
DYNAMIC KNOWLEDGE ELICITATION:

LEVERAGING STUDENT FEEDBACK FOR

IMPROVED LANGUAGE MODEL

DISTILLATION

Reuven Muller

Department of Information Technology

Kennesaw State University

Kennesaw, USA

rmuller7@students.kennesaw.edu

Linh Le

Department of Information Technology

Kennesaw State University

Kennesaw, USA

lle13@kennesaw.edu

Ying Xie

Department of Information Technology

Kennesaw State University

Kennesaw, USA

yxie2@kennesaw.edu

Shaoen Wu

Department of Information Technology

Kennesaw State University

Kennesaw, USA

swu10@kennesaw.edu

Abstract—Large Language Models (LLMs) have

revolutionized natural language processing but remain

resource-heavy and impractical for many organizations to

deploy locally. Smaller specialist models offer a viable

alternative, often developed using Knowledge Distillation (KD).

Traditional KD methods, however, rely on static source datasets

to elicit knowledge from the teacher model, limiting their ability

to dynamically address student model weaknesses during

training. This research introduces two adaptive knowledge

elicitation methods: “Feedback-Driven Question Generation”

and “Targeted Prompt Question Generation”. Both methods

iteratively expand the training dataset based on student model

performance, leveraging a teacher model to target specific

deficiencies. Using a Python QA task as a case study, our results

show that both our methods enhance the student model's

accuracy and response quality, with Method 2, which

incorporates specialized prompt configurations, outperforming

Method 1. These findings highlight the promise of adaptive KD

in bridging the gap between large generalist AI models and

smaller domain-specific models. Furthermore, these methods

demonstrate an effective data augmentation technique for

generating synthetic data specifically tailored to address student

model weaknesses without overfitting or resulting in

catastrophic forgetting.

Keywords—Knowledge Distillation, Knowledge Elicitation,

Data Augmentation, Synthetic Data Generation

I. INTRODUCTION

Large Language Models (LLMs) have significantly
advanced natural language processing (NLP) across various
applications [1]. However, their high computational and
financial demands make local deployment impractical for
many organizations [2]. While third-party providers offer
access to these models, some organizations are hesitant to send
their private data outside their private networks due to privacy
concerns [3].

Very large LLMs, like OpenAI’s ChatGPT, excel as
generalists across various tasks [4]. However, many
applications require only domain-specific capabilities. In such
cases, smaller specialist models offer a more resource-efficient
alternative. For instance, BioBERT, pre-trained on biomedical
text, is better suited for biomedical tasks [5]. Specialist models
are both practical for resource-constrained organizations and
better aligned with specific domain needs.

Knowledge distillation has emerged as an effective
technique for creating these specialist models, as
demonstrated by methods like BioBERT and the 'Distilling
Step by Step' approach [5, 6]. However, based on our
observation existing distillation methods may not fully
leverage the teacher model's knowledge and abilities,
especially in context extracting the most relevant information
that addresses the student model's weaknesses. Consequently,
there is room for improved knowledge elicitation techniques
that better extract and transfer pertinent knowledge to the
student model.

Our research seeks to address this shortage by introducing
a novel feedback-driven framework that dynamically
augments tailored data to the “transfer set”, a term introduced
in the works of Hinton et al. (2015) [7], which refers to the
dataset used in the knowledge distillation process to elicit
knowledge from the teacher model. For clarity in our study, we
will refer to the “transfer set” as the "unlabeled dataset" when
used to elicit knowledge from the teacher model and the
“training dataset” when the teacher has labeled it.

Traditional methods rely on predefined, static transfer sets
that cannot adapt to the evolving deficiencies of student
models. In contrast, our approach incorporates student
feedback to iteratively expand the transfer set, allowing the
teacher model to generate data tailored to specific weaknesses
in the student model.

We present a case study involving the training of a small
specialist model (Gemma 2b) for Python-related question-
answering tasks, aimed at assisting students in a classroom
setting. Using ChatGPT-4o-mini as the teacher model, our
methods enable the development of a resource-efficient,
locally deployable specialist model. To achieve this, we
propose two methods of adaptive knowledge elicitation: (1)
Feedback-Driven Question Generation and (2) Targeted
Prompt Question Generation. Both methods iteratively
augment the transfer set by leveraging student errors and
guiding data generation through the teacher model.

Our findings demonstrate that these iterative approaches
improve model accuracy and response quality compared to
static methods and enhance knowledge relevance without
overfitting.

II. LITERATURE REVIEW

A. Introduction to Knowledge Distillation

Knowledge distillation (KD) is a machine learning
technique where a smaller model (the student) learns from a
larger model (the teacher) [8, 9]. As we mentioned in the
introduction this approach is widely recognized as an effective
method for fine-tuning smaller language models to become
task-specific specialists [5, 6]. By transferring the teacher
model's knowledge to a smaller student model, KD essentially
reduces computational and memory requirements, making it a
practical solution for deploying language models in resource-
constrained environments.

KD typically involves two stages: knowledge elicitation
and knowledge transfer [10]. In the elicitation stage, the
teacher model processes an “unlabeled dataset” [11],
generating output labels or insights that reflect its
understanding of the task [12]. In the transfer stage, the student
model is trained on these outputs to approximate the teacher
model’s predictive abilities [12]. In our research our focus is
on the stage of knowledge elicitation.

B. Existing Methods for Eliciting Knowledge from an LLM

We categorize knowledge elicitation methods into two
main types: (1) Static and (2) Interactive [13], with further
sub-categories based on Xu et al. (2024) [10], who provides a
survey on knowledge distillation techniques.

(1) Static methods for knowledge elicitation involve
generating or curating a training dataset independently of the
student model's performance. These approaches leverage a
teacher model's capabilities to annotate, expand, or synthesize
data. Such methods include:

1. Labeling Methods: Use a teacher model to annotate
unlabeled datasets, creating a training set for the
student model. For example, Hsieh et al. (2023) [6]
proposed Distilling Step-by-Step, which generates
output labels with natural language rationales.

2. Expansion Methods: Build on labeling techniques by
allowing the teacher model to iteratively generate
additional data from a small seed dataset, broadening
the training scope. A notable example is the Self-
Instruct framework by Wang et al. (2022) [14], which
creates new input-output pairs from initial
instructions.

3. Data Curation Methods: Use meta-information, like
predefined topics or knowledge points, to guide the
teacher model in generating diverse, topic-specific
instructional datasets. For instance, Ding et al. (2023)
[15] introduced UltraChat, a framework where the
teacher model creates topic-driven instructional data.

The general process of static knowledge elicitation can be
seen in Fig. 1. Note that the methods described above;
labeling, expansion, and data curation happen independently
from the student model and before the transfer stage.

The methods that we propose in our research relate to these
knowledge elicitation techniques of labeling, expanding, and
curating data, yet with a key difference in that, we incorporate
the student's feedback in expanding the unlabeled dataset
which is then used to create the training dataset.

(2) Interactive methods for knowledge elicitation involve
introducing a dynamic feedback loop between the teacher and
student models. Unlike static methods, these approaches adapt

the distillation process based on the student model's
performance. Methods employing this approach include:

1. Corrective Feedback Methods: Focus on identifying
student model errors and generating corrected
training data. For example, Agarwal et al. (2024) [16]
introduced On-Policy Distillation, where the teacher
model offers token-level feedback to enhance
predictions.

2. Learning-to-Teach Frameworks: These methods
allow the teacher model to adapt its outputs
dynamically based on student feedback. Liu et al.
(2024) [13] proposed a framework where the teacher
refines its strategy by treating student feedback as
performance loss, generating more tailored soft
targets.

3. Ranking-Based Methods: These methods use the
teacher model to rank student responses, providing
reward signals for reinforcement learning. For
example, Luo et al. (2024) [17] proposed RLEIF,
where ranked feedback trains the student model via
Proximal Policy Optimization (PPO) to improve
reasoning.

The interactive knowledge elicitation process can be seen
in Fig. 2. and the focus is on optimizing labeling using student
feedback. While these methods enhance distillation with
feedback, they generally rely on a static unlabeled dataset
determined before training and emphasize improving the
labeling in the transfer stage rather than new examples.

Fig. 1. A diagram illustrating the general process of static knowledge

elicitation within knowledge distillation.

Fig. 2. A diagram illustrating the general process of interactive knowledge

elicitation within knowledge distillation.

C. What We Propose

We propose two novel methods, collectively termed
“Dynamic knowledge elicitation,” for dynamically expanding
the unlabeled dataset based on student model performance:

 Method 1: Feedback-Driven Question Generation

 Method 2: Targeted Prompt Question Generation

Here, “questions” refer to unlabeled data, which the
teacher model labels with “answers” to form a complete
training dataset. This dataset is iteratively expanded through
cycles of testing, augmentation, and retraining, ensuring it
addresses the student model’s weaknesses as training
progresses. The process repeats until no further improvements
are observed. The general idea for both methods 1 and 2 is
outlined in Fig. 3. as a comparison to what is illustrated in Fig.
1. and Fig. 2.

Fig. 3. A diagram illustrating the general Dynamic knowledge-elicitation

process (Methods 1 & 2).

D. Other Related Studies

Our approach to adaptive knowledge elicitation also
relates to the following studies, such as how datasets are
selected or augmented and also reinforcement learning
techniques yet with key differences:

1. Label Revision and Data Selection Techniques These
methods focus on selecting optimal training data from
an existing dataset [18][19]. In contrast, our approach
dynamically generates an optimal dataset from the
teacher model tailored to the student model's
weaknesses.

2. Data Augmentation: While traditional augmentation
techniques create generic variations of existing data
points to improve model generalization [20], our
method generates targeted data to address specific
deficiencies in the student model resulting in a more
optimally aligned augmented dataset.

3. Data Distillation: Conventional data distillation
techniques iteratively refine a dataset to retain key
statistical characteristics [21]. Our approach extends
this idea to distilling knowledge from language
models, by dynamically eliciting data from the teacher
that yields the best results when used to train the
student model.

4. Reinforcement Learning (RL): While both RL and our
method utilize feedback, our approach focuses on
adaptively augmenting the unlabeled dataset used for
distillation to improve knowledge transfer efficiency,
rather than directly optimizing the student policy via
some learned reward function.

III. METHODOLOGY OF OUR NOVEL APPROACH TO

KNOWLEDGE ELICITATION

A. Feedback-Driven Question Generation (Method 1)

The goal of Method 1 is to elicit a tailored dataset from the
teacher model that specifically addresses the student model’s
weaknesses within a specific domain of knowledge. This
interactive method leverages the teacher model’s in-context
learning ability to identify errors in the student model’s
responses and iteratively generate new questions and answers
addressing these errors, thus expanding the training dataset in
such a way that it is tailored to improve the student’s
performance in areas where it previously made errors.

Implementation Steps for Method 1:

1. Initial Training: Train the student model on a 500-pair
base dataset (see Section IV, Table I).

2. Testing and Error Identification: Use the teacher
model to evaluate the student on 1,500 feedback QA
pairs (batched at 125), identifying errors. The student
is never trained on this dataset.

3. Question Generation: For each error, prompt the
teacher model to generate 10 targeted follow-up
questions.

4. Answer Generation: Pass generated questions to the
teacher model for labeling.

5. Dataset Augmentation: Add new QA pairs to the
training set, removing duplicates

6. Retraining: Retrain the student from scratch on the
augmented dataset to align with the updated data
distribution.

7. Iterative Data Generation: Repeat steps 2–6 until no
new questions are generated or the error rate falls
below 25% (see Fig. 4 and Algorithm 1).

B. Targeted Prompt Question Generation (Method 2)

Building on Method 1, Method 2 introduces specialized
prompt configurations, as distinct instantiations of the teacher
model, designed to generate targeted follow-up questions
based on six evaluation criteria: accuracy, clarity, relevance,
completeness, verbosity, and logical consistency. These
prompts guide the teacher in addressing specific weaknesses
observed in the student model's responses from the perspective
of that criterion, resulting in a richer, more focused training
dataset. The criteria were selected based on common errors
identified during Method 1 testing (see Section IV for prompt
examples).

Implementation Steps for Method 2

Steps 1 – 2: remain the same as in method 1.

Step 3: Collaborative Question Generation: For each identified
error, prompt the teacher model to generate follow-up
questions

 Teacher Model Generation: The teacher model as in
Method 1, generates 10 general questions.

 Targeted Question Generation: Unique to Method 2.
Six specialized prompt configurations are given to
the teacher model, to generate 6 additional
questions.

Steps 4 – 7: remain the same as Method 1. See Fig.4.

C. Core Contributions of Each Method

Method 1: This method uses student model errors to drive
iterative data generation. For every mistake the student makes,
the teacher generates follow-up questions and answers to
directly target those gaps. The core contribution is its dynamic
feedback loop that tailors and augments training data to
address actual student model weaknesses.

Method 2: This method builds on method 1 but uses
specialized prompts to generate follow-up questions focused
on specific evaluation criteria. Its core contribution lies in
enabling controlled data elicitation, where prompt design
governs the nature and focus of knowledge extracted from the
teacher model, ultimately resulting in an enriched, targeted
augmented dataset for training the student model.

Fig. 4. A flow diagram illustrating the process of method 1 (in red) &

method 2 (blue and red) with special prompt configurations (agents).

Algorithm1: The algorithm for implementing the method of targeted prompt
question generation.

IV. EXPERIMENTAL SETUP

A. Data Curation and Generation for Methods 1 & 2

We sourced our primary data from the official Python
documentation and supplementary textual resources [22].
Utilizing Retrieval-Augmented Generation (RAG), we
generated embeddings to traverse and index the text corpus.
Relevant sections were identified through an analysis of
chapter headings and subheadings. For each identified section,
the teacher model produced 15 unique question-answer (QA)
pairs and removed any duplicates. This process yielded a total
of 2,200 QA pairs, which were categorized into seed,
feedback, validation, and test datasets. This data source also
served as the scope of the knowledge we want to transfer in the
specific domain of Python programming concepts.

Furthermore, as part of the knowledge distillation process,
each method resulted in a unique dataset generated throughout
the training and testing cycles. In Method 1 the feedback
dataset was used to test the student model. The teacher model
then generated 10 targeted follow-up questions for each error
identified per question. Over 5 iterations of the entire feedback
dataset, approximately 20000 unique data items were
generated. In Method 2 a similar approach to method 1 but in
addition, six specialized prompt configurations were used,
each specializing in specific evaluation criteria, producing one
additional targeted question per criterion for each error. Over 3
iterations covering the entire feedback dataset, approximately
20000 unique data items were generated in method 2.

A supplementary dataset of Python questions was also
incorporated, sourced from Stack Overflow (available on
Kaggle titled “Python Questions from Stack Overflow”). A
random subset of approximately 20000 questions was selected
from a pool exceeding 600,000 items. The teacher model was
employed to clean and label this data, which was then used to
train another base model for comparison with our proposed
methods. See Table I. for a summary of data sources and
partitions.

TABLE I. DATA SOURCES AND PARTITIONS

Data Source

Datasets Used for Training and Testing

Partition

Number

of QA

Pairs

Purpose

Python

Documentation

Seed

Data
500

Initial training data for

both methods.

Feedback

Data
1500

To test the student

model after each

training cycle to identify

errors and generate new

training data.

Validatio

n Data
100

To calculate validation

loss during training.

Test

Data
100

For evaluating

performance after

training.

Stack Overflow

Method

0

Training

Data

19000

To train a base model

for comparison with our

proposed methods.

Test

Data
100

For evaluating

performance after

training.

Generated

Through Our

New Methods

Training

Data

≈20000

(For

each

method)

To train the models of

our new methods.

B. Models and Environment Setup for Both Methods 1 & 2

The student model utilized in this study for both methods
was Gemma 2b, an open-source model offered by Google
consisting of 2 billion parameters. The teacher model was
ChatGPT-4o Mini, by OpenAI and accessed via their API. The
Teacher model was configured with a temperature of 0.5, a
maximum token limit of 1,024, and a top-p value of 1. For
comparative analysis, we used several variations; as a baseline
we used an untrained version of Gemma 2b. We also used
other fine-tuned variants, Gemma 2b_it, 7b_it, and 9b_it. And
as an upper bound for evaluation, we used ChatGPT-4o Mini.

All training and inference for the student model was
conducted on a single V100-SXM2-32GB GPU. The training
was performed using Causal Language Modeling with Low-
Rank Adaptation (LoRA) and mixed precision to optimize
performance. The batch size was set to 1 with gradient
accumulation over 18 steps. A learning rate of 1e-3 was
applied using a linear scheduler returning to zero. We utilized
PyTorch and Hugging Face Transformers (SFTTrainer)
frameworks to facilitate the training process.

In our study, we employed specific prompting strategies to
guide the teacher model in generating effective follow-up
questions. These prompts were written to ensure that the
generated questions would directly target the weaknesses
identified in the student model's responses and adhere to a
specific format so that we could extract the individual
questions.

Below is an example of a follow-up question generated by
the teacher model in response to the same student error. The
first follows a generic teacher prompt used in both Methods 1
and 2, while the second uses a specialized accuracy-focused
prompt unique to Method 2.

 Original Q&A

◦ Q: “What is the next- to-last scope in the order
of searching?”

◦ A: “The next-to-last scope in the order of
searching is the local scope”

 Generic follow up question:

“What are the different scopes available in
Python and in what order are they searched
during variable resolution?”

 Accuracy follow up question:

“In Python’s variable scope resolution, what is
the correct order of scope searching, and which
scope is the next- to-last in that order?”

In this example, the generic version of the teacher model
generates a more general question that prompts the student to
review all scopes and their search order, thereby addressing
the gap in the student's understanding. The response from
prompt configuration for accuracy, on the other hand,
generates a more targeted question that directly challenges the
student to correct their misconception about the scope order,
focusing specifically on the accuracy of the answer.

By using these tailored prompts in Method 2, we ensured
that the generated follow-up questions varied in complexity
and focus, effectively addressing different aspects of the
student model's weaknesses.

C. Method 0 for Comparison

For an additional comparison, which we refer to as Method
0, we employed a standard KD labeling approach. In this
method, the Stack Overflow dataset comprising 19,000
questions was labeled by the teacher model. The base model
(Gemma 2b) was then trained using the same environment
configuration as in Method 1 and Method 2 on this labeled
dataset. 

In summary, the methods compared in this study are: 

 Method 0: Standard KD labeling approach for
baseline comparison. 

 Method 1: Feedback-Driven Question Generation. 

 Method 2: Targeted Prompt Question Generation. 

D. Evaluation with the Teacher Model

Our evaluation framework includes a scoring mechanism
that prompts the teacher model to evaluate the student model's
responses on a testing dataset, comprising the Python
Documentation Test Data 100 and Stack Overflow Test Data
100 (see Table I above). The final score, expressed as a
percentage, provides a measurable indication of how well the
model can answer questions within the given domain. The
inclusion of real-world Python questions from Stack Overflow
in the testing dataset offers valuable insight into the model's
practical performance in real-world scenarios.

The student model was evaluated using six key criteria,
each targeting a specific dimension of performance to ensure a
comprehensive assessment. These criteria were selected based
on common errors observed during early training in Method 1:
accuracy (factual correctness), completeness (coverage of all
relevant aspects), clarity (readability and understandability),
relevance (alignment with the question), verbosity (lack of
redundancy), and logical consistency (coherent flow without
contradictions).

For each criterion, a scoring scale from 0 to 5 was used to
assess each criterion, where 0 indicates a completely
inadequate rating and 5 indicates an excellent rating. To derive
a comprehensive evaluation for each response, scores across
all criteria were aggregated and averaged to calculate a final
evaluation score.

In this framework, the average score across all criteria, and
the accuracy score by itself, provided the most reliable
measure of how well a question was answered. Consequently,
Graph IV in Section V. was established as a reference for
evaluation. The graph's line represents accuracy and the
overall average response quality based on the specified
criteria.

E. Other Metrics For Model Evaluation

We measured training and validation loss to evaluate the
student model’s learning progress and generalization ability.
A gradual decrease in both indicates effective learning; while
fluctuating or non-converging loss suggests ineffective
learning. Diverging losses signal overfitting, where the model
performs well on training data but poorly on unseen data.

Error rate reduction was also monitored throughout the
testing stages, providing a clear indication of the student
model's ability to effectively learn domain knowledge.

F. Justification for Design Choices

During training, we intentionally avoided relying on
external ground truth data, as our primary objective is to
maximize the student model's alignment with the teacher

model. In practical applications, this could be extended by
integrating methods like RAG to cross-reference outputs with
external data sources for enhanced accuracy. Furthermore, in
our case, ChatGPT 4o Mini demonstrated sufficient accuracy
in the domain knowledge, making ground truth values
unnecessary.

During training we also retrained the student model from
its initial untrained state after each iteration to ensure it learns
across the entire data distribution of the targeted domain,
avoiding catastrophic forgetting of previously acquired
knowledge. This choice is especially important in our iterative
framework, where new training data is generated based on
cumulative student errors. By restarting from scratch, we
ensure the model internalizes the updated dataset holistically,
rather than simply adapting to recent additions. This avoids
overfitting to new data and helps maintain consistency with
earlier knowledge, ultimately supporting more effective
generalization and guidance for subsequent data generation.

V. RESULTS

Here we present an analysis of the results from Methods 1
and 2, comparing them against the baseline Method 0 and
other fine-tuned models. Performance is evaluated using the
teacher model’s scoring framework (Section IV), alongside
additional metrics such as training loss, validation loss, and
error rate across training steps. We also include real examples
of student model responses to illustrate the practical
improvements achieved. The findings show that both Methods
1 and 2 substantially improve student performance over the
baseline and outperform existing models of comparable size.

A. Teacher Evaluation Scores for Models Trained Using

Methods 0, 1, And 2

Table II presents the accuracy and average scores for
models trained using Methods 0, 1, and 2. Both Method 1
(18,000 data items) and Method 2 (16,000 data items)
outperform Method 0, which used 19,000 data items,
demonstrating that our adaptive methods achieve better results
with less data. This improvement is attributed to the iterative
tailoring of the dataset based on student model weaknesses—a
feature absent in Method 0. Furthermore, at around 22,000
training steps, Method 2 surpasses Method 1 by 0.9% after
only three feedback cycles, compared to five in Method 1. This
suggests that the specialized prompt configurations used in
Method 2 result in more effective knowledge elicitation and
transfer.

TABLE II. TEACHER EVALUATION

Method Teacher Evaluation Scores for Methods 0, 1, and 2

Across Different Training Steps

No. of

Training Data

Items

No. of

Testing

Cycles

Accuracy

Score

Average

Score

Method 2 22168 3 81.5 86.1

Method 2 16486 2 80.6 85.2

Method 1 21919 5 80.2 85.2

Method 1 18281 4 81.9 86.5

Method 0 19000 N/A 74.7 81.0

B. Examples Of Actual Student Model Responses

Table III. shows the student model’s responses of Method
2 at three training stages 3,877, 16,486, and 22,168 data items.
Initially, at 3,877 data items, the response was clear but
factually incorrect, scoring 50%. By 16,486 data items, the
model produced a correct answer, though it lacked
completeness, resulting in an 83% score. At 22,168 data items,

the model improved completeness, achieving a final score of
96%, after which training was stopped.

TABLE III. STUDENT MODEL RESPONSES AT DIFFERENT STAGES OF
TRAINING

Data

Items

Trained

on

An Example of the Evolution of Student Model

Responses Over Training Cycles for Method 2

Question and Student Model Answer
Avg

Score

3877

Q: Can comments appear within a string literal

in Python?

A: Yes, comments can appear within a string

literal in Python. They are denoted by a hash

symbol (#) at the beginning of the line. For

example:


```python 

my_string = "This is a string with a comment: # 

This is a comment" ```

50% 

16486 

Q:  Can comments appear within a string literal 

in Python? 

 

A: No, comments cannot appear within a string 

literal in Python. Any characters following a `#` 

in the same line are treated as a comment and 

will not be included in the string. 

83% 

22168 

Q:  Can comments appear within a string literal 

in Python? 

 

A: No, comments cannot appear within a string 

literal in Python. If you try to include a comment 

character within a string, it will be treated as part 

of the string itself. For example: 

 

```python 

my_string = "This is a string with a # comment"

``` 

In this case, `#` is part of the string, and the 

comment will not be recognized until outside the 

string. 

96% 

C. Error Reduction Rate  

Graph I. illustrates the error rate throughout training for 
both Method 1 and Method 2, showing a consistent reduction 
as  training  progresses.  By  22,000  data  items,  Method  2 
achieved a 24% error rate, slightly lower than Method 1’s 
25%, indicating better performance. The gap in error rates 
between  500  and  15,000  data  items  can  be  attributed  to 
Method  1  being  exposed  to  the  feedback  dataset  more 
frequently. However, by 20,000 data items, Method 2 had 
narrowed  the  gap  and  ultimately  surpassed  Method  1, 
suggesting that Method 2’s approach enables more effective 
learning over time. 

Graph. I. A line graph for both methods 1 and 2 showing the number of 
errors as a percentage tested on the validation set versus the number of data 

items trained on.



D. Training And Validation Loss

The training and validation loss trends for Methods 1 and 2 
were similar;  thus,  only Method 1’s results  are shown. In 
Graph II, the model was trained for three epochs during an 
earlier  feedback  generation  stage,  while  Graph  III  shows 
results from training for two epochs during a later stage, while 
using the same number of data items equivalent to two epochs 
of the earlier stage.

These  results  indicate  that  our  adaptive  knowledge 
elicitation  approach  effectively  augments  the  dataset, 
supporting  continued  learning  while  preserving 
generalization. Training for three epochs led to overfitting, as 
seen in diverging training and validation loss. In contrast, two-
epoch training on the augmented dataset produced converging 
loss curves,  demonstrating the method's ability to improve 
domain-specific learning without overfitting.

Graph. II. A line graph showing training and validation loss across training 
steps for 3 Epochs (suggesting over-fitting when just increasing epochs). 

Graph. III. A line graph showing training and validation loss across training 
steps for 2 Epochs plus augmented data. (Showing good generalization by 

Data Augmentation). 

Graph. IV.  Line graph showing accuracy and average evaluation scores 

used to compare overall model performance.

E. Comparing the results of Evaluating Different Models 

on the Testing Data.

Graph IV compares the performance of various fine-tuned 
models using the teacher model's evaluation framework. As 
expected, the teacher model achieves the highest scores (green 
line), while the untrained model performs lowest (red line). 
Yellow lines represent instruction-tuned Gemma models of 
varying  sizes,  serving  as  benchmarks  for  student  model 
performance. Our proposed Methods 1 and 2 are shown in 
light blue and dark blue, respectively, and both demonstrate 
significant improvements over the baseline. Notably, Method 
2 outperforms the instruction-tuned version of the same-sized 
model (2B) by 10%, and is only 10% behind the next larger 
model  (7B).  These  results  highlight  the  effectiveness  of 
targeted  knowledge  elicitation  in  achieving  competitive 
performance  with  smaller,  more  resource-efficient  models. 
Additional training cycles may yield further improvements. 

VI. ADDRESSING LIMITATIONS AND FUTURE DIRECTIONS

A. Addressing Limitations

While  our  approach  demonstrates  clear  gains,  it  also 
presents several limitations.

First,  evaluation  relies  solely  on  teacher-model  scores, 
which  despite  being  consistent  may  overlook  nuances 
captured  through  human  judgment.  Incorporating  human 
evaluations, such as small-scale classroom deployments, will 
be  essential  to  verify  whether  observed  improvements 
translate into real learning outcomes.

Second, our comparisons are limited to internal baselines. 
Without  bench-marking  against  established  distillation 
frameworks (e.g., DistilBERT, TinyBERT, Self-Instruct), it 
remains  unclear  how  our  methods  compare  in  terms  of 
efficiency,  accuracy,  and  resource  demands.  External 
validation will help contextualize our contributions within the 
broader knowledge distillation landscape.

Finally, retraining from scratch in each iteration improves 
generalization  and  prevents  catastrophic  forgetting,  but  it 
comes  at  a  computational  cost.  While  feasible  for  a  2B-
parameter model on a 32 GB GPU, this approach may not 
scale  well  to  larger  architectures  or  more  constrained 
environments. Future work could explore hybrid strategies—
such as mixing cold restarts with continued fine-tuning or 
selectively freezing layers—to reduce cost while preserving 
effectiveness.

B. Future Research

Building  on  our  results  we  recommend  the  following 
directions for future research:

1. Ensemble of Teachers: Augment the single-teacher 
setup with diverse model architectures to increase 
question variety and reduce biases in the models.

2. Ablation  Studies  on  Prompt  Configurations: 
Systematically disable or modify individual prompt 
strategies in Method 2 to assess their unique impact. 
This can guide the design of more efficient, targeted 
prompting techniques for knowledge elicitation.

3. Domain  Generalization:  Extend the  framework  to 
other  domains  (e.g.,  medical  diagnosis,  legal 
question answering) by adapting feedback datasets 
and prompt strategies to the specific domain.

4. Scaling Up Student Models: Apply both methods to 
larger student models (7B–9B parameters) to assess 



performance  scalability  and  computational 
feasibility.

VII. CONCLUSION

Our research introduces and validates two novel adaptive 
knowledge  elicitation  methods—  (1)  Feedback-Driven 
Question Generation (Method 1)  and (2)  Targeted Prompt 
Question Generation (Method 2)—for creating task-specific 
specialist  models  through  knowledge  distillation.  By 
incorporating  student  feedback  into  the  data  generation 
process, both methods significantly improved model accuracy, 
response quality, and generalization to real-world questions 
compared to traditional static approaches.

Our experiments demonstrate that these methods serve as 
effective dynamic data augmentation techniques, iteratively 
tailoring the transfer dataset to address the student model's 
weaknesses.  This  approach  improves  the  relevance  of  the 
elicited knowledge without overfitting. Additionally, Method 
2, which employs specialized prompt configurations, proved 
particularly effective in later training stages, achieving better 
results than Method 1 with fewer iterations over the testing 
dataset. The resulting optimized dataset, designed to target 
specific deficiencies, also provides a valuable synthetic data 
resource for training similar models. 

In  future  work,  one  could  investigate  an  ensemble  of 
teacher  architectures  leaning  more  toward  an  agent-based 
approach and perform ablation studies to quantify each prompt 
strategy’s contribution. This framework could also be applied 
to domains beyond Python QA such as medical  and legal 
domains.  Lastly,  one  could  explore  hybrid  retraining 
schedules  to  further  optimize  the  trade-off  between 
computational cost and model performance.

VIII.REFERENCES

[1] M.  A.  K.  Raiaan  et  al.,  "A  Review  on  Large  Language  Models: 
Architectures,  Applications,  Taxonomies,  Open  Issues  and 
Challenges," in IEEE Access, vol. 12, pp. 26839-26874, 2024, doi: 
10.1109/ACCESS.2024.3365742. 

[2] Stanford Institute for Human-Centered Artificial Intelligence (HAI). 
(2024). AI Index Report 2024 (p. 63). Stanford University. Retrieved 
from 
https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-
Index-Report-2024.pdf  

[3] Stanford Institute for Human-Centered Artificial Intelligence (HAI). 
(2024). AI Index Report 2024 (p. 174). Stanford University. Retrieved 
from 
https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-
Index-Report-2024.pdf 

[4] OpenAI.  (2023).  GPT-4  Technical  Report.  arXiv  preprint 
arXiv:2303.08774.  

[5] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J.  
(2020). BioBERT: A Pre-trained Biomedical Language Representation 
Model for Biomedical Text Mining. Bioinformatics, 36(4), 1234–1240. 

[6] Hsieh, C.-Y., Li, C.-L., Yeh, C.-K., Nakhost, H., Fujii, Y., Ratner, A., 
Krishna, R., Lee, C.-Y., & Pfister, T. (2023). Distilling step-by-step! 
Outperforming  larger  language  models  with  less  training  data  and 
smaller model sizes. In Findings of the Association for Computational 
Linguistics:  ACL  2023  (pp.  8591-8607).  Association  for 
Computational Linguistics. https://doi.org/10.18653/v1/2023.findings-
acl.507  

[7] Peris, C., Tan, L., Gueudré, T., Gojayev, T., Wei, P., & Oz, G. (2022). 
Knowledge distillation transfer sets and their impact on downstream 
NLU  tasks.  In  Proceedings  of  the  2022  Conference  on  Empirical 
Methods in Natural Language Processing: Industry Track (pp. 128–
137).  Association  for  Computational  Linguistics. 
https://doi.org/10.18653/v1/2022.emnlp-industry.12 

[8] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in 
a neural network. NIPS Deep Learning and Representation Learning 
Workshop. Retrieved from https://arxiv.org/abs/1503.02531 

[9] Romero,  A.,  Ballas,  N.,  Kahou,  S.  E.,  Chassang,  A.,  Gatta,  C.,  & 
Bengio,  Y.  (2015).  FitNets:  Hints  for  thin  deep  nets.  International 
Conference  on  Learning  Representations  (ICLR).  Retrieved  from 
https://arxiv.org/abs/1412.6550 

[10] Xu, X., Li, M., Tao, C., Shen, T., Cheng, R., Li, J., ... & Zhou, T. (2024). 
A survey on knowledge distillation of large language models. arXiv 
preprint arXiv:2402.13116. 

[11] Buciluǎ,  C.,  Caruana,  R.,  &  Niculescu-Mizil,  A.  (2006).  Model 
compression.  Proceedings of the 12th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining (KDD '06), 
535–541. 

[12] Hinton,  G.  (2015).  Distilling the Knowledge in  a  Neural  Network. 
arXiv preprint arXiv:1503.02531. 

[13] Liu, Y., Sun, T., Qiu, X., & Huang, X. (2021). Learning to teach with 
student feedback. arXiv preprint arXiv:2109.04641. 

[14] Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & 
Hajishirzi,  H.  (2022).  Self-instruct:  Aligning language models  with 
self-generated instructions. arXiv preprint arXiv:2212.10560. 

[15] Ding, N., Chen, Y., Xu, B., Qin, Y., Zheng, Z., Hu, S., ... & Zhou, B. 
(2023).  Enhancing  chat  language  models  by  scaling  high-quality 
instructional conversations. arXiv preprint arXiv:2305.14233. 

[16] Agarwal, R., Vieillard, N., Zhou, Y., Stanczyk, P., Garea, S. R., Geist,  
M., & Bachem, O. (2024). On-policy distillation of language models: 
Learning from self-generated mistakes. In The Twelfth International 
Conference on Learning Representations. 

[17] Luo, H., Sun, Q., Xu, C., Zhao, P., Lou, J., Tao, C., ... & Zhang, D. 
(2023). Wizardmath: Empowering mathematical reasoning for large 
language  models  via  reinforced  evol-instruct.  arXiv  preprint 
arXiv:2308.09583. 

[18] Li, L., Lin, Y., Ren, S., Li, P., Zhou, J., & Sun, X. (2021). Dynamic 
knowledge distillation for pre-trained language models. arXiv preprint 
arXiv:2109.11295. 

[19] Lan, W., Cheung, Y. M., Xu, Q., Liu, B., Hu, Z., Li, M., & Chen, Z. 
(2024). Improve Knowledge Distillation via Label Revision and Data 
Selection. arXiv preprint arXiv:2404.03693. 

[20] Wada, S., & Morimoto, N. (2024). Investigating relationship between 
data augmentation intensity and model performance in natural language 
processing. 2024 International Conference on Consumer Electronics - 
Taiwan  (ICCE-Taiwan),  445–446.  https://doi.org/10.1109/ICCE-
Taiwan62264.2024.10674562 

[21] Lei,  S.,  &  Tao,  D.  (2023).  A  comprehensive  survey  of  dataset 
distillation.  IEEE  Transactions  on  Pattern  Analysis  and  Machine 
Intelligence. 

[22] Halvorsen, H.-P. (2020). Python Programming. Hans-Petter Halvorsen. 
ISBN: 978-82-691106-4-7. Available at https://www.halvorsen.blog.


