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Abstract

Large-scale general domain pretraining followed by downstream-specific finetuning has be-
come a predominant paradigm in machine learning. However, discrepancies between the
pretraining and target domains can still lead to performance degradation in certain cases, un-
derscoring the need for task-adaptive continued pretraining (TAP). TAP methods typically
involve continued pretraining on task-specific unlabeled datasets or introducing additional
unsupervised learning objectives to enhance model capabilities. While many TAP methods
perform continued pretraining with multiple pretraining objectives, they often determine
the tradeoff parameters between objectives manually, resulting in suboptimal outcomes and
higher computational costs. In this paper, we propose TapWeight, a task-adaptive pretrain-
ing framework which automatically determines the optimal importance of each pretraining
objective based on downstream feedback. TapWeight reweights each pretraining objective
by solving a multi-level optimization problem. We applied TapWeight to both molecular
property prediction and natural language processing tasks, significantly surpassing baseline
methods. Experimental results validate the effectiveness and generalizability of TapWeight.
Our code is available at https://github.com/ruz048/TapWeight.

1 Introduction

Foundation models pretrained on large-scale general domain corpora have achieved state-of-the-art perfor-
mance across a wide range of tasks (He et al., 2021a; Devlin et al., 2019; Brown et al., 2020). These models,
which capture general knowledge for specific modalities such as text or images through unsupervised learn-
ing, are typically adapted to downstream tasks via finetuning. However, when there is a domain discrepancy
between the pretraining corpus and the target task, direct finetuning of the pretrained model often fails
to deliver optimal results (Lee et al., 2020; Chen et al., 2023; Xie et al., 2024). To address this challenge,
downstream task-adaptive continued pretraining, or task-adaptive pretraining (TAP), has been introduced.
TAP bridges this gap by introducing an additional continued pretraining stage between general domain
pretraining and task specific finetuning. For example, Gururangan et al. (2020) conducts task-adaptive
pretraining by performing unsupervised learning on the unlabeled data of the downstream task. Wu et al.
(2021) introduces an additional perturbation masking objective during continued pretraining of a BERT
model (Devlin et al., 2019), enhancing its performance on dialogue understanding tasks.
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Figure 1: An Overview of TapWeight. In the first level, the model undergoes multi-objective pretraining
with fixed tradeoff ratios between objectives. In the second level, the pretrained model is finetuned on the
training split of the downstream dataset. In the third level, the finetuned model is evaluated on the validation
split of the downstream dataset to compute a loss, and the trainable tradeoff parameters fixed in the first
level are learned by minimizing this validation loss.

Among these, many existing task-adaptive pretraining methods consist of multiple pretraining objectives (Wu
et al., 2021; Gao et al., 2021; Cui et al., 2023), making it challenging to determine the relative importance
of each objective. Some TAP methods assign equal weight to each pretraining objective (Lee et al., 2020;
Wu et al., 2021), disregarding their varying impact on downstream performance. For instance, Gao et al.
(2021) shows that pretraining BERT with a contrastive learning (CL) objective results in better downstream
performance on semantic textual similarity (STS) datasets than using masked language modeling (MLM) loss,
indicating that the CL objective is more important than the MLM objective for these tasks. Other approaches
attempt to manually tune the importance ratios through hyperparameter search (Gao et al., 2021), which
often results in suboptimal performance and increased computational costs. This issue becomes particularly
severe when the number of pretraining objectives is large, such as with the task-adaptive pretraining of
a popular molecular model Imagemol, which involves 5 distinct pretraining objectives (Zeng et al., 2022).
Raghu et al. (2021) propose a multi-level framework to learn the importance of pretraining objectives, with
a focus on supervised pretraining. However, their approach faces challenges when scaling to large-scale
unsupervised pretraining due to computational cost.

To address the aforementioned challenges, we propose a novel framework, TapWeight, designed to learn
the optimal tradeoff parameters between various pretraining objectives during task-adaptive pretraining.
The goal is to learn these optimal tradeoff parameters such that the pretrained model, after finetuning on
a downstream task, achieves the best downstream task performance. Our approach involves a three-level
optimization framework to learn these parameters. In the first level, we perform task-adaptive pretrain-
ing using initial tradeoff parameters, denoted as λ. These parameters are kept fixed in this level and will
be updated in subsequent levels. The resulting pretrained model is thus a function of λ. In the second
level, the pretrained model from the first level is finetuned on the training split of the downstream dataset.
Consequently, the finetuned model becomes an implicit function of the tradeoff parameters. In the third
level, the finetuned model is evaluated on the validation split of the downstream dataset, and the tradeoff
parameters λ are optimized by minimizing the validation loss. This end-to-end process allows the opti-
mization problems in three levels to dynamically influence one another, forming an integrated framework
that optimizes task-adaptive pretraining process and enhances downstream task performance. Moreover,
TapWeight is broadly applicable to pretrained models with multiple pretraining objectives across various
data modalities and downstream task types, demonstrating superior generalizability compared to existing
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task-adaptive pretraining methods (Nishida et al., 2021; Cui et al., 2023). Figure 1 illustrates the complete
framework of TapWeight.

We apply TapWeight for task-adaptive pretraining of a molecule representation model, Imagemol (Zeng
et al., 2022), and language models including RoBERTa (Liu et al., 2019c) and DeBERTa (He et al., 2021b).
Evaluating its performance across 13 molecular property prediction datasets and 11 natural language pro-
cessing tasks, TapWeight significantly outperforms baseline methods across different tasks and model sizes.
The superior performance of TapWeight highlights its effectiveness and generalizability. Our contribution
can be summarized as follows:

• We propose TapWeight, an approach that automatically searches for the tradeoff parameters across
multiple pretraining objectives and performs reweighted task-adaptive pretraining. TapWeight is
formulated within a multi-level optimization (MLO) framework. We employ an efficient gradient
descent algorithm to solve the MLO problem, obtaining the optimal tradeoff parameters for multiple
pretraining objectives.

• We apply TapWeight for task-adaptive pretraining of a molecule representation model and a language
model. Extensive experiments on 13 downstream datasets in molecular property prediction and 11
datasets in natural language processing underscore its effectiveness and generalizability.

2 Related Works

2.1 Domain / Task Adaptive Pretraining

To bridge the gap between general domain pretraining and downstream tasks in a specific domain, domain-
adaptive pretraining (DAP) and task-adaptive pretraining (TAP) have been introduced (Gururangan et al.,
2020). DAP performs continued pretraining on a large, unlabeled corpus from a similar domain as the
downstream task. For example, BioBERT continues to pretrain a BERT model on a large-scale biomedical
corpus, enhancing its performance on a variety of biomedical text mining tasks (Lee et al., 2020). Similarly,
LegalBERT continues to pretrain a BERT model on legal documents to improve performance on legal NLP
tasks (Chalkidis et al., 2020), while SciBERT leverages a large multi-domain corpus of scientific publications
for further pretraining, enhancing its effectiveness on scientific NLP tasks (Beltagy et al., 2019). More
recently, MEDITRON performs continued pretraining of a Llama-2 model with 80 billion parameters on text
in medical domain, showing significant performance gains on major medical benchmarks (Chen et al., 2023).
U-PaLM (Tay et al., 2023) performs continued pretraining on PaLM (Chowdhery et al., 2024) model with
540 billion parameters using UL2’s mixture-of-denoiser pretraining objective (Tay et al., 2022), achieving
performance improvement on many few-shot tasks, such as MMLU and GSM8K.

Although DAP significantly improves model performance on downstream tasks, it needs a large corpus of
unlabeled data in a specific domain, which is not always available. To address this limitation, multiple task-
adaptive pretraining (TAP) methods have emerged, which do not rely on additional domain-specific corpora
beyond the downstream dataset itself. TAP methods can also be viewed as a novel finetuning process, where
standard finetuning is preceded by low-cost continued pretraining. For instance, TAPT performs continued
pretraining directly on the unlabeled training split of the downstream dataset (Gururangan et al., 2020).
TAPTER first trains new word embeddings using the unlabeled training split of the downstream dataset, and
then use these embeddings for continued pretraining of the model (Nishida et al., 2021). SimCSE introduces
an additional constrastive learning loss in addition to the original masked language modelling loss to further
pretrain a RoBERTa model, specifically enhancing its capability on standard semantic textual similarity
tasks (Gao et al., 2021). PCP combines the idea of instruction tuning with conventional continued pre-
training, consistently improving the performance of state-of-the-art prompt-based finetuning approaches on
21 benchmarks (Shi & Lipani, 2023). While existing TAP methods are effective, they are typically tailored
to specific downstream tasks or data modalities (Wu et al., 2021; Cui et al., 2023). In contrast, TapWeight
is applicable to pretrained models across diverse modalities and tasks with multiple pretraining objectives,
underscoring its broad generalizability.
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2.2 Multi-level Optimization

Many machine learning tasks can be formulated as multi-level optimization (MLO) problems, such as neural
architecture search (Liu et al., 2019a; Chen et al., 2019; Xu et al., 2020), meta learning (Finn et al., 2017;
Rajeswaran et al., 2019; Zhang et al., 2024), and hyperparameter optimization (Lorraine et al., 2020; Lorraine
& Duvenaud, 2018; Mackay et al., 2019). MLO problems consist of multiple levels of optimization problems
that are mutually dependent, making it challenging for common automatic differentiation algorithms to
handle them. To tackle this challenge, multiple algorithms (Lorraine et al., 2020; Liu et al., 2019a; Rajeswaran
et al., 2019) and libraries (Choe et al., 2023c;a) have been proposed to efficiently compute gradients in MLO
problems.

Recently, MLO techniques have been widely adopted in data reweighting and task reweighting. In these
methods, the weights of data or tasks are often treated as hyperparameters and optimized in the upper levels
of MLO problems. For example, MetaWeightNet learns an explicit weighting function for each data point
to maximize the performance on a small amount of unbiased meta-data (Shu et al., 2019). DoGE optimizes
weights for each data domain using a small proxy model to guide the pretraining of larger models (Fan
et al., 2024). MetaWeighting learns tradeoff parameters for each task in multi-task learning to minimize
generalization loss (Mao et al., 2022). Raghu et al. (2021) proposes a multi-level optimization framework to
learn the importance of supervised pretraining objectives based on feedback from downstream performance.
Their method simulates the finetuning process by unrolling a few finetuning steps within one optimization
level. Our method also falls within this category, with a specific focus on reweighting pretraining objectives
for downstream task-adaptive continued pretraining. While our method shares a three-level optimization
framework with Raghu et al. (2021) for identifying the importance of pretraining objectives, we adopt
proximal regularization to simulate the finetuning process, reducing computational cost and enabling scalable
unsupervised pretraining on large models.

2.3 Multi-task Learning

Multi-task learning (MTL) enables models to learn multiple tasks simultaneously, promoting knowledge shar-
ing and transfer while mitigating task conflict. Existing MTL methods can be broadly categorized into two
groups. The first group focuses primarily on architecture design for parameter sharing. For example, Ruder
(2017) introduces two typical approaches for parameter sharing: hard sharing and soft sharing. Misra et al.
(2016) proposes using trainable linear mappings to dynamically select different combinations of activation
maps for different tasks. Rosenbaum et al. (2018) introduces a trainable router network to iteratively select
functional blocks for different tasks. Liu et al. (2019b) employs soft attention modules to extract task-specific
features from shared representations. Similarly, Yang et al. (2020) also utilizes a trainable router network, as
in Rosenbaum et al. (2018), but with soft modularization that assigns probability weights to each connection
between blocks.

The second group of MTL methods is based on optimization and gradient operations. For instance, Sener
& Koltun (2018) formulates MTL as a multi-objective optimization problem, defining the overall objective
as finding a Pareto-optimal solution. Chen et al. (2018) proposes a gradient normalization algorithm that
dynamically adjusts the gradient magnitudes of each task. Yu et al. (2020) introduces gradient surgery,
which projects a task’s gradient onto the normal plane of another task’s gradient if task conflicts exist. Mao
et al. (2022) applies meta-learning to search for optimal task weights. Achituve et al. (2024) proposes the
first Bayesian formulation for gradient aggregation in MTL and develops a new optimization algorithm based
on posterior estimation.

Our method, TapWeight, shares more similarity with the second category as it also operates on gradients
by reweighting each pretraining objective. However, TapWeight differs critically from all the MTL methods
mentioned above, which generally assume that training and testing tasks are identical and do not consider a
pretraining–finetuning scheme. In contrast, TapWeight specifically addresses the continued pretraining (CP)
problem, where the MTL tasks during CP differ from those during finetuning. In this setting, optimizing
solely for performance on pretraining tasks does not guarantee improved finetuning outcomes, making direct
application of existing MTL methods inappropriate. To address this challenge, TapWeight introduces a

4



Published in Transactions on Machine Learning Research (06/2025)

novel multi-level optimization framework that searches for pretraining task weights to maximize finetuning
performance, effectively overcoming the limitations of previous MTL approaches in the CP context.

3 Method

3.1 Overview

Given n continued pretraining objectives T1, T2, ...Tn and their corresponding training losses L1,L2, ...Ln, we
formulate the multi-objective continued pretraining loss Lpt as:

Lpt(θ, λ,Dpt) =

n∑

i=1

λiLi(θ,Dpt) (1)

where Dpt is the unsupervised pretraining dataset, θ denotes the pretraining model parameters, and λi is
the tradeoff parameter for each pretraining objective. We denote the target downstream task as Dft and
split it into Dtr,Dval and Dts, which are training, validation and test splits respectively.

In our framework, TapWeight, we aim to automatically search for the optimal tradeoff weights λ =
{λ1, ..., λn}, so that the pretrained model achieves the highest performance on the test split Dts after being
fine-tuned on the downstream dataset Dtr. To achieve this, our method consists of three levels of opti-
mization problems. In the first level, we perform continued pretraining of the model, with tradeoff weights
tentatively fixed. In the second level, we conduct finetuning of the pretrained model on the training split
of the downstream dataset. In the third level, we compute a loss by applying the finetuned model on the
validation split of the downstream dataset, and optimize the tradeoff parameters by minimizing this loss.
We next formally define these three levels under a multi-level optimization framework.

3.2 TapWeight Framework

Level I In the first level, we aim to perform continued pretraining for the model. Formally, the optimization
problem (OP) is to optimize the model weights θ to minimize the multi-objective pretraining loss Lpt on a
unlabeled dataset Dpt:

θ∗(λ) = arg min
θ

Lpt(θ, λ,Dpt) (2)

Since the optimal solution θ∗ to this problem depends on the value of the tradeoff parameter, it is an implicit
function of λ, denoted as θ∗(λ).

Level II In the second level, we aim to finetune the pretrained model with optimal parameters θ∗ ob-
tained from previous level on the downstream dataset. Raghu et al. (2021) formulates the optimization
problem using the same set of parameters θ at the lower level and differentiates through the entire gradient
update trajectory, which imposes relatively high computational and memory burdens. In contrast, optimiz-
ing distinct sets of parameters at different levels enables the use of implicit differentiation methods, which
significantly reduces computational costs, as detailed in Section 3.3. Therefore, we create a model with new
parameters ω that are different from those in the pretrained model, but with a regularization loss R between
ω and θ to encourage them to be close, inspired by Rajeswaran et al. (2019). This proximal constraint casts
strong dependence between ω∗ and θ∗, closely resembling the real finetuning process. Formally, the OP in
this level is to optimize ω by minimizing the weighted summation of finetuning loss Ltr and the proximal
regularization loss R:

ω∗(θ∗(λ)) = arg min
ω

Ltr(ω,Dtr) + γR(ω, θ∗(λ)) (3)
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where Dtr is the training split of the downstream dataset, and γ is a tradeoff hyperparameter to balance
the finetuning loss and regularization loss. In practice, we select the mean squared error (MSE) loss as
the regularization loss R, and we further elaborate the reason for this choice in Appendix E. The optimal
solution of ω in this level is a function of θ∗ due to the loss term R, which is in turn a function of λ, denoted
as ω∗(θ∗(λ)).

Level III In the third level, we aim to search for the optimal tradeoff parameters λ∗ between pretraining
objectives. Formally, the OP in this level is to optimize λ to minimize the validation loss Lval:

min
λ
Lval(ω

∗(λ),Dval) (4)

where Dval is the validation split of the downstream dataset. In practice, we reparameterize each tradeoff
weight λi via a softmax over unconstrained variables β:

λi =
exp(βi)∑n

j=1 exp(βj)
.

We optimize β rather than λ directly. This both guarantees tradeoff weights to be non-negative (λi g 0)
and imposes a constraint on the sum (

∑n
i=1 λi = 1) automatically.

Multi-level Optimization Framework In this way, we formulate a three-level optimization problem
with OPs in different levels mutually dependent on each other:

min
λ
Lval(ω

∗(λ),Dval) (5)

s.t. ω∗(θ∗(λ)) = arg min
ω

Ltr(ω,Dtr) + γR(ω, θ∗(λ))

θ∗(λ) = arg min
θ

Lpt(θ, λ,Dpt)

By solving this multi-level optimization problem, we are able to reweight each continued pretraining objective
based on feedback from validation performance on downstream tasks. In practice, both θ and ω in Equation
5 are initialized with model weights from general-domain pretraining.

3.3 Optimization Algorithm

In this section, we illustrate the algorithm we use to efficiently approximate the gradient of loss Lval in the
third level with respect to the tradeoff parameter λ. This full derivative dLval

dλ
can be computed with the

following equation using chain rule:

dLval

dλ
=

∂Lval

∂ω∗
×

∂ω∗

∂θ∗
×

∂θ∗

∂λ
(6)

In the right hand side of Equation 6, the green term, a partial derivative vector, can be directly computed
with popular automatic differentiation libraries, such as Pytorch (Paszke et al., 2019). However, directly
computing the two red terms, which are best-response Jacobian matrices, can be computationally prohibitive
due to the lack of analytical solutions to these optimization problems. Inspired by previous works (Lorraine
et al., 2020; Zhang et al., 2021), we use Implicit Function Theorem (IFT) based methods to approximate
the best-response Jacobian matrices. We include more details of IFT based gradient computation method in
Appendix A. In this way, we are able to compute both red terms in Equation 6 efficiently, thereby obtaining
the gradient of Lval with respect to λ. We then optimize the tradeoff parameter λ with gradient descent. The
complete algorithm is implemented using the Betty library (Choe et al., 2023c;b). We present the complete
optimization algorithm of TapWeight in Algorithm 1.
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Algorithm 1 TapWeight-optimization

Input: Unsupervised pretraining dataset Dpt, training dataset Dtr, validation dataset Dval, total global
optimization steps M

1: for i = 1, . . . , M do
2: Sample mini-batches: Xpt ∼ Dpt, Xtr ∼ Dtr, Xval ∼ Dval

3: Compute gradient ∇θL1(θ, λ; Xpt), where L1 = Lpt(θ, λ, Xpt) (Equation 2)
4: Update: θ ← θ − α1∇θL1

5: Compute hyper-gradient
dL2

dω
, where L2 = Ltr(ω, Xtr) + γR(ω, θ∗(λ)) (Equation 3)

6: Update: ω ← ω − α2
dL2

dω

7: Compute hyper-gradient
dL3

dλ
, where L3 = Lval(ω

∗(λ), Xval) (Equation 4)

8: Update: λ← λ− α3
dL3

dλ
9: end for

Output: Optimal weights θ∗, ω∗, λ∗

4 Experiments

4.1 Molecular Property Prediction

In this section, we use TapWeight for task-adaptive pretraining of molecular image models and validate the
effectiveness of our framework on the downstream task of molecular property prediction.

4.1.1 Preliminary

Given a large unlabeled molecular dataset D = {xi}1fifn containing millions of molecules, we define a
multi-objective continued pretraining loss inspired by Imagemol (Zeng et al., 2022):

L(x) =λ1Lmg1(x) + λ2Lmg2(x) + λ3Lmg3(x) (7)

+ λ4Ljpp(x) + λ5Lmcl(x)

where x represents a molecular image, and λ = {λi}1fif5 are tradeoff parameters. Lmg1, Lmg2, and Lmg3

are MACCS key (Durant et al., 2002) clustering-based classification losses with different number of clusters.
Ljpp is a jigsaw puzzle prediction loss, where the model solves a jigsaw puzzle on the same molecular image.
Lmcl is a mask-based contrastive learning loss, which generates constrastive pairs by masking molecular
images. Details of these pretraining objectives can be found in Appendix C.1.

The multi-objective loss L is optimized on the complete unlabeled dataset D to train a molecular image
encoder. The learnt encoder can be further finetuned on downstream datasets for various molecular tasks.
Existing approaches typically set the tradeoff parameters λ equally across different pretraining objectives,
overlooking the varying contributions of each objective to specific downstream tasks (Zeng et al., 2022). We
address this challenge by applying TapWeight framework for continued pretraining of the molecular image
encoder.

4.1.2 Experimental Settings

We perform continued pretraining of a pretrained Imagemol model on a dataset D, consisting of 1 million
molecules from PubChem (Kim et al., 2023). For downstream tasks, we employ the MoleculeNet bench-
mark, which includes 8 classification datasets focused on predicting biophysical and physiological properties
essential for drug discovery (Wu et al., 2017). We generate the training, validation and test split of these
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Method BACE BBBP ClinTox Sider Tox21 ToxCast HIV MUV Avg.
Dataset Size 1,513 2,039 1,478 1,427 7,831 8,575 41,127 93,087

AttrMask 77.2 70.2 68.6 60.4 74.2 62.5 74.3 73.9 70.2
ContextPred 78.6 71.2 73.7 59.3 73.3 62.8 75.8 72.5 70.9
GraphMVP 76.8 68.5 79.0 62.3 74.5 62.7 74.8 75.0 71.7

Finetuning (Imagemol) 80.1 67.3 78.5 63.6 76.5 65.4 75.6 78.4 73.2
TapWeight (ours) 83.1 71.2 81.3 64.5 77.0 66.1 78.4 80.5 75.3

Table 1: Results of molecular property prediction on 8 classification tasks in MoleculeNet benchmark, in
terms of AUROC. Higher values are better for all results, and the best results are shown in bold.

downstream datasets by applying scaffold splitting 1 with an 8:1:1 ratio. We use AUROC as the evaluation
metric for all classification datasets, MAE for Qm7 and Qm9 datasets, and RMSE for all other regression
datasets. In addition to Imagemol, we benchmark against Graph Neural Network (GNN)-based molecular
property prediction methods, including pretraining approaches such as attribute masking, context predic-
tion Hu et al. (2020), and GraphMVP (Liu et al., 2022). The pretrained molecular image encoder is based
on a ResNet18 model, with the final classification layer removed (He et al., 2015). More detailed descriptions
are provided in the Appendix for the datasets (C.2), baselines (C.3), and hyperparameter settings (C.4).

4.1.3 Results

Table 1 show the results of various methods across 8 molecular property classification tasks from MoleculeNet
benchmark. Our method outperforms all baseline methods on all 8 datasets, showcasing the effectiveness
of our method. On average, our method achieves an AUROC of 75.3, compared to 73.2 for the Imagemol
model without continued pretraining. Similarly, Table 2 displays the results for 5 regression tasks in the
MoleculeNet benchmark, where our method once again surpasses all baselines on each task. Experimental
results validate the effectiveness of our method on both classification and regression tasks. Specifically, the
superior performance of our method over Imagemol validates the necessity of downstream-guided continued
pretraining following general pretraining. Notably, our method consistently outperforms baseline approaches
regardless of the size of the finetuning dataset, demonstrating the robustness of our approach. It is worth
mentioning that TAPT (Gururangan et al., 2020) is not applicable to this task, as clustering-based losses,
such as Lmg3, are not well-suited for direct application on small unlabeled datasets where the number of
data points is smaller than the predefined number of clusters. In contrast, TapWeight does not face such
limitations, demonstrating its generalizability.

4.2 Natural Language Processing

Method Freesolv Esol Lipo Qm7 Qm9
Dataset Size 642 1,128 4,200 6,830 133,885

AttrMask 2.95 1.37 0.81 161.7 5.03
ContextPred 3.01 1.35 0.83 153.2 4.95
GraphMVP 2.21 1.13 0.79 134.5 4.76

Finetuning (Imagemol) 3.04 1.11 0.76 141.0 4.52
TapWeight (ours) 1.91 1.06 0.76 126.0 4.28

Table 2: Results of molecular property prediction on 5 regression
tasks in MoleculeNet benchmark. Lower values are better for all
results, and the best results are shown in bold.

In this section, we validate the effec-
tiveness of TapWeight for continued pre-
training of a masked language model
(MLM) with its application to natural
language processing tasks.

4.2.1 Prelimimary

Given a large-scale raw-text dataset D =
{xi}1fifn consisting of millions of sen-
tences, we define the following continued
pretraining loss:

1Scaffold splitting partitions molecules based on their core structural frameworks to ensure that structurally similar com-

pounds do not appear across training and test sets, thereby providing a more rigorous evaluation of model generalization.
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L(x) = λ1Lmlm(x) + λ2Lcl(x) + λ3Lsop(x) (8)

where x is a sentence, and λ = {λi}1fif3 are tradeoff parameters. Lmlm represents the masked language
model loss, which involves randomly masking tokens in the input sentences and predicting these masked
tokens (Devlin et al., 2019). Lcl denotes the contrastive learning loss, where an input sentence is used
to predict itself with standard dropout applied as noise (Gao et al., 2021). Lsop is the sequence ordering
prediction loss, which emphasizes inter-sentence conherence (Lan et al., 2020). We include details of these
losses in Appendix D.1.

The multi-objective loss L is optimized on the raw text dataset D for continued pretraining of a Transformer
encoder. The learnt encoder can then be finetuned on downstream NLP datasets. In existing works (Gao
et al., 2021), the tradeoff parameters λ for different pretraining objectives require manual hyperparameter
tuning, which is time-consuming and often leads to suboptimal results. We address this challenge by applying
TapWeight for the continued pretraining of a Transformer encoder, enabling the automatic determination of
the importance for each objective.

4.2.2 Experimental Settings

We perform continued pretraining of masked language models on a raw-text dataset D consisting of 1
million sentences from Wikipedia (Gao et al., 2021). For downstream evaluation, we use RCT (Dernoncourt
& Lee, 2017), AGNews (Zhang et al., 2015) and IMDB (Maas et al., 2011) datasets, which are widely used
for evaluation of TAP methods (Gururangan et al., 2020; Shi & Lipani, 2023). We also use the GLUE
benchmark for evaluation, which comprises 8 natural language understanding tasks, including sentiment
analysis, semantic similarity prediction, and grammaticality classification (Wang et al., 2019). We use
Matthew’s Correlation for the CoLA dataset, Pearson/Spearman Correlation for the STS-B dataset, and
accuracy for all other datasets. Our baseline methods are based on RoBERTa (Liu et al., 2019c) and
DeBERTa (He et al., 2021b) models, including direct finetuning, TAPT based continued pretraining, PCP
based continued pretraining (Shi & Lipani, 2023), and SimCSE based continued pretraining. More detailed
descriptions are provided in the Appendix for the datasets (D.2), baselines (D.3), and hyperparameter
settings (D.4).

4.2.3 Results
Method RCT AGNews IMDB

Dataset Size 78,387 127,600 50,000

Finetuning (Rb) 86.3 93.2 94.5
SimCSE (Rb) 85.9 93.0 94.1
TAPT (Rb) 86.4 93.5 94.7

TapWeight (Rb) 86.7 93.8 95.1

Finetuning (Rl) 86.9 94.0 95.2
SimCSE (Rl) 86.5 93.8 95.0
TAPT (Rl) 86.9 94.2 95.1

TapWeight (Rl) 87.4 94.8 95.5

Finetuning (Dxl) 87.5 94.7 95.4
SimCSE (Dxl) 87.0 93.9 94.7
TAPT (Dxl) 87.7 94.1 95.4

TapWeight (Dxl) 87.9 95.0 96.1

Table 3: Results of RoBERTa-base (Rb), RoBERTa-large
(Rl) and DeBERTa-xlarge (Dxl) on RCT, AGNews and
IMDB datasets in terms of accuracy. Higher values are bet-
ter for all results, and the best results are shown in bold.

Table 3 reports the performance of various
methods on three datasets: RCT, AGNews,
and IMDB, evaluated using, RoBERTa-base
(125M parameters), RoBERTa-large (355M pa-
rameters) and DeBERTa-xlarge (750M param-
eters). The RCT dataset involves classifying
sentences in biomedical texts based on their
functional roles, AGNews focuses on topic clas-
sification of news articles, and IMDB is a
dataset for sentiment analysis of movie reviews.
The results show that TapWeight consistently
outperforms baseline methods across all 3 tasks
and all 3 model sizes. These findings validate
the robustness of TapWeight across diverse do-
mains (biomedical, news, and reviews), while
also highlighting its scalability across different
model sizes. Moreover, our method surpasses
the SimCSE method on all 3 tasks, showcasing
the effectiveness of reweighting pretraining ob-
jectives, as SimCSE uses a fixed ratio between
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Method MNLI QNLI QQP RTE SST MRPC CoLA STSB Avg.
Dataset Size 392,702 104,743 363,871 2,490 67,349 3,668 8,551 5,749

Finetuning 86.7 92.8 90.3 77.8 94.8 89.3 61.6 91.2 85.6
SimCSE 85.6 90.1 90.7 74.6 91.1 89.2 59.7 91.0 83.6
TAPT 85.2 91.3 90.2 78.2 93.7 90.1 61.5 90.9 85.1
PCP 86.5 91.5 90.6 80.1 93.9 89.8 61.2 91.2 85.6

TapWeight (ours) 86.8 92.5 91.1 80.7 94.9 90.2 62.3 91.2 86.2

Table 4: Results of different methods in GLUE benchmark. All methods are applied to a RoBERTa-base
model. Higher values are better for all results, and the best results are shown in bold.

MLM and CL losses during continued pretrain-
ing. Additionally, TapWeight outperforms the RoBERTa+TAPT approach, demonstrating that our strategy
of leveraging downstream datasets by reweighting pretraining objectives is more effective than simply pre-
training the model with unlabeled downstream data, as TAPT does.

Table 4 presents the results of various methods on 8 natural language understanding tasks from the GLUE
benchmark. TapWeight consistently outperforms all baseline methods across all 8 datasets, showcasing the
effectiveness of our method on tasks other than the 3 datasets mentioned above. On average, our method
achieved a score of 86.2, while finetuning a RoBERTa model without continued pretraining only got 85.6.
Furthermore, TapWeight outperforms the RoBERTa+PCP approach, further underscoring its effectiveness
and advantage compared to popular TAP methods. To sum up, the superior performance on both molecule
property prediction and natural language understanding highlights the generalizability of our method across
multiple data modalities and downstream tasks.

Dataset CoLA MRPC

Finetuning 73.0 91.5
TapWeight (ours) 74.1 92.1

Table 5: Results of TapWeight and Finetuning
using DeBERTa-v3-large on CoLA and MRPC
datasets.

We further applied TapWeight to a more recent pretrained
LM, DeBERTa-v3-large (He et al., 2023), to validate the gen-
eralizability of TapWeight. Specifically, we compared Tap-
Weight to direct finetuning of DeBERTa-v3-large on both
the CoLA dataset and the MRPC dataset from the GLUE
benchmark, with the results shown in Table 5. We ob-
serve that TapWeight still clearly outperforms the baseline
method on both datasets, highlighting its generalizability to
more recent pretrained LMs.

4.3 Ablation Studies

In this section, we perform ablation studies to evaluate the effectiveness of individual components within our
framework. All experiments are conducted on the classification tasks in the molecular property prediction
benchmark.

Pretraining Objective Reweighting We validate the effectiveness of our pretraining objective reweight-
ing strategy by comparing our method to continued pretraining with a fixed importance for each objective.
As shown in Table 6, our method outperforms this baseline (CP w/o Reweighting) across all datasets,
demonstrating the advantage of dynamically reweighting pretraining objectives in the continued pretraining
process.

Multi-level Optimization We validate the effectiveness of the multi-level (tri-level) optimization (MLO)
framework by reducing our method to a bi-level optimization (BLO) (Xie, 2023) based method. Specifically,
we merge the first and second level of problems from the TapWeight framework to form the lower-level prob-
lem in the new BLO baseline, where the model is optimized jointly using both the unsupervised pretraining
loss on the unlabeled continued pretraining dataset Dpt and the finetuning loss on the training split of the
downstream dataset Dtr. In the upper-level problem, the importance for each pretraining objective is learned
using the validation split of the downstream dataset. Formally, we define the following BLO problem:
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Method BACE BBBP ClinTox Sider Tox21 ToxCast HIV MUV Avg.

CP w/o Reweighting 78.8 66.1 77.4 60.3 74.6 62.7 76.9 71.6 71.1
TapWeight w/o MLO 83.0 68.5 79.5 63.5 76.3 65.9 77.2 77.3 73.9

TapWeight 83.1 71.2 81.3 64.5 77.0 66.1 78.4 80.5 75.3

Table 6: Ablation Studies. Results of molecular property classification using our method and baseline
methods, in terms of AUROC. Higher values are better for all results, and the best results are shown in
bold.

min
λ
Lval(θ

∗(λ),Dval) (9)

s.t. θ∗(λ) = arg min
θ

Lpt(θ, λ,Dpt) + γLtr(θ,Dtr)

However, optimizing these two types of losses in the lower level requires extensive tuning of the tradeoff pa-
rameters γ, and often leads to competition between losses which results in performance decrease. As shown
in Table 6, our MLO based reweighting method outperforms the BLO based approach across all datasets,
highlighting the advantage of formulating multiple optimization problems. Nevertheless, BLO method still
outperforms the baseline continued pretraining methods with fixed tradeoff parameters, indicating the ne-
cessity of using reweighting strategies.

Dataset BACE Clintox HIV

CP-final-weights 82.3 81.1 78.5
TapWeight (ours) 83.1 81.3 78.4

Table 7: Performance of continued pretraining us-
ing the tradeoff weights previously identified by
TapWeight (CP-final-weights) on three MoleculeNet
datasets.

CP with Learned Final Weights We conducted
additional experiments on three MoleculeNet datasets
(Bace, Clintox, and HIV) to evaluate the performance
of continued pretraining (CP) using the tradeoff
weights identified by TapWeight (CP-final-weights),
with results shown in Table 7. On average, this base-
line achieved a score of 80.6, which is comparable to
TapWeight’s score of 80.9, demonstrating the effec-
tiveness of the tradeoff weights found by TapWeight.
However, this approach incurs additional computa-
tional cost due to an extra round of CP, without yield-
ing significant performance gains. Therefore, it is more practical to directly use the model weights obtained
from TapWeight without conducting an additional CP stage.

4.4 Qualititive Analysis

In this section, we present the evolution trend of the pretraining objective weights along the training tra-
jectory using our method. As shown in Figure 2, we plot the value of λ for 3 regression tasks (Esol, Lipo,
Freesolv) and 3 classification tasks (Tox21, Toxcast, Clintox) with respect to the global training step. Our
observations reveal that different downstream datasets require varying importance for each pretraining ob-
jective. For example, the JPP pretraining objective, Ljpp, plays an key role in Lipo and Toxcast datasets,
whereas the MG3 pretraining objective, Lmg3, is more critical for Esol, Freesolv and Tox21 datasets. The di-
verse requirements of pretraining objectives across downstream datasets emphasize the need for a reweighting
method like TapWeight, providing a clear explanation for why our method outperforms baseline approaches.
Furthermore, similar downstream tasks exhibit some degree of similarity in the weights assigned to pre-
training tasks. For instance, the Esol and Freesolv datasets, both focused on predicting physical chemistry
properties of molecules, assign large weights to the MG3 pretraining objective. In contrast, the ToxCast and
ClinTox datasets, which involve predicting molecular toxicity, assign smaller weights to the MG3 objective.

4.5 Computation Cost
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(a) (b) (c)

(d) (e) (f)

Figure 2: Evolution of the tradeoff parameter λ over the training steps of TapWeight on the following
downstream datasets: (a) Esol, (b) Lipo, (c) Freesolv, (d) Tox21, (e) Toxcast, and (f) Clintox.

Dataset FT CP+FT TAPT PCP TapWeight

QQP ×1 ×2.54 ×1.57 ×2.26 ×3.76

Table 8: Training cost of baseline methods and our method TapWeight on QQP dataset.

Dataset FT CP+FT TapWeight

MUV ×1 ×2.18 ×3.29
Qm9 ×1 ×2.76 ×3.93

Table 9: Training cost of baseline methods
and our method TapWeight on MUV and Qm9
datasets.

In this section, we compare the training time (wall time) of
our method with baseline methods on the QQP, MUV and
Qm9 datasets, as shown in Table 8 and Table 9. We use
finetuning (FT), continued pretraining with a fixed tradeoff
ratio (CP+FT), TAPT and PCP as baselines, normalizing
the time cost of FT as 1. While TapWeight results in an
increase in training time compared to baseline methods, its
substantial improvement across multiple downstream tasks
generally justifies the additional cost. However, in real-world
applications where training time is a critical factor, TapWeight may not be the ideal choice, representing a
limitation of our approach.

5 Conclusion and Future Work

In this paper, we propose a task-adaptive continued pretraining method that dynamically reweights each
pretraining objective within a multi-level optimization framework. Experiments in both molecule property
prediction and natural language processing validate the effectiveness and generalizability of our method.
Given the success of TapWeight, several promising future research directions emerge. For instance, large
multimodal pretrained models have recently gained popularity (Liu et al., 2023; Zhu et al., 2024). The
combination of multiple modalities introduces a greater number of potential continued pretraining objectives,
presenting necessities of applying TapWeight in this context.
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A Optimization Algorithm

In this section, we give an example to briefly illustrate how to use Implicit Function Theorem (IFT) to
compute best-response Jacobian matrices. Take ∂θ∗

∂λ
term in Equation 6 as an example: although θ∗ is an

implicit function of λ, the exact value of θ∗(λ) given a value of λ is usually approximated with gradient
descent algorithms. As there is no analytical solution of θ∗(λ), it is difficult to directly compute the gradient
∂θ∗

∂λ
. To tackle this challenge, we compute this gradient using IFT following previous literature (Lorraine

et al., 2020):

∂θ∗

∂λ
= −[∇2Lpt(θ)]−1 ×

∂2Lpt

∂θ ∂λT
(10)

The green term, a second-order mixed partial derivative matrix, can be directly computed using automatic
differentiation. Nevertheless, directly computing the red term, which is the invert of a Hessian matrix
∇2Lpt(θ), is computational expensive due to its O(n3) complexity. Various methods have been proposed
to approximate the inverted Hessian matrix, including Neumann series (Lorraine et al., 2020), conjugate
gradients (Rajeswaran et al., 2019) and finite difference (Zhang et al., 2021). In TapWeight, we select
finite difference as the approximation method, thus enabling efficient computation of best-response Jacobian
matrices.

B Complexity Analysis of TapWeight

In this section, we discuss the time complexity of TapWeight. In summary, our optimization algorithm scales
linearly with the number of model parameters, owing to the approximation of the best-response Jacobian
matrix-vector multiplication, inspired by Lorraine et al. (2020) and Zhang et al. (2021). We outline our
analysis below:

Assume the number of optimizable parameters in the model is n. Directly computing the full derivative in
Equation 6 would incur a complexity of O(n3), because the best-response Jacobian matrix requires computing
an inverse Hessian-vector product (iHVP), and directly inverting a Hessian itself is O(n3). To address this, we
leverage the Neumann series approximation to reduce the complexity to O(n2), using the following formula
inspired by paper Lorraine et al. (2020):

v ·
(

∇2
wL(w)

)−1
≈ v ·

M
∑

j=0

(

I −∇2
wL(w)

)j

where M is a hyperparameter in practice. However, if we directly compute the Hessian above, the result-
ing quadratic complexity is still computationally intensive for models with billions of parameters. Inspired
by paper Zhang et al. (2021), we further reduce the complexity by leveraging the Hessian-vector product
(HVP) and finite differences. HVP has a complexity of O(n) as implemented in modern automatic differ-
entiation (AD) libraries (e.g., torch.autograd.functional.hvp in Pytorch (Paszke et al., 2019)), which is
more efficient than directly computing the Hessian. A detailed algorithm for computing the best-response
Jacobian-vector product can be found in Appendix B ("Practical Implementation of Hypergradient") of
Zhang et al. (2021), where only a limited number of first-order gradient computations are required. Since
gradient computation is O(n) in modern AD libraries, the total complexity of multiplying the first two
terms in Equation 6 is also O(n). The resulting vector is then multiplied by a subsequent term, which can
also be resolved similarly in O(n) time. Overall, computing the right-hand side (RHS) of Equation 6 has a
complexity of O(n).

Other components of our optimization algorithm—including loss computation, gradient backpropagation,
and parameter updates—also operate in O(n) time. Therefore, the total complexity of the TapWeight
optimization algorithm grows linearly with the model size n.

19



Published in Transactions on Machine Learning Research (06/2025)

C Molecule Property prediction

C.1 Pretraining Objectives

We use 3 types of pretraining objectives for continued pretraining of an Imagemol model (Zeng et al., 2022)
to enhance its performance on molecule property prediction tasks.

Multi-Granularity Clustering In this pretraining objective, we first perform K-means clustering to the
unlabeled training dataset of molecules using their chemical structural fingerprint. After clustering, each
molecule is assigned with a pseudo-label, and the molecular encoder model is pretrained by predicting this
label. Formally,

Lmg1 =
n

∑

i=1

L(C100(fθ(xi)), y100
i ) (11)

Lmg2 =

n
∑

i=1

L(C1,000(fθ(xi)), y
1,000
i ) (12)

Lmg3 =

n
∑

i=1

L(C10,000(fθ(xi)), y
10,000
i ) (13)

where fθ is the molecular encoder, and C are task-specific fully-connected neural networks for clustering
label prediction. In the optimization problem in the first level of TapWeight, C is optimized as well as θ.
However, C is not relevant to the optimization problems in the other levels and is discarded after TapWeight
training, so we did not explicitly include it in Equation 2.

Mask-based Contrastive Learning In this pretraining objective, we use a 16 × 16 square area to
randomly mask a molecular image x to generate the masked image x̂. We then perform constrastive learning
on the image pair (x, x̂) by minimizing the distance between representations of both images to promote
consistency. Formally,

Lmcl =

n
∑

i=1

||fθ(xi), fθ(x̂i)||2 (14)

where || · || denotes the Euclidean distance between two molecular representation generated from the encoder.

Jigsaw Puzzle Prediction In this pretraining objective, we introduce 100 types of different permutations
with number 1 to 100, denoted as yjig. We also assign a label of 0 for original molecular image without any
We apply the permutation to molecular images x to get permuted ones x̂. The encoder fθ is pretrained by
predicting the permutation label. Formally,

Ljpp =

n
∑

i=1

L(C(fθ(x̂i)), y
jig
i ) (15)

where C is a task-specific fully-connected neural network for permutation label prediction.

C.2 Datasets

We use the datasets from MoleculeNet benchmark for molecule property prediction Wu et al. (2017).
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Quantum Mechanics Qm7 and Qm9 are both molecular datasets for regression task on quantum mechan-
ics properties of molecules. Qm7 dataset collects electronic properties of molecules determined using ab-initio
density functional theory (DFT). Qm9 dataset collects geometric, energetic, electronic and thermodynamic
properties of DFT-modelled small molecules.

Physical Chemistry Esol, FreeSolv and Lipophilicity (Lipo) are all datasets for regression task on physical
chemistry properties of molecules. ESOL dataset collects water solubility data for common organic small
molecules. FreeSolv dataset collects experimental and calculated hydration free energy of small molecules in
water. Lipo dataset collects experimental results of octanol/water distribution coefficient.

Biophysics Bace, HIV and MUV are all datasets for classification tasks on biophysics properties of
molecules. BACE dataset collects binary label of molecular binding results for a set of inhibitors of hu-
man β-secretase 1 (BACE-1). HIV dataset collects experimentally measured abilities of a molecule to inhibit
HIV replication. MUV is a subset of PubChem BioAssay by applying a refined nearest neighbor analysis,
designed for validation of virtual screening techniques.

Physiology BBBP, Clintox, Sider, Toxcast and Tox21 are all datasets for classification tasks on physiology
properties of molecules. BBBP dataset contains binary labels of blood-brain barrier penetration (permeabil-
ity) ability for molecules. ClinTox dataset consists of qualitative data of drug molecules approved by the
FDA and those that have failed clinical trials for toxicity reasons. Sider is a database of marketed drugs and
adverse drug reactions (ADR), grouped into 27 system organ classes. ToxCast dataset contains toxicology
data for a large library of compounds based on in vitro high-throughput screening, including experiments
on over 600 tasks. Tox21 dataset collects qualitative toxicity measurements of molecules on 12 biological
targets, including nuclear receptors and stress response pathways.

C.3 Baseline Methods

Attribute Masking Attribute masking (AttrMask) based pretraining captures domain knowledge by
learning the regularities of the node/edge attributes distributed over graph structure (Hu et al., 2020).
Inspired by BERT (Devlin et al., 2019), it pretrains a graph neural network (GNN) by first masking node/edge
attributes and then letting GNNs predict those attributes based on neighboring structure.

Context Prediction Context Prediction uses subgraphs to predict their surrounding graph struc-
tures (Hu et al., 2020). It pretrains a GNN so that it maps nodes appearing in similar structural contexts to
nearby embeddings. Specifically, the method first encodes the context into a fixed vector using an auxiliary
GNN, and then trains the GNN encoder with negative sampling.

GraphMVP The Graph Multi-View Pre-training (GraphMVP) framework applies self-supervised learning
(SSL) by utilizing the correspondence and consistency between 2D topological structures and 3D geometric
views (Liu et al., 2022). It introduces a novel contrastive learning loss, using the 2D and 3D representations
of the same molecule as positive pairs.

Imagemol ImageMol is an unsupervised pretraining deep learning framework pretrained on 10 million
unlabelled drug-like, bioactive molecules, to predict molecular targets of candidate compounds (Zeng et al.,
2022). The ImageMol framework is designed to pretrain chemical representations from unlabelled molecular
images on the basis of local and global structural characteristics of molecules from pixels.

C.4 Hyperparameter Settings

We set the number of clusters for the loss terms Lmg1, Lmg2, and Lmg3 to 100, 1,000, and 10,000, respectively.
During the continued pretraining, we set the unrolling step in the MLO framework to be 1. We use the
SGD optimizer with a step learning rate scheduler across all three optimization levels. All experiments are
conducted on 1 NVIDIA A100 GPU.
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Classification We set the global learning steps to be 30,000 for MUV dataset, 20,000 for HIV dataset,
10,000 for Tox21 and Toxcast datasets, and 3,000 for all other datasets. We set the batch size in level I to
be 1024, and that in level II and level III to be 64 for all datasets. We set the learning rate to be 0.02 in
level I, 0.05 in level II, and that in level III to be 200 for all datasets. We set the γ value in Equation 3 to
be 0.001.

Regression We set the global learning steps to be 30,000 for qm9 dataset and 10,000 for all other datasets.
The batch size and γ are the same as those in classification tasks. We set the learning rate to be 0.02 in
level I, 0.001 in level II, and 1 in level III for Lipo, Esol and FreeSolv datasets. We set the learning rate to
be 0.01 in level I, 0.0001 in level II, and 0.1 in level III for Qm7 and Qm9 datasets.

D Natural Language Understanding

D.1 Pretraining Objectives

We use 3 types of losses for continued pretraining of an RoBERTa model Liu et al. (2019c) to enhance its
performance on natural language understanding tasks.

Mask Language Modeling This pretraining objective randomly mask some percentage of the input
tokens, and then predict those masked tokens using embedding generated from the pretrained model (Devlin
et al., 2019). In BERT and RoBERTa, 15% of the tokens are masked in the pretraining stage.

Constrastive Learning This pretraining objective applies dropout noise to the encoder fθ when taking
in a sentence x to get a negative sample of encoding h′ = fθ(x) (Gao et al., 2021). We use h to denote those
positive encodings without dropout noise. The encoder is then trained by minimizing a constrastive learning
loss:

Lcl = −

n
∑

i=1

log(
esim(hi,h′

i)

∑n
j=1 esim(hi,h′

j
)
) (16)

where sim is a similarity measure between two encodings.

Sentence Order Prediction This pretraining objective uses two consecutive segments from the same
document as positive examples. It generates negative examples using the same two consecutive segments
but with their order swapped (Lan et al., 2020). The model is pretrained by predicting the label of these
two types of examples.

D.2 Datasets

We use 8 datasets from GLUE benchmark in natural language understanding tasks (Wang et al., 2019).
Following standard practices, we use the original GLUE development set as the test set in our experiments,
and randomly split the original training set into a training set and validation set with a ratio of 8:1.

Single Sentence Tasks The Corpus of Linguistic Acceptability (CoLA) contains English acceptability
judgments sourced from books and journal articles on linguistic theory. The Stanford Sentiment Treebank
(SST-2) features sentences from movie reviews annotated by humans for sentiment analysis.

Similarity and Paraphrase Tasks The Microsoft Research Paraphrase Corpus (MRPC) is a dataset
of sentence pairs extracted from online news sources, annotated by humans for semantic equivalence. The
Quora Question Pairs (QQP) dataset includes question pairs from the Quora website, where the task is to
determine if the questions are semantically equivalent. The Semantic Textual Similarity Benchmark (STS-
B) contains sentence pairs from news headlines, video and image captions, and natural language inference
datasets, with the task of predicting a human-annotated similarity score.
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Inference Tasks The Multi-Genre Natural Language Inference Corpus (MNLI) is a crowdsourced dataset
of sentence pairs annotated for textual entailment, where the task is to predict the relationship between
a premise and a hypothesis. Question-answering Natural Language Inference (QNLI) involves question-
paragraph pairs, with the task of determining whether the paragraph contains the answer to the question.
The Recognizing Textual Entailment (RTE) datasets consist of sentence pairs from news and Wikipedia,
where the task is to predict the entailment between two sentences.

D.3 Baseline Methods

RoBERTa The Robustly Optimized BERT Pretraining (RoBERTa) paper (Liu et al., 2019c) thoroughly
evaluates the impact of key hyperparameters and training data size in BERT. RoBERTa uses the same
architecture as BERT but is pretrained with an optimized strategy, leading to significant improvements in
performance across various downstream tasks. The main differences between RoBERTa and BERT are: (1)
training for a longer duration with larger batches and more data; (2) removing the next sentence prediction
objective; (3) training on longer sequences; and (4) dynamically adjusting the masking patterns applied to
the training data.

SimCSE The Simple Contrastive Learning of Sentence Embeddings (SimCSE) framework includes both
unsupervised and supervised approaches. In the unsupervised approach, SimCSE takes an input sentence
and predicts the same sentence using a contrastive objective, where standard dropout serves as the noise.
In the supervised approach, it integrates annotated pairs from natural language inference datasets into the
contrastive framework, using human-labeled "entailment" pairs as positive examples and "contradiction" pairs
as hard negatives.

DeBERTa The Decoding-enhanced BERT with Disentangled Attention (DeBERTa) model (He et al.,
2021b) introduces architectural improvements over BERT to enhance contextualized representations. De-
BERTa differs from BERT primarily by incorporating (1) a disentangled attention mechanism that separately
encodes content and positional information, insteading of adding both word (content) embedding and po-
sition embedding together as that in BERT; and (2) an absolute position encoding correction to improve
position-dependent generalization. These enhancements enable DeBERTa to achieve superior performance
on a wide range of natural language understanding tasks.

D.4 Hyperparameter Settings

When applying TapWeight on the RoBERTa encoder, we set the unrolling step in the MLO framework to
1. We use an Adam optimizer with a step learning rate scheduler across all three optimization levels. All
experiments are conducted on 1 NVIDIA A100 GPU. We set the global learning steps to 20,000 for the QQP
and MNLI datasets, and 10,000 for all other datasets. The batch size for level I is set to 512, while for levels
II and III, it is set to 32 across all datasets. The learning rate for levels I and II is 2e-5, and for level III, it
is set to 1 for all datasets. We set the γ value in Equation 3 to be 0.005.

E Selection of Proximal Regularization Loss

In this section, we discuss the selection of proximal regularization loss R in the second level of TapWeight,
as specified in Equation 3. In principle, both mean squared error (MSE) and Kullback–Leibler divergence
(KLDiv) can be used as the proximal regularization loss in Level II of TapWeight. However, we choose
MSE following existing works (Rajeswaran et al., 2019; Choe et al., 2023c), where MSE is consistently
used as the proximal regularization loss when converting iterative optimization in bi-level optimization
problems into implicit optimization. In preliminary experiments, we observed that the MSE loss offers
improved computational efficiency and numerical stability compared to the KLDiv loss, particularly in
large-scale settings where both θ∗ and ω comprise billions of parameters. This makes MSE a more practical
choice for training at scale. To quantify the efficiency gap, we benchmarked the forward and backward
computation times of MSE and KLDiv losses R(ω, θ∗). We use a RoBERTa-base backbone (approximately
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R Forward Backward

KLDiv 0.385 0.484
MSE 0.101 0.108

Table 10: Average wall-clock times (in seconds) of forward and backward operation for MSE and KLDiv
loss.

125M parameters) for ω and θ∗, which is implemented in PyTorch on the same hardware (NVIDIA A100).
Average wall-clock times (in seconds) are reported in Table 10.

As shown in Table 10, the MSE is approximately 4 times faster than KLDiv on both forward and backward
passes, highlighting its computational efficiency. That said, it is possible that KLDiv has advantages in
certain scenarios, which we aim to explore in future work.
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