users registered with authority aid at the time the last update
was generated.

The IsValid function outputs 1 if and only if a helper decryption key is “up to date” relative to a particular master
public key (i.e., can decrypt correctly). We require that the IsReady predicate satisfy the following basic invariant:

∀4, 3, ℎ ∈ N : ℎ ≥ 4 ≥ 3 =⇒ IsReady(4, 3, ℎ) = 1. (4.1)

This invariant captures the following two properties:

• 4 ≥ 3 means the ciphertext was encrypted with respect to a master public key mpkaid constructed after user
gid registers with authority aid.

• ℎ ≥ 4 says that the helper decryption key hskaid,gid is at least as recent as mpkaid (i.e., helper decryption keys
should be backwards compatible and be able to decrypt ciphertexts associated with older versions of the master
public key).

We remark that these are minimal requirements on the IsReady function, and we can impose more stringent require-
ments. For example, in Remark 4.4, we describe an IsReady function that corresponds to the standard requirement that
the total number of updates a user has to request from a given authority scale polylogarithmically with the number
of users registered with the particular authority. In contrast, an IsReady predicate that only satisfies the minimal
requirement from Eq. (4.1) could yield a scheme where users must retrieve an update from an authority whenever a
new user joins the system. Other choices of IsReady in turn capture different update efficiency requirements.

15

Definition 4.3 (Correctness and Compactness). Let ΠMA-RABE = (GlobalSetup,KeyGen,RegPK,UpdateKey, Encrypt,
Decrypt) be a multi-authority registered ABE scheme with authority identifiers AU = {AU_}_∈N, user identifiers
GID = {GID_}_∈N, and policy family Φ = {Φ_}_∈N. For a security parameter _, an adversary A, and an IsReady

predicate satisfying Eq. (4.1), we define the correctness game between A and the challenger:

• Setup phase: The challenger starts by sampling the global parameters (gpp, gep) ← GlobalSetup(1_) and
gives (gpp, gep) toA. The challenger also initializes a dictionary D that maps authority identifiers aid to tuples
(2, :, 9, (mpk0, . . . ,mpk2), aux), where the components are defined as follows:

– 2 represents the total number of users registered to this authority.

– : = (3, pkgid∗ , skgid∗) is a tuple representing the target user identifier gid∗ ∈ GID_ . Here, 3 ∈ N denotes
the number of users registered with authority aid immediately after gid∗ is registered, and (pkgid∗ , skgid∗)
are the public/secret keys associated with gid∗ and authority aid (as sampled by the challenger in the
security game). If the adversary has not yet registered a target user, then : = ⊥.

– 9 = (ℎ, hskgid∗) is a tuple containing the counter value ℎ ∈ N when the helper decryption key hskgid∗ for
the target user gid∗ was last requested (for authority aid). If the adversary has not yet registered a target
user or requested an update, then 9 = ⊥.

– (mpk0, . . . ,mpk2) is the list of master public keys associated with the authority after each registration. In
other words, mpk0 is the initial master public key associated with authority aid (before any registrations)
and mpk8 is the 8

th master public key after the first 8 users have registered with aid.

– aux is the auxiliary state of authority aid.

Initially, for every authority aid ∈ AU_ , the challenger initializes 2 = 0, : = ⊥, 9 = ⊥, mpk0 = ⊥, and aux = ⊥
and sets D[aid] := (2, :, 9, (mpk0), aux).

• Query phase: During the query phase, the adversary A is able to make the following queries:

– Non-target registration query: In a non-target registration query, the adversary A specifies a user
identifier gid ∈ GID_ , a public key pkgid, and an authority aid ∈ AU_ . The challenger responds as
follows:

1. The challenger retrieves (2, :, 9, (mpk0, . . . ,mpk2), aux) ← D[aid].

2. The challenger registers the key by computing (mpk2+1, aux
′) ← RegPK(gpp, aux, gid, pkgid).

3. The challenger updates its dictionary by setting D[aid] := (2 + 1, :, 9, (mpk0, . . . ,mpk2+1), aux
′) and

replies to A with (mpk2+1, aux
′).

– Target registration query: In a target registration query, the adversary specifies a user identifier
gid∗ ∈ GID_ and an authority aid ∈ AU_ . The challenger responds as follows:

1. If the adversary previously made a target registration query on any user identifier gid ≠ gid∗, then
the challenger halts with output 0. If the adversary previously made a non-target registration query
for gid∗ to authority aid, then the challenger also halts with output 0.

2. Otherwise, the challenger retrieves (2, :, 9, (mpk0, . . . ,mpk2), aux) ← D[aid].

3. The challenger samples a public/secret key-pair (pkaid,gid∗ , skaid,gid∗) ← KeyGen(gpp, gid∗) and then
registers pkaid,gid∗ by computing (mpk2+1, aux

′) ← RegPK(gpp, aux, gid∗, pkaid,gid∗).

4. The challenger sets : = (2 + 1, pkaid,gid∗ , skaid,gid∗) and updates its dictionary by setting D[aid] :=
(2 + 1, :, 9, (mpk0, . . . ,mpk2+1), aux

′) and replies to A with (mpk2+1, aux
′, pkaid,gid∗ , skaid,gid∗).

– Request update query: In a request-update query, the adversary specifies an authority identifier
aid. The challenger looks up (2, :, 9, (mpk0, . . . ,mpk2), aux) ← D[aid] . If : = ⊥, then the challenger
halts with output 0. Otherwise, the challenger parses : = (3, pkgid∗ , skgid∗) and computes hsk′ ←
UpdateKey(gpp, aux, pkgid∗). It sets 9

′
= (2, hsk′) and updates its dictionary by setting

D[aid] := (2, :, 9 ′, (mpk0, . . . ,mpk2), aux).

16

• Challenge phase: During the challenge phase, the adversary A specifies an access policy ((enc, i), a list
of indices {4aid}aid∈(enc indicating which public key to use for each authority, and a message ` ∈ M. The
challenger responds with a challenge ciphertext constructed as follows:

1. For each aid ∈ (enc, the challenger looks up (2aid, :aid, 9aid, (mpkaid,0, . . . ,mpkaid,2aid), auxaid) = D[aid] . If
:aid = ⊥, then the challenger halts with output 0. Otherwise, it parses :aid = (3aid, pkaid,gid∗ , skaid,gid∗). If
4aid > 2aid for any aid ∈ (enc, then the challenger halts with outputs 0.

2. Otherwise, the challenger computes ct← Encrypt(gep, ((enc, i), {(aid,mpkaid,4aid)}aid∈(enc ,<), which it
sends to the adversary.

The adversary then sends a set (⊆ (enc of authorities. Then, for each authority aid ∈ (, the challenger looks up
(2aid, :aid, 9aid, (mpkaid,0, . . . ,mpkaid,2aid), auxaid) = D[aid] . The challenger then computes the output as follows:

– If :aid = ⊥ or 9aid = ⊥ for any aid ∈ (, the challenger outputs 0.

– For each aid ∈ (, the challenger parses :aid = (3aid, pkaid,gid∗ , skaid,gid∗) and 9aid = (ℎaid, hskaid,gid∗). The
challenger checks that IsReady(4aid, 3aid, ℎaid) = 1 and outputs 0 if not.

– The challenger computes `′ ← Decrypt(gpp, (, {(aid, skaid, hskaid)}aid∈(, ct). If i (() = 1 and `′ ≠ `, then
the challenger outputs 1. Otherwise the challenger outputs 0.

Perfect correctness. We say that ΠMA-RABE is perfectly correct if for all (possibly unbounded) adversaries A,
Pr[1 = 1] = 0 in the correctness game defined above.

Compactness. We say that ΠMA-RABE is compact if there exists a universal polynomial poly(·, ·) such that the length
of global encryption parameters gep and the length of the master public keys mpk in the above correctness game are
bounded by poly(_, log!), where ! is an upper bound on the number of registration queries algorithm A makes to
any single authority.

Remark 4.4 (Polylogarithmic Update Efficiency). Previous notions of registration-based cryptographic primitives
(e.g., [GHMR18, HLWW23, FFM+23, DPY24]) require that the the number of updates a user has to make over the
lifetime of a system scales polylogarithmically with the total number of registered users. We can capture this property
in our framework by imposing a suitable combinatoric requirement on the IsReady function:

• There exists a family of intervals {[B8 , C8]}8∈N and a universal polynomial poly(·) such that for all ! ∈ N,

– [!] ⊆
⋃
8∈[ℓ] [B8 , C8] where ℓ = poly(log!).

– If ℎ ∈ [B8 , C8] for some 8 ∈ [ℓ], then for all 3 ≤ 4 ≤ C8 , IsReady(4, 3, ℎ) = 1.

In other words, any sequence (of registrations) can be covered by a polylogarithmic number of intervals.
Moreover, updating at any point in an interval ensures that the helper decryption key remains up-to-date until
the number of keys exceeds the endpoint of the interval. Since only polylogarithmically-many intervals are
needed to cover the set [!], each user only needs to update their key a polylogarithmic number of times.

This examples illustrates the flexibility of our approach for modeling the update efficiency requirement for a
registration-based cryptographic scheme. There are alternative efficiency requirements that we can also impose (and
capture) using our formalism.

Remark 4.5 (Succinct Decryption Keys). We say a multi-authority registered ABE scheme has succinct decryption
keys if the following properties hold:

• The size of the secret key skaid,gid and the helper decryption keys hskaid,gid in the system have bounded size
poly(_, log!), where ! is the number of registered users.

• The Decrypt algorithm does not take the global parameters gpp as input.

We note that single-authority registered ABE schemes [HLWW23, FWW23, ZZGQ23, GLWW23, CHW25] all support
succinct decryption keys. The slotted multi-authority registered ABE scheme we construct (Sections 4.1 and 5) also
satisfies this requirement. However, our transformation from the slotted scheme to the full scheme in Section 6 does
not preserve this property in the multi-authority setting.

17

Multi-authority registered ABE security. The security definition of multi-authority registered ABE is similar
to that of plain registered ABE, where the adversary is permitted to register both honest and adversarially-chosen
keys with different authorities. When registering a public key, the adversary specifies a user identifier gid. We then
require semantic security for a challenge ciphertexts as long as the adversary does not possess a set of secret keys
under a common user identifier gid which satisfies the challenge policy. We now give the formal definition:

Definition 4.6 (Security). Let ΠMA-RABE = (GlobalSetup,KeyGen,RegPK,UpdateKey, Encrypt,Decrypt) be a multi-
authority registered ABE scheme with authority spaceAU = {AU_}_∈N, user identifiers GID = {GID_}_∈N, and
policy space Φ = {Φ_}_∈N. For a security parameter _, an adversary A, and a bit 1 ∈ {0, 1}, we define the following
game between A and the challenger:

• Setup phase: The challenger runs gpp ← GlobalSetup(1_) and gives gpp to the adversary. The challenger
also initializes a list of honestly-generated keys K = ∅ and a dictionary D = ∅ that maps authority identifiers
aid ∈ AU_ to the master public key and auxiliary state associated with the authority.

• Query phase: The adversary can now make the following queries:

– Register honest key: In an honest-key-registration query, the adversary specifies an authority identifier
aid ∈ AU_ and a user identifier gid ∈ GID_ . The challenger looks up (mpkaid, auxaid) = D[aid] and
samples a key (pkaid,gid, skaid,gid) ← KeyGen(gpp, gid). Then, the challenger registers (mpk′aid, aux

′
aid
) ←

RegPK(gpp, auxaid, gid, pkaid,gid) and updates its public key D[aid] := (mpk′aid, aux
′
aid
). The challenger

replies to A with (mpk′aid, aux
′
aid
, pkaid,gid) and adds the entry (aid, gid, skaid,gid) to K .

– Register corrupted key: In a corrupt-key-registration query, the adversary specifies an authority identi-
fier aid ∈ AU_ , a user identifier gid, and a public key pkgid. The challenger looks up (mpkaid, auxaid) =
D[aid] and computes (mpk′aid, aux

′
aid
) ← RegPK(gpp, auxaid, gid, pkaid,gid). The challenger updates the

public key D[aid] := (mpk′aid, aux
′
aid
) and replies to A with (mpk′aid, aux

′
aid
).

– Corrupt honest key: In a corrupt-key-query, the adversary specifies an authority identifier aid ∈ AU_

and a user identifier gid ∈ GID_ . If there exists an entry of the form (aid, gid, skaid,gid) in K for some
skaid,gid, then the challenger replies with skaid,gid. Otherwise, it replies with ⊥.

– Challenge: In a challenge query, the adversary chooses two messages (`∗0, `
∗
1) ∈ M and a policy ((enc, i

∗).
The challenger replies with ct← Encrypt(gep, ((enc, i

∗), {mpkaid}aid∈(enc , `
∗
1
). The adversary can make

at most one challenge query.

After the adversary finishes making queries, it outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

For a user identifier gid ∈ GID_ , let (gid ⊆ (enc to be the set of authority identifiers aid ∈ (enc where the adversary
either made a corrupt-key-query or a corrupt-key-registration query on (aid, gid). We say that an adversary A is
admissible if i∗ ((gid) = 0 for all gid ∈ GID_ . We say that a multi-authority registered ABE scheme is secure if for
all efficient and admissible adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N, we have
that | Pr[1′ = 1 | 1 = 0] − Pr[1′ = 1 | 1 = 1] | = negl(_) in the above security game.

Remark 4.7 (Post-Challenge Corruption Queries). Definition 4.6 allows the adversary to make additional corruption
queries after it makes the challenge query. One may recall that in the setting of (single-authority) registered
ABE [HLWW23], it suffices to consider security without post-challenge corruption queries. As shown in [HLWW23,
Lemma 4.10], security without post-corruption corruption queries generically implies security with post-corruption
queries. This is because the adversary can always issue corruption queries on all of the keys registered to attribute sets
(that do not satisfy its challenge policy right before it chooses the challenge ciphertext (since the policy associated
with the challenge ciphertext completely determines whether a particular attribute set is corruptible or not). However,
in the multi-authority setting, the adversary has the additional flexibility of corrupting individual attributes (registered
to different authorities). As a result, we cannot rely on this argument to conclude that security without post-challenge
corruption queries implies security with post-challenge corruption queries.

As a simple example, suppose an adversary registers honest keys for user gid to two attributes 01 and 02 and
chooses (01 ∧ 02) as its challenge policy. In the multi-authority setting, the adversary is allowed to corrupt either

18

attribute 01 or attribute 02. As long as it does not corrupt both of them, then the set of keys it possesses remains
insufficient to decrypt the challenge ciphertext. Importantly, the adaptive adversary could choose to corrupt 01 or 02
after it sees the challenge ciphertext. The analogous notion in the single-authority setting means that the adversary
can either choose to corrupt the user (and learn the key for 01 and 02) or not corrupt the user (and learn neither of
the keys). The ability to selective corrupt individual attribute keys is a key difference between the single-authority
and the multi-authority settings, and this distinction is the reason we explicitly consider and analyze post-challenge
corruption queries throughout this work.

4.1 Slotted Multi-Authority Registered ABE

To construct multi-authority registered ABE, we follow the [HLWW23] template of first defining a slotted version
where each authority supports a bounded number of users !. In this model, users generate their public keys for a
particular slot 8 ∈ [!]. Then, given ! public keys pk1, . . . , pk! (one for each slot), the authority can aggregate them
into a master public key mpk. Note that aggregation takes all ! keys at once. Unlike Definition 4.1, there is no notion
of users dynamically joining the system in a slotted multi-authority registered ABE scheme. We show in Section 6 how
to generically transform a slotted multi-authority registered ABE scheme into a standard multi-authority registered
ABE scheme.

Definition 4.8 (Slotted Multi-Authority Registered ABE). Let _ be a security parameter. Let AU = {AU_}_∈N be
a family of authority identifiers, GID = {GID_}_∈N be a family of global user identifiers, and Φ = {Φ_}_∈N be a
family of access policies. We model each access policy ((, i) ∈ Φ_ as a Boolean-valued function i : 2(→ {0, 1} over
a set of authority identifiers (⊆ AU_ . A slotted multi-authority registered ABE scheme ΠsMA-RABE with authority
identifiersAU, user identifiers GID, and policy familyΦ is a tuple of efficient algorithms ΠsMA-RABE = (GlobalSetup,
KeyGen, IsValid,Aggregate, Encrypt,Decrypt) with the following syntax:

• GlobalSetup(1_, 1!) → (gpp, gep): On input the security parameter _ and the number of slots !, the global
setup algorithm outputs a global set of public parameters gpp and a global encryption parameters gep. We
assume gep is implicitly included in gpp and moreover, that gep contain an implicit description of the security
parameter 1_ and the message spaceM (where |M| ≥ 2).

• KeyGen(gpp, 9) → (pk9 , sk9): On input the public parameters gpp and a target slot 9 ∈ [!], the key-generation
algorithm outputs a public/secret key-pair pk9 and sk9 .

• IsValid(gpp, 9, pk9) → 1: On input the public parameters gpp, a slot index 9 , and a public key pk9 , the validity-
checking algorithm outputs a bit 1 ∈ {0, 1}.

• Aggregate(gpp, {(9, gid9 , pk9)} 9∈[!]) → (mpk, {(9, hsk9)} 9∈[!]): On input the public parameters gpp together
with ! global user identifiers gid9 and public keys pk9 , the aggregation algorithm deterministically outputs a
master public key mpk and a set of helper decryption keys {(9, hsk9)} 9∈[!] .

• Encrypt(gep, ((enc, i), {(aid,mpkaid)}aid∈(enc , `) → ct: Given the global encryption parameters gep, an access
policy ((enc, i) ∈ Φ_ consisting of a set of authority identifiers (enc ⊆ AU_ and a predicate i : 2(enc → {0, 1},
a collection of authority master public keys {(aid,mpkaid)}aid∈(enc , and a message `, the encryption algorithm
outputs a ciphertext ct.

• Decrypt(gpp, (, 9, {(aid, skaid, hskaid)}aid∈(, ct) → `: Given the global public parameters gpp, a set of authorities
(⊆ AU_ , a decryption slot 9 , a set of secret keys and helper decryption keys {(aid, skaid, hskaid)}aid∈(, and a
ciphertext ct, the decryption algorithm outputs a message ` ∈ M.

Moreover, the above algorithms should satisfy the following properties:

• Completeness: For all _, ! ∈ N and all indices 8 ∈ [!],

Pr

[
IsValid(gpp, 9, pk9) = 1 :

gpp← GlobalSetup(1_, 1!)
(pk9 , sk9) ← KeyGen(gpp, 9)

]
= 1.

19

• Correctness: Take any _, ! ∈ N, any (gpp, gep) in the support ofGlobalSetup(1_, 1!), any policy ((enc, i) ∈ Φ_ ,
any decryption index 9∗ ∈ [!], any target user identifier gid∗ ∈ GID_ , any decryption set (∗ ⊆ (enc where
i ((∗) = 1, any collection of key-pairs (pk9∗,aid, sk9∗,aid) in the support of KeyGen(1_, 9∗) associated with
authorities aid ∈ (∗, any collection of user identifiers {(9, aid, gid9,aid)} (9,aid) ∈ [!]\{ 9∗ }×(enc , any collection of
public keys {(9, aid, pk9,aid)} (9,aid) ∈ [!]\{ 9∗ }×(enc where IsValid(gpp, 9, pk9,aid) = 1, and any message ` ∈ M.
Then, define the following quantities:

– For all aid ∈ (enc, let (mpkaid, hsk1,aid, . . . , hsk!,aid) = Aggregate(gpp, {(9, gid9,aid, pk9,aid)} 9∈[!]) where
gid9∗,aid = gid∗.

– Let ct← Encrypt(gep, ((enc, i), {(aid,mpkaid)}aid∈(enc , `).

Then ΠsMA-RABE is correct if

Pr[Decrypt(gpp, (∗, 9∗, {(aid, sk9∗,aid, hsk9∗,aid)}aid∈(∗ , ct) = `] = 1.

• Compactness: There exists a universal polynomial poly(·, ·) such that the length of the global encryption param-
eter gep output by Setup(1_, 1!) and the length of the master public keys |mpkaid | output by Aggregate(gpp, ·)
satisfy |gep|, |mpkaid | = poly(_, log!).

• Security: Let 1 ∈ {0, 1} be a bit. For an adversary A, define the following security game between A and a
challenger:

– Setup phase: On input the security parameter 1_ , the adversary A begins by outputting the number
of slots 1! . The challenger then samples (gpp, gep) ← GlobalSetup(1_, 1!) and gives gpp and gep to A.
The challenger also initializes a counter ctr = 0, an (empty) dictionary D = ∅, and an (empty) set C = ∅.

– Pre-challenge query phase: Adversary A can now issue the following queries:

∗ Key-generation query: In a key-generation query, the adversary specifies a slot index 8 ∈ [!].
The challenger responds by incrementing the counter ctr ← ctr + 1, sampling (pkctr, skctr) ←
KeyGen(gpp, 8) and replies with (ctr, pkctr) to A. The challenger adds ctr ↦→ (8, pkctr, skctr) to the
dictionary D.

∗ Key-corruption query: In a key-corruption query, the adversary specifies an index 1 ≤ 2 ≤ ctr. In
response, the challenger looks up the tuple (8′, pk′, sk′) ← D[2] and replies to A with sk′.

– Challenge phase: In the challenge phase, the adversary first specifies a policy ((enc, i) ∈ Φ_ . For each
authority aid ∈ (enc and each slot 8 ∈ [!], the adversary specifies a tuple (28,aid, gid8,aid, pk

∗
8,aid) where

either 28,aid ∈ {1, . . . , ctr} to reference a challenger-generated key or 28,aid = ⊥ to reference a key outside
this set. We require that every honestly-generated key 28,aid ∈ {1, . . . , ctr} appear at most once. The
adversary also specifies two messages `∗0, `

∗
1 ∈ M. The challenger responds by constructing pk8,aid as

follows:

∗ If 28,aid ∈ {1, . . . , ctr}, then the challenger looks up D[28,aid] = (8
′, pk′, sk′) and sets pk8,aid = pk′. The

challenger adds (8, aid) to C if the adversary issued a key-corruption query on index 28,aid.

∗ If 28,aid = ⊥, then the challenger sets pk8,aid = pk∗8,aid and adds (8, aid) to C.

∗ Finally, the challenger checks IsValid(gpp, 8, pk8,aid) = 1. If not, the challenger halts with output 0>

The challenger computes (mpkaid, hskaid,1, . . . , hskaid,!) = Aggregate(gpp, {(gid8,aid, pk8,aid)}8∈[!]) for all
aid ∈ (enc and replieswith the challenge ciphertext ct

∗ ← Encrypt(gep, ((enc, i
∗), {(aid,mpkaid)}aid∈(enc , `

∗
1
).

SinceAggregate is deterministic and can be run byA itself, there is no need to provide (mpk, hsk1, . . . , hsk!)
toA. Similarly, there is no advantage to allowing the adversary to select the challenge policy and messages
after seeing the aggregated key.

– Post-challenge query phase: Adversary A can now issue the following queries:

∗ Key-corruption query: These are handled as in the pre-challenge query phase. If the index 2 = 28,aid
corresponds to a counter value that the adversary provided to the challenger in the challenge phase,
then the challenger adds (8, aid) to the corruption set C.

20

– Output phase: At the end of the experiment, algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output
of the experiment.

We say an adversaryA is admissible if there does not exist a global id gid∗ and slot 8∗ ∈ [!] such that the set of
attributes {aid : (8∗, aid) ∈ C ∧ gid8,aid = gid∗} satisfies policy i∗. Finally, we say that ΠsMA-RABE is secure if for
all polynomials ! = !(_) and all efficient and admissible adversariesA, there exists a negligible function negl(·)
such that for all _ ∈ N, |Pr[1′ = 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | = negl(_) in the above security experiment.

Semi-malicious correctness and security. The correctness and security requirements for a slotted multi-authority
registered ABE scheme considers adversarially-chosen public keys. We also consider a weaker correctness and security
requirement where the corresponding properties only hold for public keys that are in the support of the honest
key-generation algorithm. These correspond to “semi-malicious” variants of the original properties. In Appendix A,
we show that any semi-maliciously-secure scheme can be generically transformed into one that satisfies Definition 4.8
by attaching a NIZK proof of knowledge of the encryption randomness to each public key.

Definition 4.9 (Semi-Malicious Correctness and Security). We say a slotted multi-authority registered ABE scheme
ΠsMA-RABE is semi-maliciously secure if in the challenge phase of the security game from Definition 4.8, the adversary
is additionally required to provide the randomness for any public key that it samples itself. In other words, in the
challenge phase:

• Challenge phase: Specifically, if the adversary specifies a tuple (28,aid, gid8,aid, pk
∗
8,aid) during the challenge

phase where 28,aid = ⊥, the adversary must also provide randomness A8,aid. where pk
∗
8,aid = KeyGen(gpp, 8; A8,aid).

If the adversary provides an incorrect or malformed A8,aid, then the challenger halts with output 0.

Along similar lines, we say that ΠsMA-RABE satisfies semi-malicious correctness if the correctness requirement is
relaxed to only consider collection of public keys {pk8 }8∈[!] where pk8 is in the support of KeyGen(gpp, 8). Since
neither semi-malicious correctness nor semi-malicious security references an explicit IsValid function, we can omit
the IsValid function and completeness requirements when considering a semi-maliciously secure scheme.

5 Constructing Slotted Multi-Authority Registered ABE from Pairings

In this section, we show how to construct a slotted multi-authority registered ABE scheme that supports access
structures that possess a linear secret sharing scheme (Definition 3.2). Our construction relies on a composite-order
pairing group. For simplicity, we impose a one-use restriction on the policy where we assume that each attribute
is used at most once in the policy. For a fixed value : , we can transform any one-use scheme into a :-use scheme
via the [LOS+10] approach of introducing : duplicate copies of each attribute. We then show that our scheme is
semi-maliciously secure (Definition 4.9), which we can boost to full security using NIZK proofs (see Appendix A).

Construction 5.1 (Slotted Multi-Authority Attribute-Based Registration-Based Encryption.). Let CompGroupGen be
a four-prime composite-order bilinear group generator. Let AU = {AU_}_∈N be a universe of authority identifiers
and GID = {GID_}_∈N be the set of user identifiers where GID_ = {0, 1}

_ . Let Φ = {Φ_}_∈N be a family of access
policies where Φ_ consists of access policies ((enc, (M, d)) that can be described by a single-use2 linear secret sharing
scheme (M, d) over a maximum of % = % (_) attributes. We index the rows ofM with the elements of (enc (under a
canonical ordering). Our construction will rely on the following %-wise independent hash function mapping a user
identifier gid ∈ [2_] to a group element:

• � (®* , gid): On input a vector of group elements ®* = (*1, . . . ,*%) and a user identifier gid ∈ [2_], output

� (®* , gid) :=
∏
8∈[%]

*
gid8−1

8 .

In other words, � (®* , gid) can be viewed as evaluating a polynomial whose coefficients are determined by ®* at
the point gid.

2Specifically, this means the row-labeling function d is an injective mapping.

21

We construct a slotted multi-authority registered ABE scheme ΠsMA-RABE = (GlobalSetup,KeyGen,Aggregate,
Encrypt,Decrypt) with authority identifiers AU, user identifiers GID, and policy family Φ as follows:3

• GlobalSetup(1_, 1!): On input the security parameter _ and the number of slots !, the setup algorithm starts by
sampling (G,G) , ?1, ?2, ?3, ?4, 6, 4) ← CompGroupGen(1_). The setup algorithm now constructs the following
quantities:

– Let G = (G,G) , # , 61, 63, 64, 4) to be the (public) group description, where # = ?1?2?3?4.

– Sample random exponents U, V r← Z# and set group elements ℎ = 6
V
1 and / = 4 (61, 61)

U .

– For each slot index 8 ∈ [!], construct the following elements.

∗ Sample exponents C8 , g8
r← Z# .

∗ For each 0 ∈ [%], sample D8,0
r← Z# and set*8,0 = (6164)

D8,0 . Let ® 8 = (*8,1, . . . ,*8,%)

∗ For each 8, 9 ∈ [!] where 8 ≠ 9 and 0 ∈ [%], sample W 9,8,0
r← Z# .

∗ Define the group elements �8 = (6163)
C8 and �8 = 6

U
1ℎ

C8 (6364)
g8 .

∗ For 9 ≠ 8 ∈ [!] and 0 ∈ [%], let � 9,8,0 = *
C8
9,0 (6364)

W 9,8,0 and let ®� 9,8 = (� 9,8,1, . . . , � 9,8,%).

– Output the global public parameters

gpp =

(
G , / , 6 , ℎ , {(�8 , �8 , ®*8 }8∈[!], { ®� 9,8 } 9≠8∈[!]

)
(5.1)

and global encryption parameters gep = (G, /, 6, ℎ). The message space for the scheme is G) .

• KeyGen(gpp, 8): On input the global parameters gpp (with components given by Eq. (5.1)) and a slot index
8 ∈ [!], the key-generation algorithm samples A8

r← Z# and computes)8 = 6
A8
1 . Then for each 9 ≠ 8 , it computes

the cross terms +9,8 ← �A89 . Finally, it outputs the public key pk8 and the secret key sk8 defined as follows:

pk8,aid = ()8 , {+9,8 } 9≠8∈[!]) and sk8 = A8 .

Note that key generation does not tie keys to specific attributes or user identifiers.

• Aggregate(gpp, (gid1, pk1), . . . , (gid!, pk!)): On input the global parameters gpp (with components given by
Eq. (5.1)), a collection of ! global identifiers gid8 and associated public keys pk8 = ()8 , {+9,8 } 9≠8∈[!]), the
aggregation algorithm computes the following components:

)̂ =

∏
9∈[!]

)9 , +̂8 =
∏
9≠8

+8, 9 , & =

∏
9∈[!]

� (®* 9 , gid9) , '8 =
∏
9≠8

� (®� 9,8 , gid9).

Finally, it outputs the master public key mpk and the slot-specific helper decryption keys hsk8 where

mpk =
(
)̂ ,&

)
and hsk8 =

(
mpk, 8, +̂8 , '8

)
.

• Encrypt(gep, ((enc, (M, d)), {(aid,mpkaid)}aid∈(enc , `): On input the global master public key gep = (G, /, 6, ℎ),
an access policy ((enc, (M, d)), authority master public keys mpkaid =

(
)̂aid, &aid

)
, and a message ` ∈ G) ,

the encryption algorithm starts by sampling a secret exponent B r← Z# . Then it constructs the ciphertext
components as follows:

– Message-embedding components: First, let �1 = ` · /
B and �2 = 6

B
1.

– Policy-specific components: Sample v r← Z=
#
with E1 = B and w

r← Z=
#
with F1 = 0. Then, for each

aid ∈ (enc, sample [aid
r← Z? and let

�3,aid ← ℎm
T
aid

v)̂ −Baid&
m

T
aid

w

aid
6
[aid
4 and �4,aid ← 6

−m⊤
aid

w

1 ,

where mT

aid
∈ Z=

#
denotes the aidth row ofM. It then outputs the ciphertext

ct =
(
((enc, (M, d)),�1,�2, {(aid,�3,aid,�4,aid)}aid∈(enc

)
.

3As noted in Definition 4.9, we do not require an IsValid function if we are only considering semi-malicious correctness and security.

22

• Decrypt(gpp, (, 8, {(aid, skaid, hsk8,aid)}aid∈(, ct): On input the global public parameters gpp (with components
given by Eq. (5.1)), a set of authorities (⊆ AU_ , a slot 8 ∈ [!], a set of secret keys skaid = A8,aid, helper keys
hsk8,aid =

(
mpkaid, 8, +̂8,aid, '8,aid

)
, where mpkaid =

(
)̂aid, &aid

)
, and the ciphertext

ct =
(
((enc, (M, d)),�1,�2, {(aid,�3,aid,�4,aid)}aid∈(enc

)
where M ∈ Z%

′×=
#

, the decryption algorithm proceeds as follows:

– If (does not satisfy the policy ((enc, (M, d)), then the decryption algorithm outputs ⊥.

– Otherwise, parse (= {aid1, . . . , aid |(| }. LetM(be the matrix formed by taking the subset of rows inM

indexed by the image of elements of (under d . Since (is authorized, let 8(∈ Z
|(|
#

be a vector such that
8T

(
M(= e

T

1.

– For each row 9 ∈ [|(|] ofM(, compute the associated row component

� 9 = 4 (�3,aid9 , �8) · 4
(
�2, +̂8,aid9 · �

A8,aid9
8

)
· 4 (�4,aid9 , '8,aid9).

Finally, output
�1

4 (�2, �8)
·

∏
9∈[|(|]

�
l(,9

9 . (5.2)

5.1 Correctness and Compactness

Theorem 5.2 (Correctness). Construction 5.1 satisfies semi-malicious correctness (Definition 4.9).

Proof. Take any security parameter _ ∈ N, slot parameter ! ∈ N, and index 8 ∈ [!]. Consider the following
components in the correctness experiment:

• Let (gpp, gep) ← Setup(1_, 1!, 1%) where

gpp =

(
G , / , 6 , ℎ , {(�8 , �8 , ®*8 }8∈[!], { ®� 9,8 } 9≠8∈[!]

)
and gep = (G, /, 6, ℎ).

By construction, the slot components can be written as �8 = (6163)
C8 and �8 = 6

U
1ℎ

C8 (6364)
g8 . The hash key can

be written as ® 8 = (*8,1, . . . ,*8,%) where*8,0 = (6164)
D8,0 and ®� 9,8 = (� 9,8,1, . . . , � 9,8,%) where � 9,8,0 = *

C8
9,0 (6364)

W 9,8,0 .

• Take any (pk8 , sk8) in the support of KeyGen(gpp, 8). Then, we can write sk8 = A8 and pk8 =
(
)8 , &8 , '8 , {+9,8 } 9≠8

)
where

)8 = 6
A8
1 , +9,8 = �

A8
9 = (6163)

C 9A8 . (5.3)

• Take any 9∗ ∈ [!] and any set of public keys {pk9,aid} 9≠9∗∈[!] in the support of KeyGen(gpp, 9). We can write

pk9,aid =
(
)9,aid, {+9,8,aid}8∈[!]\{ 9 }

)
where)9,aid = 6

A8,aid
1 and +9,8,aid = �

A8,aid
9 .

• For each aid, let (mpkaid, hsk1,aid, . . . , hsk!,aid) = Aggregate(gpp, (gid1,aid, pk1,aid), . . . , (gid!,aid, pk!,aid)). The

master public key mpkaid and the 8th slot-specific helper decryption key hsk8,aid can be written as follows:

mpkaid =
(
)̂aid, &aid

)
and hsk8,aid =

(
mpkaid, 8, +̂8,aid, '8,aid

)
,

where

)̂aid =
∏
9∈[!]

)9,aid , +̂8,aid =
∏
9≠8

+8, 9,aid , &aid =

∏
9∈[!]

� (® 9 , gid9) , '8,aid =
∏
9≠8

� (®� 9,8 , gid9) .

23

• Take any message ` ∈ G) , policy ((enc, (M, d)) ∈ Φ_ , and set of public keys {mpkaid}aid∈(enc . Let ct ←
Encrypt(gep, ((enc, (M, d)), {mpkaid}aid∈(enc , `). Then,

ct =
(
((enc, (M, d)),�1,�2, {(aid,�3,aid,�4,aid)}aid∈(enc

)
,

where

�1 = ` · /
B , �2 = 6

B
1 , �3,aid = ℎ

m
T
aid

v)̂ −Baid&
m

T
aid

w

aid
6
[aid
4 , �4,aid = 6

−m⊤
aid
D

1 .

We now show that Decrypt(gpp, {skaid, hsk8,aid}aid∈(, (, 8, ct) outputs `. Denote the elements as (= {aid1, . . . , aid |(| }.
LetM(be the matrix formed by taking the subset of rows inM indexed by (. By assumption, we know that (satisfies

the policy, so let 8(∈ Z
|(|
#

be a vector such that 8T

(
M(= e

T

1. We break up the decryption relation (Eq. (5.2)) into
several pieces and analyze them individually:

• For each row 9 ∈ [|(|], we have

� 9 =
(
4 (�3,aid9 , �8) · 4 (�2, +̂8,aid9 · �

A8,aid9
8) · 4 (�4,aid9 , '8,aid9)

)
.

We consider each of the individual components:

– First consider 4 (�3,aid9 , �8). Since ℎ2 ∈ G1 and)̂ ,&aid ∈ G1,4, this means �3,aid9 ∈ G1,4. Since �8 ∈ G1,3,
the pairing 4 (�3,aid9 , �8) only contains components in the order-?1 subgroup of the target group. Thus,
we can write

4 (�3,aid9 , �8) = 4

(
ℎ
m

T
aid9

v
)̂ −Baid9

&
m

T
aid9

w

aid
6
[aid9
4 , (6163)

C8

)

= 4
©­«
ℎ
m

T
aid9

v
∏
ℓ∈[!]

) −Bℓ,aid9

∏
ℓ∈[!]

� (® ℓ , gid9)
m

T
aid9

w
, 6C81

ª®¬
= 4 (61, ℎ)

C8m
T
aid9

v
· 4 (61, 61)

−BC8 ·
∑

ℓ A 9,aid9 ·
∏
ℓ∈[!]

4
(
6, � (® ℓ , gid9)

)C8mT
aid9

w

.

– Next, we compute 4 (�2, +̂8,aid9 ·�
A8,aid9
8). Since�2 ∈ G1, this term only contains components in the order-?1

subgroup of the target group:

4 (�2, +̂8,aid9 · �
A8,aid9
8) = 4

(
6B1, �

A8,aid9
8 ·

∏
ℓ≠8

�
Aℓ,aid9
8

)

= 4 (61, �8)
B
∑

ℓ ∈ [!] Aℓ,aid9

= 4 (61, 61)
BC8

∑
ℓ ∈ [!] Aℓ,aid9 .

– Finally, we compute 4 (�4,aid9 , '8,aid9). Since �4,aid9 ∈ G1, this term only contains components in the
order-?1 subgroup of the target group:

4 (�4,aid9 , '8,aid9) = 4

(
6
−mT

aid9
w

1 ,
∏
ℓ≠8

� (®�ℓ,8 , gid9)

)

=

∏
ℓ≠8

4 (61, � (®�ℓ,8 , gid9))
−mT

aid9
w

=

∏
ℓ≠8

4 (61, � (®�ℓ,8 , gid9))
−mT

aid9
w
.

Combining these three equations, and using the fact that � (®�ℓ,8 , gid) = � (® ℓ , gid)
C8 , we can write

� 9 = 4 (61, ℎ)
C8m

T
aid9

v
· 4 (61, � (® 8 , gid8))

C8m
T
aid9

w
. (5.4)

24

• Using Eq. (5.4), we can write∏
9∈[|(|]

�
l(,9

9 = 4 (61, ℎ)
C88

T
(
M

T
(
v · 4 (61, � (® 8 , gid8))

C88
T
(
M

T
(
w .

Since 8T

(
M(= e

T

1, E1 = B , andF1 = 0, this expression is equal to 4 (61, ℎ)
BC8 . This means

�1

4 (�2, �8)
·

∏
9∈[|(|]

�
l(,9

9 =
` · 4 (61, 61)

UB

4 (61, 61)UB4 (61, ℎ)BC8
· 4 (61, ℎ)

BC8 = `. �

Theorem 5.3 (Compactness). Construction 5.1 is compact.

Proof. This follow by inspection. Both the global encryption parameters gpp output by GlobalSetup and the authority
master public keys output by Aggregate consist of a constant number of group elements. �

Theorem 5.4. Suppose Assumption 3.4 holds with respect to CompGroupGen. Then Construction 5.1 satisfies semi-

malicious security (Definition 4.9).

We give the proof of Theorem 5.4 in the next section (Section 5.2).

5.2 Security Analysis of Construction 5.1 (Proof of Theorem 5.4)

Similar to many previous pairing-based registered ABE schemes [HLWW23, ZZGQ23, GLWW24, AT24], our security
analysis follows the classic dual-system methodology [Wat09, LW10]. In this setting, we define a notion of semi-
functional slots and semi-functional ciphertexts. Generally speaking, the semi-functional components have additional
blinding factors in the G2 subgroups. When a key registered to a semi-functional slot is used to decrypt a normal
ciphertext or vice versa, the G2 component is only present in the semi-functional key but not in the ciphertext (or
vice versa), and decryption works as usual. However, when a key associated with a semi-functional slot is used to
decrypt a semi-functional ciphertext, then there are random G2 components in both the key and in the ciphertext. In
this case, decryption fails, and in fact, we can argue that the randomness in the G2 component suffices to blind the
message. More precisely, the semi-functional ciphertexts in our scheme have the following form:

ct =
(
(M, d) , �1 , �26

Z2
2 ,

{(
aid,�3,:6

Z3,:
2 , �4,:

)}
:∈[]

)
,

where Z2, Z3,: ∈ Z# . Analogously, the components associated with a semi-functional slot in our scheme will have the
following structure:

�8 = 6
C8
1 6

g8
3 , �8 = 6

U
1ℎ

C8 (626364)
g ′8 .

5.2.1 Main Hybrids

We now give the formal hybrid structure for our security analysis. Each experiment is parameterized implicitly by a
security parameter _, a bit 1 ∈ {0, 1}, and an adversary A. We begin by describing the main hybrids we use in our
security analysis:

• Hyb
(1)
real

: This is the semi-malicious security game where the challenger encrypts message `∗
1
. We recall the

main steps here:

– Setup phase: In the setup phase, the adversary A sends the slot count 1! and the authority bound 1% to
the challenger. The challenger starts by initializing a counter ctr ← 0 and an (empty) dictionary D to
keep track of the key-generation queries. The challenger then samples (gpp, gep) ← GlobalSetup(1_, 1!)
as follows:

∗ Let (G,G) , ?1, ?2, ?3, ?4, 6, 4) ← CompGroupGen(1_). Let # = ?1?2?3?4 and G = (G,G) , # , 6, 4) be
the group description.

25

∗ Sample generators 61
r← G1, 63

r← G3, 64
r← G4, exponents U, V , and let ℎ = 6

V
1 .

∗ For each 8 ∈ [!], 0 ∈ [%], and 9 ≠ 8 ∈ [!], sample C8 , g8 , D8,0, W 9,8,0
r← Z# . Then, define

�8 = (6163)
C8 , �8 = 6

U
1�

V
8 (6364)

g8 , ®*8 = (*8,1, . . . ,*8,%) where*8,0 = (6164)
D8,0 .

For 8 ∈ [!] and 9 ≠ 8 ∈ [!], compute the hash-function cross terms

®� 9,8 = (� 9,8,1, . . . , � 9,8,%) where � 9,8,0 = *
C8
9,0 (6364)

W 9,8,0 .

∗ Finally, compute / = 4 (61, 61)
U and set

gpp =

(
G , / , 6 , ℎ , {(�8 , �8 , ®*8 }8∈[!], { ®� 9,8 } 9≠8∈[!]

)
(5.5)

and the global encryption parameters gep = (G, /, 6, ℎ).

– Query phase: The challenger responds to the adversary’s queries as follows:

∗ Key-generation query: When algorithmA makes a key-generation query on a slot 8 , the challenger
starts by incrementing the counter ctr← ctr + 1 and samples Actr

r← Z# . It then computes)8 ← 6Actr1
and +9,8 ← �Actr9 for 9 ≠ 8 . The challenger sets the public key to be pkctr = ()8 , {+9,8 } 9≠8∈[!]) and
responds with (ctr, 8, pkctr). It defines skctr = Actr and adds the mapping ctr ↦→ (8, pkctr, skctr) to the
dictionary D.

∗ Corruption query: If the adversary makes a corruption query on an index 1 ≤ ctr∗ ≤ ctr, the
challenger looks up the entry (8′, pk′, sk′) ← D[ctr∗] and replies to A with sk′.

– Challenge phase: In the challenge phase, the adversary specifies a set of authorities (enc ⊆ AU,
an associated challenge policy i∗ = (M, d) where M ∈ Z%

′×=
#

and d : (enc → [%
′], and two messages

`∗0, `
∗
1 ∈ G) . In addition, for each slot 8 ∈ [!] and attribute aid ∈ (enc, the adversary A specifies a tuple

(28,aid, gid8,aid, pk
∗
8,aid) to the challenger. The challenger sets up the public keys pk8,aid as follows:

∗ If 28,aid ∈ {1, . . . , ctr}, the challenger looks up the entry D[28,aid] = (8
′, aid′, pk′, sk′). If 8 = 8′ and

aid = aid′, the challenger sets pk8,aid = pk′ and A8,aid = sk′. Otherwise, the challenger aborts with
output 0.

∗ If 28,aid = (⊥, A8,aid), then the challenger checks that pk∗8,aid = KeyGen(gpp, 8; A8,aid) outputs 1. If not,
the challenger aborts with output 0. Otherwise, it sets pk8,aid = pk∗8,aid.

For each public key pk8,aid, the challenger parses it as pk8,aid = ()8,aid, {+9,8,aid} 9≠8∈[!]). Next, the challenger
computes the aggregated components:

)̂aid =
∏
9∈[!]

)9,aid , &aid =

∏
9∈[!]

� (®* 9 , gid9,aid).

The challenger samples B r← Z# . Then, for each aid ∈ (enc, the challenger samples [aid
r← Z# and

constructs the challenge ciphertext components as follows:

∗ Message-embedding components: First, let �1 = `
∗
1
· /B and �2 = 6

B
1.

∗ Policy-specific components: Sample E2, . . . , E=,F2, . . .F=
r← Z# for the linear secret sharing

scheme and let v = [B, E2, . . . , E=]
T and w = [0,F2, . . .F=]

T. Then, for each aid ∈ (enc, sample a
blinding factor [aid

r← Z# . Let

�3,aid = ℎ
m

T
aid

v)̂ −Baid&
m

T
aid

w

aid
6
[aid
4 and �4,aid = 6

−m⊤
aid

w

1 ,

where mT

aid
∈ Z=

#
denotes the d (aid)th row ofM.

The challenger replies with

ct∗ =
(
((enc, (M, d)),�1,�2, {(aid,�3,aid,�4,aid)}aid∈(enc

)
.

26

– Post-challenge query phase: The challenger responds to queries using the same procedure as in the
pre-challenge query phase described above.

– Output phase: At the end of the game, the adversary outputs a bit 1′ ∈ {0, 1}, which is also the output of
the experiment.

• Hyb
(1)
0 : Same as Hyb

(1)
real

except for the following (primarily syntactic) changes:

– Challenge phase: The challenger constructs the ciphertext components as described in Hyb
(1)
real

except it
modifies the distribution of the policy-specific components:

∗ Policy-specific components: Sample E2, . . . , E=,F2, . . .F=
r← Z# and let v = [B, E2, . . . , E=]

T and
w = [0,F2, . . .F=]

T. Then, for each aid ∈ (enc, sample a blinding factor [aid
r← Z# and set

�3,aid = (6
B
1)
VmT

aid
v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w6
[aid
4 and �4,aid = 6

−mT
aid

w

1 .

• Hyb
(1)
1 : Same asHyb

(1)
0 , except the challenge ciphertext is replaced by a semi-functional ciphertext. Specifically,

in the challenge phase, the challenger proceeds as follows:

– Challenge phase: The challenger then constructs the challenge ciphertext components as follows:

∗ Message-embedding components: First, let �1 = `
∗
1
· /B and �2 = (6162)

B .

∗ Policy-specific components: Sample E2, . . . , E=,F2, . . .F=
r← Z# and let v = [B, E2, . . . , E=]

T and
w = [0,F2, . . .F=]

T. Then, for each aid ∈ (enc, sample a blinding factor [aid
r← Z# and set

�3,aid = ((6162)
B)Vm

T
aid

v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w6
[aid
4 and �4,aid = 6

−mT
aid

w

1 .

• Hyb
(1)
2,ℓ for ℓ ∈ [0, !]: Same as Hyb

(1)
2 , except the challenger change the first ℓ slots to semi-functional.

Specifically, during the setup phase, for all 8 ≤ ℓ , the challenger sets the slot component �8 as

�8 = 6
U
1�

V
8 (626364)

g8 .

The rest of the public parameters (as well as the challenge ciphertext), are generated as in Hyb
(1)
1 .

• Hyb
(1)
rand

: Same as Hyb
(1)
2,! except when constructing the challenge ciphertext, the challenger samples �1

r← G) .
Importantly, this distribution is independent of the message.

We write Hyb
(1)
8 (A) to denote the random variable corresponding to the output of an execution of Hyb

(1)
8 with

adversary A (and the implicit security parameter _).

5.2.2 Proofs of Main Hybrids

In this section, we show that the output distributions of each adjacent pair of adjacent hybrid experiments in
Section 5.2.1 are indistinguishable.

Lemma 5.5. For all adversaries A, all 1 ∈ {0, 1}, and all _ ∈ N,

Pr[Hyb
(1)
real
(A) = 1] = Pr[Hyb

(1)
0 (A) = 1]

Proof. The only difference betweenHyb
(1)
real

andHyb
(1)
0 is that inHyb

(1)
0 , the challenger replaces)̂ −B

aid
with (6B1)

−
∑

8∈ [!] A8,aid

in �3,aid. By construction, in both experiments, for every 8 ∈ [!] and attribute aid ∈ (enc, we have that)8,aid = 6
A8,aid
1 .

Otherwise, the challenger in both experiments abort. In this case,

)̂ −Baid =
©­«
∏
8∈[!]

6
A8,aid
1

ª®¬
−B

= 6

∑
8∈ [!]A8,aid

· (−B)

1 = (6B1)
−

∑
8∈ [!] A8,aid .

Thus, these experiments are identical. �

27

Lemma 5.6. Suppose Assumption 3.4a holds with respect to CompGroupGen. Then, for all efficient adversaries A and

1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[Hyb(1)0 (A) = 1] − Pr[Hyb
(1)
1 (A) = 1]

�� = negl(_).

Proof. Suppose there exists an efficient adversaryA that distinguishes betweenHyb
(1)
0 andHyb

(1)
1 with non-negligible

advantage Y. We use A to construct an adversary B that breaks Assumption 3.4a with the same advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, 61, 63, 64,)) where G = (G,G) , # , 6, 4),
61 ∈ G1, 63 ∈ G3, 64 ∈ G4, and either) = 6B1 or) = (6162)

B for some B r← Z# . The components that depend on
the challenge element) is colored for clarity.

2. Algorithm B starts running algorithm A and receives the slot bound 1! as well as the authority bound 1% .

3. Algorithm B samples U, V r← Z# . It sets / ← 4 (61, 61)
U , and ℎ ← 6

V
1 .

4. For each 8 ∈ [!], 0 ∈ [%], and 9 ≠ 8 ∈ [!], sample C8 , g8 , D8,0, W 9,8,0
r← Z# . Algorithm B constructs the slot

components as follows:

�8 = (6163)
C8 , �8 = 6

U
1�

V
8 (6364)

g8 , ®*8 = (*8,1, . . . ,*8,%) where*8,0 = (6164)
D8,0 .

For 8 ∈ [!] and 9 ≠ 8 ∈ [!], it computes the hash-function cross terms

®� 9,8 = (� 9,8,1, . . . , � 9,8,%) where � 9,8,0 = *
C8
9,0 (6364)

W 9,8,0 .

Algorithm B gives the global parameters

gpp =

(
G , / , 6 , ℎ , {(�8 , �8 , ®*8 }8∈[!], { ®� 9,8 } 9≠8∈[!]

)
and the global encryption parameters gep = (G, /, 6, ℎ). to the adversary A. It also initializes a counter ctr = 0
and an (empty) dictionary D to keep track of the key-generation queries.

5. In the query phase, algorithm B responds to the adversary’s queries as in Hyb
(1)
0 and Hyb

(1)
1 . Namely, when

algorithm A makes a key-generation query on a slot 8 , algorithm B increments the counter ctr = ctr + 1
and samples A8

r← Z# . It then computes)8 = 6A81 , and +9,8 = �A89 for 9 ≠ 8 . The challenger sets the public
key to be pkctr = ()8 , {+9,8 } 9≠8∈[!]) and responds with (ctr, pkctr). It defines skctr = A8 and adds the mapping
ctr ↦→ (8, pkctr, skctr) to the dictionaryD. If the adversaryA makes a corruption query on an index 1 ≤ ctr′ ≤ ctr,
the challenger looks up the entry (8′, pk′, sk′) = D[ctr′] and replies to A with sk′.

6. In the challenge phase, after A specifies a set of authorities (enc ⊆ AU, an associated challenge policy
i∗ = (M, d) where M ∈ Z%

′×=
#

and d : (enc → [%
′], and two messages `∗0, `

∗
1 ∈ G) . In addition, for each each

slot 8 ∈ [!] and attribute aid ∈ (enc, it also specifies a tuple (28,aid, gid8,aid, pk
∗
8,aid). Algorithm B sets up the

public keys pk8,aid as in Hyb
(1)
0 ,Hyb

(1)
1 :

• If 28,aid ∈ {1, . . . , ctr}, the challenger looks up the entry D[28,aid] = (8
′, pk′, sk′). If 8 = 8′, the challenger

sets pk8,aid = pk′ and A8,aid = sk′. Otherwise, the challenger aborts with output 0.

• If 28,aid = (⊥, A8,aid), then the challenger checks that pk∗8,aid = KeyGen(gpp, 8; A8,aid). If not, the challenger
aborts with output 0. Otherwise, it sets pk8,aid = pk∗8,aid.

Finally, for each index 8 ∈ [!] and aid ∈ (enc, algorithm B parses pk8,aid = ()8,aid, {+9,8,aid} 9≠8∈[!]).

7. Algorithm B constructs the challenge ciphertext as follows:

• Message-embedding components: Set �1 = `
∗
1
· 4 (61,))

U and �2 =) .

28

• Policy-specific components: Sample E2, . . . , E=,F2, . . .F=
r← Z# and let v′ = [1, E2, . . . , E=]

T and w =

[0,F2, . . .F=]
T. Then, for each aid ∈ (enc, sample blinding factor [aid

r← Z# and set

�3,aid =)
VmT

:
v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w6
[aid
4 and �4,: = 6

−mT
aid

w

1 .

8. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

Observe that 4 (61,))
U
= 4 (61, 61)

UB regardless of whether) = 6B1 or) = (6162)
B . If) = 6B1, then algorithm B perfectly

simulates an execution of Hyb
(1)
0 . Alternatively, when) = (6162)

B , algorithm B perfectly simulates Hyb
(1)
1 . Thus,

algorithm B breaks Assumption 3.4a with the same advantage Y. �

Lemma 5.7. For all adversaries A, 1 ∈ {0, 1}, and all _ ∈ N,�� Pr[Hyb(1)1 (A) = 1]
�� = �� Pr[Hyb(1)2,0 (A) = 1]

��.
Proof. Experiments Hyb

(1)
1 and Hyb

(1)
2,0 are identical by definition. �

Lemma 5.8. Suppose Assumption 3.4 holds with respect toCompGroupGen. Then, for all ℓ ∈ [!], all efficient adversaries

A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,�� Pr[Hyb(1)2,ℓ−1 (A) = 1] − Pr[Hyb
(1)
2,ℓ (A) = 1]

�� = negl(_).

To prove Lemma 5.8, we will define a sequence of intermediate hybrids. We defer this to Section 5.2.3.

Lemma 5.9. Suppose Assumption 3.4d holds with respect to CompGroupGen. Then for all efficient adversaries A, and

all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,�� Pr[Hyb(1)2,! (A) = 1] − Pr[Hyb
(1)
rand
(A) = 1]

�� = negl(_).

Proof. Suppose there exists an efficient adversaryA where
�� Pr[Hyb(1)2,! (A) = 1] − Pr[Hyb

(1)
rand
(A) = 1]

�� = Y for some
non-negligible Y. We use A to construct an adversary B that breaks Assumption 3.4d with the same advantage:

1. First, algorithm B receives a challenge (G, 61, 62, 63, 64, -,. ,)) where G = (G,G) , # , 6, 4), 61 ∈ G1, 62 ∈ G2,

63 ∈ G3, 64 ∈ G4, - = 6U16
Z1
2 , . = 6B16

Z2
2 for some U, B, Z1, Z2

r← Z# , and either) = 4 (61, 61)
UB or) = 4 (6,6)A ,

where A r← Z# . The components that depend on the challenge elements -,.,) are colored for clarity.

2. Algorithm B starts running algorithm A and receives the slot bound 1! as well as the authority bound 1% .

3. Algorithm B samples V r← Z# . It sets / = 4 (61, -), and ℎ = 6
V
1 .

4. For each 8 ∈ [!], 0 ∈ [%], and 9 ≠ 8 ∈ [!], algorithm B samples C8 , g8 , D8,0, W 9,8,0
r← Z# . Algorithm B constructs

the (semi-functional) slot components as follows:

�8 = (6163)
C8 , �8 = -�

V
8 (626364)

g8 , ®*8 = (*8,1, . . . ,*8,%) where*8,0 = (6164)
D8,0 .

For 9 ≠ 8 ∈ [!], it computes the hash-function cross terms

®� 9,8 = (� 9,8,1, . . . , � 9,8,%) where � 9,8,0 = *
C8
9,0 (6364)

W 9,8,0 .

Algorithm B gives the global parameters

gpp =

(
G , / , 6 , ℎ , {(�8 , �8 , ®*8 }8∈[!], { ®� 9,8 } 9≠8∈[!]

)
and the global encryption parameters gep = (G, /, 6, ℎ). to the adversary A. It also initializes a counter ctr = 0
and an (empty) dictionary D to keep track of the key-generation queries.

29

5. In the query phase, algorithm B responds to the adversary’s queries as in Hyb
(1)
2,! and Hyb

(1)
rand

. Namely, when
algorithm A makes a key-generation query on a slot 8 , algorithm B increments the counter ctr = ctr + 1
and samples A8

r← Z# . It then computes)8 = 6A81 , and +9,8 = �A89 for 9 ≠ 8 . The challenger sets the public
key to be pkctr = ()8 , {+9,8 } 9≠8∈[!]) and responds with (ctr, pkctr). It defines skctr = A8 and adds the mapping
ctr ↦→ (8, pkctr, skctr) to the dictionaryD. If the adversaryA makes a corruption query on an index 1 ≤ ctr′ ≤ ctr,
the challenger looks up the entry (8′, pk′, sk′) = D[ctr′] and replies to A with sk′.

6. In the challenge phase, after A specifies a set of authorities (enc ⊆ AU, an associated challenge policy
i∗ = (M, d) where M ∈ Z%

′×=
#

and d : (enc → [%
′], and two messages `∗0, `

∗
1 ∈ G) . In addition, for each each

slot 8 ∈ [!] and attribute aid ∈ (enc, it also specifies a tuple (28,aid, gid8,aid, pk
∗
8,aid). Algorithm B sets up the

public keys pk8,aid as in Hyb
(1)
2,! ,Hyb

(1)
rand

:

• If 28,aid ∈ {1, . . . , ctr}, the challenger looks up the entry D[28,aid] = (8
′, pk′, sk′). If 8 = 8′, the challenger

sets pk8,aid = pk′ and A8,aid = sk′. Otherwise, the challenger aborts with output 0.

• If 28,aid = (⊥, A8,aid), then the challenger checks that pk∗8,aid = KeyGen(gpp, 8; A8,aid). If not, the challenger
aborts with output 0. Otherwise, it sets pk8,aid = pk∗8,aid.

Finally, for each index 8 ∈ [!] and aid ∈ (enc, algorithm B parses pk8,aid = ()8,aid, {+9,8,aid} 9≠8∈[!]).

7. Algorithm B constructs the challenge ciphertext as follows:

• Message-embedding components: Set �1 = `
∗
1
·) and �2 = . .

• Policy-specific components: Sample E2, . . . , E=,F2, . . .F=
r← Z# and let v′ = [1, E2, . . . , E=]

T and w =

[0,F2, . . .F=]
T. Then, for each aid ∈ (enc, sample blinding factor [aid

r← Z# and set

�3,aid = .
VmT

aid
v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w6
[aid
4 , �4,aid = 6

−mT
aid

w

1 .

8. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

We now show that depending on the challenge) , algorithm B either simulates an execution of Hyb
(1)
2,! or Hyb

(1)
rand

where Z2 mod ?2 plays the role of B mod ?2:

• First, / = 4 (61, -) = 4 (61, 6
U
16
Z1
2) = 4 (61, 61)

U .

• Consider the components of the global public parameters gpp:

�8 = -�
V
8 (626364)

g8 = 6U16
Z1
2 �

V
8 (6263)

g8 = 6U1�
V
8 6
Z1+g8
2 (6364)

g8

%8,aid = (.63)
X8,aid = ((6B16

Z2
2)63)

X8,aid ,

where g8 , X8,aid
r← Z# . Since g8

r← Z# , the distributions of g8 +Z1 and g8 are identical. Since the other components

�8 , ®*8 , ®� 9,8 are sampled using the same procedure as in Hyb
(1)
2,! and Hyb

(1)
rand

, we conclude that these components
of gpp are correctly distributed.

• Algorithm B answers the queries using the same procedure as Hyb
(1)
2,! and Hyb

(1)
rand

.

• Next, the challenge ciphertext components�2,�3,aid,�4,aid are distributed exactly as inHyb
(1)
2,! orHyb

(1)
rand

where

Z2 mod ?2 plays the role of B mod ?2. Since B
r← Z# in Hyb

(1)
2,! or Hyb

(1)
rand

, the distribution of B mod ?2 and
Z2 mod ?2 are identical.

Consider now the distribution of the challenge) :

• If) = 4 (61, 62)
UB , then �1 = `

∗
1
·) = `∗

1
· /B . In this case, algorithm B correctly simulates experiment Hyb

(1)
3,! .

• If) = 4 (61, 62)
A where A r← Z# , the distribution of �1 is uniform in G) , and algorithm B correctly simulates

experiment Hyb
(1)
rand

.

Thus, algorithm B breaks Assumption 3.4d with the same distinguishing advantage as A and the claim follows. �

Combining Lemmas 5.5 to 5.9, Theorem 5.4 holds, as required. �

30

5.2.3 Proof of Lemma 5.8

In this section, we give the proof of Lemma 5.8. To do so, we first define a sequence of intermediate hybrid experiments:

• iHyb
(1)
ℓ,0 : Same as Hyb

(1)
2,ℓ−1 except the challenger makes some syntactic changes on how the cross terms ®� 9,ℓ are

generated. Specifically, for 9 ≠ ℓ ∈ [!], the challenger sets

®� 9,ℓ = (� 9,ℓ,1, . . . , � 9,ℓ,%) where � 9,ℓ,0 = �
D 9,0

ℓ (6364)
W 9,ℓ,0 .

• iHyb
(1)
ℓ,1 : Same as iHyb

(1)
ℓ,0 , except the challenger introduces a G2 component to �ℓ . Specifically, the challenger

sets �ℓ = (616263)
Cℓ . Note that this modification propagates to all terms that depend on �ℓ (e.g., �ℓ and � 9,ℓ).

• iHyb
(1)
ℓ,2 : Same as iHyb

(1)
ℓ,1 , except the challenger adds a gid-specific blinding value to the G2,4 subgroup of the

challenge ciphertext:

– Let GSℓ be the set of user identifiers gid ∈ {0, 1}
_ registered to slot ℓ in the challenge ciphertext. Without

loss of generality, we assume |GSℓ | = % .
4 Let gid1, gid2, . . . , gid% be a fixed (e.g. lexicographic) ordering

on the elements of GSℓ .

– For gid9 ∈ GSℓ , sample w9
r← Z=

#
. Define 9aid ∈ [%] to be the index where gid9aid = gidℓ,aid.

– When preparing the challenge ciphertext, the challenger now constructs �3,aid as

�3,aid = ((6162)
B)Vm

T
aid

v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w (6264)
m

T
aid

w9aid6
[aid
4 .

• iHyb
(1)
ℓ,3 : Same as iHyb

(1)
ℓ,2 , but the challenger randomizes the G2 component of �ℓ by computing

�ℓ = 6
U�

V
ℓ (626364)

gℓ .

• iHyb
(1)
ℓ,4 : Same as iHyb

(1)
ℓ,3 , but the challenger removes the gid-specific blinding factor from the challenge

ciphertext. Namely, the challenger now constructs �3,aid as:

�3,aid = ((6162)
B)Vm

T
aid

v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w 6
[aid
4 .

• iHyb
(1)
ℓ,5 : Same as iHyb

(1)
ℓ,4 , but the challenger removes the G2 subgroup component from �ℓ . Namely, the

challenger sets �ℓ = (6163)
Cℓ .

• iHyb
(1)
ℓ,6 : Same as iHyb

(1)
ℓ,5 , but the challenger reverts to sampling ®� 9,ℓ as before. Namely, the challenger computes

®� 9,ℓ = (� 9,ℓ,1, . . . , � 9,ℓ,%) where � 9,ℓ,0 = *
Cℓ
9,0 (6364)

W 9,ℓ,0 .

We now show that each pair of adjacent hybrids are indistinguishable.

Lemma 5.10. For all ℓ ∈ [!], all adversaries A, all 1 ∈ {0, 1}, and all _ ∈ N,

Pr[Hyb
(1)
2,ℓ−1 (A) = 1] = Pr[iHyb

(1)
ℓ,0 (A) = 1] .

4There is a maximum of % authorities associated with the challenge ciphertext, so in the security game, there can be at most % user identifiers
associated with any single slot (e.g., if the slot is associated with a different gid for every authority). If GSℓ contains fewer than % user identifiers,
the challenger pads GSℓ with arbitrary authorities until it contains exactly % (distinct) authorities.

31

Proof. The only difference between the two experiment is the challenger replaces* Cℓ9,0 inHyb
(1)
2,ℓ−1 with�

D 9,0

ℓ in iHyb
(1)
ℓ,0

when constructing � 9,ℓ,0 for all 0 ∈ [%]. In both experiments, * 9,0 = (6164)
D 9,0 and �ℓ = (6163)

Cℓ . Then, in Hyb
(1)
2,ℓ−1,

we can write
*
Cℓ
9,0 (6364)

W 9,ℓ,0 = 6
D 9,0Cℓ
1 6

D 9,0Cℓ
4 (6364)

W 9,ℓ,0 = 6
D 9,0Cℓ
1 6

W 9,ℓ,0
3 6

D 9,0Cℓ+W 9,ℓ,0
4 .

On the other hand, in iHyb
(1)
ℓ,0 ,

�
D 9,0

ℓ (6364)
W 9,ℓ,0 = 6

D 9,0Cℓ
1 6

D 9,0Cℓ
3 (6364)

W 9,ℓ,0 = 6
D 9,0Cℓ
1 6

D 9,0Cℓ+W 9,ℓ,0
3 6

W 9,ℓ,0
4 .

These terms are identical in the G1 subgroup and only differ in the G3 and G4 subgroups. However, the exponents
W 9,ℓ,0 are uniformly random (over Z#) and only appear in � 9,ℓ,0 . Thus, over the randomness of W 9,ℓ,0 , the G3 and G4

components of both these terms are uniformly random and independent of all other components in both cases. We
conclude that these two distributions are identically distributed. �

Lemma 5.11. Suppose Assumption 3.4b holds with respect to CompGroupGen. Then, for all ℓ ∈ [!], all efficient and

admissible adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[iHyb(1)ℓ,1 (A) = 1] − Pr[iHyb
(1)
ℓ,0 (A) = 1]

�� = negl(_).

Proof. Suppose that there exists an efficient adversary A that can distinguish these two experiments with non-
negligible advantage Y. We use A to construct an adversary B that breaks Assumption 3.4b with the same advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, 61, 63, 64, -,. ,)) where G = (G,G) , # , 6, 4),
61 ∈ G1, 63 ∈ G3, 64 ∈ G4, - = (6162)

B12 , . = (6263)
B23 and B12, B23

r← Z# , and either) = (6163)
A or

) = (616263)
A for some A r← Z# . The components that depend on the challenge elements -,.,) are colored

for clarity.

2. Algorithm B starts running algorithm A and receives the slot bound 1! as well as the authority bound 1% .

3. Algorithm B samples U, V r← Z# . It sets / = 4 (61, 61)
U and ℎ = 6

V
1 .

4. For each 8 ∈ [!], 0 ∈ [%], and 9 ≠ 8 ∈ [!], algorithm B samples C8 , g8 , D8,0, W 9,8,0
r← Z# . Algorithm B constructs

the (semi-functional) slot components as follows:

• For 8 < ℓ , algorithm B sets

�8 = (6163)
C8 , �8 = 6

U
1�

V
8 .

g86g84 , ®*8 = (*8,1, . . . ,*8,%) where*8,0 = (6164)
D8,0 .

• For 8 = ℓ , algorithm B sets

�ℓ =) , �ℓ = 6
U
1�

V
ℓ (6364)

gℓ , ®*8 = (*8,1, . . . ,*8,%) where*8,0 = (6164)
D8,0 .

• For 8 > ℓ , algorithm B sets

�8 = (6163)
C8 , �8 = 6

U
1�

V
8 (6364)

g8 , ®*8 = (*8,1, . . . ,*8,%) where*8,0 = (6164)
D8,0 .

Note that the exponent A from the challenge plays the role of Cℓ .

5. For 9 ≠ ℓ ∈ [!], algorithm B computes the hash-function cross terms as follows:

®� 9,ℓ = (� 9,ℓ,1, . . . , � 9,ℓ,%) where � 9,ℓ,0 = �
D 9,0

ℓ (6364)
Wℓ,9,0 .

For all 8 ∈ [!] \ {ℓ} and all 9 ≠ 8 , it sets the hash-function cross terms as follows:

®� 9,8 = (� 9,8,1, . . . , � 9,8,%) where � 9,8,0 = *
C8
9,0 (6364)

W 9,8,0 .

32

Algorithm B gives the global parameters

gpp =

(
G , / , 6 , ℎ , {(�8 , �8 , ®*8 }8∈[!], { ®� 9,8 } 9≠8∈[!]

)
and the global encryption parameters gep = (G, /, 6, ℎ). to the adversaryA. It also initializes a counter ctr← 0
and an (empty) dictionary D to keep track of the key-generation queries.

6. In the query phase, algorithm B responds to the adversary’s queries as in iHyb
(1)
ℓ,0 and iHyb

(1)
ℓ,1 . Namely, when

algorithm A makes a key-generation query on a slot 8 , algorithm B increments the counter ctr = ctr + 1
and samples A8

r← Z# . It then computes)8 = 6A81 , and +9,8 = �A89 for 9 ≠ 8 . The challenger sets the public
key to be pkctr = ()8 , {+9,8 } 9≠8∈[!]) and responds with (ctr, pkctr). It defines skctr = A8 and adds the mapping
ctr ↦→ (8, pkctr, skctr) to the dictionaryD. If the adversaryA makes a corruption query on an index 1 ≤ ctr′ ≤ ctr,
the challenger looks up the entry (8′, pk′, sk′) = D[ctr′] and replies to A with sk′.

7. In the challenge phase, after A specifies a set of authorities (enc ⊆ AU, an associated challenge policy
i∗ = (M, d) where M ∈ Z%

′×=
#

and d : (enc → [%
′], and two messages `∗0, `

∗
1 ∈ G) . In addition, for each each

slot 8 ∈ [!] and attribute aid ∈ (enc, it also specifies a tuple (28,aid, gid8,aid, pk
∗
8,aid). Algorithm B sets up the

public keys pk8,aid as in iHyb
(1)
ℓ,0 , iHyb

(1)
ℓ,1 :

• If 28,aid ∈ {1, . . . , ctr}, the challenger looks up the entry D[28,aid] = (8
′, pk′, sk′). If 8 = 8′, the challenger

sets pk8,aid = pk′ and A8,aid = sk′. Otherwise, the challenger aborts with output 0.

• If 28,aid = (⊥, A8,aid), then the challenger checks that pk∗8,aid = KeyGen(gpp, 8; A8,aid). If not, the challenger
aborts with output 0. Otherwise, it sets pk8,aid = pk∗8,aid.

Finally, for each index 8 ∈ [!] and aid ∈ (enc, algorithm B parses pk8,aid = ()8,aid, {+9,8,aid} 9≠8∈[!]).

8. Algorithm B constructs the challenge ciphertext as follows:

• Message-embedding components: Set �1 = `
∗
1
· 4 (61, -)

U and �2 = - .

• Policy-specific components: Sample E2, . . . , E=,F2, . . .F=
r← Z# and let v′ = [1, E2, . . . , E=]

T and w =

[0,F2, . . .F=]
T. Then, for each aid ∈ (enc, it samples blinding factor [aid

r← Z# and sets

�3,aid = -
VmT

:
v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w6
[aid
4 , �4,: = 6

−mT
aid

w

1 .

9. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

In the above reduction, the challenge exponents A, B12 ∈ Z# play the roles of Cℓ , B ∈ Z# in the underlying hybrids.
Thus, depending on the choice of) , either �ℓ =) = (6163)

Cℓ or �ℓ =) = (616263)
Cℓ . The former corresponds to the

distribution of �ℓ in iHyb
(1)
ℓ,0 while the latter corresponds to the distribution of �ℓ in iHyb

(1)
ℓ,1 . It suffices to argue that

the remaining components are simulated exactly as required:

• First, the only other component of the public parameters gpp that is not generated using the same procedure as

in iHyb
(1)
ℓ,0 and iHyb

(1)
ℓ,1 are the components �8 for 8 < ℓ . For such �8 , observe that as long as B23 ≠ 0 mod ?2 and

B23 ≠ 0 mod ?3 (which holds with overwhelming probability over the choice of g r← Z#), then the distributions

{(6263)
B23g8 : g8

r← Z# } and {(6263)
g8 : g8

r← Z# }

are identically distributed. Since g8 is only revealed in the G2 and G3 subgroup here, the distribution of �8 is
distributed exactly as in the real scheme.

• Next, consider the challenge ciphertext. The reduction computes

�1 = `
∗
1 · 4 (61, (6162)

B12)U = `∗1 · 4 (61, 61)
UB12 = `∗1 · /

B12 ,

which is exactly its distribution in iHyb
(1)
ℓ,0 and iHyb

(1)
ℓ,1 . The remaining ciphertext components are generated

exactly as described in iHyb
(1)
ℓ,0 and iHyb

(1)
ℓ,1 .

33

Thus, with overwhelming probability, algorithm B correctly simulates an execution of iHyb
(1)
ℓ,0 or iHyb

(1)
ℓ,1 . Corre-

spondingly, algorithm B breaks Assumption 3.4b with advantage at least Y − negl(_). �

Lemma 5.12. Suppose Assumption 3.4c holds with respect to CompGroupGen. Then for all ℓ ∈ [!], all efficient

adversaries A, all 1 ∈ {0, 1}, and all _ ∈ N,

�� Pr[iHyb(1)ℓ,2 (A) = 1] − Pr[iHyb
(1)
ℓ,1 (A) = 1]

�� = negl(_).

To prove Lemma 5.12, we will define another sequence of intermediate hybrids that iterates over each user identifier
gid9 ∈ GSℓ registered to slot ℓ of the challenge ciphertext. We defer this to Section 5.2.4.

Lemma 5.13. For all ℓ ∈ [!], all efficient and admissible adversaries A, and all 1 ∈ {0, 1}, there exists a negligible

function negl(·) such that for all _ ∈ N,

�� Pr[iHyb(1)ℓ,3 (A) = 1] − Pr[iHyb
(1)
ℓ,2 (A) = 1]

�� = negl(_).

Proof. We show that the distributions iHyb
(1)
ℓ,3 (A) and iHyb

(1)
ℓ,2 (A) are statistically indistinguishable. This argument

will rely on the additional G2,4 randomization introduced in iHyb
(1)
ℓ,2 . By construction, the only difference between

the two experiments is the distribution of component �ℓ in the G2 subgroup:

�ℓ = 6
U
1�

V
ℓ (6364)

gℓ in iHyb
(1)
ℓ,2

�ℓ = 6
U
1�

V
ℓ (626364)

gℓ in iHyb
(1)
ℓ,3 .

In both experiments, �ℓ = (616263)
Cℓ . Suppose that Cℓ ≠ 0 mod ?2. Since Cℓ

r← Z# , this holds with all but negligible

probability. Consider the following relabeling of the variables in iHyb
(1)
ℓ,2 :

• Let f (V) ∈ Z# be the unique value where f (V) = 0 mod ?1?3?4 and f
(V)

= (Cℓ)
−1gℓ mod ?2. Suppose we write

V = V ′ + f (V) where V ′ r← Z# .

• Let f (w) ∈ Z=
#
be the unique value where f (w) = 0 mod ?1?3?4 and f

(w)
= −B · f (V) · v′ mod ?2. For each

9 ∈ [%], let w9 = w
′
9 + f

(w) where w′9
r← Z=

#
.

By construction, these substitutions preserve the distribution of V and w1, . . . ,w% in iHyb
(1)
ℓ,2 . Consider the remaining

components in the adversary’s view with this variable substitution:

• Consider the components in the global public parameters. First, ℎ = 6
V
1 = 6

V ′

1 . Next �8 = (6163)
C8 for all 8 ≠ ℓ

and �ℓ = (616263)
Cℓ . Consider the distribution of each �8 :

– If 8 < ℓ , then �8 = 6
U
1�

V
8 (626364)

g8 = 6U1�
V ′

8 (626364)
g8 .

– If 8 = ℓ , then

�ℓ = 6
U
1�

V
ℓ (6364)

gℓ = 6U16
Cℓ V
1 6

Cℓ V
2 6

Cℓ V
3 (6364)

gℓ = 6U16
Cℓ V
′

1 6
Cℓ V
′+gℓ

2 6
Cℓ V
′

3 (6364)
gℓ = 6U1�

V ′

ℓ (626364)
gℓ ,

since V = V ′ mod ?1?3?4 and V = V ′ + (Cℓ)
−1gℓ mod ?2.

– If 8 > ℓ , then �8 = 6
U
1�

V
8 6
g8
3 = 6U1�

V ′

8 (6364)
g8 .

The remaining components in the global public parameters gpp do not depend on V or w1, . . . ,w% , and are
thus unchanged.

• Next, when responding to key-generation queries, the challenger does not need to refer to the exponents V or
w1, . . . ,w% . Thus, the challenger’s responses to the key-generation queries are unaffected by this substitution.

34

• Finally, consider the components in the challenge ciphertext. The components �1,�2,�4,aid for aid ∈ (enc are
constructed without referring to the exponents V or w1, . . . ,w% . Thus, it suffices to consider the ciphertext
components �3,aid. For clarity, we will write

�3,aid = (6162)
BVmT

aid
v
′

(6264)
m

T
aid

w9aid ·�′3,aid .

where �′
3,aid

represents the remaining components that can be constructed without referring to V,w1, . . . ,w% .
Then, we have

�3,aid = (6162)
BVmT

aid
v
′

(6264)
m

T
aid

w9aid ·�′3,aid

= 6
BVmT

aid
v
′

1 6
BVmT

aid
v
′+mT

aid
w9aid

2 6
m

T
aid

w9aid

4 ·�′3,aid

= 6
BV ′mT

aid
v
′

1 6
B (V ′+f (V))mT

aid
v
′+mT

aid
(w′9aid

−Bf (V)v′)

2 6
m

T
aid

w
′
9aid

4 ·�′3,aid

= 6
BV ′mT

aid
v
′

1 6
BV ′mT

aid
v
′+mT

aid
w
′
9aid

2 6
m

T
aid

w
′
9aid

4 ·�′3,aid

= (6162)
BV ′mT

aid
v
′

(6264)
m

T
aid

w
′
9aid ·�′3,aid .

using the fact that f (w) = −Bf (V)v′ mod ?2 and f
(V)

= f (w) = 0 mod ?1?4.

With this relabeling of variables, we have recovered the ciphertext distribution in iHyb
(1)
ℓ,3 (with randomness V ′,

w
′
1, . . . ,w

′
%). Thus, the distributions iHyb

(1)
ℓ,3 and iHyb

(1)
ℓ,2 are statistically close. �

Lemma 5.14. Suppose Assumption 3.4c holds with respect to CompGroupGen. Then for all ℓ ∈ [!], all efficient

adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[iHyb(1)ℓ,4 (A) = 1] − Pr[iHyb
(1)
ℓ,3 (A) = 1]

�� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma 5.12. �

Lemma 5.15. Suppose Assumption 3.4b holds with respect to CompGroupGen. Then, for all ℓ ∈ [!], all efficient

adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[iHyb(1)ℓ,5 (A) = 1] − Pr[iHyb
(1)
ℓ,4 (A) = 1]

�� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma 5.11. �

Lemma 5.16. For all ℓ ∈ [!], all adversaries A, all 1 ∈ {0, 1}, and all _ ∈ N,

Pr[iHyb
(1)
ℓ,6 (A) = 1] = Pr[Hyb

(1)
2,ℓ (A) = 1] .

Proof. This follows from a similar argument as the proof of Lemma 5.10. �

Lemma 5.8 now follows by appealing to Lemmas 5.10 to 5.16. �

5.2.4 Proof of Lemma 5.13 (GID Hybrids)

In this section, we give the proof of Lemma 5.13. To do so, we define a set of intermediate hybrids between iHyb
(1)
ℓ,2 and

iHyb
(1)
ℓ,3 (see Section 5.2.3), where we iterate over the user identifiers gid9 ∈ GSℓ associated with slot ℓ of the challenge

ciphertext. At a high level, our argument proceeds by first introducing a random G2 subgroup component to � (gid9).
Then, we use the fact that gid9 cannot be authorized on slot ℓ to show that this is statistically indistinguishable from
directly randomizing the challenge ciphertext component �3,aid for slots registered to gid9 . We can then undo the
� (gid9) randomization and proceed to the next user identifier. We now describe the intermediate hybrid experiments
we use. Each hybrid in this sequence is indexed by 9 ∈ [%].

35

• gHyb
(1,ℓ)
9,0 for 9 ∈ [%]: Same as iHyb

(1)
ℓ,1 , but for all 9aid < 9 (recall 9aid ∈ [%] is the index where gid9aid = gidℓ,aid),

the challenger samples w9
r← Z=

#
and sets

�3,aid = ((6162)
B)Vm

T
aid

v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w (6264)
m

T
aid

w9aid6
[aid
4 .

• gHyb
(1,ℓ)
9,1 : Same as gHyb

(1,ℓ)
9,0 , except the challenger randomizes the G2,4 component of the hash key used to

compute &aid. Specifically, for each 8 ∈ [%], the challenger samples Zℓ,8
r← Z# . Next it computes

®* ′ℓ = (*
′
ℓ,1, . . . ,*

′
ℓ,%) where*

′
ℓ,8 = *ℓ,8 (6264)

Zℓ,8 .

Then, when constructing the challenge ciphertext, the challenger computes

&aid = � (®*
′
ℓ , gidℓ,aid) ·

∏
9∈[!]\{ℓ }

� (®* 9 , gid9,aid).

• gHyb
(1,ℓ)
9,2 : Same as gHyb

(1,ℓ)
9,1 , but the challenger introduces a gid-specific blinding factor. Specifically, the

challenger samples ^ 9
r← Z# and for all aid where 9aid = 9 , it sets

&aid = � (®*
′
ℓ , gidℓ,aid) · (6264)

^ 9 ·
∏

9∈[!]\{ℓ }

� (®* 9 , gid9,aid).

• gHyb
(1,ℓ)
9,3 : Same as gHyb

(1,ℓ)
9,2 , but the challenger removes the hash key randomization from &aid. Specifically,

when preparing the challenge ciphertext, the challenger now computes

&aid =

{∏
9∈[!] � (®* 9 , gid9,aid) · (6264)

^ 9 9aid = 9∏
9∈[!] � (®* 9 , gid9,aid) 9aid ≠ 9 .

• gHyb
(1,ℓ)
9,4 : Same as gHyb

(1,ℓ)
9,3 , but the challenger introduces w9

r← Z=
#
in �3,aid for all aid where 9aid = 9 .

Specifically, the challenger samples w9
r← Z=

#
. Then, for all aid where 9aid = 9 , the challenger defines �3,aid as

follows:
�3,aid = ((6162)

B)Vm
T
aid

v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w (6264)
m

T
aid

w9aid6
[aid
4 .

• gHyb
(1,ℓ)
9,5 : Same as gHyb

(1,ℓ)
9,4 , but the challenger re-introduces the hash key randomization. Namely, the

challenger now sets

&aid =

{
� (®* ′ℓ , gidℓ,aid) ·

∏
9∈[!]\{ℓ } � (®* 9 , gid9,aid) · (6264)

^ 9 9aid = 9

� (®* ′ℓ , gidℓ,aid) ·
∏

9∈[!]\{ℓ } � (®* 9 , gid9,aid) 9aid ≠ 9

• gHyb
(1,ℓ)
9,6 : Same as gHyb

(1,ℓ)
9,5 , except the challenger removes the gid-specific blinding factor from &aid for all

aid where 9aid = 9 . Specifically for all aid where 9aid = 9 , the challenger sets

&aid = � (®*
′
ℓ , gidℓ,aid) ·

∏
9∈[!]\{ℓ }

� (®* 9 , gid9,aid)

We now show that each pair of adjacent hybrids are indistinguishable.

Lemma 5.17. For all ℓ ∈ [!], all adversaries A, all 1 ∈ {0, 1}, and all _ ∈ N,

Pr[iHyb
(1)
ℓ,1 (A) = 1] = Pr[gHyb

(1,ℓ)
1,0 (A) = 1] .

36

Proof. Since there does not exist any indices 9 ∈ [%] where 9 < 1, these two experiments are identical by definition. �

Lemma 5.18. Suppose Assumption 3.4c holds with respect to CompGroupGen. Then, for all ℓ ∈ [!], all 9 ∈ [%], all
efficient adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[gHyb(1,ℓ)9,1 (A) = 1] − Pr[gHyb
(1,ℓ)
9,0 (A) = 1]

�� = negl(_).

To prove Lemma 5.18, we will define another sequence of intermediate hybrid experiments to introduces the re-
randomization factors into the G2,4-subgroup of the hash key components. This step corresponds to the “delayed gid

programming” alluded to in Section 2. We give this hybrid sequence and analysis in Section 5.2.5.

Lemma 5.19. For all ℓ ∈ [!], all 9 ∈ [%], all adversaries A, all 1 ∈ {0, 1}, and all _ ∈ N,

Pr[gHyb
(1,ℓ)
9,2 (A) = 1] = Pr[gHyb

(1,ℓ)
9,1 (A) = 1] .

Proof. We show that the distributions gHyb
(1,ℓ)
9,1 (A) and gHyb

(1,ℓ)
9,2 (A) are identically distributed. By construction,

the only difference between the two experiments is the additional (6264)
^ 9 blinding term in &aid in gHyb

(1,ℓ)
9,2 (A)

whenever 9aid = 9 . In the following, we will interpret each user identifier gid ∈ {0, 1}_ with an integer in the range
[2_]. Then, let Vℓ ∈ Z

%×%
#

be the Vandermonde matrix associated with the elements GSℓ = {gid1, . . . gid% }:

Vℓ =



1 gid1 gid21 · · · gid%−11

1 gid2 gid22 · · · gid%−12
...

...
...

. . .
...

1 gid% gid2% · · · gid%−1%


∈ Z%×%# .

Since gid1, . . . , gid% are unique and moreover, gid8 ≤ 2_ < ?: for all : ∈ {1, 2, 3, 4}, we conclude that gid8 ≠ 0 mod ?:
for all : . Correspondingly, det(Vℓ) =

∏
8≠9 (gid8 − gid9) ≠ 0 mod ?: . In this case, Vℓ is invertible. Now, let v

T

ℓ,8 denote

the 8th row of Vℓ . Then, for any vector u = [D1, . . . , D%]
T, we have

6v
T
ℓ,8u = � (®* , gid8) where

®* = (6D1 , . . . , 6D%).

Consider now the following relabeling of the variables in gHyb
(1,ℓ)
9,1 :

• Let 2 (' ℓ) = (f (Zℓ,1) , . . . , f (Zℓ,%)) ∈ Z%
#
be the unique vector where 2 (' ℓ) = 0 mod ?1?3 and

f (' ℓ) = ^ 9V
−1
ℓ e9 mod ?2?4,

where e9 is the 9
th standard basis vector.

• Now, for 8 ∈ [%], let ' ℓ = ' ′ℓ + 2
(' ℓ) where ' ′ℓ

r← Z%
#
.

Observe that the distribution of ' = [Zℓ,1, . . . , Zℓ,%]
T remains uniform over Z%

#
. Consider the distribution of the

components in gHyb
(1,ℓ)
9,1 under this substitution. By design, the exponents Zℓ,8 only appears in the definition of &aid,

so this is the only component whose definition changes. Let uℓ = [Dℓ,1, . . . , Dℓ,%]
T. Then, under this substitution,

&aid = � (®*
′
ℓ , gidℓ,aid) ·

∏
9≠ℓ

� (®* 9 , gid9,aid)

= (6164)
v
T
ℓ,9aid

uℓ (6264)
v
T
ℓ,9aid

' ℓ ·
∏
9≠ℓ

� (®* 9 , gid9,aid)

= (6164)
v
T
ℓ,9aid

uℓ (6264)
v
T
ℓ,9aid
(' ′ℓ+^ 9V

−1
ℓ e9) ·

∏
9≠ℓ

� (®* 9 , gid9,aid)

37

Now,

^ 9v
T

ℓ, 9aid
V
−1
ℓ e9 = ^ 9e

T

9aid
e9 =

{
^ 9 9aid = 9

0 otherwise.
.

We conclude that for all aid where 9aid = 9 ,

&aid = (6164)
v
T
ℓ,9aid

uℓ (6264)
v
T
ℓ,9aid

' ′ℓ+^ 9 ·
∏
9≠ℓ

� (®* 9 , gid9,aid)

= � (®* ′ℓ , gidℓ,aid) · (6264)
^ 9 ·

∏
9≠ℓ

� (®* 9 , gid9,aid),

where ®* ′ℓ = (*
′
ℓ,1, . . . ,*

′
ℓ,%) and*

′
ℓ,8 = (6164)

Dℓ,8 (6264)
Z ′ℓ,8 = *ℓ,8 (6264)

Z ′ℓ,8 . For aid where 9aid ≠ 9 , we have

&aid = (6164)
v
T
ℓ,9aid

uℓ (6264)
v
T
ℓ,9aid

' ′ℓ ·
∏
9≠ℓ

� (®* 9 , gid9,aid)

= � (®* ′ℓ , gidℓ,aid) ·
∏
9≠ℓ

� (®* 9 , gid9,aid)

This precisely coincides with the distribution of &aid in gHyb
(1,ℓ)
ℓ,2 with randomness ' ′ℓ . Thus, the distributions

gHyb
(1,ℓ)
9,1 and gHyb

(1,ℓ)
9,2 are identical. �

Lemma 5.20. Suppose Assumption 3.4c holds with respect to CompGroupGen. Then for all ℓ ∈ [!], all 9 ∈ [%], all
efficient adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[gHyb(1,ℓ)9,3 (A) = 1] − Pr[gHyb
(1,ℓ)
9,2 (A) = 1]

�� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma 5.18. Note that the additional (6264)
Zℓ,8 introduced

in gHyb
(1,ℓ)
9,2 (A) can be simulated using the component (6264)

B24 given out in Assumption 3.4c. �

Lemma 5.21. For all ℓ ∈ [!], all 9 ∈ [%], all admissible adversaries A, and all 1 ∈ {0, 1}, there exists a negligible

function negl(·) such that for all _ ∈ N,

�� Pr[gHyb(1,ℓ)9,4 (A) = 1] − Pr[gHyb
(1,ℓ)
9,3 (A) = 1]

�� = negl(_).

Proof. We show that the distributions gHyb
(1,ℓ)
9,3 (A) and gHyb

(1,ℓ)
9,4 (A) are statistically indistinguishable. By construc-

tion, the only difference between the two experiments is the addition of a (6264)
m

T
aid

w9 blinding term in the ciphertext
components �3,aid where 9aid = 9 . We show that these two distributions are identical conditioned on B, ^ 9 ≠ 0 mod ?2.
Since the challenger in both experiments samples B, ^ 9

r← Z# , we conclude that the two experiments are statistically

indistinguishable. Formally, consider the following relabeling of the elements in gHyb
(1,ℓ)
9,3 (A) (where we assume

B, ^ 9 ≠ 0 mod ?2):

• Let f (w) ∈ Z=
#
be the unique value where f (w) = 0 mod ?1?3?4 and f

(w)
= (^ 9)

−1 · (w9 −F1 ·w
∗) mod ?2. Let

F1 ∈ Z# be the first component of w9 . Suppose we write w = w
′ + f (w) for some w′ r← Z=

#
where w′1 = 0 and

w9
r← Z=

#
.

• Let ASℓ, 9 ⊆ (enc be the set of attributes aid ∈ (enc associated with the challenge ciphertext where gidℓ,aid = gid9 ,
and let Nℓ be the set of attributes aid where where slot (ℓ, aid) is not in the corruption set C: namely, Nℓ =
{aid | (ℓ, aid) ∉ C}.

• For aid ∈ ASℓ, 9 , let f
([aid) ∈ Z# be the unique value where f ([aid) = 0 mod ?1?2?3 and f

([aid) = m
T

aid
w9 mod ?4.

Suppose we write [aid = [
′
aid
+ f ([aid) .

38

• For aid ∈ Nℓ ∩ ASℓ, 9 , let f
(Aℓ,aid) ∈ Z# be the unique value where f (Aℓ,aid) = 0 mod ?1?3?4 and f (Aℓ,aid) =

−B−1 ·mT

aid
F1 ·w

∗ mod ?2. Suppose we write Aℓ,aid = A
′
ℓ,aid
+ f (Aℓ,aid) .

By construction, observe that these substitutions preserve the distribution of w and Aℓ,aid in gHyb
(1,ℓ)
9,1 (note that the

first coefficient of f (w) is 0, so F1 · F
∗ has the same first coefficient as w9). Consider now the distribution of the

�3,aid terms in gHyb
(1,ℓ)
9,3 under this relabeling (note that this relabeling only affects the terms �3,aid in the challenge

ciphertext):

• For aid ∉ ASℓ, 9 , recall that

&aid =

∏
8∈[!]

� (®*8 , gid8,aid). (5.6)

For all 8 ∈ [!] and 9 ∈ [%],*8, 9 ∈ G1,4, This means &aid ∈ G1,4. Thus,

&
m

T
aid

w

aid
= &

m
T
aid

w
′+f (w)

aid
= &

m
T
aid

w
′

aid
.

Finally, the distributions of [aid and Aaid are unchanged for aid ∉ ASℓ, 9 , so we conclude that the distributions
are identical in this case.

• Suppose aid ∈ ASℓ, 9 ∩ Nℓ . For these attributes, we use the fact that the only component that depends on

Aℓ,aid mod ?2 is the challenge ciphertext component �3,aid. In this case, the term Aℓ,aid mod ?2 present in)̂
−B
aid

serves as fresh randomness in the G2 subgroup to blind the value of w. First, we have

&aid =

∏
8∈[!]

� (®*8 , gid8,aid) · (6264)
^ 9 .

Thus, using the fact that*8, 9 ∈ G1,4 and the fact that w = w
′ + f (w) , we have

&
m

T
aid

w

aid
= &

m
T
aid
(w′+f (w))

aid
=

©­«
∏
8∈[!]

� (®*8 , gid8,aid) · (6264)
^ 9 ª®¬

m
T
aid
(w′+f (w))

= (6264)
^ 9m

T
aid
(w′+f (w)) ·

©­«
∏
8∈[!]

� (®*8 , gid8,aid)
ª®¬
m

T
aid
(w′+f (w))

= (6264)
m

T
aid
^ 9w

′

(6264)
m

T
aid
^ 9f

(w)

·
©­«
∏
8∈[!]

� (®*8 , gid8,aid)
ª®¬
m

T
aid

w
′

= (6264)
m

T
aid
^ 9w

′

6
m

T
aid
(w9−F1w

∗)

2 ·
©­«
∏
8∈[!]

� (®*8 , gid8,aid)
ª®¬
m

T
aid

w
′

= 6
m

T
aid
(w9−F1w

∗)

2 · (&aid)
m

T
aid

w
′

.

(5.7)

Next, using the fact that Aℓ,aid = A
′
ℓ,aid
+ f (Aℓ,aid) , we have

((6162)
B)−Aℓ,aid = ((6162)

B)−A
′
ℓ,aid
−f (Aℓ,aid)

= ((6162)
B)−A

′
ℓ,aid6

m
T
aid
F1 ·w

∗

2 .
(5.8)

Finally, substituting [aid = [
′
aid
+ f ([aid) yields

6
[aid
4 = 6

[′
aid
+f[aid

4 = 6
[′
aid

4 6
m

T
aid

w9

4 . (5.9)

39

Consider now the value of �3,aid with this setting of variables. Using Eqs. (5.7) to (5.9), we now have

�3,aid = ((6162)
B)Vm

T
aid

v
′−Aℓ,aid−

∑
8≠ℓ A8,aid · (&aid)

m
T
aid

w · 6
[aid
4

= ((6162)
B)Vm

T
aid

v
′−A ′

ℓ,aid
−
∑

8≠ℓ A8,aid6
m

T
aid
F1w

∗

2 · (&aid)
m

T
aid

w
′

6
m

T
aid
(w9−F1w

∗)

2 · 6
[′
aid

4 6
m

T
aid

w9

4

= ((6162)
B)Vm

T
aid

v
′−A ′

ℓ,aid
−
∑

8≠ℓ A8,aid · (&aid)
m

T
aid

w
′

· 6
[′
aid

4 · (6264)
m

T
aid

w9 .

This is the ciphertext distribution in gHyb
(1,ℓ)
9,4 with randomness w′, [aid, A

′
ℓ,aid

.

• Suppose aid ∈ ASℓ, 9 ∩ Nℓ . In this case, the adversary knows the randomness Aℓ,aid, so we rely on the linear
secret sharing scheme. Specifically, since the adversary’s set of attributes do not satisfy the challenge policy,
there exists a vector w∗ such that w∗ has first coefficient 1 and is orthogonal to maid for rows corresponding to
these attributes. Similar to the previous case, we again use Eqs. (5.7) and (5.9) to rewrite �3,aid:

�3,aid = ((6162)
B)Vm

T
aid

v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w · 6
[aid
4

= ((6162)
B)Vm

T
aid

v−
∑

8∈ [!] A8,aid · (&aid)
m

T
aid

w
′+f (w) · 6

[′
aid
+f ([aid)

4

= ((6162)
B)Vm

T
aid

v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w
′

6
m

T
aid
(w9−F1w

∗)

2 · 6
[′
aid

4 6
m

T
aid

w9

4

= ((6162)
B)Vm

T
aid

v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w
′

· 6
[′
aid

4 · (6264)
m

T
aid

w96
−mT

aid
F1w

∗

2 .

By definition of w∗, we have mT

aid
w
∗
= 0 for aid ∈ ASℓ, 9 ∩ Nℓ . This means

�3,aid = ((6162)
B)Vm

T
aid

v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w
′

· 6
[′
aid

4 · (6264)
m

T
aid

w9 .

Once again, we have recovered the ciphertext distribution in gHyb
(1,ℓ)
9,4 with randomness w′, [aid, A

′
ℓ,aid

.

In all three cases, we conclude that with this relabeling of variables, we recover the ciphertext distribution in gHyb
(1,ℓ)
9,4

(with randomness w′, [aid, A
′
ℓ,aid

). Thus, the distributions gHyb
(1,ℓ)
9,3 and gHyb

(1,ℓ)
9,4 are statistically close. �

Lemma 5.22. Suppose Assumption 3.4c holds with respect to CompGroupGen. Then for all ℓ ∈ [!], all 9 ∈ [%], all
efficient adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,�� Pr[gHyb(1,ℓ)9,5 (A) = 1] − Pr[gHyb

(1,ℓ)
9,4 (A) = 1]

�� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma 5.18. �

Lemma 5.23. For all ℓ ∈ [!], all 9 ∈ [%], all adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·)
such that for all _ ∈ N, �� Pr[gHyb(1,ℓ)9,6 (A) = 1] − Pr[gHyb

(1,ℓ)
9,5 (A) = 1]

�� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma 5.19. �

Lemma 5.24. Suppose Assumption 3.4c holds with respect to CompGroupGen. Then for all ℓ ∈ [!], all 9 ∈ [%], all
efficient adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,�� Pr[gHyb(1,ℓ)9+1,0 (A) = 1] − Pr[gHyb

(1,ℓ)
9,6 (A) = 1]

�� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma 5.18. �

Lemma 5.25. For all ℓ ∈ [!], all 9 ∈ [%], all adversaries A, and all 1 ∈ {0, 1}, for all _ ∈ N,

Pr[iHyb
(1)
ℓ,2 (A) = 1] = Pr[gHyb

(1,ℓ)
%+1,0 (A) = 1] .

Proof. Since % + 1 > % , all of the user identifiers gid registered to slot ℓ (i.e., the elements of GSℓ) have a gid-specific
blinding component. Thus these hybrids are identical experiments. �

Lemma 5.12 now follows from Lemmas 5.17 to 5.25 and a hybrid argument. �

40

5.2.5 Proof of Lemma 5.18 (Delayed gid Programming)

In this section, we give the proof of Lemma 5.18. The goal in this sequence of hybrids is to introduce fresh G2,4

randomness into the hash key *ℓ that only appears for a single user identifier gidℓ,aid. To do so, we first introduce
randomization in the G2,4 subgroup to the hash key in the public parameters. Then, we rely on the additional
randomness together with the randomness in the challenge ciphertext component �3,aid to re-randomize the G2,4

component of � (gidℓ,aid). We then remove the G2,4 re-randomization from the public parameters, leaving only the
fresh statistical re-randomization in �3,aid. This is the “delayed gid programming” technique described in Section 2.

We now define the intermediate hybrid experiments between gHyb
(1,ℓ)
9,0 and gHyb

(1,ℓ)
9,1 , where we iterate over the

identifiers gid9 ∈ GSℓ . Our hybrid sequence is additionally indexed by 8∗ ∈ [%].

• kHyb
(1,ℓ, 9)
8∗,0 for 8∗ ∈ [%]: Same as gHyb

(1,ℓ)
9,0 , but the challenger introduces fresh randomness in theG2,4 subgroup

in the first 8∗ − 1 components of ®* ′ℓ . Specifically, after sampling *8,0 the challenger samples Zℓ,0
r← Z# and sets

* ′ℓ,0 =

{
*ℓ,0 (6264)

Zℓ,0 0 < 8∗

*ℓ,0 0 ≥ 8∗,

The challenger sets
®* ′ℓ = (*

′
ℓ,1, . . . ,*

′
ℓ,%) where*

′
ℓ,8 = *ℓ,8 (6264)

Zℓ,8 .

When constructing &aid, the challenger now sets

&aid = � (®*
′
ℓ , gidℓ,aid) ·

∏
9∈[!]\{ℓ }

� (®* 9 , gid9,aid).

• kHyb
(1,ℓ, 9)
8∗,1 : Same as kHyb

(1,ℓ, 9)
8∗,0 , except the challenger introduces a G2 component to *ℓ,8∗ : namely, *ℓ,8∗ =

(616264)
Dℓ,8∗ .

• kHyb
(1,ℓ, 9)
8∗,2 : Same as kHyb

(1,ℓ, 9)
8∗,1 , except the challenger randomizes the G2,4 component of* ′ℓ,8∗ : specifically, the

challenger samples Zℓ,8∗
r← Z# and sets* ′ℓ,8∗ = *ℓ,8∗ (6264)

Zℓ,8∗ .

We now show that each pair of adjacent hybrids are indistinguishable.

Lemma 5.26. For all ℓ ∈ [!], 9 ∈ [%], all adversaries A, all 1 ∈ {0, 1}, and all _ ∈ N,

Pr[kHyb
(1,ℓ, 9)
1,0 (A) = 1] = Pr[gHyb

(1,ℓ)
9,0 (A) = 1]

Proof. By construction, the definition of ®* ′ℓ in gHyb
(1,ℓ)
9,0 is identical to ®*ℓ in kHyb

(1,ℓ, 9)
1,0 . Thus, the output of these

two experiments are identically distributed. �

Lemma 5.27. Suppose Assumption 3.4c holds with respect to CompGroupGen. Then for all ℓ ∈ [!], all 9, 8∗ ∈ [%], all
efficient adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[kHyb(1,ℓ, 9)8∗,1 (A) = 1] − Pr[kHyb
(1,ℓ, 9)
8∗,0 (A) = 1]

�� = negl(_).

Proof. Suppose there exists an efficient adversary A that can distinguish these two experiments with non-negligible
advantage Y. We use A to construct an adversary B that breaks Assumption 3.4c with nonnegligible advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, 61, 63, 64, -,. ,)) where G = (G,G) , # , 6, 4),
61 ∈ G1, 63 ∈ G3, 64 ∈ G4, - = (6162)

B12 , . = (6264)
B24 for some B12, B24

r← Z# , and either) = (6164)
A or

) = (616264)
A for some A r← Z# . The components that depend on the challenge elements -,.,) are colored

for clarity.

2. Algorithm B starts running algorithm A and receives the slot bound 1! as well as the authority bound 1% .

41

3. Algorithm B samples U, V r← Z# . It sets / = 4 (61, 61)
U , and ℎ = 6

V
1 .

4. For each slot 8 ∈ [!], 0 ∈ [%], and 9 ≠ 8 ∈ [!], algorithm B samples C8 , g8 , D8,0, W 9,8,0
r← Z# (with the exception

of Dℓ,8∗ , which algorithm B does not sample).

• For 8 < ℓ , algorithm B sets

�8 = (6163)
C8 , �8 = 6

U
1�

V
8 .

g86g83 , ®*8 = (*8,1, . . . ,*8,%) where*8,0 = (6164)
D8,0 .

• For 8 = ℓ , algorithm B sets

�ℓ = (-63)
C8 , �ℓ = 6

U
1�

V
ℓ (6364)

gℓ .

Additionally, for 8′ ≠ 8∗ ∈ [%], algorithm B samples Dℓ,8′
r← Z# , and sets*ℓ,8′ = (6164)

Dℓ,8′ . Algorithm B
sets*ℓ,8∗ =) .

• For 8 > ℓ , algorithm B sets

�8 = (6163)
C8 , �8 = 6

U
1�

V
8 (6364)

g8 , ®*8 = (*8,1, . . . ,*8,%) where*8,0 = (6164)
D8,0 .

5. For 9 ≠ ℓ ∈ [!], algorithm B computes the hash-function cross terms as follows:

®� 9,ℓ = (� 9,ℓ,1, . . . , � 9,ℓ,%) where � 9,ℓ,0 = �
D 9,0

ℓ (6364)
Wℓ,9,0

For all 8 ∈ [!] \ {ℓ} and all 9 ≠ 8 , it sets the hash-function cross terms as follows:

®� 9,8 = (� 9,8,1, . . . , � 9,8,%) where � 9,8,0 = *
C8
9,0 (6364)

W 9,8,0 .

Algorithm B gives the global parameters

gpp =

(
G , / , 6 , ℎ , {(�8 , �8 , ®*8 }8∈[!], { ®� 9,8 } 9≠8∈[!]

)
to the adversary A. It also initializes a counter ctr ← 0 and an (empty) dictionary D to keep track of the
key-generation queries.

6. In the query phase, algorithm B responds to the adversary’s queries as in kHyb
(1,ℓ, 9)
8∗,0 and kHyb

(1,ℓ, 9)
8∗,1 . Namely,

when algorithm A makes a key-generation query on a slot 8 , algorithm B increments the counter ctr = ctr + 1
and samples A8

r← Z# . It then computes)8 = 6A81 , and +9,8 = �A89 for 9 ≠ 8 . The challenger sets the public
key to be pkctr = ()8 , {+9,8 } 9≠8∈[!]) and responds with (ctr, pkctr). It defines skctr = A8 and adds the mapping
ctr ↦→ (8, pkctr, skctr) to the dictionaryD. If the adversaryA makes a corruption query on an index 1 ≤ ctr′ ≤ ctr,
the challenger looks up the entry (8′, pk′, sk′) = D[ctr′] and replies to A with sk′.

7. In the challenge phase, after A specifies a set of authorities (enc ⊆ AU, an associated challenge policy
i∗ = (M, d) where M ∈ Z%

′×=
#

and d : (enc → [%
′], and two messages `∗0, `

∗
1 ∈ G) . In addition, for each each

slot 8 ∈ [!] and attribute aid ∈ (enc, it also specifies a tuple (28,aid, gid8,aid, pk
∗
8,aid). Algorithm B sets up the

public keys pk8,aid as in kHyb
(1,ℓ, 9)
8∗,0 , kHyb

(1,ℓ, 9)
8∗,1 :

• If 28,aid ∈ {1, . . . , ctr}, the challenger looks up the entry D[28,aid] = (8
′, pk′, sk′). If 8 = 8′, the challenger

sets pk8,aid = pk′ and A8,aid = sk′. Otherwise, the challenger aborts with output 0.

• If 28,aid = (⊥, A8,aid), then the challenger checks that pk∗8,aid = KeyGen(gpp, 8; A8,aid). If not, the challenger
aborts with output 0. Otherwise, it sets pk8,aid = pk∗8,aid.

Finally, for each index 8 ∈ [!] and aid ∈ (enc, algorithm B parses pk8,aid = ()8,aid, {+9,8,aid} 9≠8∈[!]).

42

8. Next, to simulate the challenge ciphertext, algorithm B first samples Zℓ,8
r← Z# for all 8 < 8∗. Then, it constructs

* ′ℓ,0 =

{
*ℓ,0.

Zℓ,0 0 < 8∗

*ℓ,0 0 ≥ 8∗ .

Algorithm B then sets ®* ′ℓ = (*
′
ℓ,1, . . . ,*

′
ℓ,%). Next, algorithm B samples w9 ′

r← Z=
#
for all 9 ′ < 9 . It constructs

the challenge ciphertext as follows:

• Message-embedding components: Set �1 = `
∗
1
· 4 (61, -)

U and �2 = - .

• Policy-specific components: Sample E2, . . . , E=,F2, . . .F=
r← Z# and let v′ = [1, E2, . . . , E=]

T and w =

[0,F2, . . .F=]
T. Then, for each aid ∈ (enc, it samples blinding factor [aid

r← Z# and sets

&aid = � (®*
′
ℓ , gidℓ,aid) ·

∏
8∈[!]\{ℓ }

� (®*8 , gid8,aid)

�′3,aid = -
VmT

:
v
′−

∑
8∈ [!] A8,aid · (&aid)

m
T
aid

w6
[aid
4 .

Then, it constructs the challenge ciphertext components as

�3,aid ←

{
�′
3,aid
· .m

T
aid

w9 ′ gidℓ,aid = gid9 ′ ∧ 9
′
< 9

�′
3,aid

otherwise
, �4,: = 6

m
T
aid

w

1 .

9. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

In the above reduction, the challenge exponents A, B12 ∈ Z# play the roles of Dℓ, 9 , B ∈ Z# in the underlying hybrids,
respectively. First, we argue that the components of the global public parameters gpp are correctly simulated:

• First, consider the component �ℓ in the public parameters gpp. Hybrids kHyb
(1,ℓ, 9)
9,0 and gHyb

(1,ℓ)
9,1 set �ℓ =

(616263)
Cℓ . The reduction algorithm sets �ℓ = ((6162)

B1263)
Cℓ = (6162)

B12Cℓ6
Cℓ
3 . As long as B12 ≠ 0 mod ?1, ?2,

(which holds with overwhelming probability over B12
r← Z#), these distributions are uniform over Z# .

• Next, consider the elements �8 where 8 < ℓ . Hybrids kHyb
(1,ℓ, 9)
9,0 and kHyb

(1,ℓ, 9)
9,1 set �8 = 6U1�

V
8 (626364)

g8 .

The reduction sets �8 = 6
U
1�

V
8 (6264)

B24g86g83 . As long as B24 ≠ 0 mod ?2, ?4 (which holds with overwhelming
probability over the choice of B24

r← Z#), these distributions are uniform over Z# .

Finally, if) = (6164)
A , then algorithm B simulates the public parameters according to the distribution in kHyb

(1,ℓ, 9)
9,0 .

If) = (616264)
A , then algorithm B simulates the public parameters according to the distribution in kHyb

(1,ℓ, 9)
9,1 . It

suffices now to argue that the components of the challenge ciphertext are correctly simulated:

• First, �1 = `
∗
1
· 4 (61, (6162)

B12)U = `∗
1
· 4 (61, 61)

UB12 = /B12 , which is distributed according to the specification of

kHyb
(1,ℓ, 9)
9,0 and kHyb

(1,ℓ, 9)
9,1 .

• Finally, consider the distribution of �3,aid. In the reduction, algorithm B simulates the re-randomization

components (6264)
m

T
aid

w9 ′ and* ′ℓ,8 = *ℓ,8 (6264)
Zℓ,8 as

.m
T
aid

w9 ′ = (6264)
m

T
aid
(B24w9 ′)

* ′ℓ,8 = *ℓ,8.
Zℓ,8 = *ℓ,8 (6264)

B24Zℓ,8 ,

respectively. However, since Zℓ,8 and w9 ′ are only used in the construction of the challenge ciphertext, and
moreover, they are independent and uniform. Thus, as long as B24 ≠ 0 mod ?2 and B24 ≠ 0 mod ?4, these two
distributions are identically distributed.

43

We conclude that with overwhelming probability, algorithm B simulates the challenge ciphertext components exactly

as required in kHyb
(1,ℓ, 9)
9,0 and kHyb

(1,ℓ, 9)
9,1 . Correspondingly, algorithm B breaks Assumption 3.4c with advantage at

least Y − negl(_). �

Lemma 5.28. For all ℓ ∈ [!] and 9, 8∗ ∈ [%], all adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function

negl(·) such that for all _ ∈ N,�� Pr[kHyb(1,ℓ, 9)8∗,2 (A) = 1] − Pr[kHyb
(1,ℓ, 9)
8∗,1 (A) = 1]

�� = negl(_)

Proof. We show that the distributions kHyb
(1,ℓ, 9)
8∗,1 and kHyb

(1,ℓ, 9)
8∗,2 are statistically indistinguishable. This argument

will rely on the G2,4 randomization introduced in kHyb
(1,ℓ, 9)
8∗,1 . By construction, the only difference between the two

experiments is the distribution of* ′ℓ,8∗ in the G2,4 subgroup. In kHyb
(1,ℓ, 9)
8∗,1 ,

* ′ℓ,8∗ = *ℓ,8∗ = (616264)
Dℓ,8∗

while in kHyb
(1,ℓ, 9)
8∗,2 ,

* ′ℓ,8∗ = *ℓ,8∗ (6264)
Zℓ,8∗ = 6

Dℓ,8∗

1 (6264)
Dℓ,8∗+Zℓ,8∗ .

Suppose that Dℓ,8∗ +
∑
8<8∗ Zℓ,8 ≠ 0 mod ?2. Since Dℓ,8∗

r← Z# , this holds with overwhelming probability. Consider now

the following relabeling of the variables in kHyb
(1,ℓ, 9)
8∗,1 :

• Let c (w) ∈ Z# be the unique value where c (w) = 1 mod ?1?3?4 and

c (w) =
(
Dℓ,8∗ + Zℓ,8∗

)
D−1ℓ,8∗ mod ?2 .

Suppose we write w = w
′ · c (w) for some w′ r← Z=

#
(with first coefficient 0).

• Let c (Z) = (c (w))−1 ∈ Z# . For 8 < 8
∗ suppose we write Zℓ,8 = Z

′
ℓ,8 · c

(Z) for some Z ′ℓ,8
r← Z# .

• For aid ∈ (enc, let f
([aid) ∈ Z# be the unique value where

f ([aid) = 0 mod ?1?2?3

f ([aid) = Zℓ,8∗ · gid
8∗

ℓ,aid ·m
T

aidw
′ mod ?4.

Suppose we write [aid = [
′
aid
+ f ([aid) for some [′

aid
r← Z# .

Since w is a uniform random vector with first coefficient 0, these substitutions preserve the distribution of w, Zℓ,8 , [aid
in kHyb

(1,ℓ, 9)
8∗,1 . By construction, these components only affect the value of �3,aid. Thus, consider the value of �3,aid

with this substitution. To simplify the exposition, we express �3,aid as

�3,aid = (&aid)
m

T
aid

w · 6
[aid
4 ·�′3,aid

where �′
3,aid

represents the remaining components that can be considered without referring to w, Zℓ,8 , [aid. Then, we
can write

�3,aid = (&aid)
m

T
aid

w · 6
[aid
4 ·�′3,aid

=

(
� (®* ′ℓ , gidℓ,aid) ·

∏
8≠ℓ

� (®*8 , gid8,aid)

)mT
aid

w
′c (w)

· 6
[′
aid
+f ([aid)

4 ·�′3,aid

=

((∏
8<8∗

(* ′ℓ,8)
gid8ℓ,aid

)
· (* ′ℓ,8∗)

gid8
∗

ℓ,aid ·

(∏
8>8∗

(* ′ℓ,8)
gid8ℓ,aid

)
·
∏
8≠ℓ

� (®*8 , gid8,aid)

)mT
aid

w
′ ·c (w)

6
[′
aid

4 6f
([aid)

4 ·�′3,aid

= *̃ ·

(∏
8≠ℓ

� (®*8 , gid8,aid)

)mT
aid

w
′ ·c (w)

6
[′
aid

4 ·�′3,aid,

(5.10)

44

where

*̃ =

((∏
8<8∗

(*ℓ,8 (6264)
Zℓ,8)gid

8
ℓ,aid

)
· (616264)

Dℓ,8∗gid
8∗

ℓ,aid ·

(∏
8>8∗

*
gid8ℓ,aid
ℓ,8

))mT
aid

w
′ ·c (w)

6f
([aid)

4

=

((∏
8<8∗

(*ℓ,8 (6264)
Zℓ,8)gid

8
ℓ,aid

)
· (616264)

Dℓ,8∗gid
8∗

ℓ,aid ·

(∏
8>8∗

*
gid8ℓ,aid
ℓ,8

))mT
aid

w
′ ·c (w)

6
Zℓ,8∗gid

8∗

ℓ,aidm
T
aid

w
′

4

(5.11)

For all 8 ≠ 8∗, we have*ℓ,8 ∈ G1,4. This means(
*ℓ,8 (6264)

Zℓ,8
)gid8ℓ,aidmT

aid
w
′c (w)

= *
gid8ℓ,aidm

T
aid

w
′

ℓ,8

(
(6264)

Z ′ℓ,8c
(Z)

)gid8ℓ,aidmT
aid

w
′c (w)

= (*ℓ,8 (6264)
Z ′ℓ,8)gid

8
ℓ,aidm

T
aid

w
′

(616264)
Dℓ,8∗gid

8∗

ℓ,aidm
T
aid

w
′ ·c (F)

= (6164)
Dℓ,8∗gid

8∗

ℓ,aidm
T
aid

w
′

6
gid8

∗

ℓ,aidm
T
aid

w
′ (Dℓ,8∗+Zℓ,8∗)

2

=

(
*ℓ,8∗6

Zℓ,8∗

2

)gid8∗ℓ,aidmT
aid

w
′

*
gid8ℓ,aidm

T
aid

w
′c (w)

ℓ,8 = *
gid8ℓ,aidm

T
aid

w
′

ℓ,8

Thus, we can now write Eq. (5.11) as

*̃ =

((∏
8<8∗

(*ℓ,8 (6264)
Zℓ,8)gid

8
ℓ,aid

)
· (616264)

Dℓ,8∗gid
8∗

ℓ,aid ·

(∏
8>8∗

*
gid8ℓ,aid
ℓ,8

))mT
aid

w
′ ·c (w)

6
Zℓ,8∗gid

8∗

ℓ,aidm
T
aid

w
′

4

= � (®* ′′ℓ , gidℓ,aid)
m

T
aid

w
′

,

with an effective hash key ®* ′′ℓ defined as follows:

®* ′′ℓ =
(
* ′′ℓ,1, . . . ,*

′′
ℓ,%

)
where * ′′ℓ,0 =



*ℓ,0 (6264)

Z ′ℓ,0 0 < 8∗

*ℓ,0 (6264)
Zℓ,0 0 = 8∗

*ℓ,0 0 > 8∗ .

Using the fact that*8,0 ∈ G1,4 for all 8 ≠ ℓ , we can now write Eq. (5.10) as

�3,aid = *̃ ·

(∏
8≠ℓ

� (®*8 , gid8,aid)

)mT
aid

w
′ ·c (w)

6
[′
aid

4 ·�′3,aid

=

(
� (®* ′′ℓ , gidℓ,aid) ·

(∏
8≠ℓ

� (®*8 , gid8,aid)

))mT
aid

w
′

· 6
[′
aid

4

This is precisely the distribution of �3,aid in kHyb
(1,ℓ, 9)
8∗,2 with randomness w′, Z ′ℓ,8 , [

′
aid
. Thus, we conclude that the

distributions kHyb
(1,ℓ, 9)
8∗,1 and kHyb

(1,ℓ, 9)
8∗,2 are statistically close. �

Lemma 5.29. Suppose Assumption 3.4c holds with respect to CompGroupGen. Then for all ℓ ∈ [!], all 9, 8∗ ∈ [%], all
efficient adversaries A, and all 1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,�� Pr[kHyb(1,ℓ, 9)8∗+1,0 (A) = 1] − Pr[kHyb

(1,ℓ, 9)
8∗,2 (A) = 1]

�� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma 5.27. �

Lemma 5.30. For all ℓ ∈ [!], 9 ∈ [%], all adversaries A, all 1 ∈ {0, 1}, and all _ ∈ N,

Pr[iHyb
(1)
ℓ,1 (A) = 1] = Pr[kHyb

(1,ℓ, 9)
%+1,0 (A) = 1] .

Proof. Since % + 1 > % , these experiments are identical by construction. �

Lemma 5.18 now follows from Lemmas 5.26 to 5.30 and a hybrid argument. �

45

6 Lifting a Slotted Scheme to an Unslotted Scheme

To compile our slotted multi-authority registered ABE scheme into a standard multi-authority registered ABE (see
Definition 4.1), we employ a similar “powers of two” transformation similar to the one proposed in [HLWW23]
(and implicitly used in earlier works on registration-based cryptography [GHMR18, GHM+19]). At a high level, the
[HLWW23] compiler instantiates a series of slotted schemes where the number of slots in the 8th scheme is 28 . When
users join the system, their key is added to each of the underlying schemes, and aggregation occurs whenever a
scheme fills up (for scheme 8 , this occurs after 28 users have joined the system). Each time scheme 8 fills up, the
public key for scheme 8 is updated. Spacing out the number of slots by powers of two ensures that the public keys
associated with the larger schemes are not updated too frequently. This ensures the number of decryption updates a
user requires scales logarithmically with the number of registered users.

Extending this transformation to the multi-authority setting introduces a number of new challenges. The main
challenge is the fact that the authorities are independent, and each authority could issue keys to different sets of
registered users (recall that a user only registers with authorities for which they have the corresponding attribute).
Thus, to extend the [HLWW23] transformation to this setting, we need to tackle two key challenges:

• Associating a common slot for each user. First, we have to ensure that for any user identifier gid, there is a
common slot index 8∗ such that gid is registered in slot 8∗ across all of the target authorities. This is required
because the underlying slotted multi-authority registered ABE scheme only supports decryption when the
user’s keys are registered to the same slot across all of the authorities.

• Users aggregated in different schemes for different authorities. Second, since each authority serves a
differing number of users, a user registered to slot 8∗ might be aggregated as part of different slotted multi-
authority registered ABE schemes. Recall in the basic powers-of-two approach from [HLWW23], there are
$ (log!) slotted schemes (each supporting a different power-of-two number of slots). Correctness for the
underlying slotted multi-authority registered ABE scheme only supports decryption when a user is registered
to the same slotted scheme across all of the authorities. Unfortunately, even if each user has a unique index 8∗

that is shared across all authorities, the powers-of-two transformation does not ensure that the slot 8∗ is always
aggregated as part of the same slotted scheme across all of the authorities. Which slotted scheme contains 8∗

for each authority is a function of the number of users registered with the particular authority, and this can
vary across authorities.

We tackle these challenge as follows:

• Cover-free sets. To address the first issue, we have each user register to multiple slots at each authority.
Specifically, for each user identifier gid, we associate a set of indices (gid. For each authority with whom the
user (with identifier gid) wishes to register, the user would register their key in every unused slot in (gid. Next,
if we choose the sets (gid from a cover-free family of sets [KS64], this ensures that every gid can be associated
with a slot 8∗ ∈ [!] that is not covered by the union (gid1 ∪ (gid2 ∪ · · · ∪ (gid! of up to ! other user identifiers
gid1, . . . , gid! ≠ gid. Note that in our construction, the space of user identifiers is exponential in _ while the
number of slots maintained by each authority is polynomially-bounded. (This is the reason we cannot simply
use gid as the slot index for the user).

• Using a single slotted scheme. To handle the second issue, we consider a different variant of the powers-
of-two approach where we use a single copy of a slotted multi-authority registered ABE scheme with ! slots
(as opposed to log! copies that each support a different power-of-two number of users). Next, we split each
authority into log! “virtual” sub-authorities, where the 8th virtual sub-authority is responsible for up to 28

users, exactly as in the original powers-of-two approach. The unused slots for the 8th virtual sub-authority are
padded with a key for a dummy user (included as part of the global parameters). The 8th virtual sub-authority
effectively functions as a slotted scheme with 28 slots. Next, during encryption, one encrypts to the policy that
replaces each authority with a disjunction over the log! virtual sub-authorities associated with the authority
(i.e., it suffices to have a key associated with any virtual sub-authority of the authority). In this approach, there
is just a single slotted scheme, and as such, we can rely on correctness of the underlying slotted scheme.

46

Cover-free families. We now recall the notion of a cover-free family of sets [KS64] that we use.

Definition 6.1 (Cover-Free Family [KS64, Wei23]). Let - be a set, and F ⊂ 2- be a family of subsets of - . Then, we
say (-, F) is an A -cover free family if for all distinct �, �1, . . . �A ∈ F we have that � *

⋃
8∈[A] �8 .

Fact 6.2 (Cover-Free Family [EFF85, Example 3.2]). For any prime power @ and any integer C < @, there exists a
A -cover-free family (-, F) where A = ⌊@/(C − 1)⌋, |- | = @2, and |F | = @C . Moreover, there exists an explicit and
efficient algorithm that takes as input an index 8 ∈ [@C] and outputs the 8th set in F .

Lemma 6.3 (Cover-Free Family). Let _ be a security parameter and suppose GID ⊆ {0, 1}_ . Then, for all polynomially-

bounded A = A (_), there exists an efficiently-computable A -cover free family (-, F) where |- | = poly(_) together with
an efficient injective mapping 5 : GID → F . Moreover, we can take - = [|- |].

Proof. Take any prime power @ ∈ [A_, 2A_] and set C = _ + 1. Then Fact 6.2 yields an B-cover free family (-, F) where
|- | = @2 = $ (A 2_2), |F | = @_+1 > 2_ ≥ |GID|, and B = ⌊@/(C − 1)⌋ ≥ A . Since B ≥ A , we conclude that (-, F) is also
A -cover free. Finally, the mapping 5 : GID → F is simply the explicit and efficient algorithm from Fact 6.2 (namely,
5 (gid) is the gidth set in F). Since |- | = poly(_, A), we can always relabel the elements of - with their index in the
lexicographic ordering of the elements of - . This means we can always take - = [|- |] without loss of generality. �

Lifting a slotted scheme to an unslotted scheme. We now describe our transformation:

Construction 6.4 (Slotted Multi-Authority Registered ABE to Unslotted Scheme). Let _ be a security parameter.
Let ! = !(_) be the number of users, AU = {AU_}_∈N be a set of authority identifiers, and GID = {GID_}_∈N
be a set of global user identifiers where |GID_ | ≤ 2_ . We use the following conventions and primitives in our
construction:

• Without loss of generality, we assume that the bound on the number of users ! = 2ℓ is a power of two. Rounding
the bound to the next power of two incurs at most a factor of 2 overhead.

• Let AU′ = {AU′_} be a set of authority identifiers where AU′_ = AU_ × [0, ℓ]. Next, let ΠsRABE =

(sRABE.GlobalSetup, sRABE.KeyGen, sRABE.IsValid, sRABE.Aggregate, sRABE.Encrypt, sRABE.Decrypt) be a
slotted multi-authority registered ABE scheme with authority identifiersAU′ and global identifier space GID.
For ease of exposition, we will assume that ΠsRABE supports single-use monotone Boolean formulas where
there is an a priori bounded number of users per policy (e.g., Construction 5.1). Let % = % (_) be a bound on the
maximum number of authorities associated with each policy.

• The multi-authority registered ABE scheme will internally maintain ℓ + 1 slotted ABE schemes, where the : th

scheme is a slotted scheme that will “support” 2: users.

• Each authority maintains auxiliary data auxaid = (ctraid,D0,aid,D1,aid,D2,aid,mpkaid) which contains the follow-
ing data:

– A counter ctraid that keeps track of the number of registered users in the system.

– A dictionary D0,aid that maps global identifiers gid to a counter ctr (indicating the number of registered
users at the time user gid registered) together with the set of slots � ′

gid
to which user gid was registered.

– A dictionary D1,aid that maps a slot index 8 ∈ - to a pair (gid, pk) which specifies the public key assigned
to slot 8 and the associated user identifier gid.

– A dictionary D2,aid that maps a scheme index : ∈ [0, ℓ] and a user identifier gid to the helper decryption
keys associated with scheme : and gid.

– The current master public key mpkaid = (ctr,mpk0, . . . ,mpkℓ).

If aux = ⊥, we parse it as (ctr,D0,D1,D2,mpk) where ctr = 0, D0,D1,D2 = ∅, and mpk = (0,⊥, . . . ,⊥). This
corresponds to a fresh scheme with no registered users.

47

• The master public keysmpkaid associated with each authority will take the form of (ctr,mpk0, . . .mpkℓ), where
ctr is the total number of users registered to this authority, and each mpk: is a master public key of the
underlying slotted scheme ΠsRABE.

• The helper decryption keys hskaid,gid will take the form of (ctr, � ′
gid
, hsk0, . . . hskℓ), where ctr is a counter

(indicating the number of registered users at the time user gid registered), � ′
gid

is the set of slots to which user

gid was registered, and each hsk: is a collection of helper decryption keys for the underlying slotted scheme
ΠsRABE associated with slots 8 ∈ � ′

gid
.

We now construct a multi-authority registered ABE scheme ΠMA-RABE = (GlobalSetup,KeyGen,RegPK,UpdateKey,
Encrypt,Decrypt) as follows:

• GlobalSetup(1_, 1!, 1%): On input the security parameter _, a bound ! = 2ℓ on the number of users, and a
bound % on the number of users appearing in a policy, the setup algorithm proceeds as follows:

– First, the setup algorithm instantiates an (! ·%)-cover free family of sets (-, F) where |F | ≥ 2_ ≥ |GID_ |.
Let 5 : GID → F be the associated injective mapping (see Lemma 6.3). Recall that - = [|- |].

– Next, it runs the setup algorithm for the slotted scheme:

(sRABE.gpp, sRABE.gep) ← sRABE.GlobalSetup(1_, 1 |- | , 1% ·ℓ).

– Finally, it samples “dummy” public keys for each slot 9 ∈ [|- |] and : ∈ [0, ℓ]:

(pk′9,: , sk
′
9,:) ← sRABE.KeyGen(sRABE.gpp, 9).

It outputs the global public parameters

gpp = (sRABE.gpp, 5 , {(9, :, pk′9,:)} 9∈-,:∈[0,ℓ])

and the global encryption parameters gep = sRABE.gep. The message spaceM is the same as that associated
with sRABE.gpp.

• KeyGen(gpp, gid): On input the common reference string gpp = (sRABE.gpp, 5 , {(9, :, pk′9,:)} 9∈-,:∈[0,ℓ]) and
the user identifier gid, the key-generation algorithm first computes �gid = 5 (gid) ⊆ - . Then, for each index
8 ∈ �gid and : ∈ [0, ℓ], it generates (pk8,: , sk8,:) ← sRABE.KeyGen(sRABE.gpp, 8). Output

pk = ({(8, :, pk8,:)}8∈�gid,:∈[0,ℓ]) and sk = (gid, {(8, :, sk8,:)}8∈�gid,:∈[0,ℓ]).

• RegPK(gpp, auxaid, gid, pkgid): On input the public parameters gpp = (sRABE.gpp, 5 , {(9, :, pk′9,:)} 9∈-,:∈[0,ℓ]),
the auxiliary data aux = (ctr,D0,D1,D2,mpk) for an authority, a user identifier gid, and a public key pk =

({(8, :, pk8,:)}8∈�gid,:∈[0,ℓ]), the registration algorithm proceeds as follows:

– First, it checks that �gid = 5 (gid). Otherwise, the algorithm halts and outputs the current auxiliary data
aux and master public key mpk.

– For each 8 ∈ �gid and : ∈ [0, ℓ], check that sRABE.IsValid(sRABE.gpp, 8, pk8,:) = 1. Otherwise, the
algorithm halts and outputs the current auxiliary data aux and master public key mpk.

– If D0 [gid] ≠ ⊥, the algorithm halts and outputs the current auxiliary data aux and master public keympk.

– Define � ′
gid

= {8 | 8 ∈ �gid ∧ D1 [8] = ⊥}. Set D0 [gid] = (ctr, �
′
gid
). Then, for each 8 ∈ � ′

gid
, set

D1 [8] = (gid, {(:, pk8,:)}:∈[0,ℓ]).

– For each : ∈ [0, ℓ], check if ctr + 1 = 0 mod 2: . If so, the registration algorithm performs the following
update procedure:

48

∗ For all 8 ∈ - , the registration algorithm first looks up (gid8 , {(:
′, pk8,: ′)}: ′∈[0,ℓ]) = D1 [8]. If it is the

case that D0 [gid8] ∈ [ctr − 2
: + 1, ctr], then set

pk∗8 = pk8,: and gid∗8 = gid8 .

Otherwise, if D0 [gid8] ∉ [ctr − 2
: + 1, ctr] or if D1 [8] = ⊥, let

pk∗8 = pk′8,: and gid∗8 = 0.

∗ Compute the aggregated parameters

(mpk∗: , {(8, hsk
∗
8,:)}8∈-) = sRABE.Aggregate

(
sRABE.gpp, (gid∗1, pk

∗
1), . . . , (gid

∗
|- | , pk

∗
|- |)

)
.

∗ For each user identifier gid where D0 [gid] = (ctrgid, �
′
gid
) and ctrgid ∈ [ctr − 2

: + 1, ctr], set

D2 [gid, :] =
{
(8, hsk∗8,:) | 8 ∈ �

′
gid

}
.

∗ Update mpk: = mpk∗:

– Finally, the registration algorithm increments ctr = ctr + 1 and outputs the new master public key
mpk = (ctr,mpk0, . . . ,mpkℓ) along with the updated auxiliary data aux = (ctr,D0,D1,D2,mpk).

• UpdateKey(gpp, auxaid, gid): On input the global public parameters gpp = (sRABE.gpp, 5 , {(9, :, pk′9,:)} 9∈-,:∈[0,ℓ]),
the auxiliary data auxaid = (ctraux,D0,D1,D2,mpk) for an authority, and a user identifier gid, the update algo-
rithm looks up (ctrgid, �

′
gid
) = D0 [gid]. Then, for each : ∈ [0, ℓ], the update algorithm sets hsk: = D2 [gid, :]

and outputs the helper decryption key hskgid =
(
ctrgid, �

′
gid
, hsk0, . . . , hskℓ

)
.

• Encrypt(gep, ((enc, i), {mpkaid}aid∈(enc , `): On input the encryption parameters gep = sRABE.gep, an access
policy ((enc, i), the master public keys mpkaid = (ctraid,mpkaid,0, . . . ,mpkaid,ℓ) associated with authorities
aid ∈ (enc, and a message ` ∈ M, the encryption algorithm first construct a new authority set

(′enc = {(aid, :) | aid ∈ (enc, : ∈ [0, ℓ]}.

Then, it construct the extended policy i ′ by substituting each appearance of attribute aid in the policy i with
the clause

(∨
:∈[0,ℓ] (aid, :)

)
. It then computes

ct′ ← sRABE.Encrypt(sRABE.gep, ((′enc, i
′), {(aid,mpkaid,:)} (aid,:) ∈(′enc , `).

It outputs the ciphertext ct =
(
ct′, {(aid, ctraid)}aid∈(enc

)
.

• Decrypt(gpp, (, {(aid, skaid, hskaid,gid)}aid∈(, ct): On input the global parameters

gpp = (sRABE.gpp, 5 , {(9, :, pk′9,:)} 9∈-,:∈[0,ℓ]),

a set of attributes (⊆ (enc, a collection of secret keys skaid = (gid, {(8, :, skaid,8,:)}8∈�gid,:∈[0,ℓ]), a collection of
helper keys hskaid = (ctraid,gid, �

′
aid,gid

, hskaid,gid,0, . . . , hskaid,gid,ℓ), and a ciphertext ct = (ct
′, {(aid, ctraid)}aid∈(enc),

the decryption algorithm proceeds as follows:

– Take any 8∗ ∈
⋂

aid∈(�
′
gid,aid

. If no such 8∗ exists, output ⊥.

– For each aid ∈ (, let :aid to be the index of the most significant bit where ctraid and ctraid,gid differ.

– If hskaid,gid,:aid = ⊥, abort and output ⊥. Otherwise, parse

hskaid,gid,:aid = {(8, hskaid,8,:aid) | 8 ∈ �
′
gid,aid}.

Output
< = sRABE.Decrypt(sRABE.gpp, (, 8∗, {(aid, skaid,8∗,:aid , hskaid,8∗,:aid)}aid∈(, ct

′).

49

Correctness, compactness, and efficiency. Recall the correctness game from Definition 4.3. We will show if
the underlying slotted scheme ΠsRABE satisfies completeness, correctness and compactness, then the transformed
scheme from Construction 6.4 also satisfies perfect correctness, compactness, and efficiency. To help analyze our
construction, we use [HLWW23, Claim 6.4], which we restate below.

Claim 6.5 ([HLWW23, Claim 6.4]). Let G,~ < 2ℓ+1−1 be nonnegative integers with binary representations G = Gℓ · · · G1G0
and~ = ~ℓ · · ·~1~0. Suppose G < ~. Let :G,~ = max{: ∈ [0, ℓ] : G: ≠ ~: }. Namely, :G,~ is the index of the most significant

bit on which G and ~ differ. Then :G,~ ≤ :G,~+1. Moreover, if :G,~ < :G,~+1, then ~ + 1 = 0 mod 2:G,~+1

Theorem 6.6 (Correctness). Suppose ΠsRABE is complete and perfectly correct. Then Construction 6.4 is a perfectly

correct MA-RABE scheme with respect to the following IsReady function:

IsReady(4, 3, ℎ) =

{
1 ℎ ≥ 2:3,4

0 otherwise,

where :3,4 is as defined in Claim 6.5.

Proof. We first recall the correctness game from Definition 4.3 instantiated with Construction 6.4:

• Setup phase: The challenger receives parameters (1_, 1!, 1%), and generates the global parameters

gpp = (sRABE.gpp, 5 , {(9, :, pk′9,:)} 9∈-,:∈[0,ℓ]) and gep = sRABE.gep

by computing Setup(1_, 1!, 1%). Then, the challenger initializes a dictionary D mapping authority identifiers
aid to a tuple (2, :, 9, (mpk0, . . . ,mpk2), aux), where the components are defined as follows:

– 2 represents the total number of users registered to this authority.

– : = (3, pkgid∗ , skgid∗) is a tuple representing the target user identifier gid∗ ∈ GID_ . Here, 3 ∈ N denotes
the number of users registered with authority aid immediately after gid∗ is registered, and (pkgid∗ , skgid∗)
are the public/secret keys associated with gid∗ and authority aid (as sampled by the challenger in the
security game). If the adversary has not yet registered a target user, then : = ⊥.

– 9 = (ℎ, hskgid∗) is a tuple containing the counter value ℎ ∈ N when the helper decryption key hskgid∗ for
the target user gid∗ was last requested (for authority aid). If the adversary has not yet registered a target
user or requested an update, then 9 = ⊥.

– (mpk0, . . . ,mpk2) is the list of master public keys associated with the authority after each registration.

– aux is the auxiliary state of authority aid.

At the beginning of the correctness game, the challenger initializes 2 = 0, : = ⊥, 9 = ⊥, mpk0 = ⊥ and aux = ⊥.

• Query phase: During the query phase, the adversary A is able to make the following queries:

– Register non-target key query: In a non-target-key registration query, the adversaryA specifies a user
identifier gid, a public key pkgid = ({(8, :, pk8,:)}8∈�gid,:∈[0,ℓ]), and an authority aid ∈ AU. The challenger
first retrieves the entry (2, :, 9, (mpk0, . . .mpk2), aux) = D[aid] and computes RegPK(gpp, aux, gid, pkgid)
as follows:

∗ The challenger parses aux = (ctraux,D0,D1,D2,mpk).

∗ The challenger checks that �gid = 5 (gid). If not, the challenger outputs the current auxiliary data
aux and master public key mpk.

∗ For each 8 ∈ �gid, : ∈ [0, ℓ], the challenger checks that IsValid(sRABE.gpp, 8, pk8,:) = 1. Otherwise,
the challenger outputs the current auxiliary data aux and master public key mpk.

∗ If D0 [gid] ≠ ⊥, the challenger outputs the current auxiliary data aux and master public key mpk.

∗ Define � ′
gid

= {8 | 8 ∈ �gid ∧ D1 [8] = ⊥}. Set D0 [gid] = (ctr, � ′
gid
), and for each 8 ∈ � ′

gid
, set

D1 [8] =
(
gid, {pk8,: }:∈[0,ℓ]

)
.

50

∗ For all : ∈ [0, ℓ], the challenger checks if ctr + 1 = 0 mod 2: . If so, then it performs the following
updates:

· For all 8 ∈ - , the challenger first looks up (gid8 , {(:
′, pk8,: ′)}: ′∈[0,ℓ]) = D1 [8]. If it is the case that

D0 [gid8] ∈ [ctr − 2
: + 1, ctr], then set

p̃k8 = pk8,: and g̃id8 = gid8 .

Otherwise, if D0 [gid8] ∉ [ctr − 2
: + 1, ctr] or if D1 [8] = ⊥, let

p̃k8 = pk′8,: and g̃id8 = 0.

· Compute the aggregated parameters

(m̃pk: , {(8, h̃sk8,:)}8∈-) = sRABE.Aggregate
(
sRABE.gpp, (g̃id1, p̃k1), . . . , (g̃id |- | , p̃k |- |)

)
.

· For each user identifier gid where D0 [gid] = (ctrgid, �
′
gid
) and ctrgid ∈ [ctr − 2

: + 1, ctr], set

D2 [gid, :] =
{
(8, h̃sk8,:) | 8 ∈ �

′
gid

}
.

· Update mpk: = mpk∗:
∗ Finally, the challenger increments ctr = ctr + 1 and outputs the new master public key mpk2+1 =

(ctr,mpk0, . . .mpkℓ) and updated auxiliary data aux′ = aux.

The challenger updates its auxiliary data by setting D[aid] := (2 + 1, :, (mpk0, . . .mpk2 ,mpk2+1), aux
′)

and replies to A with (mpk2+1, aux
′).

– Register target key query: In a target-key registration query, the adversary specifies a target user
identifier gid∗ and an authority aid. If the adversary has made a previous register-target-key query with a
user identifier gid ≠ gid∗, then the challenger outputs ⊥. In addition, if the adversary has already made
a registration query for gid∗ to authority aid, then the challenger also replies with ⊥. Otherwise, the
challenger retrieves (2, :, (mpk0, . . .mpk2), aux) = D[aid]. Then, it samples

(pkaid,gid∗ , skaid,gid∗) ← KeyGen(gpp, gid∗),

where pkaid,gid∗ = ({pk8,:,aid}8∈�gid∗ ,:∈[0,ℓ]) and skaid,gid∗ = (gid∗, {sk8,:,aid}8∈�gid∗ ,:∈[0,ℓ]). The challenger
register this key using the same procedure described above for registering a non-target-key. Afterwards it
updates

D[aid] = (2 + 1, (3, pk, sk, hsk), (mpk0, . . .mpk2 ,mpk2+1), aux
′),

where3 = 2+1, pk = pkaid,gid∗ , and sk = skaid,gid∗ . The challenger replies toA with (mpk2+1, aux
′, pkaid,gid∗ ,

skaid,gid∗).

– Request update query: In a request update query, the adversary sends an authority identifier aid.
The challenger looks up (2, (3, pkgid∗ , skgid∗), (ℎ, hskgid∗), (mpk0, . . . ,mpk2), aux) = D[aid]. If 3 = ⊥, the
challenger halts and returns 0. Otherwise, the challenger computes hsk′ ← UpdateKey(gpp, aux, pk) and
updates ℎ = 2 and hsk = hsk′ in D[aid].

• Challenge phase: During the challenge phase, the adversaryA makes an encryption query in the form of a pol-
icy ((enc, i), a list of indices {4aid}aid∈(enc , and a message<. For each aid ∈ (enc, the challenger looks upD[aid] =
(2aid, (3aid, pkaid,gid∗ , skaid,gid∗), (ℎaid, hskaid,gid∗), (mpkaid,0, . . . ,mpkaid,2aid), auxaid). If for any 8 , 4aid > 2aid, output
⊥. Otherwise, the challenger respondswith the ciphertext ct← Encrypt(gep, ((enc, i), {(aid,mpkaid,4aid)}aid∈(enc ,
<) computed as follows:

– For each aid ∈ (enc, parse mpkaid,4aid = (ctr,mpkaid,0, . . .mpkaid,ℓ).

– Let (′enc = {(aid, :) | aid ∈ (enc, : ∈ [0, ℓ]} and i
′ be the policy obtained by substituting each appearance

of attribute aid in i with the clause
(∨

:∈[0,ℓ] (aid, :)
)
.

51

– Compute the ciphertext ct′ ← sRABE.Encrypt(gep, ((′enc, i
′), {((aid, :)mpkaid,:)} (aid,:) ∈(′enc ,<).

– Set ct = (ct′, {(aid, ctraid)}aid∈(enc).

Adversary A then replies with a set (⊆ (enc of authorities. The challenger evaluates the decryption algorithm
Decrypt(gpp, (, {(aid, skaid,gid∗ , hskaid,gid∗)}aid∈(,ct) as follows:

– For each aid ∈ (, check that 3aid ≠ ⊥ and IsReady(4aid, 3aid, ℎaid) = 1. Otherwise, abort with output 0.

– Parse

skaid,gid∗ = (gid
∗, {(8, :, skaid,8,:)}8∈�gid∗ ,:∈[0,ℓ])

hskaid,gid∗ = (ctraid,gid∗ , �
′
aid,gid∗

, hskaid,gid∗,0, . . . hskaid,gid∗,ℓ).

– For each aid ∈ (, let :aid to be the index of the most significant bit which ctraid and ctraid,gid differ (where
bits are 0-indexed starting from the least significant bit).

– If hskaid,gid∗,:aid = ⊥, output<
′
= ⊥. Otherwise, recall hskaid,gid∗,:aid = {(8, hskaid,8,:aid)}8∈� ′aid,gid∗ .

– Compute<′ = sRABE.Decrypt(sRABE.gpp, {skaid,8∗,:aidhskaid,8∗,:aid }aid∈(, ct
′).

If (satisfies i and<′ ≠<, the challenger outputs 1 = 1. Otherwise, the challenger outputs 1 = 0.

We begin by showing the following invariant:

Lemma 6.7. Let aux = (ctraux,D0,D1,D2,mpk) be the auxiliary data for an arbitrary authority aid at any point in the

correctness game after the adversary has made a target-key registration query. Write mpk = (ctraux,mpk0, . . .mpkℓ).
Let pk∗gid = (gid∗, {pk∗8,: }8∈�gid,:∈[0,ℓ]) be the target key the challenger sampled in the register-target-key query. Then

for all 8′ ∈ � ′
aid,gid∗

, it holds that mpk: ′ was the output of a call to sRABE.Aggregate(gpp, ·) on a tuple of keys and user

identifiers that included the target key (pk∗8′,: ′ , gid
∗) where : ′ is the index of the most significant bit where D0 [gid

∗] and
ctraid differ.

Proof. We prove Lemma 6.7 via induction. The base case corresponds to the state of the challenger immediately after
the adversary registers the target key. Let auxaid = (ctraid,D0,D1,D2,mpkaid) be the auxiliary data at the beginning
of the adversary’s first target-key registration query. We start by showing the invariant holds immediately following
the query:

• In a target-key registration query, algorithm A sends the user identifier gid∗ and the authority aid.

• The challenger runs KeyGen(gpp, gid∗). This is done by first computing �gid∗ . Then, for each : ∈ [0, ℓ]
and 8 ∈ �gid∗ , the challenger computes pk∗8,: ← sRABE.KeyGen(sRABE.gpp, 8). This yields the public key
pk∗ = (gid, {(8, :, pk∗8,:)}8∈�gid∗ ,:∈[0,ℓ]).

• Next, the challenger registers the key it just computed using RegPK(gpp, auxaid, gid
∗, pk∗). By completeness of

ΠsRABE, we have that for all : ∈ [0, ℓ], sRABE.IsValid
(
sRABE.gpp, 8, pk∗8,:) = 1. Recall further that gid∗ has not

been registered to authority aid before (otherwise the target-key query aborts). Thus, D0 [gid
∗] = ⊥ and RegPK

continues execution, where it computes � ′
aid,gid∗

and sets D0 [gid
∗] = ctraid before incrementing ctraid by one.

• Take any arbitrary 8 ∈ � ′
aid,gid∗

. Let : ′ be the index of the most significant bit where ctraid = 0 mod 2:
′
. This

means the (: ′)th bit is 1 in ctraid, as otherwise ctraid = 0 mod 2:
′+1 but 0 in D0 [gid

∗]. By construction, this
means pk∗8,: ′ has been aggregated into mpk: ′ .

Next, we consider the auxiliary state auxaid after each subsequent non-target-key registration query made byA. Since
the only queries that affect auxaid are non-target-key registration queries, we ignore the encryption and decryption
queries in the following analysis.

52

• Let auxaid = (ctraid,D0,D1,D2,mpkaid) and mpkaid = (ctraid,mpkaid,0, . . . ,mpkaid,ℓ) be the auxiliary state and
master public key at the time of the key-generation query. The inductive hypothesis is that the invariant
holds for auxaid: namely, mpkaid,: ′ was aggregated with pk∗8,: ′ for 8 ∈ �

′
aid,gid∗

where : ′ is the index of the most

significant differing bit between ctraid and D0 [gid
∗].

• In a non-target-key registration query, algorithm A sends a public key pk to be registered. First, if this key
fails the IsValid check or is associated with an existing user identifier, the challenger aborts and mpkaid is
unchanged. In this case, the inductive hypothesis continues to hold.

• Suppose pk passes all of the validity checks. Let : ′′ be the index of the most significant bit for which ctraid + 1
(i.e., the value of the counter after pk is registered) differs from D0 [gid

∗]. By Claim 6.5, : ′ ≤ : ′′. We now
consider two possibilities:

– Suppose : ′ = : ′′. This means that the (: ′)th bit of ctr and ctr + 1 are the same. Correspondingly, this
means that (ctraid mod 2:

′
) + 1 < 2:

′
. Thus, mpk′aid,:old = mpkaid,:old is unchanged by the registration

algorithm. Thus our inductive hypothesis is preserved.

– Suppose : ′ < : ′′. By Claim 6.5, this means that ctraid + 1 = 0 mod 2:
′′
. By construction, this means

the challenger will increment ctraid and invoke sRABE.Aggregate on all gid where D0 [gid] ∈ [ctraid −
2:
′′
+ 1, ctraid]. Since gid was registered in mpk: ′ , this means D0 [gid

∗] must have been in the range
[ctraid − 2 · 2

: ′ + 1, ctraid − 2
: ′]. Since : ′′ ≥ : ′ + 1, we conclude ctraid − 2

: ′′ + 1 ≤ ctraid − 2 · 2
: ′ + 1, and so

D[gid∗] ∈ [ctraid − 2
: ′′ + 1, ctraid], and as such, will be aggregated in the updated mpk: ′′ . Once more, the

induction hypothesis holds.

The above argument shows that if the invariant holds at the beginning of a non-target-key registration query, then it
continues to hold after the query. Lemma 6.7 now follows by induction. �

To complete the proof, we now argue if an adversary causes this scheme to output 1 in the multi-authority registered
ABE correctness game, then it has found some set of inputs which violates correctness of the underlying slotted
multi-authority registered ABE correctness. This follows from the following observations:

• First, the set
⋂

aid∈(�
′
aid,gid∗

is nonempty (i.e., there exists an index 8∗ where 8∗ ∈
⋂

aid∈(�
′
aid,gid∗

). To see this,

recall that the access policy contains at most % authorities. Each authority can register up to ! user identifiers.
Thus, the maximum number of user identifiers that can be registered to an authority appearing in the challenge
ciphertext is ! · % . Since (-, F) is (! · %)-cover-free, there exists an index 8∗ ∈ �gid∗ and 8

∗
∉ �gid for all other

user identifiers gid registered with authorities aid ∈ (. By construction, this means 8∗ ∈ � ′
aid,gid∗

for all aid ∈ (.

• If the attribute set (satisfies the policy i , then the attribute set {(aid, :aid)}aid∈(satisfies policy i
′. This also

follows by construction. Namely, each clause
(∨

:∈[0,ℓ] (aid, :)
)
in i ′ is fulfilled by any (aid, :), and in particular,

by (aid, :aid). Thus, i
′ is satisfied as long as i is satisfied by (.

• For all aid ∈ (, the target identifier gid∗ is registered with master public key mpkaid,:aid . Since the correctness
game did not abort in the decryption step, for all aid ∈ (, it holds that 3aid ≠ ⊥. Since this is only updated
in target-key queries, the adversary must have submitted a valid target-key registration query to aid. This
property now follows from Lemma 6.7.

• The helper decryption keys in D2 [gid
∗, :aid] correspond to helper decryption keys of mpkaid,:aid . Furthermore,

hskaid,gid∗,:aid ≠ ⊥. Observe that D2 [gid
∗, :aid] is set when mpkaid,:aid is aggregated. In addition, it is never

updated, as subsequent calls to update mpkaid,:aid will be on disjoint intervals user identifiers. Next, observe
that since the challenger outputs 1 = 1, it must be the case that IsReady(4aid, 3aid, ℎaid) = 1 for all aid ∈ (. This
means ℎ ≥ 2:3aid,ℎaid = 2:aid , and thus, was updated after D2 [gid

∗, :aid] was set.

Taken together, we can see that for all aid ∈ (, the master public key mpkaid,:aid and the associated helper decryption
keys hskaid,8∗,:aid are generated by invoking Aggregate with input (gid∗, pkaid,8∗,:aid) (and taking the helper decryption
keys for slot 8∗). Furthermore, pkaid,8∗,:aid is a valid key (as otherwise RegPK does not aggregate it). Moreover,

53

sRABE.Decrypt was invoked on a set of authorities that satisfy the access policy, so if the correctness experiment
returned 1, it must be the case that sRABE.Decrypt returned a message<′ ≠ <. This violates correctness of the
underlying slotted scheme. �

Theorem 6.8 (Compactness). Suppose ΠsRABE is compact. Then Construction 6.4 is compact.

Proof. Observe that the master public key mpk simply consists of an ℓ-bit counter indicating the current number
of registered users along with ℓ + 1 master public keys mpk0, . . . ,mpkℓ for the underlying slotted scheme. Since
each mpk8 is a public key for a slotted scheme with |- | slots supporting % · ℓ authorities, the length of each mpk8 is
bounded by poly(_, log |- |, % · ℓ) by compactness of ΠsRABE. Since |- |, % ∈ poly(_), ℓ = log!, the overall size of each
mpk is bounded by poly(_, log!). The compactness of the global encryption parameters follows similarly from the
compactness of the underlying slotted scheme. �

Theorem 6.9 (Polylogarithmic Update Efficiency). The IsReady predicate in Eq. (4.1) satisfies the polylogarithmically-

efficiency requirements from Remark 4.4.

Proof. We consider each requirement separately:

• Observe that if 4 ≥ 3 , then :4,3 is a bit which 4 = 1. Thus 2:4,3 ≤ 4 , so if ℎ ≥ 4 , IsReady is satisfied.

• Consider the intervals [1, 1], [2, 3], . . . , [28−1, 28 − 1] of successive powers of 2. First, we can see [!] =⋃
8∈[⌈log!+1⌉] [2

8−1, 28−1]. Fix someℎ ∈ [28−1, 28−1]. Since 4 ≤ 28−1, the most significant bit of 4 which has value

1 must be at most bit 8 − 1. Thus, :4,3 ≤ 8 − 1, and so 2
:4,3 ≤ 28−1 ≤ ℎ. We conclude that IsReady(4, 3, ℎ) = 1. �

Theorem 6.10 (Security). Suppose ΠsRABE is secure. Then Construction 6.4 is secure.

Proof. Suppose there is an adversary A that breaks security of the multi-authority registered ABE scheme. We use
A to construct an efficient algorithm B for the underlying slotted scheme:

• Setup phase: Algorithm B starts running A on security parameter 1_ . Algorithm A outputs the number of
slots 1! and the maximum policy size 1% . Algorithm B then proceeds as follows:

– As in the construction, we assume without loss of generality that ! = 2ℓ is a power of two.

– Algorithm B instantiates an (! · %)-cover free family of sets (-, F) where |F | ≥ 2_ exactly as in
Construction 6.4. Let 5 : GID → F be the associated injective mapping.

– Algorithm B initializes dictionaries D0 to map authorities aid to their state and master public key, D1 to
map public keys of the underlying slotted scheme pk8 to their challenger-assigned counter value ctr, D2

to map (aid, gid) pairs to the associated public keys that were registered, and D3 to map master public
keys mpk to the set of public keys and user identifiers with which they were associated.

– Algorithm B defines RegPK′, which behaves exactly as RegPK. However, after each invocation of

(mpk, {hsk}) ← sRABE.Aggregate(sRABE.gpp, (gid1, pk1), . . . , (gid |- | , pk |- |)),

it sets D3 [mpk] =
(
(D1 [pk1], gid1, pk1), . . . , (D1 [pk |- |], gid |- | , pk |- |)

)
.

– Algorithm B sends the slot count 1 |- | and the maximum policy size 1% · (ℓ+1) to the challenger and receives
global public parameters sRABE.gpp and the encryption parameters sRABE.gep.

– For each slot index 9 ∈ - and each : ∈ [0, ℓ], algorithm B submits a key-generation query on index : to
the challenger. The challenger responds with (ctr′

9,:
, pk′9,:). Algorithm B updates D1 [pk

′
9,:] = ctr′

9,:

– Algorithm B sets
gpp = (sRABE.gpp, 5 , {(9, :, pk′9,:)} 9∈-,:∈[0,ℓ])

and gep = sRABE.gep. It gives (gpp, gep) to A.

• Pre-challenge query phase: Algorithm B simulates the queries made by A as follows:

54

– Register honest key query: When algorithm A makes a registration query on an authority aid and
user identifier gid, algorithm B first computes �gid. Then, for each 8 ∈ �gid and : ∈ [0, ℓ], it makes a key-
generation query on index 8 to the challenger and receives (ctr8,: , pk8,:). AlgorithmB setsD1 [pk8,:] = ctr8,:
and constructs pkgid = (gid, {(8, :, pk8,:)}8∈�gid,:∈[0,ℓ]). Algorithm B then looks up (mpk, aux) = D0 [aid]
and computes

(mpk′, aux′) ← RegPK′ (gpp, aux, gid, pkgid).

Algorithm B updates D0 [aid] = mpk′, aux′, D2 [aid, gid] = pkgid and returns (mpk′, aux′, pkgid) to A.

– Register corrupt key query: When algorithmA makes a corrupted registration query on authority aid,
user identifier gid, and public key pkgid, algorithmB first looks up (mpk, aux) = D0 [aid]. Then it computes
(mpk′, aux′) ← RegPK′ (gpp, aux, gid, pkgid). Parsing pkgid = (gid, {(8, :, pk8,:)}8∈�gid,:∈[0,ℓ]), algorithm
B sets D1 [pk8,:] = ⊥ for all 8 ∈ �gid and : ∈ [0, ℓ]. Finally, algorithm B updates D0 [aid] = (mpk′, aux′)
and responds with (mpk′, aux′, pkgid) to A.

– Corrupt honest key query: When algorithm A makes a corruption query on authority aid and user
identifier gid, algorithm B looks up pkgid = D2 [aid, gid], and parses pkgid = (gid, {pk8,: }8∈�gid,:∈[0,ℓ]).
For each 8 ∈ �gid and : ∈ [0, ℓ], algorithm B makes a key-corruption query on ctr8,: = D1 [pk8,:] to the
challenger and receives sk8,: . Algorithm B responds with skgid = (gid, {(8, :, sk8,:)}8∈�gid,:∈[0,ℓ]).

• Challenge phase: When algorithm A makes a challenge query with messages (`∗0, `
∗
1) and a policy ((enc, i),

algorithm B makes a challenge query of its own as follows:

– First, algorithm B defines the challenge authority set to be (′enc = {(aid, :)}aid∈(enc,:∈[0,ℓ] . It defines the
challenge policy i ′ by replacing each appearance of attribute aid in i with the clause

(∨
:∈[0,ℓ] (aid, :)

)
.

Algorithm B outputs the challenge policy ((′enc, i
′) and the messages `∗0, `

∗
1 .

– Next, for each aid ∈ (enc, algorithm B looks up (mpkaid, auxaid) = D0 [aid]. It parses mpkaid =

(ctraid,mpkaid,0, . . . ,mpkaid,ℓ). For each aid ∈ (enc and : ∈ [0, ℓ], algorithm B specifies the tuple
D3 [mpkaid,:] as the set of keys associated with authority (aid, :).

The challenger replies with a ciphertext ct′. Algorithm B replies to A with ct = (ct′, {(aid, ctraid)}aid∈(enc).

• Post-challenge query phase: Algorithm B answers the post-challenge queries using the same procedure as
the pre-challenge queries.

• Output phase: At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

We will observe that if A is an admissible adversary for the non-slotted multi-authority registered ABE security
game, then algorithm B is an admissible adversary for the slotted security game. Recall that A is admissible if there
does not exist a user identifier gid∗ such that the set of corrupted attributes satisfy policy i . We will show that a
non-admissible adversary B corresponds to a non-admissible A (which would be a contradiction). Suppose that B
submits a sequence of queries such that there exists gid∗ for which the set of corrupted attributes (′

gid∗
satisfies i ′.

Let (gid∗ = {aid | (aid, :) ∈ (
′
gid∗
}. By construction of B, this can only happen if A made a registration query on

(gid∗, aid). We consider two cases:

• Suppose adversary A made an honest-key registration query on (gid∗, aid). Suppose B returns key pkgid∗ =

(gid∗, {(8, :, pk8,:)}8∈�gid∗ ,:∈[0,ℓ]). Observe that since each pk8,: is set to its corresponding counter value, these
keys will correspond to uncorrupted keys in mpkaid so long as B does not submit a corruption query on them,
which can only occur through A making a corrupt-key query on (gid∗, aid). In this case, this would also
corrupt (gid∗, aid) for B.

• Suppose adversary A made a corrupted-key registration query on (gid∗, aid). Observe in this case, the key
pkgid∗ = (gid

∗, {(8, :, pk8,:)}8∈�gid∗ ,:∈[0,ℓ]) submitted by A has D1 [pk8,:] set to ⊥. As such, when B constructs
the challenge query, these slots will have counter value set to ⊥, meaning they are also be corrupted in B’s
challenge as well.

55

Observe that in either case, aid ∈ (gid∗ . Finally, by construction of i ′, if (′
gid∗

satisfies i ′, then (gid∗ satisfies i , in

which case adversary A is also not admissible, as required. Finally, algorithm B perfectly simulates an execution of
the registered ABE security game forA, so taken together, we can conclude that assuming security of the underlying
ΠsRABE scheme, the above construction is a secure multi-authority registered ABE scheme. �

7 Multi-Authority Registered ABE from Obfuscation

In this section, we show how to construct an adaptively-secure multi-authority registered ABE supporting monotone
Boolean circuit policies for an unbounded number of users using indistinguishability obfuscation (8O) [BGI+01],
function-binding hash functions [FWW23], computational secret sharing (CSS) for monotone Boolean circuits
[Yao89, VNS+03], and non-committing encryption [CFGN96]. We note these primitives are all implied by 8O together
with (leveled) homomorphic encryption.

7.1 Building Blocks

We start by recalling the definitions of the building blocks we use in our construction.

Definition 7.1 (Indistinguishability Obfuscation [BGI+01, GGH+13]). Let C = {C_}_∈N be a family of polynomial-size
circuits. An indistinguishability obfuscator 8O is an efficient algorithm that takes as input the security parameter _, a
circuit � ∈ C_ and outputs a circuit �′. An 8O scheme should satisfy the following properties:

• Functionality-preserving: For all security parameters _ ∈ N, all � ∈ C_ , and all inputs G , we have that
�′ (G) = � (G) where �′ ← 8O(1_,�).

• Security: For all efficient (possibly non-uniform) adversariesA = (Samp,A′), there exists a negligible function
negl(·) such that the following holds: if for all security parameters _ ∈ N,

Pr[∀G,�0 (G) = �1 (G) : (�0,�1, st) ← Samp(1_)] = 1 − negl(_),

then �� Pr[A′ (st, 8O(1_,�0)) = 1] − Pr[A′ (st, 8O(1_,�1)) = 1]
�� = negl(_),

where (�0,�1, st) ← Samp(1_).

Definition 7.2 (Function Binding Hash Function [FWW23]). Let _ be a security parameter. A function binding (FB)
hash function with block length ℓblk = ℓblk (_), output length ℓout = ℓout (_), function class F = {F_}_∈N where F_
consists of functions 5 : ({0, 1}ℓblk)∗ → {0, 1}ℓout , hash length ℓhash = ℓhash (_), and opening length ℓopen = ℓopen (_) is a
tuple of efficient algorithms ΠFB = (Setup, SetupBinding,Hash,Open,Verify) with the following syntax:

• Setup(1_, #) → hk: On input the security parameter _, and the bound on the number of blocks # ≤ 2_ (in
binary), the setup algorithm outputs a hash key hk.

• SetupBinding(1_, # , 5) → hk: On input the security parameter _, a bound on the number of blocks # ≤ 2_ (in
binary), and a function 5 ∈ F_ the setup algorithm outputs a hash key hk.

• Hash(hk, x) → ℎ: On input the hash key hk and a message x = (G1, . . . , G=) ∈ ({0, 1}
ℓblk)= for some = ≤ # , the

hash algorithm deterministically outputs a hash ℎ ∈ {0, 1}ℓhash .

• Open(hk, x, 8) → c8 : On input the hash key hk, an input x ∈ ({0, 1}ℓblk)= , and an index 8 ∈ [!], the open
algorithm outputs an opening c8 ∈ {0, 1}

ℓopen .

• Verify(hk, ℎ, (, {(8, G8 , c8)}8∈() → {0, 1}: On input the hash key hk, a hash value ℎ ∈ {0, 1}ℓhash , a set of indices
(⊆ [#], and the values G8 ∈ {0, 1}

ℓblk , and openings c8 ∈ {0, 1}
ℓopen associated with said indices, the verification

algorithm outputs a bit 1 ∈ {0, 1} indicating whether it accepts or rejects.

We require the following properties:

56

• Correctness: For all security parameters _ ∈ N, all block sizes ℓblk = ℓblk (_), all integers # ∈ N, all index sets
(⊆ [=] for any = ≤ # , and any x ∈ ({0, 1}ℓblk)# ,

Pr


Verify(hk, ℎ, (, {(8, G8 , c8)}8∈() = 1 :

hk← Setup(1_, #)
ℎ ← Hash(hk, x)
c8 ← Open(hk, x, 8)


= 1.

• Computational function hiding: For a bit 1 ∈ {0, 1} and an adversaryA, define the function hiding game as
follows:

1. On input the security parameter 1_ , algorithm A outputs the number of blocks # ∈ N (in binary) and a
function 5 ∈ F_ .

2. The challenger samples hk0 ← Setup(1_, #), hk1 ← SetupBinding(1_, # , 5) and gives hk1 to A.

3. Algorithm A outputs a bit 1′ ∈ {0, 1}, which is also the output of the experiment.

We require that for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[1′ = 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | = negl(_)

in the function hiding game.

• Statistically function binding: For a security parameter _, we say that a hash key hk is (statistically) function
binding on a function 5 ∈ F_ if for all inputs x ∈ ({0, 1}

ℓblk)= and setting ℎ = Hash(hk, x), there does not exist
a set (⊆ # and {(G∗8 , c

∗
8)}8∈(where

– Verify(hk, ℎ, (, {(8, G∗8 , c
∗
8)}8∈() = 1

– For all x′ such that G ′8 = G
∗
8 , 5 (x

′) ≠ 5 (x).

We say a scheme ΠFB is statistically function binding if there exists a negligible function negl(·) such that for
all _ ∈ N, # ≤ 2_ , and all 5 ∈ F_ ,

Pr[hk is function binding for 5 : hk← SetupBinding(1_, # , 5)] = 1 − negl(_).

• Succinctness: The hash length ℓhash and opening length ℓopen are fixed polynomials in the security parameter
_ (and independent of #).

In this work, we consider function-binding hash functions for the family of unique-block-selection predicates, which
we define below:

Definition 7.3 (Unique Block Selection). Let ℓblk = ℓblk (_) be an input length parameter and 6 : {0, 1}ℓblk → {0, 1} be
a predicate. We say a function 56 is a unique-block-selection function if it can be written as

56 (G1, . . . , G=) =

{
G8 if 6(G8) = 1 and ∀9 ≠ 8 ∈ [=] : 6(G 9) = 0

⊥ otherwise.

We say F = {F_}_∈N is the class of all unique block selection functions with input length ℓblk = ℓblk (_) and predicate
size B = B (_) if F_ contains all functions 56 : {0, 1}

ℓblk → {0, 1} where the function 6 can be computed by a Boolean
circuit of size B .

In Appendix C, we show how to construct a function-binding hash function for the class of unique-block-selection
predicates (where the predicates 6 can be computed by polynomial-size Boolean circuits) using leveled homomorphic
encryption. Our construction follows the same approach as that used to construct somewhere statistically binding
hash functions [HW15] and function-binding hash functions for disjuctions of block-wise functions [FWW23].

57

Definition 7.4 (Non-Committing Encryption [CFGN96]). Let _ be a security parameter. A (weak)-non-committing
encryption scheme with message spaceM = {M_}_∈N is a tuple of efficient algorithms ΠNCE = (KeyGen, Encrypt,
Decrypt,CTSim,RSim) with the following syntax:

• KeyGen(1_) → (pk, sk): On input the security parameter _, the key-generation algorithm outputs a public key
pk and secret key sk.

• Encrypt(pk,<) → ct: On input a public key pk and a message< ∈ M, the encryption algorithm outputs a
ciphertext ct.

• Decrypt(sk, ct) →<: On input a secret key sk and a ciphertext sk, the encryption algorithm outputs a message
< (which could be a special symbol ⊥).

• CTSim(1_) → (pk, ct, td): On input the security parameter _, the ciphertext-simulation algorithm outputs a
simulated public key pk, a simulated ciphertext ct, along with a trapdoor td.

• RSim(td,<) → A : On input a trapdoor td and a message<, the randomness-simulation algorithm outputs a
string A ∈ {0, 1}d . Here, d = d (_) is the number of bits of randomness the KeyGen algorithm takes.

We require ΠNCE satisfy the following properties:

• Correctness: For all security parameters _, all messages< ∈ M, we have that

Pr

[
Decrypt(sk, ct) =< :

(pk, sk) ← KeyGen(1_)
ct← Encrypt(pk,<)

]
= 1.

• Simulatability: For a bit 1 ∈ {0, 1} and an adversary A, we define the simulation security experiment as
follows:

1. If 1 = 0, the challenger samples randomness A r← {0, 1}d and computes (pk, sk) = KeyGen(1_ ; A). If 1 = 1,
it samples (pk, ct, td) ← CTSim(1_). It sends pk to A.

2. Algorithm A outputs a message< ∈ M.

3. If 1 = 0, the challenger computes ct ← Encrypt(pk,<). If 1 = 1, it computes A ← RSim(td,<). The
challenger replies to A with (ct, A).

4. Algorithm A responds with a bit 1′, which is the output of the experiment.

We require that for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[1′ = 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | = negl(_)

in the simulatability game.

Weak non-committing encryption can be constructed from any simulatable public-key encryption scheme [DN00],
which in turn can be constructed from most number theoretic assumptions, including the decisional Diffie-Hellman
(DDH) assumption over pairing free groups [DN00] or the learning with errors (LWE) assumption [GPV08].

Definition 7.5 (Computational Secret Sharing for Monotone Circuits [Yao89, VNS+03]). Let _ be a security parameter.
A computational secret sharing (CSS) scheme for monotone Boolean circuits with secret space S = {S_}_∈N is a pair
of efficient algorithms ΠCSS = (Share,Recon) with the following syntax:

• Share(1_,�, B) → (sh1, . . . , sh=): On input the security parameter _, a monotone Boolean circuit � : {0, 1}= →
{0, 1}, and a secret B ∈ S_ , the share algorithm outputs a set of shares (sh1, . . . , sh=), where sh8 is the “share”
associated with the 8th input to � .

• Recon(�, G, {(8, sh8)}8:G8=1) → B : On input a Boolean circuit � : {0, 1}= → {0, 1}, an input G ∈ {0, 1}= , and a set
of shares {(8, sh8)}8:G8=1, the reconstruction algorithm outputs a secret B .

58

We require ΠCSS satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, secrets B ∈ S_ , and all monotone Boolean circuits� : {0, 1}= →
{0, 1}, and inputs G ∈ {0, 1}= where � (G) = 1, we have that

Pr[Recon(�, G, {(8, sh8)}8:G8=1) = B : (sh1, . . . , sh=) ← Share(1_,�, B)] = 1

• Adaptive security: For a bit 1 ∈ {0, 1} and an adversary A, define the adaptive secret sharing security game
as follows:

1. On input the security parameter 1_ , algorithmA chooses a monotone Boolean circuit� : {0, 1}= → {0, 1}
and a pair of secrets B0, B1 ∈ S_ .

2. The challenger samples (sh1, . . . , sh=) ← Share(1_,�, B1).

3. The adversary can now adaptively request shares from the challenger. Namely, the adversary can send an
index 8 ∈ [=] to the challenger and the challenger replies with the associated share sh8 .

4. At the end of the game, the adversary A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

Let G ∈ {0, 1}= be the bit-vector where G8 = 1 for all indices 8 ∈ [=] on which the adversaryA requested a share.
We say the adversary A is admissible if � (G) = 0. Then, the secret sharing scheme satisfies adaptive security if
for all efficient and admissible adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[1′ = 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | = negl(_)

in the adaptive security game.

The works of [Yao89, VNS+03] showed how to construct statically secure computational secret sharing schemes from
public-key encryption. In the static security setting, the adversary has to commit to the shares it wants to see at the
beginning of the experiment. A recent work of Lu and Waters [LW25] show how to generically lift a statically-secure
computational secret sharing scheme into an adaptively-secure scheme (with an overhead that is quadratic in the
number of parties).

7.2 Slotted Multi-Authority Registered ABE for Monotone Boolean Circuits

Similar to our pairing-based construction from Section 5, we first show how to construct a “slotted” version of
our multi-authority registered ABE scheme using indistinguishability obfuscation (and the additional primitives
described above). Then, we can apply a generic transformation (e.g., Construction 6.4) to obtain the general notion
(Definition 4.1). Note that unlike our pairing-based construction (Construction 5.1), our obfuscation-based scheme
does not require that users register to the same slot across different authorities. In fact, the key-generation procedure
in our obfuscation-based scheme will not require keys to be generated with respect to a slot. This means we can avoid
the need for cover-free sets when lifting to the unslotted scheme. This is important to be able to support an unbounded
number of users (recall that the use of cover-free sets in Construction 5.1 imposed a bound on the maximum number
of parties). In Appendix B, we describe a slimmed-down version of the slotted-to-unslotted transformation that does
not rely on cover-free sets (under the assumption that the underlying slotted scheme does not require users to have a
common slot when registering to different authorities).

Construction 7.6 (Slotted Multi-Authority Attribute-Based Registration-Based Encryption.). Let _ be a security
parameter. Let AU = {AU_}_∈N be a universe of authority identifiers. LetM_ = {0, 1}

_ and GID_ = {0, 1}
_ . Let

Φ = {Φ_}_∈N be a family of access policies where Φ_ consists of access policies ((enc,�) where � : 2 |(enc | → {0, 1} is
an arbitrary monotone Boolean circuit. Our construction relies on the following primitives.

• Let 8O be a secure indistinguishability obfuscation scheme for general Boolean circuits.

• Let ΠCSS = (CSS.Share,CSS.Recon) be a computational secret sharing scheme with secret space S = {S_}_∈N
where S_ = {0, 1} for all _ ∈ N. We write |S| to denote the share size for ΠCSS. Note that |S| is a function of the
security parameter _.

59

• Let ΠNCE = (NCE.KeyGen,NCE.Encrypt,NCE.Decrypt,NCE.CTSim,NCE.RSim) be a non-committing encryp-
tion scheme with message spaceMNCE = {0, 1} |S | . Let d be the randomness complexity of NCE.KeyGen and
|pkNCE | be the size of the public keys for ΠNCE. Note that d = d (_) and |pkNCE | are both functions of the
security parameter _.

• For a parameter ' ∈ N, letH' = {�' : {0, 1}
_ → [']} be a family of universal hash families. We assume that

the functions in {H'′ }'′≤' can be computed by a Boolean circuit of size BH (').

• Let ΠFB = (FB.Setup, FB.SetupBinding, FB.Hash, FB.Open, FB.Verify) be a a function-binding hash for the
family of unique-block-selection predicates (Definition 7.3) with block length ℓblk = _ + |pkNCE | and predicate
size B = BH (2

) + 2.

We construct a slotted multi-authority registered ABE scheme ΠsMA-RABE = (GlobalSetup,KeyGen,Aggregate,
Encrypt,Decrypt) with authority identifiers AU, user identifier space GID = {GID_}_∈N, message space
M = {M_}_∈N, and policy family Φ as follows:

• GlobalSetup(1_, !): On input the security parameter _ and the number of slots ! (in binary), the setup algorithm
runs hk← FB.Setup(1_, !) and outputs the global public parameters gpp = hk.5

• KeyGen(gpp): On input the global public parameters gpp, the key-generation algorithm samples A r← {0, 1}d

and (pkNCE, skNCE) ← NCE.KeyGen(1_ ; A). It outputs the public key pk = pkNCE and secret key sk = A .

• IsValid(gpp, pk): On input the global public parameters gpp, and a public key pk, the validation algorithm
outputs 1 as long as |pk| = |pkNCE |.

• Aggregate(gpp, (gid1, pk1), . . . , (gid!, pk!)): On input the global public parameters gpp = hk and ! user identi-
fiers gid8 and associated public keys pk8 , the aggregation algorithm computes the master public key

mpk = ℎaid = FB.Hash(hk, ((gid1, pk1), . . . , (gid!, pk!))).

Here we treat each pair (gid8 , pk8) as a binary string of length {0, 1}_+|pkNCE | . Then, for each user 8 ∈ [!], the
aggregation algorithm computes openings

c8 ← FB.Open
(
hk,

(
(gid1, pk1), . . . , (gid!, pk!)

)
, 8
)
.

It sets the helper secret key to hsk8 = (8, gid8 , pk8 , c8). Finally, it outputs mpk and hsk8 for all 8 ∈ [!].

• Encrypt(gpp, ((enc,�), {(aid,mpkaid)}aid∈(enc , `): On input global public parameters gpp = hk, a set of author-
ities (enc, a monotone Boolean circuit � : 2 |(enc | → {0, 1}, the public key mpkaid for each aid ∈ (enc, and a
message ` ∈ {0, 1}_ , the encryption algorithm defines the following program:

5Since the size of the global public parameters scales polylogarithmically with the number of users, there is no need to distinguish between the
global public parameters gpp and the encryption parameters gep. For simplicity, when describing our scheme, we can always take gep = gpp.
Thus, when describing (and analyzing) the scheme, we always substitute gep with gpp.

60

Constants: Hash key hk, set (enc, master public keys {(aid,mpkaid)}aid∈(enc , a monotone Boolean circuit
� : 2(enc → {0, 1}, and a message ` ∈ {0, 1}_

Inputs: A decryption set (⊆ (enc and for each aid ∈ (, a secret key skaid and a helper decryption key
hskaid.

1. For each aid ∈ (, let mpkaid = ℎaid, skaid = Aaid, and hskaid = (8aid, gidaid, pkaid, caid).

2. Output ` if the following checks pass:

– � (() = 1.

– There exists gid∗ = gidaid for all aid ∈ (.

– FB.Verify(hk, ℎaid, (ind, {(8aid, (gid
∗, pkaid), caid)}aid∈() = 1 where (ind = {8aid | aid ∈ (}.

– For each aid ∈ (, pkaid = pk′aid where let (pk
′
aid, sk

′
aid) = NCE.KeyGen(1_ ; Aaid).

If any of the checks fail, output ⊥.

Figure 1: Program Embed[hk, (enc, {(aid,mpkaid)}aid∈(enc ,�, `].

We assume that the circuit Embed[gpp, (enc, {(aid,mpkaid)}aid∈(enc ,�, `] is padded to the maximum size of any
program that appears in the proof of Theorem 7.11. The encryption algorithm then computes the obfuscated
program �′ ← 8O(1_, Embed[hk, (enc, {(aid,mpkaid)}aid∈(enc ,�, `]) and outputs ct = �′.

• Decrypt((, {(aid, skaid, hskaid)}aid∈(, ct): On input the attribute set (, the secret keys skaid and helper de-
cryption keys hskaid for attributes aid ∈ (, and a ciphertext ct = �′, the decryption algorithm outputs
` = �′ ((, {(aid, skaid, hskaid)}aid∈().

Theorem 7.7 (Completeness). Construction 7.6 satisfies completeness.

Proof. Since the IsValid function outputs 1 on any public key of length |pkNCE |, and by definition |pkNCE | is the size
of NCE public keys, IsValid outputs 1 on any pk in the support of KeyGen. �

Theorem 7.8 (Correctness). If 8O is correct and ΠFB is complete, then Construction 7.6 is correct.

Proof. Take any _, ! ∈ N, any decryption index 9∗ ∈ [!], and any gpp = hk in the support of GlobalSetup. Take any
policy ((enc,�) and decryption set (∗ ⊆ (enc where � ((

∗) = 1. Take any target user identifier gid∗ ∈ GID_ and
any collection of key-pairs (pkaid, 9∗ , skaid, 9∗) in the support of KeyGen(1_) for aid ∈ (∗. Take any collection of user
identifiers {(9, aid, gid9,aid)} (9,aid) ∈ [!]\{ 9∗ }×(enc and for each aid ∈ (enc, let

(mpkaid, hsk1,aid, . . . , hsk!,aid) = Aggregate(gpp, {(9, gid9,aid, pk9,aid)} 9∈[!]),

where gid9∗,aid = gid∗. Take any message ` and let ct← Encrypt(gep, ((enc,�), {(aid,mpkaid)}aid∈(enc , `). Consider
now Decrypt((∗, {(aid, sk9∗,aid, hsk9∗,aid)}aid∈(∗ , ct). By definition, the ciphertext ct is an obfuscation of the program
Embed[hk, (enc, {(aid,mpkaid)}aid∈(enc ,�, `]. By correctness of the obfuscation scheme, it suffices to show that

Embed[hk, (enc, {(aid,mpkaid)}aid∈(enc ,�, `] ((
∗, {(aid, sk9∗,aid, hsk9∗,aid)}aid∈(∗) = `.

We check the conditions:

• By assumption, � ((∗) = 1, so the first condition is satisfied.

• By construction, the user identifier associated with hsk9∗,aid is gid9∗,aid = gid∗, so the second condition is
satisfied.

61

• By definition of Aggregate, we have

mpkaid = ℎaid = FB.Hash(hk, ((gid1,aid, pk1,aid), . . . , (gid!,aid, pk!,aid)))

and hsk8,aid = (8, gid8,aid, pk8,aid, c8,aid) where

c8,aid ← FB.Open(hk, ((gid1,aid, pk1,aid), . . . , (gid!,aid, pk!,aid)), 8).

Thus, for all aid ∈ (∗, FB.Verify(hk, ℎaid, (
∗
ind
, {(8aid, (gid

∗, pk9∗aid), c 9∗,aid)}aid∈(∗ind) = 1 by perfect correctness of
ΠFB. Thus, the third condition holds.

• Finally, by construction of KeyGen(1_), we have that (pk9∗,aid, sk) = NCE.KeyGen(1_ ; sk9∗,aid), and so the last
condition holds.

Since all of the conditions are satisfied, Embed outputs `, as required. �

Theorem 7.9 (Compactness). If ΠFB is succinct, then Construction 7.6 is compact.

Proof. In Construction 7.6, the master public key is a function-binding hash on the input ((gid1, pk1), . . . (gid!, pk!)),
and the global parameters is a hash key. The function-binding hash function needs to support the class of unique-
block-selection predicates with predicate size B = BH (2

_). If we instantiate the universal hash familyH' with the
classic Carter-Wegman construction [CW79] (i.e., evaluate a random linear function modulo a prime '′ ≥ 2_ and then
reduce modulo ' where). In this case, the size of the circuit BH (') is poly(_, log'). Correspondingly, B (2

) = poly().
In this case, succinctness of ΠFB ensures that the size of the global parameters as well as the size of the master public
key is at most poly(_), as required. �

Theorem 7.10 (Succinct Decryption Keys). If ΠFB is succinct, then Construction 7.6 has succinct decryption keys.

Proof. By construction, the secret keys skaid in Construction 7.6 are simply secret keys for ΠNCE on messages of
length |S|, where |S| is the share size for the computational secret sharing scheme ΠCSS. Since all of these primitives
are instantiated independently of the number of users !, the size of skaid depends only on the security parameter _
and not the total number of users. In addition, the helper decryption keys hskaid output by Aggregate are openings of
a function-binding hash function. By succinctness of ΠFB, the size of these components scale polylogarithmically
with the number of users !. Note also that the decryption algorithm does not take the global parameters gpp as input
(though even if it did, the global parameters for Construction 7.6) are also succinct. Correspondingly, we conclude
that the scheme has succinct decryption keys. �

7.3 Security Analysis of Construction 7.6

In this section, we give the security proof for Construction 7.6. Specifically, we prove the following theorem:

Theorem 7.11 (Security). If 8O is secure, ΠFB satisfies computational function hiding and statistical function binding,

ΠCSS is adaptively secure, and ΠNCE is simulatable, then Construction 7.6 is secure.

Proof. To prove Theorem 7.11, we will use a hybrid argument. We begin with a sequence of “outer” hybrids that
highlights the general structure of our argument. Specifically, we modify the obfuscated program in the ciphertext
to incrementally removes the ability for certain user identifiers to decrypt. To avoid the need to iterate over an
exponential number of user identifiers (which would require an exponential number of hybrids), we take advantage of
the fact that the number of users that the adversary can register in the security game is always polynomially-bounded
(since the adversary is polynomially-bounded). This means we can partition the space of user identifiers GID_ into
polynomially-many disjoint subsets by hashing them into a polynomial-size set. By picking this set to be large enough
(but still polynomial in the total number of registered user identifiers), we can ensure that all of the registered user
identifiers gid are mapped onto distinct values under the hash function; this in turn allows us to prove security using
a hybrid argument that analyzes one hash value at a time (of which there are at most a polynomial number). We now
define our sequence of hybrid experiments. Each experiment is parameterized by an (implicit) security parameter _, a
bit 1 ∈ {0, 1}, and an adversary A. We let �A be an upper bound on the running time of adversary A (and thus, the
number of unique user identifiers gid that the adversary might choose). SinceA is efficient, we can bound �A ≤ 2_/2.

62

• Hyb
(1)
real

: This is the real security game where the challenger encrypts message `∗
1
. We recall the main steps here:

– Setup phase: In the setup phase, the adversaryA sends the slot count 1! to the challenger.6 The challenger
then samples the global parameters gpp = hk ← FB.Setup(1_, !) which is sent to the adversary. The
challenger also initializes a counter ctr = 0 and an (empty) dictionaryD = ∅ to keep track of key-generation
queries.

– Query phase: The challenger responds to the adversary’s queries as follows:

∗ Key-generation query: When algorithm A makes a key-generation query, the challenger starts
by incrementing the counter ctr = ctr + 1. It then samples Actr

r← {0, 1}d and sets (pk, sk) =

NCE.KeyGen(1_ ; Actr). The challenger sets the public key to be pkctr = pk and responds with
(ctr, pkctr). It defines skctr = Actr and adds the mapping ctr ↦→ (8, pkctr, skctr) to D.

∗ Corruption query: If the adversary makes a corruption query on an index 1 ≤ ctr∗ ≤ ctr, the
challenger looks up the entry (8′, pk′, sk′) ← D[ctr∗] and replies to A with sk′.

– Challenge phase: In the challenge phase, the adversary specifies a set of authorities (enc ⊆ AU and
a challenge policy ((enc,�) where � : 2(enc → {0, 1} is a monotone Boolean circuit, and two messages
`∗0, `

∗
1 ∈ {0, 1}

_ . For each slot 8 ∈ [!] and authority aid ∈ (enc, the adversary also specifies a tuple
(28,aid, gid8,aid, pk

∗
8,aid). The challenger sets up the public keys pk8,aid as follows:

∗ If 28,aid ∈ {1, . . . , ctr}, the challenger looks up the entry D[28,aid] = (8
′, aid′, pk′, sk′). If 8 = 8′ and

aid = aid′, the challenger sets pk8,aid = pk′. Otherwise, the challenger aborts with output 0.

∗ If 28,aid = ⊥, then the challenger sets pk8,aid = pk∗8,aid.

The challenger computes the master public key for each authority aid ∈ (enc as

mpkaid = FB.Hash(hk, (gid1,aid, pk1,aid), . . . , (gid!,aid, pk!,aid)) .

The challenger then constructs the challenge ciphertext by constructing the obfuscated program

�′ ← 8O(Embed[gpp, (enc, {(aid,mpkaid)}aid∈(enc ,�, `
∗
1]).

It responds to A with the ciphertext ct = �′.

– Post-challenge query phase: Same as the pre-challenge query phase.

– Output phase: At the end of the game, the adversary outputs a bit 1′ ∈ {0, 1}, which is also the output of
the experiment.

• Hyb
(1)
1 : Same as Hyb

(1)
real

, except during the setup phase, the challenger samples a universal hash function
�

r← H' where ' = �2
A
. During the challenge phase, the challenger aborts if there exists (8, aid) ≠ (8, aid′)

where gid8,aid ≠ gid8,′aid′ and � (gid8,aid) = � (gid8,′aid′).

• Hyb
(1)
2, 9 for 9 ∈ [0, �2

A
]: Same as Hyb

(1)
1 , except in the challenge phase, the challenger constructs the challenge

ciphertext as
ct = �′ ← 8O(1_, Embed′9 [hk, (enc, {(aid,mpkaid)}aid∈(enc ,�, `

∗
1, �])

where Embed′9 is defined as follows:

6Later on in the security game, the adversary needs to specify a public key for each slot 8 ∈ [!]. For this reason, the number of slots an efficient
adversary can choose is ultimately going to be polynomially-bounded. Thus, without loss of generality, we still require the adversary provide the
number of slots in unary rather than binary.

63

Constants: Hash key hk, set (enc, master public keys {(aid,mpkaid)}aid∈(enc , a monotone Boolean circuit
� : 2(enc → {0, 1}, a message ` ∈ {0, 1}_ , and a hash function � : GID_ → [�

2
A
]

Inputs: A decryption set (⊆ (enc and for each aid ∈ (, a secret key skaid and a helper decryption key
hskaid.

1. For each aid ∈ (, let mpkaid = ℎaid, skaid = Aaid, and hskaid = (8aid, gidaid, pkaid, caid).

2. Output ` if the following checks pass:

– � (() = 1.

– There exists gid∗ = gidaid for all aid ∈ (.

– FB.Verify(hk, ℎaid, (ind, {(8aid, (gid
∗, pkaid), caid)}aid∈() = 1 where (ind = {8aid | aid ∈ (}.

– � (gid∗) > 9 .

– For each aid ∈ (, pkaid = pk′aid where let (pk
′
aid, sk

′
aid) = NCE.KeyGen(1_ ; Aaid).

If any of the checks fail, output ⊥.

Figure 2: Program Embed′9 [hk, (enc, {(aid,mpkaid)}aid∈(enc ,�, `, �].

• Hyb
(1)
rand

: Same as Hyb
(1)

2,(�A)2
, except the challenger computes the challenge ciphertext as �′ ← 8O(1_,Bot),

where Bot is the program that outputs ⊥ on all inputs. Note that as usual, the program is padded to the
maximum size of any program that appears in the proof of Theorem 7.11.

As usual, for an adversary A, we write Hyb(1) (A) to denote the output distribution of an execution of Hyb(1) with
adversary A. We now analyze each adjacent pair of hybrid distributions.

Lemma 7.12. For all adversaries A, Pr[Hyb
(1)
real
(A) = 1] ≤ 2 · Pr[Hyb

(1)
1 (A) = 1].

Proof. By universality ofH' , for any pair of distinct user identifiers gid0 ≠ gid1 ∈ {0, 1}
_ , we have

Pr[� (gid0) = � (gid1)] ≤
1

'
=

1

�2
A

.

Since the total number of user identifiers appearing in the challenge phase can be bounded by the running time of the
adversary �A , we can union bound the probability of any collision by

1

�2
A

·

(
�A

2

)
≤

1

�2
A

�2
A

2
=
1

2
. �

Lemma 7.13. Suppose 8O is secure. Then for all efficient adversaries A and all 1 ∈ {0, 1}, there exists a negligible

function negl(·) such that for all _ ∈ N,

�� Pr[Hyb(1)1 (A) = 1] − Pr[Hyb
(1)
2,0 (A) = 1]

�� = negl(_).

Proof. By construction, these hybrids only differ in the distribution of the challenge ciphertext. In Hyb
(1)
1 , the

challenge ciphertext is an obfuscation of Embed whereas in Hyb
(1)
2,0 , it is an obfuscation of the program Embed0. By

construction, the Embed′0 program introduces an additional check that � (gid∗) > 0, which is always satisfied. Thus,
these programs are functionally equivalent, so indistinguishability follows by 8O security. �

64

Lemma 7.14. Suppose 8O is secure, ΠFB satisfies computational function hiding and statistical function binding, ΠCSS is

adaptively secure, and ΠNCE is simulatable, Then for all efficient adversaries A, all 1 ∈ {0, 1}, and all 9 ∈ [�2
A
], there

exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[Hyb(1)2, 9−1 (A) = 1] − Pr[Hyb
(1)
2, 9 (A) = 1]

�� = negl(_).

To prove Lemma 7.14, we will define a sequence of intermediate hybrids. We defer this to Section 7.3.1.

Lemma 7.15. Suppose 8O is secure. Then for all efficient adversaries A and all 1 ∈ {0, 1}, there exists a negligible

function negl(·) such that for all _ ∈ N,

�� Pr[Hyb(1)
2,�2
A

(A) = 1] − Pr[Hyb
(1)
rand
(A) = 1]

�� = negl(_) .

Proof. By construction, these hybrids only differ in the distribution of the challenge ciphertext. In Hyb
(1)

2,�2
A

, the

challenge ciphertext is an obfuscation of the program Embed′
�2
A

whereas in Hyb
(1)
rand

, it is an obfuscation of Bot. By

construction, Embed′
�2
A

will output something other than ⊥ only if � (gid∗) > �2
A
. However, since the range of �

is [�2
A
], this check is never satisfied. As such, Embed′

�2
A

always outputs ⊥. Thus, these programs are functionally
equivalent and the lemma follows via 8O security. �

Lemma 7.16. For all adversaries A, Pr[Hyb
(0)
rand
(A) = 1] = Pr[Hyb

(1)
rand
(A) = 1] .

Proof. By definition, the challenger’s behavior in these two experiments is independent of the bit 1. As such, the
output distributions of the experiments are identically distributed. �

Since �A = poly(_), Theorem 7.11 now follows by combining Lemmas 7.12 to 7.16. �

7.3.1 Proof of Lemma 7.14

In the section, we show that hybrids Hyb
(1)
2, 9−1 to Hyb

(1)
2, 9 from the proof of Theorem 7.11 are computationally

indistinguishable. To do so, we introduce a sequence of intermediate hybrids:

• iHyb
(1)
9,0 : Same as Hyb

(1)
2, 9−1, except the challenger defines the unique-block-selection (Definition 7.3) function 56

for the predicate

6 = 6�,9 ((gid, pk)) =

{
1 � (gid) = 9

0 otherwise.
(7.1)

for the hash function� ∈ H' sampled inHyb
(1)
1 . Then, it defines the hash key to be hk← SetupBinding(1_, !, 56).

• iHyb
(1)
9,1 : Same as iHyb

(1)
9,0 , except during the challenge phase, the challenger computes

(sh1, . . . , sh |(enc |) ← CSS.Share(1_,�, 1) .

Next, for each aid ∈ (enc, if there exists a unique index 8
∗
aid

where �
(
gid8∗

aid
,aid

)
= 9 , then set

ctaid ← NCE.Encrypt(pk8∗,aid, shaid).

Otherwise, set ctaid = ⊥. Note that if an index 8∗
aid

exists, then it is necessarily unique (otherwise, there is
a collision in � and the challenger halts the experiment). Finally, the challenger constructs the challenge
ciphertext as

ct = �′ ← 8O(Embed′′9 [gpp, (enc, {(aid,mpkaid)}aid∈(enc ,�, `
∗
1, �, {(aid, ctaid)}aid∈(enc])

where Embed′′9 is defined as follows:

65

Constants: Hash key hk, set (enc, master public keys {(aid,mpkaid)}aid∈(enc , a monotone Boolean circuit
� : 2(enc → {0, 1}, a message ` ∈ {0, 1}_ , a hash function � : GID_ → [�

2
A
], and ciphertexts ctaid for

each aid ∈ (enc

Inputs: A decryption set (⊆ (enc and for each aid ∈ (, a secret key skaid and a helper decryption key
hskaid.

1. For each aid ∈ (, let mpkaid = ℎaid, skaid = Aaid, and hskaid = (8aid, gidaid, pkaid, caid).

2. Output ` if the following checks pass:

– � (() = 1.

– There exists gid∗ = gidaid for all aid ∈ (.

– FB.Verify(hk, ℎaid, (ind, {(8aid, (gid
∗, pkaid), caid)}aid∈() = 1. where (ind = {8aid | aid ∈ (}.

– � (gid∗) > 9 .

– If � (gid∗) = 9 , then for all aid ∈ (, check that the following conditions hold:

∗ (pkaid, skaid) = NCE.KeyGen(1_ ; Aaid);

∗ CSS.Recon(�, (, {(aid, shaid)}aid∈() = 1 where shaid ← NCE.Decrypt(skaid, ctaid).

– For each aid ∈ (, pkaid = pk′aid where let (pk
′
aid, sk

′
aid) = NCE.KeyGen(1_ ; Aaid).

If any of the checks fail, output ⊥.

Figure 3: Program Embed′′9 [hk, (enc, {(aid,mpkaid)}aid∈(enc ,�, `, �, {(aid, ctaid)}aid∈(enc].

• iHyb
(1)
9,2 : Same as iHyb

(1)
9,1 , except the challenger answers the key-generation queries using simulated keys.

In the challenge phase, the challenger uses simulated ciphertexts for the uncorrupted keys. Specifically, the
challenger in this experiment behaves as follows:

– Setup phase: Same as in iHyb
(1)
9,1 .

– Query phase: The challenger responds to the adversary’s queries as follows:

∗ Key-generation query: When algorithm A makes a key-generation query, the challenger starts by
incrementing the counter ctr← ctr + 1. It then computes (pkctr, ctctr, tdctr) ← NCE.CTSim(1_) and
responds with (ctr, pkctr). The challenger then adds the mapping ctr ↦→ (8, pkctr, ctctr, tdctr,⊥) to the
dictionary D.

∗ Corruption query: If the adversary makes a corruption query on an index 1 ≤ ctr∗ ≤ ctr, the
challenger looks up the entry (8′, pk′, ct′, td′, sk′) = D[ctr∗]. If sk′ ≠ ⊥, then it returns sk′. Otherwise,
the challenge computes A ′ ← NCE.RSim(td′, 0), and updates the mapping ctr ↦→ (8′, pk′, ct′, td′, A ′)
in D. The challenger replies with sk′ = A ′.

– Challenge phase: During the challenge phase, for each aid ∈ (enc, the challenger proceeds as follows:

∗ If the index 8∗
aid

exists, and 28∗
aid
,aid ∈ [ctr], the challenger looks up the entry (8∗, pk∗, ct∗, td∗, sk∗) =

D[28∗
aid
,aid]. If sk

∗
= ⊥ (i.e., the adversary specified an uncorrupted key for index 8∗

aid
), the challenger

sets ctaid = ct∗. If sk∗ ≠ ⊥ (i.e., the adversary corrupted the key), then the challenger computes

ctaid ← NCE.Encrypt(pk8∗,aid, shaid) exactly as in iHyb
(1)
9,1 .

∗ Otherwise, if the index 8∗
aid

exists, but 28∗
aid
,aid ∉ [ctr] (i.e., the adversary chose the key for index 8∗

aid
),

then the challenger computes ctaid ← NCE.Encrypt(pk8∗,aid, shaid) exactly as in iHyb
(1)
9,1 .

Finally, if no such index 8∗
aid

exists, the challenger sets ctaid = ⊥ as in iHyb
(1)
9,1 . The rest of the challenge

phase proceeds as in iHyb
(1)
9,1 .

66

– Post-challenge query phase: Same as the pre-challenge query phase, except when responding to
corruption queries, the challenger uses the following modified procedure:

∗ Corruption query: If the adversary makes a corruption query on an index 1 ≤ ctr∗ ≤ ctr, the
challenger looks up the entry (8′, pk′, ct′, td′, sk′) = D[ctr∗]. If sk′ ≠ ⊥, return sk′. Otherwise, if
there exists 8∗

aid
such that ctr∗ = 28∗

aid
,aid and �

(
gid8∗

aid
,aid) = 9 , compute A ′ ← NCE.RSim(td′, shaid). If

not, compute A ′ ← NCE.RSim(td′, 0). In either case, update the mapping ctr ↦→ (8, pk′, ct′, td′, A ′) in
D and reply with sk′ = A ′.

• iHyb
(1)
9,3 : Same as iHyb

(1)
9,2 , except during the challenge phase, the challenger uses a secret sharing of 0 instead.

Namely, in the challenge phase, the challenger now samples (sh1, . . . , sh |(enc |) ← CSS.Share(1_,�, 0).

• iHyb
(1)
9,4 : Same as iHyb

(1)
9,3 , except the challenger answers the key-generation queries according to the real

scheme (instead of simulating them). Specifically, the challenger in this experiment proceeds as follows:

– Setup phase: Same as in iHyb
(1)
9,3 .

– Pre-challenge query phase: The challenger answers the queries exactly as in Hyb
(1)
real

. Namely, it
proceeds as follows:

∗ Key-generation query: When algorithm A makes a key-generation query, the challenger starts
by incrementing the counter ctr = ctr + 1. It then samples Actr

r← {0, 1}d and sets (pk, sk) =

NCE.KeyGen(1_ ; Actr). The challenger sets the public key to be pkctr = pk and responds with
(ctr, pkctr). It defines skctr = Actr and adds the mapping ctr ↦→ (8, pkctr, skctr) to D.

∗ Corruption query: If the adversary makes a corruption query on an index 1 ≤ ctr∗ ≤ ctr, the
challenger looks up the entry (8′, pk′, sk′) ← D[ctr∗] and replies to A with sk′.

– Challenge phase: As in iHyb
(1)
9,3 , the challenger now computes. (sh1, . . . , sh |(enc |) ← CSS.Share(1_,�, 0),

Next, for each aid ∈ (enc, if there exists a unique index 8
∗
aid

where �
(
gid8∗

aid
,aid

)
= 9 , then it sets

ctaid ← NCE.Encrypt(pk8∗,aid, shaid).

Otherwise, set ctaid = ⊥. Finally, the challenger constructs the challenge ciphertext as

ct = �′ ← 8O(Embed′′9 [gpp, (enc, {(aid,mpkaid)}aid∈(enc ,�, `
∗
1, �, {(aid, ctaid)}aid∈(enc]).

– Post-challenge query phase: Same as the pre-challenge query phase.

• iHyb
(1)
9,5 : Same as iHyb

(1)
9,4 , except the challenger no longer computes the ciphertexts ctaid. Instead, it generates

the challenge ciphertext as

ct = �′ ← 8O(Embed′9 [hk, (enc, {(aid,mpkaid)}aid∈(enc ,�, `
∗
1, �])

where Embed′ is the program from Fig. 2.

Lemma 7.17. Suppose ΠFB is computationally function-hiding. Then for all efficient adversaries A, bits 1 ∈ {0, 1}, and
9 ∈ [�2

A
], there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[Hyb(1)2, 9−1 (A) = 1] − Pr[iHyb
(1)
9,0 (A) = 1]

�� = negl(_).

Proof. The only difference between Hyb
(1)
2, 9−1 and iHyb

(1)
9,0 is the challenger samples hk in “normal” mode in Hyb

(1)
2, 9−1

and in binding mode in iHyb
(1)
9,0 . The claim thus follows by the function hiding property of ΠFB. Formally, suppose

there exists an efficient adversaryA such that that can distinguishHyb
(1)
2, 9−1 and iHyb

(1)
9,0 with non-negligible advantage

Y. We use A to construct an adversary B that breaks function hiding of ΠFB with the same advantage:

67

1. Algorithm B starts by running algorithm A. Algorithm A outputs the number of slots ! ∈ N.

2. Algorithm B samples a universal hash function � r← H' , and outputs the message length ! and challenge
function 56. It receives a hash key hk from the challenger.

3. Algorithm B sets crs = hk and gives crs to A.

4. Algorithm B simulates the rest of Hyb
(1)
2, 9−1 and iHyb

(1)
9,0 exactly as prescribed. At the end of the game, adversary

A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

By construction, if hk ← FB.Setup(1_, !), then algorithm B perfectly simulates Hyb
(1)
2, 9−1 for A. Likewise, if

hk ← FB.SetupBinding(1_, !, 56), algorithm B perfectly simulates iHyb
(1)
9,0 for A. Thus, algorithm B succeeds

with the same advantage Y, and the claim follows. �

Lemma 7.18. Suppose 8O is secure, ΠNCE and ΠCSS are correct, and ΠFB is statistically function-binding. Then for all

efficient adversaries A, bits 1 ∈ {0, 1}, and 9 ∈ [�2
A
], there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[iHyb(1)9,0 (A) = 1] − Pr[iHyb
(1)
9,1 (A) = 1]

�� = negl(_).

Proof. Recall the difference between these two hybrids is the use of program Embed′9 and Embed′′9 . We will argue that
with all but negligible probability, these programs are functionally equivalent. Observe that Embed′9 only performs
the following additional checks when � (gid∗) = 9 :

• (pkaid, skaid) = KeyGen(1_ ; Aaid).

• CSS.Recon(�, (, {(aid, shaid)}aid∈() = 1 where shaid ← NCE.Decrypt(skaid, ctaid).

Let (∗, {(aid, sk∗aid, hsk
∗
aid)}aid∈(∗ be an arbitrary input to these two programs. Since Embed′′9 is the same as Embed′9

with additional abort conditions, it must be the case that if Embed′9 ((
∗, {(aid, sk∗aid, hsk

∗
aid)}aid∈(∗) = ⊥, then

Embed′′9 ((
∗, {(aid, sk∗aid, hsk

∗
aid)}aid∈(∗) = ⊥.

Thus, consider some input where Embed′9 ((
∗, {(aid, sk∗aid, hsk

∗
aid)}aid∈(∗) = `∗

1
. First, we parse sk∗aid = A ∗

aid
and

hsk∗aid = (8
∗
aid
, gid∗, pk∗aid, c

∗
aid
) and consider two cases:

• Suppose for all aid ∈ (∗, there exists a public key associated with some gidaid where� (gidaid) = 9 and moreover,
the associated public key in the challenge phase satisfies pk8∗

aid
,aid = pk∗aid. In this case, the ciphertext ctaid is

computed as ctaid ← Encrypt(pk∗aid, shaid), where (sh1, . . . , sh |(enc |) ← CSS.Share(1_,�, 1). Since (pk∗aid, sk
∗
aid)

are in the support of NCE.KeyGen, by perfect correctness of ΠNCE,

NCE.Decrypt(sk∗aid, ctaid) = shaid .

Since � ((∗) = 1 (otherwise, Embed9 would already output ⊥), by perfect correctness of ΠCSS, we have that
CSS.Recon(�, (∗, {shaid}aid∈(∗) = 1. Thus, the additional checks of Embed′′9 pass and so

Embed′9 ((
∗, {(aid, sk∗aid, hsk

∗
aid)}aid∈(∗) = Embed′′9 ((

∗, {(aid, sk∗aid, hsk
∗
aid)}aid∈(∗).

• Otherwise, suppose there exists some aid ∈ (∗ where the above condition does not hold. From the check in

Hyb
(1)
1 , the function � is injective on the user identifiers selected by the adversary. Thus, for every aid in

(enc, it must be the case that 56 ({(aid, gid8,aid, pk8,aid)}aid∈(enc) = ⊥ or there exists a key pk8∗,aid aggregated in
the challenge to some gidaid where � (gidaid) = 9 . If ΠNCE is function binding, in the former case, there does
not exist a valid opening to ℎaid (with overwhelming probability over the choice of the hash key hk), and in
the latter case, the only possible opening is to pk8∗,aid. Thus, such an aid existing only occurs when hk is not
function binding on 5�,9 , which occurs with negligible probability.

68

Taking together, we can see that Embed′9 , Embed′′9 are functionally equivalent with all but negligible probability. This
hybrid then follows from 8O security. �

Lemma 7.19. Suppose ΠNCE is simulatable. Then for all efficient adversaries A, bits 1 ∈ {0, 1}, and 9 ∈ [�2
A
], there

exists a negligible function negl(·) such that for all _ ∈ N,�� Pr[iHyb(1)9,1 (A) = 1] − Pr[iHyb
(1)
9,2 (A) = 1]

�� = negl(_).

Proof. To show this, we introduce a sequence of sub-hybrids, where we incrementally replace key-generation queries
answered using the real encryption algorithm be be answered using the simulated one.

• HybNCE
(1,9)
ctr′ : Same as iHyb

(1)
9,1 , except when ctr ≤ ctr′, the challenger samples keys as in iHyb

(1)
9,2 . Specifically,

the challenger initializes two dictionaries D,D′. We now give the differences relative to iHyb
(1)
9,1 :

– Query phase: The challenger responds to the adversary’s queries as follows:

∗ Key-generation query: When algorithm A makes a key-generation query, the challenger starts by
incrementing the counter ctr = ctr+1. If ctr ≤ ctr′ it computes (pkctr, ctctr, tdctr) ← NCE.CTSim(1_),
adds ctr ↦→ (8, pkctr, ctctr, tdctr, skctr = ⊥) to the dictionary D′, and responds with (ctr, pkctr). Other-

wise, the challenger proceeds as in iHyb
(1)
9,1

∗ Corruption query: If the adversary makes a corruption query on an index 1 ≤ ctr∗ ≤ min(ctr, ctr′),
the challenger looks up the entry (8′, pk′, ct′, td′, sk′) ← D′ [ctr∗]. If sk′ ≠ ⊥, return sk′. Otherwise,
the challenge computes A ′ ← RSim(td′, 0), sets sk′ = A ′ (and updates the entry D′ [ctr∗] accordingly)

and then returns sk′. If ctr∗ > ctr′, the challenger proceed as iHyb
(1)
9,1

– Challenge Phase: The challenge phase proceeds as in iHyb
(1)
9,1 , except for each aid ∈ (enc, if 8

∗
aid

exists, and
28∗

aid
,aid ∈ [min(ctr, ctr′)], thc challenger looks up the entry (8∗, pk∗, ct∗, td∗, sk∗) = D′ [ctr∗]. If sk∗ = ⊥, set

ctaid = ct∗. Otherwise, compute ctaid ← NCE.Encrypt(pk8∗,aid, shaid). If no such 8∗
aid

exists, set ctaid = ⊥.

– Post-Challenge Query Phase: Same as the pre-challenge query phase, except:

∗ Corruption query: If the adversary makes a corruption query on an index 1 ≤ ctr∗ ≤ min(ctr, ctr′),
the challenger looks up the entry (8′, pk′, ct′, td′, sk′) = D′ [ctr∗]. If sk′ ≠ ⊥, return sk′. Otherwise, if
there exists 8∗

aid
such that ctr∗ = 28∗

aid
,aid, compute A ′ ← RSim(td′, shaid). If not or ctr > ctr′, compute

A ′ ← RSim(td′, 0). In either case, set sk′ = A ′ and return sk′ (and update the entry D′ [ctr∗].

Claim 7.20. SupposeΠNCE is simulatable. Then for all efficient adversariesA, bits1 ∈ {0, 1}, 9 ∈ [�2
A
], and ctr′ ∈ [&A],

where &A is a bound on the number of queries the adversary makes, there exists a negligible function negl(·) such that

for all _ ∈ N, �� Pr[HybNCE(1,9)ctr′−1 (A) = 1] − Pr[HybNCE
(1,9)
ctr′ (A) = 1]

�� = negl(_).

Proof. Suppose that there exists an efficient adversary A that can distinguish these two experiments with non-
negligible probability Y. We useA to construct an adversary B that breaks simulation security of ΠNCE with the same
advantage:

1. Setup phase: Algorithm B receives the challenge public key pk∗, and runs A. The challenger simulates the

setup phase exactly as in HybNCE
(1,9)
ctr′−1.

2. Query phase: The challenger responds to the adversary’s queries as follows:

• Key-generation query: When algorithm A makes a key-generation query, the challenger starts by
incrementing the counter ctr← ctr + 1. If ctr = ctr′, respond with (ctr′, pk∗). Otherwise, it proceeds as in

HybNCE
(1,9)
ctr′−1.

• Corruption query: If the adversary makes a corruption query on an index ctr′, algorithm B makes a
query on message<∗ = 0 to its challenger. The challenger responds with (ct∗, A ∗). Algorithm B returns

A ∗ to A. Otherwise, algorithm B proceeds as in HybNCE
(1,9)
ctr′−1.

69

3. Challenge Phase: The challenge phase proceeds exactly as in HybNCE
(1,9)
ctr′−1, except for each aid ∈ (enc, if 8

∗
aid

exists and 28∗
aid
,aid = ctr′ and has not yet been corrupted, algorithm B queries the challenger on the message

<∗ = shaid. The challenger responds with (ct
∗, A ∗). Algorithm B sets ctaid = ct∗. Otherwise, it sets ctaid as in

HybNCE
(1,9)
ctr′−1.

4. Post-challenge query phase: Same as the pre-challenge query phase, except:

• Corruption query: If the adversary makes a corruption query on index ctr′ and ctr′ refers to a public
key that is associated with the challenge ciphertext (i.e., chosen by the adversary) and has not yet been
corrupted, algorithm B returns the corresponding A ∗. If ctr′ was not included in the ciphertext, then B
queries the challenger on message<∗ = 0 and receives (ct∗, A ∗). Algorithm B responds with A ∗. For other

indices, algorithm B proceeds as in HybNCE
(1,9)
ctr′−1.

We argue that when 1 = 0, this is exactly HybNCE
(1,9)
ctr′−1 and when 1 = 1, this is exactly HybNCE

(1,9)
ctr′ . To see this, we

consider a few cases.

• Suppose ctr′ was never corrupted. In this case, algorithm A only receives pk∗ which corresponds exactly to

the output of KeyGen or CTSim when 1 = 0 or 1 = 1. This is how the public key is generated in HybNCE
(1,9)
ctr′−1

and HybNCE
(1,9)
ctr′ , respectively.

• Suppose index ctr′ was corrupted in a pre-challenge query. In this case, when 1 = 1, algorithm B receives

(ct∗, A ∗) generated from RSim(td, 0), exactly as in HybNCE
(1,9)
ctr′ . When 1 = 0, the value A ∗ is the randomness

used in KeyGen, which is distributed according to HybNCE
(1,9)
ctr′−1.

• Suppose index ctr′ was corrupted in a post-challenge query. Here, either ctr′ is in the ciphertext, in which case

when 1 = 1, algorithm B receives (ct∗, A ∗) generated from RSim(td, shaid), exactly as in HybNCE
(1,9)
ctr′ . When

1 = 0, this ciphertext component is an honest encryption of shaid, as in HybNCE
(1,9)
ctr′−1. On the other hand, when

ctr′ is not in the ciphertext, the execution and analysis is identical to pre-challenge queries. �

Completing the proof. Let &A be a bound on the number of key generation queries adversary A makes. By

construction, hybrids HybNCE
(1,9)
0 and HybNCE

(1,9)
&A

are identical to iHyb
(1)
9,1 and iHyb

(1)
9,2 respectively. Since &A is

polynomially bounded, Lemma 7.19 follows by a hybrid argument. �

Lemma 7.21. Suppose ΠCSS is secure. Then for all efficient admissible adversaries A, bits 1 ∈ {0, 1}, and 9 ∈ [�2
A
],

there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[iHyb(1)9,2 (A) = 1] − Pr[iHyb
(1)
9,3 (A) = 1]

�� = negl(_).

Proof. Suppose that there exists an efficient adversary A that can distinguish these two experiments with non-
negligible probability Y. We use A to construct an adversary B that breaks adaptive security of ΠCSS with the same
advantage:

1. Setup phase: Algorithm B starts running A and simulates an execution of iHyb
(1)
9,2 . Algorithm B implements

the setup phase exactly as described in iHyb
(1)
9,2 .

2. Query Phase: B proceeds exactly as iHyb
(1)
9,2 .

3. Challenge Phase: B proceeds as in iHyb
(1)
9,2 , except when generating the shares, algorithm B queries the

challenger on the circuit� and the challenge secrets B0 = 1 and B1 = 0. Then, for each aid ∈ (enc, if 8
∗
aid

exists, and
28∗

aid
,aid ∈ [ctr], algorithm B looks up (8∗, pk∗, ct∗, td∗, sk∗) = D[ctr∗]. If sk∗ = ⊥, it sets ctaid = ct∗. Otherwise,

algorithm B submits the index aid to the challenger and receives the share shaid. Finally, algorithm B computes
ctaid ← NCE.Encrypt(pk8∗,aid, shaid). If no such 8∗

aid
exists, algorithm B sets ctaid = ⊥.

70

4. Post-challenge query phase: Algorithm B proceeds as iHyb
(1)
9,2 , except when answering corruption queries,

it proceeds as follows:

• Corruption query: If the adversary makes a corruption query on an index 1 ≤ ctr∗ ≤ ctr, the challenger
looks up the entry (8′, pk′, ct′, td′, sk′) = D[ctr∗]. If sk′ ≠ ⊥, return sk′. Otherwise, if there exists 8∗

aid
such that ctr∗ = 28∗

aid
,aid, algorithm B submits the index aid to the challenger. The challenger replies with

shaid and algorithm B computes A ′ ← RSim(td′, shaid). If the index 8
∗
aid

does not exist, then algorithm B
computes A ′ ← RSim(td′, 0). In either case, algorithm B sets sk′ = A ′ (and updates the entry in D). It
replies to A with sk′.

5. Output phase: At the end of the experiment, algorithm A outputs a bit 1′ ∈ {0, 1}, which algorithm B also
outputs.

By construction, algorithm B only queries the challenger for shares on indices aid where 8∗
aid

exists. By construction,
this corresponds to indices where the associated user identifier gid∗ is registered to a particular (corrupted) attribute.
Since A is admissible, the set of attributes associated with any user identifier gid cannot satisfy policy � . As such,
algorithm B is an admissible CSS adversary. By construction, we see that depending on whether the shares are of the

value B0 = 0 or B1 = 1, algorithm B either perfectly simulates an execution of iHyb
(1)
9,2 or iHyb

(1)
9,3 , as required. �

Lemma 7.22. Suppose ΠNCE is simulatable. Then, for all efficient adversaries A, bits 1 ∈ {0, 1}, and 9 ∈ [�2
A
], there

exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[iHyb(1)9,3 (A) = 1] − Pr[iHyb
(1)
9,4 (A) = 1]

�� = negl(_).

Proof. Follows from a similar argument as the proof of Lemma 7.19. �

Lemma 7.23. Suppose 8O is secure, ΠNCE and ΠCSS are correct, and FB is statistically function-binding. Then, for all

efficient adversaries A, bits 1 ∈ {0, 1}, and 9 ∈ [�2
A
], there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[iHyb(1)9,4 (A) = 1] − Pr[iHyb
(1)
9,5 (A) = 1]

�� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma 7.18. However, since {(aid, shaid)}aid∈(enc is a
secret sharing of 0, by perfect correctness of ΠCSS, CSS.Recon will never return 1, and so Embed′9 will always return
⊥ when � (gid∗) = 9 . �

Lemma 7.24. Suppose ΠFB is computationally function-hiding. Then for all efficient adversaries A, bits 1 ∈ {0, 1}, and
9 ∈ [�2

A
], there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[iHyb(1)9,5 (A) = 1] − Pr[Hyb
(1)
2, 9 (A) = 1]

�� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma 7.17. �

Combining Lemmas 7.17 to 7.19 and 7.21 to 7.24, we conclude Lemma 7.14 holds. �

Acknowledgments

Brent Waters is supported by NSF CNS-1908611, CNS-2318701, and a Simons Investigator award. David J. Wu is
supported by NSF CNS-2140975, CNS-2318701, a Sloan Fellowship, a Microsoft Research Faculty Fellowship, and a
Google Research Scholar award.

71

References

[AT24] Nuttapong Attrapadung and Junichi Tomida. A modular approach to registered ABE for unbounded
predicates. In CRYPTO, 2024.

[Bei96] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion, 1996.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In STOC, 1988.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In TCC, 2005.

[BLM+24] Pedro Branco, Russell W. F. Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Ivy K. Y. Woo.
Traitor tracing without trusted authority from registered functional encryption. In ASIACRYPT, 2024.

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption secure against selective opening
attack. In TCC, 2011.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In CRYPTO, 2014.

[CC09] Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-authority attribute-
based encryption. In ACM CCS, 2009.

[CES21] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based encryption. In IMACC,
2021.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation.
In STOC, 1996.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In TCC, 2007.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In
EUROCRYPT, 2003.

[CHW25] Jeffrey Champion, Yao-Ching Hsieh, and David J. Wu. Registered ABE and adaptively-secure broadcast
encryption from succinct LWE. In CRYPTO, 2025.

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci., 18(2), 1979.

[CW24] Jeffrey Champion and David J. Wu. Distributed broadcast encryption from lattices. In TCC, 2024.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust
non-interactive zero knowledge. In CRYPTO, 2001.

[DKL+23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza
Rahimi. Efficient laconic cryptography from learning with errors. In EUROCRYPT, 2023.

[DKW21] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority ABE for DNFs from
LWE. In EUROCRYPT, 2021.

[DKW23] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority ABE for NC1 from
computational-BDH. Journal of Cryptology, 36(2), 2023.

[DN00] Ivan Damgård and Jesper Buus Nielsen. Improved non-committing encryption schemes based on a
general complexity assumption. In CRYPTO, 2000.

72

[DPY24] Pratish Datta, Tapas Pal, and Shota Yamada. Registered FE beyond predicates: (attribute-based) linear
functions and more. In ASIACRYPT, 2024.

[EFF85] Paul Erdős, Peter Frankl, and Zoltán Füredi. Families of finite sets in which no set is covered by the
union of A others. Israel J. Math, 51(1-2), 1985.

[FFM+23] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele
Venturi. Registered (inner-product) functional encryption. In ASIACRYPT, 2023.

[FKdP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-based
encryption and key-value map commitments for large spaces. In ASIACRYPT, 2023.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on a
single random string (extended abstract). In FOCS, 1990.

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered ABE,
flexible broadcast, and more. In CRYPTO, 2023.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, USA, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS, 2013.

[GHM+19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar.
Registration-based encryption from standard assumptions. In PKC, 2019.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-
based encryption: Removing private-key generator from IBE. In TCC, 2018.

[GKMR23] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient registration-based
encryption. In ACM CCS, 2023.

[GKPW24] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang. Threshold encryption
with silent setup. In CRYPTO, 2024.

[GLWW23] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Realizing flexible broadcast encryption: How to
broadcast to a public-key directory. In ACM CCS, 2023.

[GLWW24] Rachit Garg, George Lu, Brent Waters, and David Wu. Reducing the CRS size in registered ABE systems.
In CRYPTO, 2024.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In
EUROCRYPT, 2006.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge. J.
ACM, 59(3), 2012.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM CCS, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In STOC, 2008.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In CRYPTO, 2020.

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based encryption.
In EUROCRYPT, 2023.

73

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure function evaluation with
long output. In ITCS, 2015.

[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast encryption from bilinear
groups. In ASIACRYPT, 2023.

[KS64] William H. Kautz and Richard C. Singleton. Nonrandom binary superimposed codes. IEEE Trans. Inf.

Theory, 10(4), 1964.

[LCLS08] Huang Lin, Zhenfu Cao, Xiaohui Liang, and Jun Shao. Secure threshold multi authority attribute based
encryption without a central authority. In INDOCRYPT, 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In
EUROCRYPT, 2010.

[LPWW20] Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions of statistical NIZKs:
Dual-mode DV-NIZKs and more. In EUROCRYPT, 2020.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE
with short ciphertexts. In TCC, 2010.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EUROCRYPT, 2011.

[LW25] George Lu and Brent Waters. How to make any computational secret sharing scheme adaptively secure.
In CRYPTO, 2025.

[Mer89] Ralph C. Merkle. A certified digital signature. In CRYPTO, 1989.

[MKE08] Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert. Distributed attribute-based encryption. In
ICISC, 2008.

[PS25] Tapas Pal and Robert Schädlich. Registered functional encryption for attribute-weighted sums with
access control. IACR Cryptol. ePrint Arch., 2025.

[RW15] Yannis Rouselakis and Brent Waters. Efficient statically-secure large-universe multi-authority attribute-
based encryption. In Financial Cryptography, 2015.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
FOCS, 1999.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.

[VNS+03] Vinod Vaikuntanathan, Arvind Narayanan, K. Srinathan, C. Pandu Rangan, and Kwangjo Kim. On the
power of computational secret sharing. In INDOCRYPT, 2003.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.
In CRYPTO, 2009.

[Wei23] Ruizhong Wei. On cover-free families. arXiv, 2023.

[WW25] Hoeteck Wee and David J. Wu. Unbounded distributed broadcast encryption and registered ABE from
succinct LWE. In CRYPTO, 2025.

[WWW22] Brent Waters, Hoeteck Wee, and David J. Wu. Multi-authority ABE from lattices without random oracles.
In TCC, 2022.

[Yao89] Andrew Chi-Chih Yao. Unpublished manuscript, 1989.

74

[ZZC+25] Ziqi Zhu, Kai Zhang, Zhili Chen, Junqing Gong, and Haifeng Qian. Black-box registered ABE from
lattices. IACR Cryptol. ePrint Arch., 2025.

[ZZGQ23] Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via predicate encodings. In
ASIACRYPT, 2023.

A Semi-Malicious Security to Full Security

In this section, we describe a simple compiler to generically lift a multi-authority registered ABE scheme with
semi-malicious security (Definition 4.9) to one that satisfies the standard security notion (Definition 4.6). Recall that
in the semi-malicious security game, the adversary is required to provide the key-generation randomness for the keys
it chooses in the security game. The idea is to simply have users attach a non-interactive zero-knowledge (NIZK)
proof of knowledge of the key-generation randomness to its public key. In the security proof, the reduction algorithm
extracts the key-generation randomness and relies on security of the underlying semi-malicious scheme.

Simulation-sound extractableNIZKs. We start by recalling the formal definition of a simulation-sound extractable
NIZK argument [BFM88, FLS90, Sah99, DDO+01].

Definition A.1 (Simulation-Sound Extractable NIZK). Let R : {0, 1}= × {0, 1}ℎ → {0, 1} be an NP relation (where
= = =(_) and ℎ = ℎ(_) are polynomials). A simulation-sound extractable NIZK for R is a tuple of efficient algorithms
ΠNIZK = (CRSGen, Prove,Verify) with the following syntax:

• CRSGen(1_) → crs: On input the security parameter _, the common reference string generation algorithm
outputs a common reference string crs.

• Prove(crs, G,F) → c : On input a common reference string crs, a statement G ∈ {0, 1}= , and a witness
F ∈ {0, 1}ℎ , the prover algorithm outputs a proof c .

• Verify(crs, G, c) → 1: On input a common reference string crs, a statement G ∈ {0, 1}= , and a proof c , the
verification algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, we require ΠNIZK satisfy the following properties:

• Completeness: For all _ ∈ N, statements G ∈ {0, 1}= , witnessesF ∈ {0, 1}F where R(G,F) = 1, it holds that

Pr

[
Verify(crs, G, c) = 1 :

crs← CRSGen(1_)
c ← Prove(crs, G,F)

]
= 1.

• Perfect soundness: For all adversaries A and all _ ∈ N,

Pr

[
Verify(crs, G, c) = 1 ∧ G ∉ ! :

crs← CRSGen(1_)

(G, c) ← A(1_, crs)

]
= 0.

• Computational zero-knowledge: There exists an efficient simulator S = (S1,S2) such that for all efficient
adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

��� Pr [
AO0 (crs,·,·) (crs) = 1 : crs← CRSGen(1_)

]
−Pr

[
AO1 (stS ,·,·) (crs) = 1 : (crs, stS) ← S1 (1

_)
] ��� = negl(_),

where the oracles O0 and O1 are defined as follows:

– O0 (crs, G,F): On input a common reference string crs, a statement G ∈ {0, 1}= , and a witnessF ∈ {0, 1}ℎ ,
output Prove(crs, G,F) if R(G,F) = 1. Otherwise, if R(G,F) = 0, output ⊥.

– O1 (stS, G,F): On input the simulation state stS , a statement G ∈ {0, 1}= , and a witnessF ∈ {0, 1}ℎ , output
S2 (stS, G) if R(G,F) = 1. Otherwise, if R(G,F) = 0, output ⊥.

75

• Simulation-sound extractability: There exists an efficient extraction algorithm E such that for all efficient
adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

Pr


Verify(crs, G, c) = 1 ∧ R(G,F) = 0 ∧ (G, c) ∉ Q :

(crs, stS) ← S1 (1
_)

(G, c) ← AS2 (stS ,·) (crs)
F ← E(stS, G, c)


= negl(_),

where S = (S1,S2) is the zero-knowledge simulator (from the computational zero-knowledge requirement)
and Q is the set of queries G and simulated outputs c made by A to the S2 oracle.

Constructions of simulation-sound extractable NIZKs. A number of works [CHK03, GOS06, GOS12, LPWW20]
have shown how to construct NIZKs for general NP languages from standard bilinear map assumptions (e.g., the
subgroup decision assumption in composite-order pairing groups or the :-linear assumption in prime-order pairing
groups). Moreover, we can achieve simulation-sound extractability via standard compilers (based on public-key
encryption and one-time signatures [Sah99, DDO+01]).

Compiling semi-malicious security to full security. We now describe our compiler to lift a semi-malicious
multi-authority registered ABE scheme into a fully secure multi-authority registered ABE scheme.

Construction A.2 (Semi-Malicious Multi-Authority Registered ABE to Full Security). Let ΠSM = (SM.GlobalSetup,
SM.KeyGen, SM.Aggregate, SMEncrypt, SM.Decrypt) be a semi-maliciously secure slotted multi-authority registered
ABE scheme on authority identifier space AU = {AU_}, user identifier space GID = {GID_}, and policy space
Φ = {Φ_}. Let ΠNIZK = (CRSGen, Prove,Verify) be a simulation-sound extractable NIZK for the relation

R((gpp, pk, 8), (sk, A)) = 1 if and only if (pk, sk) = SM.KeyGen(gpp, 8; A).

Let S = (S1,S2) be the associated zero-knowledge simulator and E be the extractor (see Definition A.1). We construct
a slotted multi-authority registered ABE scheme ΠsMA-RABE = (GlobalSetup,KeyGen, IsValid,Aggregate, Encrypt,
Decrypt) with authority identity space AU, user identifier space GID, and policy space Φ as follows:

• GlobalSetup(1_, 1!): On input the security parameter _ and the slot bound !, the setup algorithm initializes
the underlying semi-malicious scheme and generates the common reference string for the NIZK:

– Sample (SM.gpp, SM.gep) ← SM.GlobalSetup(1_, 1!).

– Sample crs← CRSGen(1_).

Output gpp = (SM.gpp, crs) and gep = SM.gep.

• KeyGen(gpp, 8): On input the global public parameters gpp = (SM.gpp, crs), a slot index 8 ∈ [!], the key-
generation algorithm runs the underlying semi-malicious key generation algorithm and then provides a NIZK
proof that the key is well-formed:

– Let d be a bound on the number of bits of randomness taken by SM.KeyGen(SM.gpp, ·). Sample A r←
{0, 1}d and (SM.pk, SM.sk) = SM.KeyGen(SM.gpp, 8; A).

– Construct a proof c ← Prove(crs, (SM.gpp, SM.pk, 8), (SM.sk, A)).

Output the public key pk = (SM.pk, c) and the secret key sk = SM.sk.

• IsValid(gpp, 8, pk): On input the global public parameters gpp = (SM.gpp, crs), the slot index 8 ∈ [!], and a
public key pk, the validity checking algorithm outputs Verify(crs, (SM.gpp, SM.pk, 8), c).

• Aggregate(gpp, (gid1, pk1), . . . , (gid!, pk!)): On input the global public parameters gpp = (SM.gpp, crs) and a
collection of pairs (gid8 , pk8) for 8 ∈ [!], the aggregation algorithm simply runs the underlying semi-malicious
aggregation algorithm. In more detail, it computes and outputs

(mpk, hsk1, . . . , hsk!) = SM.Aggregate(SM.gpp, (gid1, SM.pk1), . . . , (gid!, SM.pk!)).

76

• Encrypt(gep, ((enc, i), {(aid,mpkaid)}aid∈(enc , `): On input the encryption parameters gep = SM.gep, the policy
((enc, i), a collection of authority public keys mpkaid, and a message `, the encryption algorithm output

ct← SM.Encrypt(SM.gep, ((enc, i), {(aid,mpkaid)}aid∈(enc , `).

• Decrypt(gpp, (, 8, {(aid, skaid, hskaid)}aid∈(, ct): On input the global public parameters gpp = (SM.gpp, crs), a
set of authorities (, an index 8 ∈ [!], and a collection of secret keys skaid and helper decryption keys hskaid for
aid ∈ (, and a ciphertext ct, the decryption algorithm outputs

< ← SM.Decrypt(SM.gpp, (, 8, {(aid, skaid, hskaid)}aid∈(, ct).

Theorem A.3 (Completeness, Correctness, and Compactness). If ΠNIZK is complete, then Construction A.2 is complete.

Moreover, if ΠSM satisfies correctness and compactness, and ΠNIZK satisfies perfect soundness, then Construction A.2 is

correct and compact.

Proof. We show each property individually. Completeness follows by completeness of the NIZK ΠNIZK while correct-
ness and compactness are directly inherited from the underlying semi-malicious scheme.

• Completeness: By construction IsValid(gpp, 8, (SM.pk, c)) simply checks that

Verify(crs, (SM.gpp, SM.pk, 8), c) = 1,

where c = Prove(crs, (SM.gpp, SM.pk, 8), (SM, sk, A)) and (SM.pk, SM.sk) = SM.KeyGen(SM.gpp, 8; A). By
construction of the relation R, we have R((SM.gpp, SM.pk, 8), (SM, sk, A)) = 1. Completeness now follows
from perfect completeness of ΠNIZK.

• Correctness: Observe that the output of Aggregate, Encrypt, and Decrypt are exactly the same as the
underlying semi-malicious scheme. Moreover, by perfect soundness of ΠNIZK, every public key pk where
IsValid(gpp, 8, pk) is in the support of KeyGen(gpp, 8) (and thus, the support of SM.KeyGen(SM.gpp, 8)). Cor-
rectness now by correctness of the underlying semi-malicious scheme.

• Compactness: Since the global encryption parameters and the master public keys are exactly the same as the
underlying semi-malicious scheme, this follows from compactness of the underlying scheme. �

Theorem A.4 (Security). Suppose ΠSM is a semi-maliciously-secure multi-authority registered ABE scheme and ΠNIZK

is a simulation-sound extractable NIZK. Then Construction A.2 is a secure multi-authority registered ABE scheme.

Proof. To argue security of our slotted multi-authority registered ABE scheme, we define a sequence of hybrid
experiments. Each experiment is parameterized by an implicit security parameter _, a bit 1 ∈ {0, 1}, and an adversary
A:

• Hyb
(1)
0 : This is the standard multi-authority ABE security experiment. We recall the main steps here:

– Setup phase: On input the security parameter 1_ , adversary A sends the slot count 1! to the challenger.
The challenger samples gpp and gep according to the specification of the real setup algorithm. Specifically,
it samples (SM.gpp, SM.gep) ← SM.GlobalSetup(1_, 1!) and crs← CRSGen(1_). The challenger sends
gpp = (SM.gpp, crs) and gep = SM.gep to the adversary. The challenger also initializes a counter ctr← 0,
a dictionary D, a set of honest authoritiesH ← ∅, and a set of tuples C ← ∅.

– Pre-challenge query phase: Adversary A can now issue the following queries:

∗ Key-generation query: In a key-generation query, the adversary specifies a slot index 8 ∈ [!].
The challenger responds by incrementing the counter ctr ← ctr + 1, sampling Actr

r← {0, 1}d , and
computing

(SM.pkctr, SM.skctr) = SM.KeyGen(SM.gpp, 8; Actr)

cctr ← Prove(crs, (SM.pkctr, SM.gpp, 8), (SM.skctr, Actr)) .

It replies with pkctr = (ctr, (SM.pkctr, cctr)) to A. In addition, the challenger adds the mapping
ctr ↦→ (8, (SM.pkctr, cctr), SM.skctr) to the dictionary D.

77

∗ Key-corruption query: In a key-corruption query, the adversary specifies an index 1 ≤ 2 ≤ ctr. In
response, the challenger looks up the tuple (8′, pk′, sk′) = D[2] and replies to A with sk′.

– Challenge phase: In the challenge phase, the adversary specifies a challenge policy ((enc, i
∗) and twomes-

sages `∗0, `
∗
1 ∈ M. For each aid ∈ (enc and slot 8 ∈ [!], the adversary specifies a tuple (28,aid, gid8,aid, pk

∗
8,aid).

The challenger responds by constructing pk8,aid = SM.pk8,aid, c8,aid as follows:

∗ If 28,aid ∈ {1, . . . , ctr}, then the challenger looks up (8′, aid′, pk′, sk′) = D[28,aid] and sets pk8,aid = pk′.
The challenger adds (8, aid) to C if the adversary issued a key-corruption query on index 28,aid.

∗ If 28,aid = ⊥, then the challenger adds (8, aid) to C

∗ In both cases, the challenger then checks that IsValid(gpp, 8, pk8,aid) = 1. Specifically, the challenger
checks that Verify(crs, (SM.pk8,aid, SM.gpp, 8), c8,aid) = 1. If not, the challenger halts with output 0.

The challenger computes (mpkaid, hsk1,aid, . . . , hsk!,aid) ← SM.Aggregate(SM.gpp, {(8, SM.pk8,aid)}8∈[!])
for all aid ∈ (enc and replies with the ciphertext ct∗ ← Encrypt(gep, ((enc, i

∗){mpkaid}aid∈(enc , `
∗
1
).

– Post-challenge query phase: Adversary A can now issue the following queries:

∗ Key-corruption query: Same as in the pre-challenge query phase. If the adversary corrupts a key
with index 28,aid and the adversary specified 28,aid in the challenge phase, then the challenger adds
(8, aid) to the corruption set C.

– Output phase: At the end of the experiment, algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output
of the experiment.

• Hyb
(1)
1 : In this experiment, except the challenger uses a simulated CRS in the global parameters and simulated

proofs when answering key-generation queries. The specific changes are as follows:

– Setup phase: Same as Hyb
(1)
0 , except the challenger now samples (crs, stS) ← S1 (1

_), where S =

(S1,S2) is the simulator associated with ΠNIZK.

– Pre-challenge query phase:

∗ Key-generation query: When algorithm A makes a key-generation query, the challenger replaces
the proof with a simulated one. Specifically, it now computes cctr ← S2 (stS, (SM.pkctr, SM.gpp, 8)).

• Hyb
(1)
2 : Same as Hyb

(1)
1 , except in the challenge phase, the challenger aborts if the adversary A produces a

key that is valid (as determined by the IsValid function), but the extraction algorithm fails to produce the key-
generation randomness associated with the provided key. Specifically, the challenger performs the additional
check in the challenge phase:

– Challenge phase: In addition to checking that Verify(crs, (SM.pk8,aid, SM.gpp, 8), c8,aid) = 1, the chal-
lenger additionally checks that either

∗ SM.KeyGen(SM.gpp, 8; A8,aid) = (SM.pk8,aid, SM.skaid) where

(SM.skaid, A8,aid) ← E(stS, (SM.pk8,aid, SM.gpp, 8), c8,aid)

∗ (SM.pk8,aid, c8,aid) = (SM.pkctr8,aid , cctr8,aid) for some ctr8,aid ∈ [ctr].

If either check fails, the challenger aborts with output 0.

Lemma A.5. Suppose ΠNIZK satisfies computational zero knowledge. Then, for all efficient adversaries A and all

1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[Hyb(1)1 (A) = 1] − Pr[Hyb
(1)
0 (A) = 1]

�� ≤ negl(_).

Proof. Suppose there exists an adversary A which can distinguish between Hyb
(1)
0 and Hyb

(1)
1 with non-negligible

probability. We use A to construct an adversary B that breaks computational zero knowledge with the same
advantage:

78

• At the beginning of the game, algorithm B receives a common reference string crs, and has access to a prover
oracle O(·, ·).

• Algorithm B starts runningA and simulates an execution of the multi-authority registered ABE security game
as follows:

– Setup Phase: Same as Exp
(1)
0 , except algorithmB uses crs received from the challenger when constructing

the global parameters gpp.

– Pre-challenge query phase:

∗ Key-generation query: Same as Hyb
(1)
0 , except algorithm B generates the proof cctr by querying

its oracle. Namely, algorithm B computes cctr ← O((SM.pkctr, SM.gpp, 8), (SM.skctr, Actr)).

∗ Key-corruption query: Algorithm B responds to key-corruption queries exactly as described in

Hyb
(1)
0 and Hyb

(1)
1 .

– Challenge phase: Algorithm B implements the challenge phase exactly as described in Hyb
(1)
0 and

Hyb
(1)
1 .

– Post-challenge query phase: Algorithm B responds to post-challenge queries exactly as described in

Hyb
(1)
0 and Hyb

(1)
1 .

– Output phase: At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

By construction, if the CRS is generated usingCRSGen and the oracle is implemented by Prove(crs, ·, ·), then algorithm

B perfectly simulates Hyb
(1)
0 . If the CRS and the proofs are simulated, then B perfectly simulates Hyb

(1)
1 . The claim

follows. �

Lemma A.6. Suppose ΠNIZK satisfies simulation-sound extractability. Then, for all efficient adversaries A and all

1 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,�� Pr[Hyb(1)2 (A) = 1] − Pr[Hyb
(1)
1 (A) = 1]

�� = negl(_).

Proof. We define an intermediate sequence of hybrid experiments. Let (enc = {aid1, . . . , aid |(enc | } be the challenge set
of authorities. Then, we define an intermediate experiment as follows:

• Hyb
(1)

1,(8∗,0∗)
: Same as Hyb

(1)
1 except the challenger implements the challenge phase as follows:

– Challenge phase: For slots where 8 < 8∗ or where (8 = 8∗ and aid = aid0 for some 0 < 0∗), the challenger
additionally checks that either

∗ SM.KeyGen(SM.gpp, 8; A8,aid) = (SM.pk8,aid, SM.skaid) where

(SM.skaid, A8,aid) ← E(stS, (SM.pk8,aid, SM.gpp, 8), c8,aid)

∗ (SM.pk8,aid, c8,aid) = (SM.pkctr8,aid , cctr8,aid) for some ctr8,aid ∈ [ctr].

If either check fails, then the challenger halts with output 0.

Observe that Hyb
(1)

1,(1,1)
is identical to Hyb

(1)
1 and Hyb

(1)

1,(!, |(enc |+1)
is identical to Hyb

(1)
2 . Now we show that adjacent

experiments are computationally indistinguishable as long as ΠNIZK is simulation-sound extractable. Suppose there

exists an adversary A which can distinguish between Hyb
(1)

1,(8∗,0∗−1)
and Hyb

(1)

1,(8∗,0∗)
with non-negligible probability.

We use A to construct an adversary for the simulation-sound extractability game:

• On input the security parameter 1_ and the common reference string crs, algorithm B starts simulating an

execution of Hyb
(1)
1 . In the setup phase, it uses crs to simulate the public parameters gpp.

• When answering key-generation queries, algorithm B uses oracle access to S2 (stS, ·) to simulate the proof cctr.

Everything else is simulated according to the specification of Hyb
(1)
1 .

79

• In the challenge phase, let aid∗ = aid0∗ . After A outputs its challenge tuples (28∗,aid∗ , gid8∗,aid∗ , pk8∗,aid∗), parse
pk8∗,aid∗ = SM.pk8∗,aid∗ , c8∗,aid∗ and output the statement (SM.pk8∗,aid∗ , SM.gpp, 8

∗) along with the proof c8∗,aid∗).

By construction, algorithm B perfectly simulates an execution of Hyb
(1)

1,(8∗,0∗−1)
and Hyb

(1)

1,(8∗,0∗)
for algorithmA. Next,

the only difference between the two experiments is the additional check for index 8 = 8∗ and 0 = 0∗ in Hyb
(1)

1,(8∗,0∗)
.

Thus, if the outputs of this experiment are different, thenA must have produced a public key SM.pk8∗,aid∗ and a proof
c8∗,aid∗ such that the following three conditions all hold:

• SM.pk8∗,aid∗ was not the result of a prior key-generation query;

• (SM.pk8∗,aid∗ , SM.skaid) ≠ SM.KeyGen(SM.gpp, 8∗; A8∗,aid∗), where

(SM.skaid, A8∗,aid∗) ← E(stS, (SM.pk8∗,aid∗ , SM.gpp, 8
∗), c8∗,aid∗);

• Verify(crs, (SM.pk8∗,aid∗ , SM.gpp, 8
∗), c8∗,aid∗) = 1.

This means B breaks simulation-sound extractability of ΠNIZK and the claim holds. Finally, since there are |(enc |

authorities (i.e., 0 ∈ [|(enc |]), experiments Hyb
(1)

1,(8∗−1, |(enc |)
and Hyb

(1)

1,(8∗,1)
are identical. The claim now follows by a

hybrid argument. �

Lemma A.7. Suppose ΠSM is a semi-maliciously-secure multi-authority registered ABE scheme. Then, for all efficient

and admissible adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

�� Pr[Hyb(1)2 (A) = 1] − Pr[Hyb
(0)
2 (A) = 1]

�� = negl(_) .

Proof. Suppose there exists an efficient algorithm A that can distinguish between experiments Hyb
(0)
2 and Hyb

(1)
2

with non-negligible advantage. We use A to construct an efficient algorithm B that achieves the same advantage:

• Setup phase: On input the security parameter 1_ , algorithmB starts runningA on the same security parameter.
Algorithm A outputs the number of slots 1! , which algorithm B forwards to the challenger. The challenger
responds with SM.gpp and SM.gep. Algorithm B samples (crs, stS) ← S1 (1

_) and sets gpp = (SM.gpp, crs)
and gep = SM.gep. It gives gpp and gep to A. In addition, algorithm B also initializes an empty dictionary Q.

• Pre-challenge query phase: Algorithm B responds to queries as follows:

– Key-generation query: After algorithm A outputs an index 8 , algorithm B makes a key-generation
query to its challenger. The challenger responds with a pair (ctr, SM.pk8). Algorithm B runs c8 ←
S2 (stS, (SM.gpp, SM.pk8 , 8)), and adds the mapping (SM.pk8 , c8) ↦→ ctr to Q. Algorithm B replies to A
with (ctr, (SM.pk8 , c8)).

– Key-corruption query: WhenA makes a key-corruption query on a counter value 2 , algorithmB makes
a key-corruption query on the same counter 2 . The challenger responds with SM.sk, which algorithm B
forwards to A.

• Challenge phase: In the challenge phase, the adversary specifies a policy ((enc, i
∗) and two messages

`∗0, `
∗
1 ∈ M. In addition, for each aid ∈ (enc and slot 8 ∈ [!], the adversary specifies a tuple (28,aid, gid8,aid, pk

∗
8,aid).

Algorithm B forwards the policy ((enc, i
∗) and challenge messages `∗0, `

∗
1 to its challenger. It constructs the

challenge tuples for each aid ∈ (enc and slot 8 ∈ [!] as follows:

– If 28,aid ∈ [ctr], algorithm B simply forwards (28,aid, gid8,aid, pk
∗
8,aid) to its challenger.

– If 28,aid = ⊥, algorithm B parses pk8,aid = (SM.pk8,aid, c8,aid). We consider two possibilities:

1. If SM.pk8,aid = SM.pkctr8,aid and c8,aid = cctr8,aid for some ctr8,aid ∈ [ctr], then algorithm B forwards
the tuple (ctr8,aid, gid8,aid, SM.pk8,aid) to C.

80

2. Otherwise, algorithm B runs (SM.sk8,aid, A8,aid) ← E(stS, (SM.gpp, SM.pk8,aid, 8), c8,aid). If

SM.KeyGen(SM.gpp, 8; A8,aid) ≠ (SM.pk8,aid, SM.sk8,aid),

then algorithm B aborts with output 0. Otherwise it gives the tuple (⊥, A8,aid, gid8,aid, SM.pk8,aid) to
its challenger.

The challenger responds with a challenge ciphertext ct∗, which B forwards to A.

• Post-challenge query phase: Algorithm B responds to post-challenge queries using the same procedure as
in the pre-challenge query phase.

• Output phase: At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

By construction, algorithm B perfectly simulates an execution of the semi-malicious multi-authority registered ABE
security game. Since algorithm B corrupts the same set of keys as A, it is admissible whenever A is admissible. As

such, if ct∗ is an encryption of `∗0 , then algorithm B perfectly simulates an execution of Hyb
(0)
2 , whereas if ct∗ is an

encryption of `∗1 , then algorithm B perfectly simulates an execution of Hyb
(1)
2 . The claim follows. �

Theorem A.4 now follows from Lemmas A.5 to A.7. �

B Lifting a Slotted to an Unslotted Scheme (Unbounded)

In this section, we give a simplified version of the transformation from Section 6 that supports an unbounded
number of users (i.e., this transformation can be applied to our 8O construction from Construction 7.6 to obtain a
multi-authority registered ABE scheme that supports an unbounded number of users). Since our 8O scheme does not
require public keys to be generated with respect to a particular slot, and decryption correctness holds regardless of
which “slots” a particular user identifier are registered to between authorities, we can omit the use of cover-free sets
in the transformation below. For this reason, this transformation also preserves the succinct decryption property in
the underlying scheme.

Construction B.1 (Slotted Multi-Authority Registered ABE to Unslotted Scheme). Let _ be a security parameter.
Let ! = !(_) be the number of users, AU = {AU_}_∈N be a set of authority identifiers, and GID = {GID_}_∈N
be a set of global user identifiers where |GID_ | ≤ 2_ . We use the following conventions and primitives in our
construction:

• Without loss of generality, we assume that the bound on the number of users ! = 2ℓ is a power of two. Rounding
the bound to the next power of two incurs at most a factor of 2 overhead.

• Let AU′ = {AU′_} be a set of authority identifiers where AU′_ = AU_ × [0, ℓ]. Next, let ΠsRABE =

(sRABE.GlobalSetup, sRABE.KeyGen, sRABE.IsValid, sRABE.Aggregate, sRABE.Encrypt, sRABE.Decrypt) be a
slotted multi-authority registered ABE scheme with authority identifiersAU′ and global identifier space GID.
For ease of exposition, we will assume that ΠsRABE supports polynomial-size Boolean circuits.

• The multi-authority registered ABE scheme will internally maintain ℓ + 1 slotted ABE schemes, where the
: th scheme is a slotted scheme that will “support” 2: users. The slotted scheme will have authority identifier
universe AU′ = AU × [0, ℓ].

• Each authority contains auxiliary data auxaid = (ctraid,D0,aid,D1,aid,mpkaid) which contains the following data:

– A counter ctraid that keeps track of the number of registered users in the system.

– A dictionary D0,aid that maps global identifiers gid to a counter ctr (indicating the number of registered
users at the time user gid registered).

– A dictionary D1,aid that maps a counter value ctr to the corresponding set of public keys and helper
decryption keys (gid, {(:, pk: , hsk:)}:∈[0,ℓ]).

81

– The current master public key mpkaid = (ctr,mpk0, . . . ,mpkℓ).

If aux = ⊥, we parse it as (ctr,D0,D1,mpk) where ctr = 0, D0,D1 = ∅, and mpk = (0,⊥, . . . ,⊥). This
corresponds to a fresh scheme with no registered users.

• The master public keysmpkaid associated with each authority will take the form of (ctr,mpk0, . . .mpkℓ), where
ctr is the total number of users registered to this authority, and each mpk: is a master public key of the
underlying slotted scheme ΠsRABE.

• Helper decryption keys hskaid,gid will take the form of (ctr, hsk0, . . . hskℓ), where ctr is a counter (indicating
the number of registered users at the time user gid registered) and each hsk: is a helper decryption key for the
underlying slotted scheme ΠsRABE.

We now construct a multi-authority registered ABE scheme ΠMA-RABE = (GlobalSetup,KeyGen,RegPK,UpdateKey,
Encrypt,Decrypt) as follows:

• Setup(1_, !): On input the security parameter _, and a bound on the number of users ! = 2ℓ , the setup algorithm
runs the setup algorithm for the slotted scheme:

sRABE.gpp← sRABE.GlobalSetup(1_, 1!).

Then, it samples “dummy” public keys for each slot 9 ∈ [!] and : ∈ [0, ℓ]:(
pk′9,: , sk

′
9,:

)
← sRABE.KeyGen(sRABE.gpp, 9).

It outputs the global public parameters

gpp = (sRABE.gpp, {pk′9,: } 9∈[!],:∈[0,ℓ]).

• KeyGen(gpp, gid): On input the common reference string gpp = sRABE.gpp and a user identifier gid, the
key-generation algorithm generates several public/secret key-pairs for the underlying scheme. Specifically,
for : ∈ [0, ℓ], it generates (pk: , sk:) ← sRABE.KeyGen(sRABE.gpp). Output pk = {(:, pk:)}:∈[0,ℓ] and
sk = {(:, sk:)}:∈[0,ℓ] .

• RegPK(gpp, auxaid, gid, pk): On input the common reference string gpp = (sRABE.gpp, {pk′9,: } 9∈[!],:∈[0,ℓ]),
the auxiliary data aux = (ctr,D0,D1,mpk), a user identifier gid and a public key pk = ({(:, pk:)}:∈[0,ℓ]), the
registration algorithm proceeds as follows:

– For each : ∈ [0, ℓ], check that sRABE.IsValid(sRABE.gpp, pk:) = 1. Otherwise, the algorithm halts and
outputs the current auxiliary data aux and master public key mpk.

– If D0 [gid] ≠ ⊥, the algorithm halts and outputs the current auxiliary data aux and master public keympk.
Otherwise, update D0 [gid] = ctr.

– For :∗ ∈ [0, ℓ], check if ctr + 1 = 0 mod 2:
∗
. If so, registration algorithm performs the following update

procedure:

∗ For 8 ∈ [ctr − 2: + 1, ctr], look up (gid8 , {(pk8,: , hsk8,:)}:∈[0,ℓ]) = D0 [8], and set

pk∗8 = pk8,:∗ and gid∗8 = gid8 .

Otherwise set
pk∗8 = pk′8,: and gid8 = 0.

∗ Compute the aggregated parameters(
mpk∗: , {(8, hsk

∗
8,:)}8∈[!]

)
= sRABE.Aggregate(sRABE.gpp, (gid∗1, pk

∗
1), . . . , (gid

∗
!, pk

∗
!)) .

∗ For each 8 ∈ [ctr − 2: + 1, ctr], update hsk8,:∗ = hsk∗ctr,:∗ in D1. Finally, update mpk: = mpk∗:

82

– Finally, the registration algorithm increments ctr = ctr + 1 and outputs the new master public key
mpk = (ctr,mpk0, . . .mpkℓ) and updated auxiliary data aux = (ctr,D0,D1,mpk).

• UpdateKey(gpp, auxaid, gid): On input the global public parameters gpp, the auxiliary data for an authority
auxaid = (ctraux,D0,D1,mpk), and a user identifier gid, the update algorithm looks up ctrgid = D0 [gid]. It then
looks up (gid, {(pk: , hsk: }:∈[0,ℓ]) = D1 [ctrgid]. The update algorithm outputs (ctrgid, hsk0, . . . , hskℓ).

• Encrypt(gpp, ((enc, i), {(aid,mpkaid)}aid∈(enc , `): On input the global parameters gpp, a set of authorities (enc, a
policy i , the master public keys mpkaid = (ctraid,mpkaid,0, . . . ,mpkaid,ℓ), and a message ` ∈ M, the encryption
algorithm generates a new authority set

(′enc = {(aid, :) | aid ∈ (enc, : ∈ [0, ℓ]},

and constructs the extended policy i ′ by substituting each appearance of attribute aid in the policy i with the
clause

(∨
:∈[0,ℓ] (aid, :)

)
. It then computes

ct′ ← sRABE.Encrypt(gpp, ((′enc, i
′), {((aid, :),mpkaid,:)} (aid,:) ∈(′enc , `).

It outputs the ciphertext (ct′, {ctraid}aid∈(enc).

• Decrypt((, {(skaid, hskaid,gid)}aid∈(, ct): On input the attribute set (⊆ (enc, a collection of secret keys skaid =

(gid, {skaid,: }:∈[0,ℓ]), a collection of helper keys

hskaid = (ctraid,gid, hskaid,gid,0, . . . , hskaid,gid,ℓ),

and a ciphertext ct = (ct′, {ctraid}aid∈(enc), the decryption algorithm proceeds as follows:

– For each aid ∈ (, let :aid be the index of the most significant bit where ctraid and ctraid,gid differ.

– If hskaid,gid,:aid = ⊥, abort and output ⊥.

Otherwise, output sRABE.Decrypt({skaid,:aidhskaid,:aid }aid∈(, ct
′).

The correctness and security analysis follow analogously to that of Construction 6.4 (see Section 6).

C Function-Binding Hash Functions for Unique Block Selection

In this section, we show how to construct a function-binding hash function (Definition 7.2) for the unique-block-
selection predicate (Definition 7.3) we need in Construction 7.6. Our construction uses leveled homomorphic
encryption in a similar way as constructions of somewhere statistically binding hash functions [HW15] and function-
binding hash functions for disjunctions of block-wise predicates [FWW23]. We start by recalling the notion of leveled
homomorphic encryption we use.

Definition C.1 (Leveled Homomorphic Encryption). A leveled homomorphic encryption (LHE) scheme [Gen09]
with message spaceM = {M_} is a tuple ΠLHE = (KeyGen, Encrypt,Decrypt, Eval) with the following syntax:

• KeyGen(1_, 1!) → (pk, sk): On input the security parameter _ and a depth bound !, the key-generation
algorithm outputs a public/secret key-pair (pk, sk).

• Encrypt(pk,<) → ct: On input a public key pk and a message< ∈ M_ , the encryption algorithm outputs a
ciphertext ct.

• Decrypt(sk, ct) → </⊥: On input a secret key sk and a ciphertext ct, the decryption algorithm outputs a
message< or ⊥ in case of decryption error.

• Eval(pk,�, ct) → ct′: On input a public key pk, a Boolean circuit � : M_ → M_ , the evaluation algorithm
outputs a ciphertext ct′. This algorithm is deterministic.

83

Moreover, we require ΠLHE satisfy the following properties:

• Correctness: For all _, ! ∈ N and G ∈ M, and Boolean circuits � : M →M of depth at most !:

Pr


Decrypt(sk, ct′) = � (G) :

(pk, sk) ← KeyGen(1_, 1!)
ct← Encrypt(pk, G)
ct′ ← Eval(pk,�, ct)


= 1.

• Compactness: There exists a polynomial ?Eval such that for all _, ! ∈ N, all (pk, sk) ← KeyGen(1_, 1!), all
inputs G ∈ M, ciphertexts ct← Encrypt(pk, G) and circuits � of depth ≤ !,

|Eval(pk,�, ct) | ≤ ?Eval (_, !, |� (G) |) .

• Semantic security: For a bit 1 ∈ {0, 1} and an adversary A, we define the semantic security game as follows:

1. On input the security parameter 1_ , the adversary A outputs a depth bound 1! .

2. The challenger samples (pk, sk) ← KeyGen(1_, 1!) and replies to A with pk.

3. The adversaryA outputs two messages<0,<1 ∈ M. The challenger responds with ct← Encrypt(pk,<1).

4. The adversary outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say the encryption scheme is semantically secure if for all efficient adversaries A, there exists a negligible
function negl(·) such that for all _ ∈ N,

|Pr[1′ = 1 | 1 = 0] − Pr[1′ = 1 | 1 = 1] | = negl(_).

• Polylogarithmic decryption depth: There exists a polynomial ?Decrypt such that for all _, ! ∈ # and

all (pk, sk) in the support of KeyGen(1_, 1!), the decryption circuit computing Decrypt(sk, ·) has depth ≤
?Decrypt (log _, log!).

Binary tree notation. Similar to [FWW23], we use a Merkle-tree like structure [Mer89] in our construction. First,
a Merkle tree of depth ℓ is a complete binary tree with 2ℓ leaf nodes. We say the leaf nodes are at level 0 and the root
node is at level ℓ . We associate each leaf node with an arbitrary fixed-length value. The values of internal nodes in
levels : ∈ [ℓ] are obtained by applying a two-to-one hash function to the two values associated with its child nodes.
We index the nodes by a pair (:, 8) ∈ [0, ℓ] × [1, 2ℓ−:], where : denotes the level and 8 denotes the node index within
the level. Under our conventions, the node (:, 8) is the parent node of (: − 1, 28 − 1) and (: − 1, 28).

It is often helpful to refer to structured collections of nodes, such as paths or sub-trees. For a leaf node at index 8 ,
let path(8) be the set of nodes along the path from leaf 8 to the root. For a set of leaves (, we define ST(() to denote
the union of all paths associated with the leaves in (. A node’s sibling sib(:, 8) is defined to be the (unique) node with
the same parent ((:, 8 + 1) when 8 = 1 mod 2 and (:, 8 − 1) otherwise). Finally, we use dangling(() or dangling(8) to
denote the set of siblings of ST(() or path(8) respectively.

Construction C.2 (Function-Binding Hash). Let _ be a security parameter. Without loss of generality, we assume that
the maximum number of blocks # is always a power of two. We construct a function-binding hash with block length
ℓblk ∈ poly(_) for the class of family of unique-block-selection functions (Definition 7.3) induced by polynomial-size
predicates (of size at most B = B (_)). We define the following building blocks and conventions:

• LetΠLHE = (LHE.KeyGen, LHE.Encrypt, LHE.Decrypt, LHE.Eval) be a leveled homomorphic encryption scheme.
Our construction will require encrypting messages of the following form:

– The first type of messages is a pair (2, G8), where 2 ∈ {0, 1, 2} and G8 ∈ {0, 1}
ℓblk .

– The second type of messages consists of a secret key for the ΠLHE scheme.

We take the message space of ΠLHE to be sufficiently large enough to encrypt both types of messages.

84

• For a block G8 ∈ {0, 1}
ℓ
blk
, let �G8 (6) be the universal circuit that takes as input the describe of a predicate

6 : {0, 1}ℓblk → {0, 1} and outputs

�G8 (6) =

{
(1, G8) 6(G8) = 1

(0, 0ℓblk) otherwise.

Let 30 be the depth of the universal circuit �G8 for evaluating circuits of size at most B = B (_). Note that
30 = poly(B) ∈ poly(_).

• Let �merge,3 [ct0, ct1] (sk) be a circuit (parameterized by depth 3) that takes as input an LHE secret key sk

(supporting depth 3 computation) and first computes

(20, G0) = LHE.Decrypt(sk, ct0)

(21, G1) = LHE.Decrypt(sk, ct1).

Then it outputs

�merge,3 [ct0, ct1] (sk) =




(1, G0) 20 = 1 ∧ 21 = 0

(1, G1) 20 = 0 ∧ 21 = 1

(0, 0ℓblk) 20 = 0 ∧ 21 = 0

(2, 0ℓblk) otherwise.

• For : ∈ [ℓ], we recursively define 3: to be the depth of the circuit �merge,3:−1 [ct0, ct1] (sk). Note that 30 is
defined as above. Since ΠLHE supports polylogarithmic-depth decryption, the circuit �merge,3:−1 [ct0, ct1] can be
implemented in ?Decrypt (log _, log3:−1) +$ (1) depth, meaning we can write 3: = poly(_, log:).

We now construct the function-binding hash function ΠFB = (Setup, SetupBinding,Hash,Open,Verify) as follows:

• Setup(1_, #): On input the security parameter _ and a bound # = 2ℓ on the number of inputs, the setup
algorithm samples encryption keys (pk: , sk:) ← LHE.Setup(1_, 13:) for each : ∈ [0, ℓ]. Then, it computes the
ciphertext ct0 ← LHE.Encrypt(pk0, 6⊥), where 6⊥ is the function that outputs 0 on all inputs. For each : ∈ [ℓ],
compute ct: ← LHE.Encrypt(pk: ,⊥). Finally, it outputs hk = {(:, pk: , ct:)}:∈[0,ℓ] .

• SetupBinding(1_, # , 6): On input the security parameter _, a bound # = 2ℓ on the number of inputs, and
a predicate 6, the setup algorithm samples encryption keys (pk: , sk:) ← LHE.Setup(1_, 13:) for each : ∈
[0, ℓ]. Then, it computes the ciphertext ct0 ← LHE.Encrypt(pk0, 6). For each : ∈ [ℓ], it computes ct: ←
LHE.Encrypt(pk: , sk:−1). Finally, it outputs hk = {(:, pk: , ct:)}:∈[0,ℓ] .

• Hash(hk, x): On input a hash key hk = {(:, pk: , ct:)}:∈[0,ℓ] and an input x = (G1, . . . , G=) for = ≤ # , the hash
algorithm constructs a Merkle tree (on # nodes). First, it associates a ciphertext with each of the # leaf nodes:

– If 8 ≤ =, set ct8,0 = LHE.Eval(pk0,�G8 , ct0).

– If 8 > =, set ct8,0 = LHE.Encrypt(pk0, (0, 0
ℓblk); 0_) using fixed randomness 0_ .

Then, for each : ∈ [ℓ] and 8 ∈ [2ℓ−:], the hash algorithm computes the value of each internal node (:, 8) as
follows:

ct:,8 = LHE.Eval(pk: ,�merge,3:−1 [ct:−1,28−1, ct:−1,28], ct:) . (C.1)

The output is the value of the root note ℎ = (ctℓ,1, =).

• Open(hk, x, 8): On input the hash key hk and an input x = (G1, . . . , G=), the prover constructs the Merkle tree
as in Hash. Then it outputs the opening c8 as the values of the nodes in dangling(8).

• Verify(hk, ℎ, (, {(8, G8 , c8)}8∈(): On input the hash key hk, the hash ℎ = (ct∗, =), a set of indices (⊆ [=], and the
values G8 and openings c8 for each index 8 ∈ (, the verification algorithm proceeds as follows for each 8 ∈ (:

– Compute the leaf node ct8,0 = LHE.Eval(pk0,�G8 , ct0).

85

– Next, it parses c8 to be the value of the the nodes in dangling(8). For each : ∈ [ℓ], it finds the sibling of
the previous level’s node in dangling(8), and recomputes path(8) using Eq. (C.1). Whenever there exists
an index 8′ where path(8) intersects dangling(8′), the verification algorithm checks that the associated
values match.

This proceeds until it computes the value ctℓ,1 associated with the root node. The verification algorithm outputs
1 if ct∗ = ctℓ,1 and outputs 0 otherwise.

Theorem C.3 (Correctness). Construction C.2 is correct.

Proof. By construction, the Open and Verify algorithms compute path(8) on the same inputs and using the same
procedure. Since these are deterministic algorithm, they will always produce the same root, so correctness holds. �

Theorem C.4 (Computational Function Hiding). Suppose ΠLHE is semantically secure. Then Construction C.2 satisfies

computational function hiding.

Proof. We start by defining a modified Setup: ′ algorithm indexed by : ′ ∈ [ℓ]:

• Setup: ′ (1
_, # , 6) On input the security parameter _ and a bound # = 2ℓ on the number of inputs, the setup

algorithm samples encryption keys (pk: , sk:) ← LHE.Setup(1_, 13:) for each : ∈ [0, ℓ]. Then, it computes the
ciphertext ct0 ← LHE.Encrypt(pk0, 6) For each : ∈ [:

′], it computes ct: ← LHE.Encrypt(pk: , sk:−1). Other-
wise, for : ∈ [: ′ + 1, ℓ], it computes ct: ← LHE.Encrypt(pk: ,⊥). Finally, it outputs hk = {(:, pk: , ct:)}:∈[0,ℓ] .

We will argue through a sequence of hybrids that the hash keys output by Setup: ′−1 and Setup: ′ are computationally
indistinguishable for all : ′ ∈ [ℓ]. Since the hash key output by Setupℓ is exactly SetupBinding, function hiding
follows. More formally, we define a series of hybrids as follows:

• Hyb
(1)

: ′
: This is the computational function hiding game, where the challenger samples the hash key hk using

Setup: ′ instead of SetupBinding. Formally, the experiment proceeds as follows:

1. On input the security parameter 1_ , algorithm A outputs the number of blocks # ∈ N (in binary) and a
predicate function 6.

2. The challenger samples hk0 ← Setup(1_, #), hk1 ← Setup: ′ (1
_, # , 6) and gives hk1 to A.

3. Algorithm A outputs a bit 1′ ∈ {0, 1}, which is also the output of the experiment.

Lemma C.5. Suppose ΠLHE is semantically secure. Then for all efficient adversaries A, there exists a negligible function

negl(·) such that for all _ ∈ N ���Pr[Hyb(0)0 (A) = 1] − Pr[Hyb
(1)
0 (A) = 1]

��� = negl(_).

Proof. Assume there exists an efficient adversary A which has with non-negligible advantage Y in Hyb
(1)
0 . We use A

to construct a new adversary B that breaks semantic security of ΠLHE with the same advantage:

• On input the security parameter 1_ , algorithm B starts by sending the depth parameter 130 to the challenger.
The challenger replies with the public key pk∗0.

• Algorithm B begins running A on the same security parameter. Algorithm A sends a length parameter # and
a predicate 6.

• Algorithm B chooses 6⊥ and 6 as its challenge messages and receives a challenge ciphertext ct∗.

• Algorithm B constructs hk as in Setup(1_, #), but sets pk0 = pk∗ and ct0 = ct∗. It gives hk to A.

• At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

86

By construction, if ct∗ is an encryption of 6⊥, then hk is generated according to the specification of Setup, whereas
if ct∗ is an encryption of 6, then hk is generated according to the specification of Setup0. Note that since ct1 is an

encryption of ⊥ (and not sk0) in both Setup and Setup0, algorithm B can perfectly simulate Hyb
(1)
0 . Thus, algorithm

B breaks semantic security with the same advantage as A, which proves the claim. �

Lemma C.6. Suppose ΠLHE is semantically secure. Then for all : ′ ∈ [ℓ], all 1 ∈ {0, 1}, and all efficient adversaries A,

there exists a negligible function negl(·) such that for all _ ∈ N,���Pr[Hyb(1)
: ′−1
(A) = 1] − Pr[Hyb

(1)

: ′
(A) = 1]

��� = negl(_).

Proof. This follows from a similar argument as the proof of Lemma C.5. Assume there exists an efficient adversaryA

that can distinguish Hyb
(1)

: ′−1
from Hyb

(1)

: ′
with non-negligible advantage Y. We use A to construct a new adversary

B that breaks semantic security of ΠLHE with the same advantage:

• On input the security parameter 1_ , algorithm B starts by sending the depth parameter 13: to the challenger.
The challenger replies with the public key pk∗: ′ .

• Algorithm B starts running A on the same security parameter. Algorithm A sends a length parameter # and
a predicate 6.

• Algorithm B samples (pk: ′−1, sk: ′−1) ← LHE.Setup(1_, 13:′−1), and sends challenge messages ⊥ and sk: ′−1 to
the challenger. The challenger replies with a ciphertext ct∗.

• AlgorithmB constructs hk0 according to the specification of Setup(1
_, #) and hk1 according to the specification

of Setup: ′−1 (1
_, # , 6) except it substitutes pk: ′−1, pk

∗
: ′ and ct∗ received from the previous steps in place of

pk: ′−1, pk: ′ and ct: ′ , respectively. Finally, it forwards hk1 to A.

• At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

By construction, if ct∗ is an encryption of⊥, then hk1 is generated according to the specification of Setup: ′−1, whereas
if ct∗ is an encryption of sk: ′−1, then hk1 is generated according to the specification of Setup: ′ . As before, note that
since ct: ′+1 is an encryption of ⊥ (and not sk: ′) in both Setup: ′−1 and Setup: ′ , so algorithm B can perfectly simulate
these hybrids. Thus, algorithm B breaks semantic security with the same advantage asA, which proves the claim. �

Combining Lemmas C.5 and C.6, we conclude Construction C.2 satisfies computational function hiding. �

Theorem C.7 (Statistical Function Binding). Suppose ΠLHE satisfies perfect correctness. Then Construction C.2 satisfies

statistical function binding.

Proof. Our construction is in fact perfectly function binding. To reason about this, we first show the following
invariant:

Lemma C.8. Let 6 be any predicate (of circuit size at most B = B (_)) and suppose the hash key is sampled as hk ←
SetupBinding(1_, # , 6) for some # = 2ℓ . Take any input x = (G1, . . . , G=) where = ≤ # and let ℎ = Hash(hk, x). Let
{(8, G∗8 , c

∗
8)}8∈(be a collection of values and openings for an arbitrary subset of leaf nodes (⊆ [=]. Suppose moreover that

Verify(hk, ℎ, (, {(8, G∗8 , c
∗
8)}8∈() = 1.

Recall that each proof c∗8 contains the values of the nodes in dangling(8). This is sufficient to compute path(8). Then, the
following invariant holds for all of the nodes along ST(()7:

• Let (:, 8) be an arbitrary node in ST((). Then, the associated value ct:,8 is an encryption of (2∗, G∗), where the
following properties hold:

1. If 2∗ = 0, then there are no leaf nodes G 9 where 6(G 9) = 1.

7Recall that ST(() denotes the union of all paths from the nodes in (to the root.

87

2. If 2∗ = 1, there is at most one leaf node G 9 in the sub-tree rooted at (:, 8) where 6(G 9) = 1. In addition:

(a) If such an G 9 exists, then G 9 = G
∗.

(b) If the sub-tree rooted at (:, 8) is complete, such an G 9 exists.

3. If 2∗ = 2 and the sub-tree rooted at (:, 8) is complete, there are at least two leaf nodes G 9 , G 9 ′ where 9 ≠ 9 ′ and

6(G 9) = 1 = 6(G 9 ′).

Proof. We argue that this invariant holds for the nodes in ST(() inductively (from the leaves to the root):

• Base case: Suppose : = 0. Recall that for a leaf node G 9 , this hash is computed by homomorphically evaluating
�G 9 on ct0, where ct0 an encryption of the function 6. By definition of 6, this produces an encryption of (1, G 9)
when 6(G 9) = 1 and an encryption of (0,⊥) otherwise. Since this is the only leaf node in this sub-tree, the
invariant holds.

• Inductive step: Consider an arbitrary node (:, 8) ∈ ST((). We consider two cases:

– Suppose both child nodes of (:, 8) are in ST((). First, we can apply our invariant to the ciphertexts
associated with these two child nodes, ct:−1,28−1, ct:−1,28 . By construction, from Eq. (C.1), the value ct:,8 is
obtained by homomorphically evaluating �merge,3:−1 [ct:−1,28−1, ct:−1,28] on ct: . By perfect correctness of
ΠLHE, this will decrypt to some pair of values (20, G0) and (21, G1) respectively. We consider the following
sub-cases:

∗ Suppose 20 = 21 = 0. From the induction hypothesis (Condition 1), this means (: − 1, 28 − 1) and
(: − 1, 28) have no leaves which satisfy predicate 6. Since these are the only children of (:, 8), it
follows that (:, 8) also has no such leaves that satisfy 6. In this case, �merge,3:−1 [ct:−1,28−1, ct:−1,28]
outputs (0, 0ℓblk). Correspondingly, the induction invariant is preserved.

∗ Suppose 20 = 1 and 21 = 0. In this case, �merge,3:−1 [ct:−1,28−1, ct:−1,28] outputs (1, G0). We argue that
this satisfies the induction invariant. By the induction hypothesis (Conditions 1 and 2), the node
(: − 1, 28 − 1) has at most one child which satisfies 6 while the node (: − 1, 28) has none. This means
(:, 8) also has at most one child that satisfies the predicate, which satisfies Condition 2. We now
consider the additional property:

· If the sub-tree rooted at (:, 8) contains a leaf G 9 that satisfies the predicate 6, then it must be
contained in the sub-tree rooted at (: − 1, 28 − 1). By the induction hypothesis (Condition 2a),
this means G 9 = G0, so Condition 2a continues to hold.

· Next, suppose the sub-tree rooted at (:, 8) is complete. This also means the sub-tree rooted at
(: − 1, 28 − 1) is also complete, so Condition 2b continues to hold.

∗ Suppose 20 = 0 and 21 = 1. This proceeds analogous to the previous case.

∗ Finally, suppose that either 20 = 2, 21 = 2, or 20 = 21 = 1. In this case, �merge,3:−1 [ct:−1,28−1, ct:−1,28]
outputs (2, 0ℓblk). If the sub-tree rooted at (:, 8) is not complete, then Condition 3 holds vacuously.
Consider the case where the sub-tree rooted at (:, 8) is complete. This means that the sub-trees
rooted at (: − 1, 28 − 1) and (: − 1, 28) are also complete. By the induction hypothesis, this means that
either there are at least two leaves which satisfy 6 in one of the sub-trees (applying Condition 3 of
the induction invariant when 20 = 2 or 21 = 2) or there is exactly one such leaf node in each sub-tree
(applying Condition 2b to both sub-trees when 20 = 21 = 1). In either case, there are at least two leaf
nodes in the sub-tree rooted at (:, 8) that satisfy the predicate, and the claim holds.

– Suppose that only one child of (:, 8) is in ST((). By construction, this means the sub-tree rooted at
(:, 8) cannot be complete. Without loss of generality, suppose (: − 1, 28 − 1) ∈ ST((). This means
(: − 1, 28) ∈ dangling((). In this case, we simply apply our induction invariant to (: − 1, 28 − 1).
As in the previous case, let (20, G0) be the decryption of ct:−1,28−1, and let (2∗, G∗) be the output of
�merge,3:−1 [ct:−1,28−1, ct:−1,28]. We consider two sub-cases:

∗ Suppose 20 = 0. By the induction hypothesis, there are no leaves G 9 in the sub-tree rooted at
(: − 1, 28 − 1) such that 6(G 9) = 1. Since (: − 1, 28) is a dangling node, the only leaves of (:, 8) in
ST(() are the leaves in the sub-tree rooted at (: − 1, 28 − 1). Thus, we conclude there are no leaves in

88

the sub-tree rooted at (:, 8) where 6(G 9) = 1. This satisfies the induction invariant whether 2∗ = 0 or
2∗ = 1.

∗ Suppose 20 = 1. By the induction hypothesis, there is at most one leaf G 9 in the sub-tree rooted at
(: − 1, 28 − 1) where 6(G 9) = 1. By construction of �merge, if 20 = 1, then 2∗ ≥ 1. Since (: − 1, 28 − 1)
is a dangling node and has no leaves in the sub-tree rooted at ST((), we again conclude that there is
at most one leaf in the sub-tree rooted at (:, 8) where 6(G 9) = 1. Moreover, note that if the sub-tree
rooted at (: − 1, 28 − 1) contains such a leaf node G 9 , then by our induction hypothesis (Condition 2a),
we have G0 = G 9 . By construction of�merge, if 2

∗
= 1, then it will also be the case that G∗ = G0 = G 9 , as

required. �

Corollary C.9. Suppose the hash key is sampled as hk← SetupBinding(1_, # , 6) for some # = 2ℓ . Take any input

x = (G1, . . . , G=) where = ≤ # and let ℎ = (ct∗, =) = Hash(hk, x). Then, the ciphertext ct∗ is an encryption of (2∗, G∗)
where

• 2∗ = 0 if 6(G 9) = 0 for all 9 ∈ [=];

• 2∗ = 1 if there exists a unique index 9 ∈ [=] where 6(G 9) = 1 and moreover G 9 = G
∗; and

• 2∗ = 1 if there exist 9 ≠ 9 ′ ∈ [=] where 6(G 9) = 1 = 6(G 9 ′).

Proof. This follows by applying Lemma C.8 to the set of “real” openings {(8, G8 ,Open(hk, x, 8))}8∈[=] . By correctness
(Theorem C.3), this is a verifying set of openings, so we can apply our invariant to ctℓ,1 = ct∗. �

Now that we have established this invariant, we will show the contrapositive of the statistical function binding
statement. Namely, take any hk ← SetupBinding(1_, # , 6), any input x = (G1, . . . G=) where = ≤ # , and let ℎ =

(ct∗, =) = Hash(hk, x). Take set of input/opening pairs {(8, G∗8 , c
∗
8)}8∈(such that Verify(hk, ℎ, (, {(8, G∗8 , c

∗
8)}8∈() = 1.

We now show that we can always find an extension x
′
= (G ′1, . . . , G

′
=) where G

′
8 = G∗8 for all 8 ∈ (and for which

56 (x) = 56 (x
′). For notational convenience, let G0, G1 ∈ {0, 1}ℓblk be arbitrary values where 6(G0) = 0 and 6(G1) = 1. In

addition, let pk′ be an arbitrary fixed public key. We consider the following cases based on the number of indices
8 ∈ [=] where 6(G8) = 1:

• Suppose |{8 ∈ [=] : 6(G8) = 1}| = 0. In this case 56 (x) = ⊥. By Corollary C.9, we conclude ct∗ is an encryption
of the pair (0, G 9). Since {(8, G

∗
8 , c
∗
8)}8∈(verifies with respect to the same root ℎ, we can appeal to Lemma C.8 to

conclude that for all 8 ∈ (, 6(G∗8) = 0. Thus, we can define the extension x
′
= (G ′1, . . . G

′
=) where

G ′8 =

{
G∗8 8 ∈ (

G0 8 ∉ (.
(C.2)

Since 6(G∗8) = 0 = 6(G0), we conclude that 56 (x
′) = ⊥, making this a satisfying extension.

• Suppose |{8 ∈ [=] : 6(G8) = 1}| = 1. Let 8∗ ∈ [=] be the unique index for which 6(G8∗) = 1. Then, by definition,
56 (x) = G8∗ . By Corollary C.9, the ciphertext ct∗ is also an encryption of (1, G8∗). Since {(8, G

∗
8 , c
∗
8)}8∈(verifies

with respect to the same root ℎ, we can appeal to Lemma C.8 to conclude that there is at most one index 8′ ∈ (
where G∗8′ where 6(G

∗
8′) = 1. We consider the two possibilities:

– Suppose that 6(G∗8) = 0 for all 8 ∈ (. By Lemma C.8, we conclude that (≠ [=]; specifically if (= [=], then
the root node of ST(() is a complete tree in which case Lemma C.8 stipulates that there is exactly one leaf
node G∗8′ where 6(G

∗
8′) = 1. Now take 8′′ ∈ [=] to be the smallest index in [=] \ (. We define our extension

x
′
= (G ′1, . . . , G

′
=) as

G ′8 =



G∗8 8 ∈ (

G8∗ 8 = 8′′

G0 otherwise.

By construction, 56 (x
′) = G8∗ , as required.

89

– Suppose there exists exactly one index 8′ ∈ (where 6(G∗8′) = 1. From Condition 2a of Lemma C.8, this
manes ct∗ is an encryption of (1, G∗8′). As argued above, ct∗ is also an encryption of (1, G8∗). Since ΠLHE is
perfectly correct, this means G8∗ = G

∗
8′ . Thus, we can define the extension x

′
= (G ′1, . . . G

′
=) as in Eq. (C.2).

By construction, this satisfies 56 (x
′) = G∗8′ = G8∗ , as required.

• Suppose |{8 ∈ [=] : 6(G8) = 1}| > 1. By definition, this means 56 (x) = ⊥. By Corollary C.9, this means ct∗ is an
encryption of the form (2, G∗). We again consider the number of indices 8 ∈ (for which 6(G∗8) = 1:

– Suppose for all 8 ∈ (, we have 6(G∗8) = 0. In this case, we can again take x′ as in Eq. (C.2) to be our
extension. In this case 56 (x

′) = ⊥. Technically, x′ does not contain any blocks which satisfy the predicate
whereas x contains more than two blocks. However, the behavior of 56 is the same in these two cases.

– Suppose there is exactly one index 8′ ∈ (where 6(G∗8′) = 1. Similar to above, we can appeal to Lemma C.8
to conclude that (≠ [=] (if (= [=], then Lemma C.8 implies that ct∗ is an encryption of the form (1, G∗)).
As such, we can define our extension x

′
= (G ′1, . . . , G

′
=) as

G ′8 =

{
G∗8 8 ∈ (

G1 otherwise.

By construction, this means 56 (x
′) = ⊥, as required.

– Suppose there are at least two indices 8 ≠ 8′ ∈ (where 6(G∗8) = 1 = 6(G∗8′). Then, we can again take x′ as
in Eq. (C.2) to be our extension. By construction, this means 56 (x

′) = 0, as required. �

Theorem C.10 (Succinctness). Suppose ΠLHE is compact and has polylogarithmic decryption depth. Then Construc-

tion C.2 is succinct.

Proof. Recall the hash consists of an encryption of a tuple (2, G8) of length ℓblk + log# which supports a computation
of depth 3ℓ ≤ poly(_, log ℓ). Since ℓblk = poly(_), compactness of ΠLHE allows us to bound the size of the ciphertext
by poly(_, log#). Next, each opening contains up to log# ciphertexts. As argued above, each ciphertext has size
poly(_, log#), so the overall opening has size poly(_, log#), as required. �

90

