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Abstract—Large  Language  Models  (LLMs)  have 

revolutionized  natural  language  processing  but  remain 

resource-heavy  and  impractical  for  many  organizations  to 

deploy  locally.  Smaller  specialist  models  offer  a  viable 

alternative, often developed using Knowledge Distillation (KD). 

Traditional KD methods, however, rely on static source datasets 

to elicit knowledge from the teacher model, limiting their ability 

to  dynamically  address  student  model  weaknesses  during 

training.  This  research  introduces  two  adaptive  knowledge 

elicitation  methods:  “Feedback-Driven Question Generation” 

and “Targeted Prompt Question Generation”.  Both methods 

iteratively expand the training dataset based on student model 

performance,  leveraging  a  teacher  model  to  target  specific 

deficiencies. Using a Python QA task as a case study, our results 

show  that  both  our  methods  enhance  the  student  model's 

accuracy  and  response  quality,  with  Method  2,  which 

incorporates specialized prompt configurations, outperforming 

Method 1. These findings highlight the promise of adaptive KD 

in bridging the  gap between large generalist  AI models  and 

smaller  domain-specific  models.  Furthermore,  these  methods 

demonstrate  an  effective  data  augmentation  technique  for 

generating synthetic data specifically tailored to address student 

model  weaknesses  without  overfitting  or  resulting  in 

catastrophic forgetting. 

Keywords—Knowledge  Distillation,  Knowledge  Elicitation,  

Data Augmentation, Synthetic Data Generation

I. INTRODUCTION

Large  Language  Models  (LLMs)  have  significantly 
advanced natural language processing (NLP) across various 
applications  [1].  However,  their  high  computational  and 
financial  demands  make  local  deployment  impractical  for 
many  organizations  [2].  While  third-party  providers  offer 
access to these models, some organizations are hesitant to send 
their private data outside their private networks due to privacy 
concerns [3]. 

Very  large  LLMs,  like  OpenAI’s  ChatGPT,  excel  as 
generalists  across  various  tasks  [4].  However,  many 
applications require only domain-specific capabilities. In such 
cases, smaller specialist models offer a more resource-efficient 
alternative. For instance, BioBERT, pre-trained on biomedical 
text, is better suited for biomedical tasks [5]. Specialist models 
are both practical for resource-constrained organizations and 
better aligned with specific domain needs.

Knowledge  distillation  has  emerged  as  an  effective 
technique  for  creating  these  specialist  models,  as 
demonstrated by methods like BioBERT and the 'Distilling 
Step  by  Step'  approach  [5,  6].  However,  based  on  our 
observation  existing  distillation  methods  may  not  fully 
leverage  the  teacher  model's  knowledge  and  abilities, 
especially in context extracting the most relevant information 
that addresses the student model's weaknesses. Consequently, 
there is room for improved knowledge elicitation techniques 
that  better  extract  and transfer  pertinent  knowledge to  the 
student model. 

Our research seeks to address this shortage by introducing 
a  novel  feedback-driven  framework  that  dynamically 
augments tailored data to the “transfer set”, a term introduced 
in the works of Hinton et al. (2015) [7], which refers to the 
dataset  used in the knowledge distillation process to elicit 
knowledge from the teacher model. For clarity in our study, we 
will refer to the “transfer set” as the "unlabeled dataset" when 
used  to  elicit  knowledge  from the  teacher  model  and  the 
“training dataset” when the teacher has labeled it. 

Traditional methods rely on predefined, static transfer sets 
that  cannot  adapt  to  the  evolving  deficiencies  of  student 
models.  In  contrast,  our  approach  incorporates  student 
feedback to iteratively expand the transfer set, allowing the 
teacher model to generate data tailored to specific weaknesses 
in the student model.

We present a case study involving the training of a small 
specialist  model  (Gemma 2b)  for  Python-related question-
answering tasks, aimed at assisting students in a classroom 
setting. Using ChatGPT-4o-mini as the teacher model, our 
methods  enable  the  development  of  a  resource-efficient, 
locally  deployable  specialist  model.  To  achieve  this,  we 
propose two methods of adaptive knowledge elicitation: (1) 
Feedback-Driven  Question  Generation  and  (2)  Targeted 
Prompt  Question  Generation.  Both  methods  iteratively 
augment  the  transfer  set  by  leveraging  student  errors  and 
guiding data generation through the teacher model.

Our findings demonstrate that these iterative approaches 
improve model accuracy and response quality compared to 
static  methods  and  enhance  knowledge  relevance  without 
overfitting.



II. LITERATURE REVIEW

A. Introduction to Knowledge Distillation

Knowledge  distillation  (KD)  is  a  machine  learning 
technique where a smaller model (the student) learns from a 
larger model (the teacher) [8,  9].  As we mentioned in the 
introduction this approach is widely recognized as an effective 
method for fine-tuning smaller language models to become 
task-specific  specialists  [5,  6].  By  transferring  the  teacher 
model's knowledge to a smaller student model, KD essentially 
reduces computational and memory requirements, making it a 
practical solution for deploying language models in resource-
constrained environments. 

KD typically involves two stages: knowledge elicitation 
and  knowledge  transfer  [10].  In  the  elicitation  stage,  the 
teacher  model  processes  an  “unlabeled  dataset”  [11], 
generating  output  labels  or  insights  that  reflect  its 
understanding of the task [12]. In the transfer stage, the student 
model is trained on these outputs to approximate the teacher 
model’s predictive abilities [12]. In our research our focus is 
on the stage of knowledge elicitation.

B. Existing Methods for Eliciting Knowledge from an LLM

We categorize  knowledge  elicitation  methods  into  two 
main types: (1) Static and (2) Interactive [13], with further 
sub-categories based on Xu et al. (2024) [10], who provides a 
survey on knowledge distillation techniques.

(1)  Static  methods  for  knowledge  elicitation  involve 
generating or curating a training dataset independently of the 
student  model's  performance.  These approaches leverage a 
teacher model's capabilities to annotate, expand, or synthesize 
data. Such methods include:

1. Labeling Methods: Use a teacher model to annotate 
unlabeled  datasets,  creating  a  training  set  for  the 
student model. For example, Hsieh et al. (2023) [6] 
proposed Distilling Step-by-Step,  which generates 
output labels with natural language rationales.

2. Expansion Methods: Build on labeling techniques by 
allowing the teacher model to iteratively generate 
additional data from a small seed dataset, broadening 
the training scope. A notable example is the Self-
Instruct framework by Wang et al. (2022) [14], which 
creates  new  input-output  pairs  from  initial 
instructions.

3. Data Curation Methods: Use meta-information, like 
predefined topics or knowledge points, to guide the 
teacher model in generating diverse, topic-specific 
instructional datasets. For instance, Ding et al. (2023) 
[15] introduced UltraChat, a framework where the 
teacher model creates topic-driven instructional data.

The general process of static knowledge elicitation can be 
seen  in  Fig.  1.  Note  that  the  methods  described  above; 
labeling, expansion, and data curation happen independently 
from the student model and before the transfer stage. 

The methods that we propose in our research relate to these 
knowledge elicitation techniques of labeling, expanding, and 
curating data, yet with a key difference in that, we incorporate 
the  student's  feedback  in  expanding  the  unlabeled  dataset 
which is then used to create the training dataset. 

(2) Interactive methods for knowledge elicitation involve 
introducing a dynamic feedback loop between the teacher and 
student models. Unlike static methods, these approaches adapt 

the  distillation  process  based  on  the  student  model's 
performance. Methods employing this approach include:

1. Corrective Feedback Methods: Focus on identifying 
student  model  errors  and  generating  corrected 
training data. For example, Agarwal et al. (2024) [16] 
introduced On-Policy Distillation, where the teacher 
model  offers  token-level  feedback  to  enhance 
predictions.

2. Learning-to-Teach  Frameworks:  These  methods 
allow  the  teacher  model  to  adapt  its  outputs 
dynamically based on student feedback. Liu et al. 
(2024) [13] proposed a framework where the teacher 
refines its strategy by treating student feedback as 
performance  loss,  generating  more  tailored  soft 
targets.

3. Ranking-Based  Methods:  These  methods  use  the 
teacher model to rank student responses, providing 
reward  signals  for  reinforcement  learning.  For 
example, Luo et al.  (2024) [17] proposed RLEIF, 
where ranked feedback trains the student model via 
Proximal  Policy  Optimization  (PPO)  to  improve 
reasoning. 

The interactive knowledge elicitation process can be seen 
in Fig. 2. and the focus is on optimizing labeling using student 
feedback.  While  these  methods  enhance  distillation  with 
feedback,  they generally rely on a static  unlabeled dataset 
determined  before  training  and  emphasize  improving  the 
labeling in the transfer stage rather than new examples.

Fig. 1. A diagram illustrating the general process of static knowledge 

elicitation within knowledge distillation.

Fig. 2. A diagram illustrating the general process of interactive knowledge 

elicitation within knowledge distillation.



C. What We Propose

We  propose  two  novel  methods,  collectively  termed 
“Dynamic knowledge elicitation,” for dynamically expanding 
the unlabeled dataset based on student model performance:

 Method 1: Feedback-Driven Question Generation 

 Method 2: Targeted Prompt Question Generation

Here,  “questions”  refer  to  unlabeled  data,  which  the 
teacher  model  labels  with  “answers”  to  form  a  complete 
training dataset. This dataset is iteratively expanded through 
cycles of  testing,  augmentation,  and retraining,  ensuring it 
addresses  the  student  model’s  weaknesses  as  training 
progresses. The process repeats until no further improvements 
are observed. The general idea for both methods 1 and 2 is 
outlined in Fig. 3. as a comparison to what is illustrated in Fig. 
1. and Fig. 2. 

Fig. 3. A diagram illustrating the general Dynamic knowledge-elicitation 

process (Methods 1 & 2).

D. Other Related Studies  

Our  approach  to  adaptive  knowledge  elicitation  also 
relates  to  the  following studies,  such  as  how datasets  are 
selected  or  augmented  and  also  reinforcement  learning 
techniques yet with key differences: 

1. Label Revision and Data Selection Techniques These 
methods focus on selecting optimal training data from 
an existing dataset [18][19]. In contrast, our approach 
dynamically generates an optimal dataset  from the 
teacher  model  tailored  to  the  student  model's 
weaknesses.  

2. Data Augmentation: While traditional augmentation 
techniques create generic variations of existing data 
points  to  improve  model  generalization  [20],  our 
method generates  targeted data  to  address  specific 
deficiencies in the student model resulting in a more 
optimally aligned augmented dataset. 

3. Data  Distillation:  Conventional  data  distillation 
techniques iteratively refine a dataset to retain key 
statistical characteristics [21]. Our approach extends 
this  idea  to  distilling  knowledge  from  language 
models, by dynamically eliciting data from the teacher 
that  yields  the  best  results  when used to  train  the 
student model. 

4. Reinforcement Learning (RL): While both RL and our 
method  utilize  feedback,  our  approach  focuses  on 
adaptively augmenting the unlabeled dataset used for 
distillation to improve knowledge transfer efficiency, 
rather than directly optimizing the student policy via 
some learned reward function. 

III. METHODOLOGY OF OUR NOVEL APPROACH TO 

KNOWLEDGE ELICITATION 

A. Feedback-Driven Question Generation (Method 1)

The goal of Method 1 is to elicit a tailored dataset from the 
teacher model that specifically addresses the student model’s 
weaknesses  within  a  specific  domain  of  knowledge.  This 
interactive method leverages the teacher model’s in-context 
learning  ability  to  identify  errors  in  the  student  model’s 
responses and iteratively generate new questions and answers 
addressing these errors, thus expanding the training dataset in 
such  a  way  that  it  is  tailored  to  improve  the  student’s 
performance in areas where it previously made errors. 

Implementation Steps for Method 1: 

1. Initial Training: Train the student model on a 500-pair 
base dataset (see Section IV, Table I).

2. Testing  and  Error  Identification:  Use  the  teacher 
model to evaluate the student on 1,500 feedback QA 
pairs (batched at 125), identifying errors. The student 
is never trained on this dataset.

3. Question  Generation:  For  each  error,  prompt  the 
teacher  model  to  generate  10  targeted  follow-up 
questions.

4. Answer Generation: Pass generated questions to the 
teacher model for labeling.

5. Dataset  Augmentation:  Add  new  QA pairs  to  the 
training set, removing duplicates

6. Retraining: Retrain the student from scratch on the 
augmented  dataset  to  align  with  the  updated  data 
distribution.

7. Iterative Data Generation: Repeat steps 2–6 until no 
new questions are generated or the error rate falls 
below 25% (see Fig. 4 and Algorithm 1). 

B. Targeted Prompt Question Generation (Method 2)  

Building on Method 1, Method 2 introduces specialized 
prompt configurations, as distinct instantiations of the teacher 
model,  designed  to  generate  targeted  follow-up  questions 
based on six evaluation criteria: accuracy, clarity, relevance, 
completeness,  verbosity,  and  logical  consistency.  These 
prompts guide the teacher in addressing specific weaknesses 
observed in the student model's responses from the perspective 
of that criterion, resulting in a richer, more focused training 
dataset. The criteria were selected based on common errors 
identified during Method 1 testing (see Section IV for prompt 
examples).

Implementation Steps for Method 2 

Steps 1 – 2: remain the same as in method 1. 

Step 3: Collaborative Question Generation: For each identified 
error,  prompt  the  teacher  model  to  generate  follow-up 
questions 

 Teacher Model Generation: The teacher model as in 
Method 1, generates 10 general questions.

 Targeted Question Generation: Unique to Method 2. 
Six specialized prompt configurations are given to 
the  teacher  model,  to  generate  6  additional 
questions. 

Steps 4 – 7: remain the same as Method 1. See Fig.4. 



C. Core Contributions of Each Method 

Method 1: This method uses student model errors to drive 
iterative data generation. For every mistake the student makes, 
the  teacher  generates  follow-up  questions  and  answers  to 
directly target those gaps. The core contribution is its dynamic 
feedback  loop  that  tailors  and  augments  training  data  to 
address actual student model weaknesses. 

Method  2:  This  method  builds  on  method  1  but  uses 
specialized prompts to generate follow-up questions focused 
on specific evaluation criteria.  Its  core contribution lies in 
enabling  controlled  data  elicitation,  where  prompt  design 
governs the nature and focus of knowledge extracted from the 
teacher model, ultimately resulting in an enriched, targeted 
augmented dataset for training the student model. 

Fig. 4. A flow diagram illustrating the process of method 1 (in red) & 

method 2 (blue and red) with special prompt configurations (agents).

Algorithm1: The algorithm for implementing the method of targeted prompt 
question generation.

IV. EXPERIMENTAL SETUP 

A. Data Curation and Generation for Methods 1 & 2  

We sourced our primary data from the official  Python 
documentation  and  supplementary  textual  resources  [22]. 
Utilizing  Retrieval-Augmented  Generation  (RAG),  we 
generated embeddings to traverse and index the text corpus. 
Relevant  sections  were  identified  through  an  analysis  of 
chapter headings and subheadings. For each identified section, 
the teacher model produced 15 unique question-answer (QA) 
pairs and removed any duplicates. This process yielded a total 
of  2,200  QA  pairs,  which  were  categorized  into  seed, 
feedback, validation, and test datasets. This data source also 
served as the scope of the knowledge we want to transfer in the 
specific domain of Python programming concepts. 

Furthermore, as part of the knowledge distillation process, 
each method resulted in a unique dataset generated throughout 
the training and testing cycles.  In  Method 1 the feedback 
dataset was used to test the student model. The teacher model 
then generated 10 targeted follow-up questions for each error 
identified per question. Over 5 iterations of the entire feedback 
dataset,  approximately  20000  unique  data  items  were 
generated. In Method 2 a similar approach to method 1 but in 
addition,  six  specialized prompt  configurations  were  used, 
each specializing in specific evaluation criteria, producing one 
additional targeted question per criterion for each error. Over 3 
iterations covering the entire feedback dataset, approximately 
20000 unique data items were generated in method 2. 

A supplementary dataset  of  Python questions was also 
incorporated,  sourced  from  Stack  Overflow  (available  on 
Kaggle titled “Python Questions from Stack Overflow”). A 
random subset of approximately 20000 questions was selected 
from a pool exceeding 600,000 items. The teacher model was 
employed to clean and label this data, which was then used to 
train another base model for comparison with our proposed 
methods. See Table I.  for a summary of data sources and 
partitions.  

TABLE I. DATA SOURCES AND PARTITIONS 

Data Source 

Datasets Used for Training and Testing 

Partition 

Number 

of QA 

Pairs 

Purpose 

Python 

Documentation 

Seed 

Data 
500 

Initial training data for 

both methods. 

Feedback 

Data 
1500 

To test the student 

model after each 

training cycle to identify 

errors and generate new 

training data. 

Validatio

n Data 
100 

To calculate validation 

loss during training. 

Test 

Data 
100 

For evaluating 

performance after 

training. 

Stack Overflow 

Method 

0 

Training 

Data 

19000 

To train a base model 

for comparison with our 

proposed methods. 

Test 

Data 
100 

For evaluating 

performance after 

training. 

Generated 

Through Our 

New Methods 

Training 

Data 

≈20000 

(For 

each 

method) 

To train the models of 

our new methods. 



B. Models and Environment Setup for Both Methods 1 & 2

The student model utilized in this study for both methods 
was Gemma 2b, an open-source model offered by Google 
consisting of 2 billion parameters.  The teacher model was 
ChatGPT-4o Mini, by OpenAI and accessed via their API. The 
Teacher model was configured with a temperature of 0.5, a 
maximum token limit of 1,024, and a top-p value of 1. For 
comparative analysis, we used several variations; as a baseline 
we used an untrained version of Gemma 2b. We also used 
other fine-tuned variants, Gemma 2b_it, 7b_it, and 9b_it. And 
as an upper bound for evaluation, we used ChatGPT-4o Mini. 

All  training  and  inference  for  the  student  model  was 
conducted on a single V100-SXM2-32GB GPU. The training 
was performed using Causal Language Modeling with Low-
Rank Adaptation (LoRA) and mixed precision to optimize 
performance.  The  batch  size  was  set  to  1  with  gradient 
accumulation  over  18  steps.  A  learning  rate  of  1e-3  was 
applied using a linear scheduler returning to zero. We utilized 
PyTorch  and  Hugging  Face  Transformers  (SFTTrainer) 
frameworks to facilitate the training process. 

In our study, we employed specific prompting strategies to 
guide  the  teacher  model  in  generating  effective  follow-up 
questions.  These  prompts  were  written  to  ensure  that  the 
generated  questions  would  directly  target  the  weaknesses 
identified in the student model's responses and adhere to a 
specific  format  so  that  we  could  extract  the  individual 
questions.  

Below is an example of a follow-up question generated by 
the teacher model in response to the same student error. The 
first follows a generic teacher prompt used in both Methods 1 
and 2, while the second uses a specialized accuracy-focused 
prompt unique to Method 2. 

 Original Q&A 

◦ Q: “What is the next- to-last scope in the order  
of searching?” 

◦ A:  “The  next-to-last  scope  in  the  order  of  
searching is the local scope” 

 Generic follow up question:  

“What  are  the  different  scopes  available  in  
Python and in what  order are they searched  
during variable resolution?” 

 Accuracy follow up question: 

“In Python’s variable scope resolution, what is  
the correct order of scope searching, and which 
scope is the next- to-last in that order?” 

In this example, the generic version of the teacher model 
generates a more general question that prompts the student to 
review all scopes and their search order, thereby addressing 
the gap in the student's  understanding.  The response from 
prompt  configuration  for  accuracy,  on  the  other  hand, 
generates a more targeted question that directly challenges the 
student to correct their misconception about the scope order, 
focusing specifically on the accuracy of the answer. 

By using these tailored prompts in Method 2, we ensured 
that the generated follow-up questions varied in complexity 
and  focus,  effectively  addressing  different  aspects  of  the 
student model's weaknesses. 

C. Method 0 for Comparison

For an additional comparison, which we refer to as Method 
0,  we employed a standard KD labeling approach.  In this 
method,  the  Stack  Overflow  dataset  comprising  19,000 
questions was labeled by the teacher model. The base model 
(Gemma 2b) was then trained using the same environment 
configuration as in Method 1 and Method 2 on this labeled 
dataset.  

In summary, the methods compared in this study are:  

 Method  0:  Standard  KD  labeling  approach  for 
baseline comparison.  

 Method 1: Feedback-Driven Question Generation.  

 Method 2: Targeted Prompt Question Generation.  

D. Evaluation with the Teacher Model  

Our evaluation framework includes a scoring mechanism 
that prompts the teacher model to evaluate the student model's 
responses  on  a  testing  dataset,  comprising  the  Python 
Documentation Test Data 100 and Stack Overflow Test Data 
100  (see  Table  I  above).  The  final  score,  expressed  as  a 
percentage, provides a measurable indication of how well the 
model can answer questions within the given domain. The 
inclusion of real-world Python questions from Stack Overflow 
in the testing dataset offers valuable insight into the model's 
practical performance in real-world scenarios. 

The student model was evaluated using six key criteria, 
each targeting a specific dimension of performance to ensure a 
comprehensive assessment. These criteria were selected based 
on common errors observed during early training in Method 1: 
accuracy (factual correctness), completeness (coverage of all 
relevant aspects), clarity (readability and understandability), 
relevance (alignment with the question), verbosity (lack of 
redundancy), and logical consistency (coherent flow without 
contradictions). 

For each criterion, a scoring scale from 0 to 5 was used to 
assess  each  criterion,  where  0  indicates  a  completely 
inadequate rating and 5 indicates an excellent rating. To derive 
a comprehensive evaluation for each response, scores across 
all criteria were aggregated and averaged to calculate a final 
evaluation score. 

In this framework, the average score across all criteria, and 
the  accuracy  score  by  itself,  provided  the  most  reliable 
measure of how well a question was answered. Consequently, 
Graph IV in Section V. was established as a reference for 
evaluation.  The  graph's  line  represents  accuracy  and  the 
overall  average  response  quality  based  on  the  specified 
criteria.

E. Other Metrics For Model Evaluation  

We measured training and validation loss to evaluate the 
student model’s learning progress and generalization ability. 
A gradual decrease in both indicates effective learning; while 
fluctuating  or  non-converging  loss  suggests  ineffective 
learning. Diverging losses signal overfitting, where the model 
performs well on training data but poorly on unseen data. 

Error rate reduction was also monitored throughout the 
testing  stages,  providing  a  clear  indication  of  the  student 
model's ability to effectively learn domain knowledge. 

F. Justification for Design Choices

During  training,  we  intentionally  avoided  relying  on 
external  ground truth  data,  as  our  primary  objective  is  to 
maximize  the  student  model's  alignment  with  the  teacher 



model. In practical applications, this could be extended by 
integrating methods like RAG to cross-reference outputs with 
external data sources for enhanced accuracy. Furthermore, in 
our case, ChatGPT 4o Mini demonstrated sufficient accuracy 
in  the  domain  knowledge,  making  ground  truth  values 
unnecessary.  

During training we also retrained the student model from 
its initial untrained state after each iteration to ensure it learns 
across  the  entire  data  distribution  of  the  targeted  domain, 
avoiding  catastrophic  forgetting  of  previously  acquired 
knowledge. This choice is especially important in our iterative 
framework, where new training data is generated based on 
cumulative  student  errors.  By  restarting  from scratch,  we 
ensure the model internalizes the updated dataset holistically, 
rather than simply adapting to recent additions. This avoids 
overfitting to new data and helps maintain consistency with 
earlier  knowledge,  ultimately  supporting  more  effective 
generalization and guidance for subsequent data generation. 

V. RESULTS 

Here we present an analysis of the results from Methods 1 
and 2, comparing them against the baseline Method 0 and 
other fine-tuned models. Performance is evaluated using the 
teacher model’s scoring framework (Section IV), alongside 
additional metrics such as training loss, validation loss, and 
error rate across training steps. We also include real examples 
of  student  model  responses  to  illustrate  the  practical 
improvements achieved. The findings show that both Methods 
1 and 2 substantially improve student performance over the 
baseline and outperform existing models of comparable size. 

A. Teacher Evaluation Scores for Models Trained Using 

Methods 0, 1, And 2

Table  II  presents  the  accuracy  and  average  scores  for 
models trained using Methods 0, 1, and 2. Both Method 1 
(18,000  data  items)  and  Method  2  (16,000  data  items) 
outperform  Method  0,  which  used  19,000  data  items, 
demonstrating that our adaptive methods achieve better results 
with less data. This improvement is attributed to the iterative 
tailoring of the dataset based on student model weaknesses—a 
feature absent in Method 0. Furthermore, at around 22,000 
training steps, Method 2 surpasses Method 1 by 0.9% after 
only three feedback cycles, compared to five in Method 1. This 
suggests that the specialized prompt configurations used in 
Method 2 result in more effective knowledge elicitation and 
transfer.

TABLE II. TEACHER EVALUATION

Method Teacher Evaluation Scores for Methods 0, 1, and 2 

Across Different Training Steps 

No. of 

Training Data 

Items 

No. of 

Testing 

Cycles 

Accuracy 

Score 

Average 

Score 

Method 2 22168 3 81.5 86.1 

Method 2 16486 2 80.6 85.2 

Method 1 21919 5 80.2 85.2 

Method 1 18281 4 81.9 86.5 

Method 0 19000 N/A 74.7 81.0 

B. Examples Of Actual Student Model Responses  

Table III. shows the student model’s responses of Method 
2 at three training stages 3,877, 16,486, and 22,168 data items. 
Initially,  at  3,877  data  items,  the  response  was  clear  but 
factually incorrect, scoring 50%. By 16,486 data items, the 
model  produced  a  correct  answer,  though  it  lacked 
completeness, resulting in an 83% score. At 22,168 data items, 

the model improved completeness, achieving a final score of 
96%, after which training was stopped. 

TABLE III. STUDENT MODEL RESPONSES AT DIFFERENT STAGES OF 
TRAINING 

Data 

Items 

Trained 

on 

An Example of the Evolution of Student Model 

Responses Over Training Cycles for Method 2 

Question and Student Model Answer 
Avg 

Score 

3877 

Q:  Can comments appear within a string literal 

in Python? 

 

A: Yes, comments can appear within a string 

literal in Python. They are denoted by a hash 

symbol (#) at the beginning of the line. For 

example: 

 

```python 

my_string = "This is a string with a comment: # 

This is a comment" ```

50% 

16486 

Q:  Can comments appear within a string literal 

in Python? 

 

A: No, comments cannot appear within a string 

literal in Python. Any characters following a `#` 

in the same line are treated as a comment and 

will not be included in the string. 

83% 

22168 

Q:  Can comments appear within a string literal 

in Python? 

 

A: No, comments cannot appear within a string 

literal in Python. If you try to include a comment 

character within a string, it will be treated as part 

of the string itself. For example: 

 

```python 

my_string = "This is a string with a # comment" 

``` 

In this case, `#` is part of the string, and the 

comment will not be recognized until outside the 

string. 

96% 

C. Error Reduction Rate  

Graph I. illustrates the error rate throughout training for 
both Method 1 and Method 2, showing a consistent reduction 
as  training  progresses.  By  22,000  data  items,  Method  2 
achieved a 24% error rate, slightly lower than Method 1’s 
25%, indicating better performance. The gap in error rates 
between  500  and  15,000  data  items  can  be  attributed  to 
Method  1  being  exposed  to  the  feedback  dataset  more 
frequently. However, by 20,000 data items, Method 2 had 
narrowed  the  gap  and  ultimately  surpassed  Method  1, 
suggesting that Method 2’s approach enables more effective 
learning over time. 

Graph. I. A line graph for both methods 1 and 2 showing the number of 
errors as a percentage tested on the validation set versus the number of data 

items trained on.



D. Training And Validation Loss

The training and validation loss trends for Methods 1 and 2 
were similar;  thus,  only Method 1’s results  are shown. In 
Graph II, the model was trained for three epochs during an 
earlier  feedback  generation  stage,  while  Graph  III  shows 
results from training for two epochs during a later stage, while 
using the same number of data items equivalent to two epochs 
of the earlier stage.

These  results  indicate  that  our  adaptive  knowledge 
elicitation  approach  effectively  augments  the  dataset, 
supporting  continued  learning  while  preserving 
generalization. Training for three epochs led to overfitting, as 
seen in diverging training and validation loss. In contrast, two-
epoch training on the augmented dataset produced converging 
loss curves,  demonstrating the method's ability to improve 
domain-specific learning without overfitting.

Graph. II. A line graph showing training and validation loss across training 
steps for 3 Epochs (suggesting over-fitting when just increasing epochs). 

Graph. III. A line graph showing training and validation loss across training 
steps for 2 Epochs plus augmented data. (Showing good generalization by 

Data Augmentation). 

Graph. IV.  Line graph showing accuracy and average evaluation scores 

used to compare overall model performance.

E. Comparing the results of Evaluating Different Models 

on the Testing Data.

Graph IV compares the performance of various fine-tuned 
models using the teacher model's evaluation framework. As 
expected, the teacher model achieves the highest scores (green 
line), while the untrained model performs lowest (red line). 
Yellow lines represent instruction-tuned Gemma models of 
varying  sizes,  serving  as  benchmarks  for  student  model 
performance. Our proposed Methods 1 and 2 are shown in 
light blue and dark blue, respectively, and both demonstrate 
significant improvements over the baseline. Notably, Method 
2 outperforms the instruction-tuned version of the same-sized 
model (2B) by 10%, and is only 10% behind the next larger 
model  (7B).  These  results  highlight  the  effectiveness  of 
targeted  knowledge  elicitation  in  achieving  competitive 
performance  with  smaller,  more  resource-efficient  models. 
Additional training cycles may yield further improvements. 

VI. ADDRESSING LIMITATIONS AND FUTURE DIRECTIONS

A. Addressing Limitations

While  our  approach  demonstrates  clear  gains,  it  also 
presents several limitations.

First,  evaluation  relies  solely  on  teacher-model  scores, 
which  despite  being  consistent  may  overlook  nuances 
captured  through  human  judgment.  Incorporating  human 
evaluations, such as small-scale classroom deployments, will 
be  essential  to  verify  whether  observed  improvements 
translate into real learning outcomes.

Second, our comparisons are limited to internal baselines. 
Without  bench-marking  against  established  distillation 
frameworks (e.g., DistilBERT, TinyBERT, Self-Instruct), it 
remains  unclear  how  our  methods  compare  in  terms  of 
efficiency,  accuracy,  and  resource  demands.  External 
validation will help contextualize our contributions within the 
broader knowledge distillation landscape.

Finally, retraining from scratch in each iteration improves 
generalization  and  prevents  catastrophic  forgetting,  but  it 
comes  at  a  computational  cost.  While  feasible  for  a  2B-
parameter model on a 32 GB GPU, this approach may not 
scale  well  to  larger  architectures  or  more  constrained 
environments. Future work could explore hybrid strategies—
such as mixing cold restarts with continued fine-tuning or 
selectively freezing layers—to reduce cost while preserving 
effectiveness.

B. Future Research

Building  on  our  results  we  recommend  the  following 
directions for future research:

1. Ensemble of Teachers: Augment the single-teacher 
setup with diverse model architectures to increase 
question variety and reduce biases in the models.

2. Ablation  Studies  on  Prompt  Configurations: 
Systematically disable or modify individual prompt 
strategies in Method 2 to assess their unique impact. 
This can guide the design of more efficient, targeted 
prompting techniques for knowledge elicitation.

3. Domain  Generalization:  Extend the  framework  to 
other  domains  (e.g.,  medical  diagnosis,  legal 
question answering) by adapting feedback datasets 
and prompt strategies to the specific domain.

4. Scaling Up Student Models: Apply both methods to 
larger student models (7B–9B parameters) to assess 



performance  scalability  and  computational 
feasibility.

VII. CONCLUSION

Our research introduces and validates two novel adaptive 
knowledge  elicitation  methods—  (1)  Feedback-Driven 
Question Generation (Method 1)  and (2)  Targeted Prompt 
Question Generation (Method 2)—for creating task-specific 
specialist  models  through  knowledge  distillation.  By 
incorporating  student  feedback  into  the  data  generation 
process, both methods significantly improved model accuracy, 
response quality, and generalization to real-world questions 
compared to traditional static approaches.

Our experiments demonstrate that these methods serve as 
effective dynamic data augmentation techniques, iteratively 
tailoring the transfer dataset to address the student model's 
weaknesses.  This  approach  improves  the  relevance  of  the 
elicited knowledge without overfitting. Additionally, Method 
2, which employs specialized prompt configurations, proved 
particularly effective in later training stages, achieving better 
results than Method 1 with fewer iterations over the testing 
dataset. The resulting optimized dataset, designed to target 
specific deficiencies, also provides a valuable synthetic data 
resource for training similar models. 

In  future  work,  one  could  investigate  an  ensemble  of 
teacher  architectures  leaning  more  toward  an  agent-based 
approach and perform ablation studies to quantify each prompt 
strategy’s contribution. This framework could also be applied 
to domains beyond Python QA such as medical  and legal 
domains.  Lastly,  one  could  explore  hybrid  retraining 
schedules  to  further  optimize  the  trade-off  between 
computational cost and model performance.
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