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Learning From Mistakes: A Multilevel
Optimization Framework

Li Zhang @, Bhanu Garg

Abstract—Bi-level optimization methods in machine learning
are popularly effective in subdomains of neural architecture
search, data reweighting, etc. However, most of these methods do
not factor in variations in learning difficulty, which limits their
performance in real-world applications. To address the above
problems, we propose a framework that imitates the learning
process of humans. In human learning, learners usually focus
more on the topics where mistakes have been made in the
past to deepen their understanding and master the knowledge.
Inspired by this effective human learning technique, we propose
a multilevel optimization framework, learning from mistakes
(LFM), for machine learning. We formulate LFM as a three-
stage optimization problem: 1) the learner learns, 2) the learner
relearns based on the mistakes made before, and 3) the learner
validates his learning. We develop an efficient algorithm to solve
the optimization problem. We further apply our method to
differentiable neural architecture search and data reweighting.
Extensive experiments on CIFAR-10, CIFAR-100, ImageNet, and
other related datasets powerfully demonstrate the effectiveness
of our approach. The code of LFM is available at: https://github.
com/importZL/LFM.

Impact Statement—Bi-level optimization (BLO) has emerged
as a compelling approach in machine learning, offering a hi-
erarchical solution to complex optimization challenges. However,
conventional BLO methods often struggle with learning difficulty
variations present in real-world applications. To this end, we
introduce learning from mistakes (LFM), a novel framework
inspired by human learning. LFM automatically adjusts train-
ing example weights based on learning difficulties, significantly
enhancing model robustness. Integrated into neural architecture
search (NAS) and data reweighting (DR), LFM demonstrates
remarkable improvements in adaptability and reliability across
scenarios like class imbalance and noisy labels. This work
marks a pivotal step towards more effective optimization of
machine learning models, crucial for addressing complex real-
world challenges.
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1. INTRODUCTION

I-LEVEL optimization (BLO) is a hierarchical optimiza-
B tion problem of two or more layers [1] and is recently
gaining popularity in machine learning (ML). In BLO, the outer
optimization problem (upper-level problem) is restricted by the
solution set mapping of the inner-level optimization problem
(lower-level problem) [2]. Common BLO-based methods in-
clude neural architecture search (NAS) [3], [4], [5] and data
reweighting (DR) [6], [7], [8], etc. Most BLO-based methods
update the model weights by minimizing the training loss. In
contrast, the meta parameters (architecture parameters, weights
of data examples, etc.) are learned by minimizing the validation
loss. This approach [9] has shown success in tasks such as
image classification, object detection, etc.

Most traditional BLO approaches do not factor in variations
in learning difficulty. Consider the case of challenging images
obtained by driving the vehicle in harsh weather conditions,
complex backgrounds, etc., in deep learning-based self-driving
applications [10]; or deep learning in healthcare, where the
training data are highly heterogeneous, ambiguous, noisy, and
with an imbalanced distribution [11]—the BLO-based methods
can easily overfit and result in instability of prediction results
[12], [13].

To address the above issues, researchers propose various
DR strategies like AdaBoost [14], Focal Loss [15], and Active
Bias [16], which monotonically increase the weights of samples
with larger loss because they may be samples whose features
are difficult to learn or samples with class imbalance. Another
paradigm—Self-paced Learning [17], MentorNet [18], and It-
erative Reweighting [19] aims to emphasize samples with a
smaller loss. The rationale is that samples with larger losses are
likely to have corrupted labels. However, both paradigms design
a specific form of the reweighting function to weigh samples
based on expert opinion because it’s hard to determine the
relationship between data weights and loss values. Moreover,
the specificity of the weighting function limits the applicability
of the method to other situations.

Standing around the above problems, this article proposes an
original multi-level framework, learning from mistakes (LFM),
inspired by the practical learning technique of humans to cal-
culate the weights for training samples automatically. Over the
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Fig. 1. The simple process flow of human learning.

years, humans have accumulated a lot of valuable learning tech-
niques. One such effective learning method is to learn from pre-
vious mistakes. As shown in Fig. 1, initially, the learner learns a
concept and evaluates themselves through a test to measure their
level of understanding. The topics in the idea where the learner
makes more mistakes are identified as not having been learned
well by the learner. Therefore, the learner will restudy the issue
while focusing on the topics where the learner made mistakes
before. The above learning process can prevent the repetition of
similar errors in the future while also strengthening previously
well-learned issues. Inspired by this human learning technique,
we propose a methodology that can be applied to the training
process of machine learning to improve its performance.

The major contributions of this article are as follows.

1) Inspired by the human learning process, we propose a
novel optimization framework, Learning From Mistakes
(LFM), which can apply to the most regular model train-
ing process of machine learning.

2) We formulate LFM as a multi-level optimization frame-
work that includes three steps: learner learns; learner
relearns to correct its mistakes; learner validates its
performance.

3) We applied LFM to NAS and DR, aiming to verify the
effectiveness of our method. We conducted a series of
experiments, including experiments about NAS, experi-
ments under class imbalance, and noisy label cases. The
results demonstrate the effectiveness of LFM in improv-
ing the robustness of a learning algorithm on biased train-
ing samples.

II. RELATED WORKS
A. BLO

BLO derives from the area of economic game theory [2]
and has been introduced in model optimization. BLO can solve
problems that involve two levels of optimization tasks, of which
one task is usually nested inside the other, including hyper-
parameter optimization [20], meta-learning [21], NAS [22],
DR [6], etc. These methods optimize meta-parameters (e.g.,
neural architectures, data weights, etc.) by minimizing average
validation loss in the upper-level tasks. Model weights are up-
dated by minimizing average training loss in the lower-level
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functions. For example, Franceschi et al. [23] presented a novel
BLO framework that uses average validation loss in hyperpa-
rameter optimization. These methods can achieve tremendous
average-case performance but are more likely to perform poorly
in worst-case scenarios. To address this problem, Shu et al.
[24] dynamically selected a sequence of validations based on
adversarial examination. While this work does not focus on
average-case performance, it also does not leverage the eval-
uation results to retrain the model for further improvement.

To address the limitations, our methods can automatically
calculate a training weight for each training sample based on
the evaluation results of the validation set.

B. NAS

Recently, NAS has come to the forefront of deep learning
techniques due to its success in discovering neural architec-
tures that can substantially outperform manually designed ones.
Early versions of NAS such as [3], [25], [26] used computation-
ally intensive approaches like reinforcement learning—where
the accuracy of the validation set was defined as the reward
and a policy network was trained to generate architectures that
can maximize these rewards. Another contemporary approach
[4], [27] was using evolutionary learning techniques—where
the set of all architectures represents a population, and the
fitness score is the validation accuracy of each architecture. The
architectures with lower fitness scores would be replaced with
higher fitness score architectures. However, even this approach
is computationally intensive. To address this problem, differ-
entiable architecture search techniques were explored [5], [28],
[29] and their results are much more promising because of the
use of weight-sharing techniques and the application of gradient
descent in a continuous architecture search space.

Differentiable architecture search (DARTS) [5] made the first
breakthrough in Differentiable NAS. Several other DARTS-
based techniques [30], [31], [32], [33] have been explored to
reduce the cost of computation for differentiable NAS. Some
of the approaches include—Progressive differentiable architec-
ture search (PDARTS) [30] increases the depth of architectures
progressively during the search, Partial channel connections for
memory-efficient architecture search (PC-DARTS [31]) eval-
uates only a subset of channels, thereby reducing the search
space’s redundancy. The LFM framework proposed in this arti-
cle can be applied to any differentiable NAS method for further
enhancement.

C. DR

DR has been well-studied in the literature. The broad
paradigms include methods that reweight the samples based
on specific prior knowledge of the task or data. For example,
synthetic minority over-sampling technique (SMOTE) [6] ran-
domly synthesizes data to supplement categories with small
samples after analyzing the data distribution first. Additionally,
Zadrozny et al. [7] presented a bias correction method for
handling different distributions between training data and test
examples.
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Furthermore, several works [8], [34] proposed designing a
weighting function mapping that can assign weights to sam-
ples based on training loss. There are two different principles
of the weighting function. One principle is to increase the
weights of samples with higher losses. For example, AdaBoost
[35] trains subsequent classifiers based on data selected from
more difficult training samples, while hard example mining [36]
trains Exemplar-support vector machines (SVMs) [37] to ex-
ploit challenging training samples and downsample the majority
category. Focal loss [15] emphasizes more difficult training
samples based on a soft weighting scheme. These methods
heavily weigh samples with higher losses, making them suitable
for datasets with class imbalance. On the other hand, another
paradigm of methods imposes higher weights on samples with
smaller loss values. For example, self-paced learning (SPL) [17]
prioritizes training easier samples first, MentorNet [18] uses a
meta-learning long short-term memory [38] to calculate weights
for data with potentially corrupted labels, and curriculum learn-
ing [39] prioritizes easier training sets. This strategy is effective
for datasets with label noise. However, practical datasets often
exhibit both class imbalance and label noise simultaneously,
making it challenging to strictly increase or decrease weights
based solely on loss values. Instead, a balanced approach is nec-
essary based on the specific dataset characteristics. Currently,
most methods require manual design of a specific weighting
function based on domain knowledge.

Unlike the mentioned methods, our method, LFM, focuses
on the samples likely to make mistakes rather than simply
increasing or decreasing the weights of training samples based
on the losses. For data with class imbalance, the data loss
corresponding to the category with a smaller sample size must
be higher, so using label similarity, the samples’ weights of this
category are increased. And for data with label noise, even if
two training samples have the same label, their visual similarity
is likely to be smaller, so we can avoid increasing the weight
of the data with a corrupted label.

III. METHODS

In this section, we propose a framework that can imitate
human learning in the form of LFM and present an optimization
algorithm for solving the problem of LFM when applying to
NAS and DR with the fixed network.

A. Overview

Inspired by an effective human learning technique, LFM,
where the learners focus more on the topics where they made
mistakes, to deepen their understanding, we investigate if ma-
chine learning methods can apply this human learning strategy.
We propose a novel machine learning framework called LFM,
wherein the learner improves his ability to learn by focusing
more on the mistakes during revision.

The framework contains two sets of network weights W;
and Wy—that are two parts of the same learner and are trying
to learn to perform the same target task, assuming the clas-
sification task in this article. The primary goal of Ws here is
to help the first learner, Wi, correct the mistakes (made when
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studying for the first time) during the revision. Further, to help
map the topics in the test to issues in the syllabus, there is an
encoder with predefined neural architecture (by human experts)
with learnable network weights V, a coefficient vector r, and a
learnable weight set B.

We begin by training the first network’s weights on a training
dataset. We then see what mistakes our model makes while
predicting the validation set. Then, for each training example,
we assign specific weights based on the errors made by the
model and the similarity of this example to an incorrectly pre-
dicted validation example. More specifically, these weights are
computed based on a combination of validation performance
and the similarity between training and validation examples.
The second set of network weights is trained on these weighted
examples, making the model learn from its mistakes and correct
them. In this way, each training sample automatically assigns
a weight based on the model’s performance on the validation
set. Finally, the learnable weight set, encoder, and coefficient
vectors are updated based on the second model’s validation
performance.

B. The Multilevel Optimization Framework

We organize our framework into three stages.

Stage I: In the first stage, we train the first set of network
weights W; by minimizing the loss on the training dataset
D7) The optimal weights W (B) is a function of hyperpa-
rameter B, which at this stage is fixed, and hence

Wi (B) = argmin L(B, Wy, D'"). (1)
Wi

The hyperparameter B could be an architecture parameter of
the network or a weight parameter for training samples, which
is used to define the training loss but is not updated at this
stage. If we were to directly learn B by minimizing this training
loss, a trivial solution would be yielded where B is very large
and complex that would perfectly overfit the training data but
generalize poorly on unseen data.

Stage II: In the second stage, the goal is to reweight the
training samples based on LFM for training the learner’s second
set of network weights Wo. We apply W7 (B) to the validation
dataset D(*®") and check its performance on the validation ex-
amples. To make the model relearn while paying more attention
to mistakes in the validation examples by W*(B), we reweight
each training example dl(-tr) based on the following metrics.

1) Visual similarity between d'"” and dg-val), as x;

2) Label similarity of dgtr) and dgwl), as zi;

3) Validation performance of W; (B) on dg-”al), as u;.

In human learning, a question incorrectly learned previously
can be corrected during the relearning stage by focusing more
on examples similar to the wrongly learned question. Here, the
metric x;; tries to measure how similar a previously incorrectly
predicted d§val) is to a training example dEtT) and z;; depicts
whether they describe the same topic. The term u; measures
how much W7 (B) is wrong for each validation example j.
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Fig. 2. The process flow to calculate the weights a; for training example .

We use these reweighted training examples to train Ws. This
allows W5 to focus on the topics that W, after training, could
not get right.

Visual similarity measures how similar the training example

d\" is to each validation example d;”al). Let V denote an

image encoder. For each validation example d§»wl), its similarity
with dz(.tr) is defined as the dot-product attention [40] as

wy = align(V (d\"), v(d\"™"))
exp(V(d").v(d"™))

= vat (2)
N eap(V (@) (dE)

where N(“%!) is the number of validation examples. V'(d) de-
notes the K -dimensional visual representation of the data ex-
ample d.

Label similarity measures the similarity between the label of
the training example and the label of each validation example.
Let z;; denote the label similarity between a validation example
d;val) and a training example dg-val). We define z;; as

2y =y = yj(val)} (3)

where y is the label of the corresponding data example, and I{}
is the indicator function on the condition being true or not.
The validation performance u; of Wi (B) on a validation

example déml) is the cross entropy loss on this example

uj = crossentropy(f(d'"*; Wy (B)), y\""") @

where f (dg-val); Wi (B)) is the predicted probabilities of
Wi (B) on d;val) and yﬁval) is the class label of d;

Let z;, z;, and u be N(“®)_dimensional vectors where the
jth element is x;;, z;;, and u; defined before. We calculate the

weight a; of the training example dl(.tr) as

val)

a; = sigmoid((z; ® z; © u)™'r) &)

where © denotes element-wise multiplication, and r is a coef-
ficient vector. Note a; is a function of V, W;*(B), and r. We
summarise the calculation of a; in the process flow diagram
Fig. 2.
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Given the weight a; of each training example, we train the
second set of network weights W5 by minimizing the weighted
training loss, with the architecture, encoder V', and r fixed.

Ntr
W3 (Wi (B), V,r) = argmin ) ail(Wa, d, ™). (6)
Wi
Stage IIT: In the third and final stage, update the encoder V/,
coefficient vector r, and the hyperparameter B by minimizing
the validation loss of W5 (W (B),V,r).

B,V,r =arg min L(W; (W}(B),V,r), D). (7)

We summarise the above equations in the process flow dia-
gram Fig. 3. It shows the input data and output data in every
stage in detail.

We represent the hyperparameter B of the learner in a differ-
entiable way. In stages 1 and 2, B is fixed and updated in stage
3. In this way, we turn this problem into a tri-level optimization.
As shown above, after the weights W5 of model 2 are trained
by correcting the mistakes made by W7, the parameter B will
be updated accordingly since the gradient of B depends on W;
an updated B will also render W to change as well since the
gradient of W7 depends on B. Along with this Wy — Wy — B
chain, W is indirectly influenced by W5, since W5 corrects
the mistakes, WW; will avoid these mistakes in the next round of
training as well. All in all, in our end-to-end framework, model
1 will learn from its previous mistakes and avoid making the
same mistakes indirectly.

The overall algorithm of LFM is summarised in Algorithm 1.

C. Applications

We apply our framework for two applications: differentiable
NAS and DR with fixed human-designed networks.

Differentiable NAS aims to search for high-performance net-
work architecture in a differentiable way. To apply our frame-
work for Differentiable NAS, we set B in (1) to be neural
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Algorithm 1: Optimization Algorithm for LFM.

1: Input: Sub-datasets Dy,., D,,;. Parameter initialization
Wl, Wg, V, r, and B.

fort=1,2,3,--- do
Sample a batch from Dy,.. Update W7 via (1).
Sample a batch from Dy,.. Update W5 via (6.
Sample a batch from D,,,;. Update V', r, B via (7).

end for

AN

architectures. Similar to DARTS [5], the search space of B
is composed of a large number of building blocks, where the
output of each block is associated with weight b indicating the
importance of the block. Similar to the above, the framework
contains two sets of network weights W, and W5. They share
a learnable architecture parameter 3. The primary goal here is
to learn an architecture that performs better. We also organized
the learning into three stages. The overall optimization problem
with learnable architecture is as follows:

B,V,r =argmin L(B, W5 (W;(B),V,r), D)

B,V,r
NtT
st. W3(B)=argminy_ a;l(A, Wa(B),d\")
L
Wi (B) = argmin L(B, Wy, D'"). 8)
Wi

DR aims to identify and remove the influence of train exam-
ples, which limits the improvement of models’ performance. To
apply our framework for DR we specialize (1) to the following:

Nt'r‘

W (B) = arg min ; biL(Wy,d'")

where B = {b;} Y| b; is the weight of a data sample dgtr) and is
used to reweight the training loss of each sample. After applying
our framework to DR, the model can automatically pay more
attention to the examples that would be more difficult to classify
during the training process. The overall optimization problem
with DR can be summarized as follows:

B,V,r =arg én‘l/nL(W;(Wl* (B),V,r), D(val))

Ntr
* . . ) (t7')
s.t. WQ(B)fargnv%/l;l;alé(Wg(B),dl )

Nt7‘
W (B) = arg IIVI‘}HZI b L(Wy,d™m). )

D. Optimization Algorithm

We promote an efficient algorithm to solve the LFM prob-
lems when applying to NAS and DR, as described in (8) and
(9). Inspired by DARTS [5], we approximate W and W3 by
one-step gradient descent updates for the inner optimization
equations to reduce the computational complexity. For Stage
1, we approximate W5 (B) using one step descent for the loss
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on training data L(B, W1, D'"), where the hyperparameter B
keeps fixed. For Stage 2, we use W/ from the previous update to
get u;. To get the weights a; for training samples, we compute
x; and z; for each training sample d!”. Then based on the
reweighted training set, we use one-step gradient descent to
approximate W5 (B, Wy (B), V,r), where the hyperparameter
B keeps fixed. For Stage 3, we plug W to learn hyperparameter
B, encoder V, and coefficient vector r from the validation loss
L(B,W}(W{(B),V,r), D).

To save space, the complete derivations of these two appli-
cations can be found in Appendix A and Appendix B of the
supplement file, respectively.

IV. EXPERIMENTS

In this section, we investigate the effectiveness of our pro-
posed LFM framework. We explore the performance of LFM
with searchable architectures in image classifications. Further,
we designed both class imbalance and noisy label settings ex-
periments on standard CIFAR-10 and CIFAR-100 benchmarks
with fixed human-designed networks to verify the effectiveness
of our method when applied to DR.

A. Differentiable NAS

In this section, we applied our method to differentiable NAS
for image classification tasks. Following DARTS [5], the ap-
proaches consist of architecture search and evaluation stages,
where the optimal cell obtained from the search stage is stacked
several times into a more extensive composite network. We
then train the resultant composite network from scratch in the
evaluation stage.

1) Datasets: The experiments were performed on three pop-
ular NAS datasets, namely CIFAR-10, CIFAR-100, and Im-
ageNet. We conducted architecture searching on CIFAR-10
and CIFAR-100 datasets. For ImageNet dataset, we conduct
experiments with the model architectures searched on CIFAR-
10 and CIFAR-100 datasets. Both CIFAR-10 and CIFAR-100
datasets contain 60K images, with each class having the same
number of images. We split each dataset into a training set
with 25K images, a validation set with 25K images, and a
test set with 10K images. During the architecture search, the
training set is notated as D', and the validation set is notated
as DV, During architecture evaluation, the learned network is
trained on the combination of D" and D", Further, ImageNet
contains 1.2M training images and 50K test images with 1000
objective classes.

2) Experimental Settings: Our framework is orthogonal to
existing NAS approaches and can be applied to any differen-
tiable NAS method. In our experiments, we applied LFM to
DARTS [5] and PDARTS [30]. The search spaces of these
methods are kept the same as their backbone. For the encoder
V, ResNets that pretrained on Imagenet were used. Each LFM
experiment was repeated three times with different random
seeds. The mean and standard deviation of classification errors
obtained from the three runs are reported.

During the architecture search for CIFAR-10 and CIFAR-
100, the architectures of W7 and W5 are a stack of 8 cells. Each
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TABLE I
TEST ERROR ON CIFAR-100

Method | Error (%)
*ResNet [41] 22.10
*DenseNet [43] 17.18
*PNAS [44] 19.53
*ENAS [25] 19.43
*AmoebaNet [27] 18.93
*GDAS [45] 18.38
*R-DARTS [46] 18.014+0.26
*DARTS ™ [33] 17.514+0.25
*DARTST [32] 17.114+0.43
*DropNAS [47] 16.39
Random search 21.9240.34
Random sampling 21.3740.48
*DARTS-2nd [5] 20.58+0.44
LFM-DARTS-2nd-R18 (ours) | 17.65+0.45
*PDARTS [30] 17.49
LFM-PDARTS-R18 (ours) 16.44+0.11
LFM-PDARTS-R34 (ours) 15.69+0.15

Note: LEM-PDARTS-R18 denotes applying LFM
to PDARTS with ResNet-18 as encoder; such for-
mat apply to other results. Results marked with *
are from Skillearn [42].

cell consists of 7 nodes. We set the initial channel number to
16. For the architecture of the encoder model, we experimented
with ResNet-18 and ResNet-34 [41]. The search algorithm was
based on stochastic gradient descent (SGD) optimizer, and the
hyperparameters of epochs, initial learning rate, and momentum
follow the original implementation of the respective DARTS [5]
and PDARTS [30]. During architecture evaluation for CIFAR-
10 and CIFAR-100, a more extensive network of each category-
specific model is formed by stacking 20 copies of the searched
cell.

The LFM method is used to learn the architecture B, while
the weights Wy, W5, V, and r learned during the LFM search
are discarded during the architecture evaluation. All the archi-
tecture evaluations are run using the same standardized setup.
This results in a fair comparison between architectures learned
from different methods. All the models during evaluation have
the same number of parameters and hyper-parameters, such as
epochs, learning rate, and batch size. More detailed experimen-
tal settings can be found in Appendix C.

3) Results and Analysis: The experiments are performed
on three popular NAS datasets, namely CIFAR-10, CIFAR-100
[64], and ImageNet [65]. More detailed results can be found in
the Appendix, including information about parameters, search
cost, more compared methods, and other ablation studies. The
results of the classification error (%) of different NAS methods
on CIFAR-100 are shown in Table I. We make the following
observations from this table.

1) When LFM is applied to DARTS-2nd (second-order ap-
proximation) and PDARTS, significant reductions in clas-
sification errors are observed. For example, when LFM
is applied to DARTS-2nd, the error rate decreases from
20.58 to 17.70%. Similarly, in PDARTS, the error rate
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TABLE 1T
TEST ERROR ON CIFAR-10

Method | Error (%)
*DenseNet [43] 3.46

*HierEvol [48] 3.75+0.12
*PNAS [44] 3.41£0.09
*ENAS [25] 2.89+0.13
*NASNet-A [26] 2.65+0.05
* AmoebaNet-B [27] 2.5540.05
*R-DARTS [46] 2.95+0.21
*GTN [49] 2.92+0.06
*BayesNAS [50] 2.81+0.04
*MergeNAS [51] 2.7340.02
*NoisyDARTS [52] 2.70+0.23
*ASAP [53] 2.68+0.11
*SDARTS [54] 2.61£0.02
*DropNAS [47] 2.58+0.14
*DrNAS [55] 2.54+0.03
Random search 3.07+0.17
Random sampling 2.754+0.09
*DARTS-2nd [5] 2.76+0.09
LFM-DARTS-2nd-R18 (ours) | 2.70+0.06
*PDARTS [30] 2.50

LFM-PDARTS-R18 (ours) 2.4610.04

Note: Results marked with * are obtained from
Skillearn [42]. The other notations are the same
as described in Table 1.

decreases from 17.49 to 16.44% (when using ResNet-
18 as encoder V). These results demonstrate the effec-
tiveness of our method in improving the performance
of architecture search. In baseline NAS approaches, all
training examples are assigned equal weights. In contrast,
our method dynamically reweights training examples at
each stage based on the current learning capability of the
model, assigning more weight to samples that are chal-
lenging to learn. This approach reflects a more realistic
learning scenario.

2) LFM-PDARTS-R34 outperforms LFM-PDARTS-R18 by
0.75%, where the former uses ResNet-34 as the image
encoder, while the latter uses ResNet-18. ResNet-34 is
a deeper and more robust data encoder than ResNet-18.
This shows that mapping the validation examples to sim-
ilar training examples is a core component contributing
to the effectiveness of our proposed LFM method.

3) LFM-PDARTS-R34 achieves the best performance
among all methods, which demonstrates the effectiveness
of applying LFM to differentiable NAS methods and
improving their performance.

The results of the classification error (%) of different NAS
methods on CIFAR-10 are shown in Table II. As can be seen,
LFM applied to DARTS-2nd and PDARTS reduces the errors
of these baselines by roughly 0.05%. This further demonstrates
the effectiveness of our method.

The results of the classification error (%) for top-1 and
top-5 of different NAS methods on ImageNet are presented
in Table III. In the methods LFM-DARTS-2nd-CIFAR10
and LFM-PDARTS-CIFAR10, the architectures searched
on CIFAR-10 are evaluated on ImageNet, while in LFM-
PDARTS-CIFAR100, the architecture searched on CIFAR-100
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TABLE III
TEST ERRORS ON IMAGENET

Top-1 Top-5
Method Error (%) Error (%)
*Inception-v1 [56] 30.2 10.1
*MobileNet [57] 29.4 10.5
*ShuffleNet 2x (v1) [58] 26.4 10.2
*ShuffleNet 2x (v2) [59] 25.1 7.6
*NASNet-A [26] 26.0 8.4
*PNAS [44] 25.8 8.1
*MnasNet-92 [60] 25.2 8.0
*AmoebaNet-C [27] 24.3 7.6
*SNAS-CIFAR10 [29] 27.3 9.2
*PARSEC-CIFARI10 [61] 26.0 8.4
*DSNAS-ImageNet [62] 25.7 8.1
*SDARTS-ADV-CIFAR10 [54] 252 7.8
*FairDARTS-ImageNet [63] 24.4 7.4
*DrNAS-ImageNet [55] 24.2 7.3
*ProxylessNAS-ImageNet [28] 24.9 7.5
*GDAS-CIFARI0 [45] 26.0 8.5
*DARTS2nd-CIFAR10 [5] 26.7 8.7
LFM-DARTS-2nd-CIFAR10 (ours) 25.1 7.6
*PDARTS (CIFAR10) [30] 24.4 74
LFM-PDARTS-CIFAR10 (ours) 24.1 6.8
*PDARTS (CIFAR100) [30] 24.7 75
LFM-PDARTS-CIFAR100 (ours) 24.1 6.7

Note: The first three blocks represent: 1) manually designed net-
works, 2) non-gradient-based NAS methods, and 3) gradient-based
NAS methods. The rest of the notations follow the Table I.

is evaluated on ImageNet. Specifically, LFM-DARTS-2nd-
CIFARI10 outperforms the baseline DARTS-2nd-CIFARI10
by 1.6%, whereas LFM-PDARTS-CIFAR100 outperforms its
corresponding baseline by 0.6%, and LFM-PDARTS-CIFAR10
by 0.3%. These results demonstrate that the LFM methods
consistently outperform their corresponding baselines,
highlighting the effectiveness of our approach.

4) Ablation Studies on LFM-NAS:

Ablation 1: Our method introduces three important com-
ponents to the reweighting parameter a;: x, u, and z. In this
study, we demonstrate the effect of ablating each component.
We conducted experiments on CIFAR-100 using ResNet-18 as
the encoder, with other details matching the base experiments
described in earlier sections. The performances of the ablated
models are shown in Fig. 4. These results highlight the effec-
tiveness and necessity of incorporating measurements of mis-
takes (u) on validation examples, calculating visual similarity
(x), and evaluating label similarity (z) between training and
validation examples within our method.

Ablation 2: For visual similarity, we utilize dot product at-
tention, which has demonstrated effectiveness in various ap-
plications and is straightforward to implement. To showcase
its efficacy within LFM, we compared it with other metrics
such as cosine similarity and L2 distance. The experimental
setup closely follows the base experiments described in earlier
sections. The results, depicted in Fig. 5, show that dot product
attention used in our framework performs better than the other
two metrics.

Ablation 3: We experiment to evaluate the necessity of the
second network. A degenerated way of learning a single set of
weights is to discard the end-to-end tri-level framework and
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Fig. 5. Comparison of different visual similarity metrics.

TABLE IV
TEST ERROR COMPARISON OF
SINGLE NETWORK (SN) AND TWO
NETWORKS (TN) ON CIFAR-100.
DARTS DEFAULTS THE DARTS
OPTIMIZED IN THE SECOND ORDER

Method Test error (%)
SN+DARTS 19.28+0.31
TN+DARTS 17.65+0.45
SN+PDARTS 17.37+0.23
TN+PDARTS 16.44+0.11

learn the weights in two separate stages: train the weights,
use them to reweight training examples, and then retrain the
weights on reweighted examples. However, in this case, the
method is no longer an end-to-end framework, which leads to
inferior performance. We experimented with this degenerated
method and its performance is worse than our tri-level end-to-
end framework. The results are shown in Table IV.

Ablation 4: We conduct experiments to evaluate the impact of
the image encoder used in the second stage, where larger models
(ResNet-101 and ResNet-152) are applied to compute visual
similarity. Specifically, we aim to assess how the capacity of the
image encoder influences the overall model’s ability to extract
meaningful representations. The model architecture is searched
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TABLE V
TEST ERROR ON CIFAR-100 AND IMAGENET TEST SETS
WITH DIFFERENT SIZE OF IMAGE ENCODERS

Dataset Encoder Test error (%)
LFM-PDARTS-R18 16.44

CIFAR-100 LFM-PDARTS-R101 15.45
LFM-PDARTS-R152 14.88
LFM-PDARTS-R18 24.10

ImageNet LFM-PDARTS-R101 23.52
LFM-PDARTS-R152 23.02

by PDARTS on the CIFAR-100 dataset, and the discovered
architecture is then applied to both the CIFAR-100 and Ima-
geNet datasets. As shown in Table V, increasing the size of the
image encoder enhances model performance. A more powerful
encoder not only enhances feature extraction but also improves
the accuracy of identifying training examples that significantly
impact model capability. This precision in example selection
ensures that the model learns from instances that maximize
its generalization, thereby reducing overfitting and improving
robustness across datasets.

B. DR Under Class Imbalance

1) Datasets: We apply LFM-DR for image classification,
specifically using long-tailed datasets based on CIFAR-10 and
CIFAR-100 to evaluate the performance of LFM-DR. Follow-
ing the approach described in [66] for creating long-tailed
datasets, we reduce the number of training samples per class
according to an exponential function n = n;u’, where i is the
class index, n; is the original number of samples in class ¢, and
1 € (0,1). In this experiment, the imbalance factor represents
the degree of data imbalance and is defined as the number of
training samples in the largest class divided by the number in
the smallest class.

2) Experimental Settings: Same as the article [12], we ap-
plied LFM to ResNet-32 [41]. About the settings specified in
the LFM-DR, the ResNet-18 is used as the data encoder when
calculating the weight a; in stage 2. Finally, the learning rate
of ResNet-32 is divided by 10 after 80 and 90 epochs (for a
total of 100 epochs). The compared methods include 1) Base
Model, which uses a softmax cross-entropy loss to train ResNet-
32 on the training set; 2) Focal loss [15], Class-Balanced [66],
Learning to reweight (L2RW) [67], and Meta-Weight-Net [12]
represent the state-of-the-art of the DR techniques. And LFM-
DR represents our means of applying LFM to DR. More de-
tailed experimental settings can be found in the Appendix.

3) Results and Analysis: The classification accuracy results
of LFM-DR applied to ResNet-32 on long-tailed datasets of
CIFAR-10 are shown in Table VI. As shown in the tables that

1) After applying our LFM framework to the base model, the

classification accuracy is improved significantly across
all imbalance factors. For example, on an imbalance fac-
tor equal to 200, the test accuracy improves from 65.68
to 73.72%, by more than 8%. Our method significantly
enhances the test accuracy of the model, demonstrating
the effectiveness of LFM in addressing class imbalance
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challenges within the training set. By integrating LFM
into the base model, each training sample autonomously
learns a specific weight, enabling the model to focus
more on challenging examples. This adaptive weighting
mechanism equips the learner with enhanced capabili-
ties to tackle complex tasks effectively. The observed
improvement in test accuracy underscores LFM’s ability
to optimize model performance amidst class imbalance,
showcasing its potential to bolster machine learning sys-
tems for real-world applications.

2) For imbalance factors between 200 and 10, our method
achieves the best performance among all baselines,
demonstrating the effectiveness of applying LFM to the
base model and improving its performance. It also shows
the superiority of our method over other comparison
methods.

3) When the imbalance factor is 1, which means all the
classes have the same number of training samples, after
applying our method, the model attains a comparable
performance with the base model, showing its robustness
in different situations.

4) For along-tailed CIFAR-10 dataset with imbalance factor
200, there are only 24 images in the training set of the
class with the least amount of data (class 9). While there
are 4990 images in the training set of the class with the
most amount of data (class 0). The great bias of training
set is the reason leading to an imbalance results. However,
as shown in Fig. 6, comparing to the base model, after
applying LFM, the problem about imbalance prediction
results on test set have been greatly mitigated. Specifi-
cally, we improve the performance of the category with
the least amount of training data from 14.4 to 47.3%.

The classification accuracy results of ResNet-32 that are

trained in a standard way and trained in our framework on long-
tailed datasets of CIFAR-100 are also shown in Table VL. It can
be seen that our method, LFM-DR, has shown better perfor-
mance in any case, from the imbalance factor equal from 200
to 1. The results on long-tailed CIFAR-100 further demonstrate
the effectiveness of our strategy that, after applying our method,
the robustness of the model can be improved significantly.

C. DR Under Corrupted Labels

1) Datasets: We evaluated our method on datasets with cor-
rupted labels in the training set, and two different types of noises
were applied to the original samples. One is the uniform noise,
which means the label of each training sample can uniformly
change to another random class with probability p following
the instruction in [72] and is the most common phenomenon
in the literature. Another type is the flip noise: the label of
each sample is independently flipped to similar classes with
total probability p [12]. Here, two specific classes are selected
as similar classes. These two types of noise are employed for
CIFAR-10 and CIFAR-100 [73].

2) Experimental Settings: We use the Wide ResNet-28-
10 (WRN-28-10) [74] for uniform noise, and ResNet-32 [41]
for flip noise as their base models. We use different classifier
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TABLE VI

TEST ACCURACY (%) OF RESNET-32 ON LONG-TAILED CIFAR-10 AND CIFAR-100

Dataset name |

Long-tailed CIFAR-10

Long-tailed CIFAR-100

Imbalance Factor 200 100 50 20 10 1 200 100 50 20 10 1

*Base Model 65.68 | 70.36 | 74.81 | 82.23 | 86.39 | 92.89 | 34.84 | 38.32 | 43.85 | 51.44 | 55.71 | 70.50
*Focal Loss [15] 6529 | 7038 | 76.71 | 82.76 | 86.66 | 93.03 | 35.62 | 38.41 | 44.32 | 51.95 | 55.78 | 70.52
*Class-Balance [66] | 68.89 | 74.57 | 79.27 | 84.36 | 87.49 | 92.89 | 36.23 | 39.60 | 45.32 | 52.59 | 57.99 | 70.50
*L2RW [67] 66.51 | 74.16 | 7893 | 82.12 | 85.19 | 89.25 | 3338 | 40.23 | 44.44 | 51.64 | 53.73 | 64.11
*Meta-Net [12] 68.91 | 75.21 | 80.06 | 84.94 | 87.84 | 92.66 | 37.91 | 42.09 | 46.74 | 54.37 | 58.46 | 70.37
LFM-DR 73.72 | 78.89 | 83.46 | 86.98 | 89.24 | 92.92 | 39.08 | 43.27 | 4742 | 56.10 | 59.70 | 70.58

Note: The best and the second best results are highlighted in bold and italic bold, respectively. LFM-DR refers to applying LFM to

the base model. Results marked with * are obtained from [12].
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TEST ACCURACY (%) COMPARISON ON CIFAR-10 AND CIFAR-100 OF RESNET-32 WITH VARYING NOISE RATES
UNDER FLIP NOISE

Dataset name

Corrupted CIFAR-10 |

Corrupted CIFAR-100

Noise Rate 0% 20% 40% 0% 20% 40%

*Base Model 92.89+0.32 | 76.83+2.30 | 70.77+2.31 | 70.50+0.12 | 50.86+£0.27 | 43.01+1.16
*Reed-Hard [68] 92.31+£0.25 | 88.28+0.36 | 81.06£0.76 | 69.024+0.32 | 60.274+0.76 | 50.40+£1.01
*Self-paced [17] 88.52+0.21 | 87.03+0.34 | 81.63£0.52 | 67.55+0.27 | 63.63£0.30 | 53.51+0.53
*Focal Loss [15] 93.03+0.16 | 86.45£0.19 | 80.45£0.97 | 70.02+0.53 | 61.87+0.30 | 54.13+0.40
*Co-teaching [69] | 89.87+£0.10 | 82.83£0.85 | 75.41+0.21 | 63.314+0.05 | 54.13+0.55 | 44.85+0.81
*D2L [70] 92.02+0.14 | 87.66+0.40 | 83.89+0.46 | 68.11£0.26 | 63.484+0.53 | 51.83£0.33
*Fine-tining 93.23+0.23 | 82.47£3.64 | 74.07£1.65 | 70.72+0.22 | 56.98+0.50 | 46.37+0.25
*MentorNet [18] 92.13£0.30 | 86.36+0.31 | 81.76+£0.28 | 70.24+0.21 | 61.97+0.47 | 52.66+0.56
*L2RW [67] 89.25+0.37 | 87.864+0.36 | 85.66:£0.51 | 64.11+£1.09 | 57.47£1.16 | 50.98+1.55
*GLC [71] 91.02+£0.20 | 89.68+0.33 | 88.92+0.24 | 65.424+0.23 | 63.07+0.53 | 62.22+0.62
*Meta-Net [12] 92.04+0.15 | 90.33+0.61 | 87.54+0.23 | 70.11+0.33 | 64.224+0.28 | 58.64+0.47
LFM-DR 92.85£0.11 | 91.28+0.58 | 89.06+0.17 | 70.93:+£0.44 | 65.884+0.27 | 60.73+£0.51

Note: The baselines include base model, reed-hard, self-paced, focal loss, co-teaching, d2l, fine-tining, mentronet,
12rw, glc, and meta-net.

networks as base models that aim to show that networks with
different architectures can adapt our strategy to make an im-
provement. We use the same hyperparameter settings as in class
imbalance experiments. The results of each competing method

are an average of 5 trials.

3) Results and Analysis: The classification accuracy results
of LFM-DR applied to ResNet-32 on datasets with flip noise of
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CIFAR-10 and CIFAR-100 are shown in Table VII. It can be
seen from these tables that:
1) After adopting our strategy, the performance of the
base model has shown significant improvement, partic-

ularly evident under flip noise scenarios. The integra-

tion of LFM with DR (LFM-DR) resulted in notable
enhancements across most datasets and noise rates, with
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TABLE VIII
TEST ACCURACY (%) COMPARISON ON CIFAR-10 AND CIFAR-100 OF WRN-28-10 WITH VARYING NOISE RATES
UNDER UNIFORM NOISE. OTHERS ARE THE SAME AS TABLE VII

Dataset name | Corrupted CIFAR-10

| Corrupted CIFAR-100

Noise Rate 0% 20% 40% 0% 20% 40%
*Base Model 95.60+0.22 | 68.07+1.23 | 53.1243.03 | 79.954+1.26 | 51.114+0.42 | 30.9240.33
*Reed-Hard [68] 94.38+0.14 | 81.264+0.51 | 73.534+1.54 | 64.454+1.02 | 51.27+1.18 | 26.954+0.98
*Self-paced [17] 90.814+0.34 | 86.41+£0.29 | 53.10+1.78 | 59.794+0.46 | 46.314+2.45 | 19.08+0.57
*Focal Loss [15] 95.70+0.15 | 75.96+1.31 | 51.874+1.19 | 81.0440.24 | 51.194+0.46 | 27.7043.77
*Co-teaching [69] | 88.67+£0.25 | 74.81£0.34 | 73.064+0.25 | 61.804+0.25 | 46.20+0.15 | 35.67+1.25
*D2L [70] 94.644+0.33 | 85.60+£0.13 | 68.02+0.41 | 66.174+1.42 | 52.104+0.97 | 41.11£0.30
*Fine-tining 95.65+0.15 | 80.47+0.25 | 78.75+2.40 | 80.884+0.21 | 52.4940.74 | 38.1640.38
*MentorNet [18] 94.35+0.42 | 87.33+0.22 | 82.804+1.35 | 73.264+1.23 | 61.3943.99 | 36.87+1.47
*L2RW [67] 92.384+0.10 | 86.92+0.19 | 82.24+0.36 | 72.994+0.58 | 60.794+0.91 | 48.15+0.34
*GLC [71] 94.304+0.10 | 88.2840.03 | 83.4940.24 | 73.75+£0.51 | 61.31£0.22 | 50.81£1.00
*Meta-Net [12] 94.5240.25 | 89.27+0.28 | 84.07+0.33 | 78.76+0.24 | 67.73+0.26 | 58.75+0.11
LFM-DR 95.5640.11 | 89.66+0.58 | 84.78+0.17 | 80.64+0.44 | 68.71+0.27 | 60.74+0.51
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Fig. 7. Performance of comparison for different classifier networks (WRN-
28-10 and ResNet32) under CIFAR-10 flip noise.

the exception of the corrupted CIFAR-10 dataset at
0% noise rate. Notably, compared to the base model,
LFM-DR improved accuracy from 70.77 to 89.06% on
corrupted CIFAR-10 and from 43.01 to 60.73% on
CIFAR-100 at a 40% noise rate. These results high-
light the effectiveness of our method in empowering the
base model to effectively manage label noise challenges.
LFM-DR’s ability to substantially boost accuracy under
noisy conditions underscores its practical utility in en-
hancing model robustness and reliability in real-world
scenarios.

2) Compared to other mainstream methods, the robustness
of our approach can be seen in almost all situations. Our
method outperforms the method ranked second by more
than 2% for a 40% noise rate on the corrupted CIFAR-100
dataset. In other cases, our method also obtains a rela-
tively higher classification accuracy. This further demon-
strates the effectiveness of our approach.

3) Not only for ResNet-32 but also for WRN-28-10 under
uniform noise, whose results are shown in Table VIII, our
method shows significant performance. After applying
LFM, the base models became more robust means that
they can handle more difficult tasks in various cases. This
demonstrates the applicability of our method to different
machine learning methods.

W BaseModel(ResNet32)
BaseModel(WRN-28-10)

M Ours(LFM-ResNet32)
M Ours(LFM-WRN-28-10)

Fig. 8. Performance of comparison for different classifier networks (WRN-
28-10 and ResNet32) under CIFAR-100 flip noise.

To further demonstrate the effectiveness of our method, we
arranged experiments to compare the performance of WRN-28-
10 and ResNet32 under flip noise and the improvements after
implying our approach to the base models. As shown in Fig. 7
and Fig. 8, we can observe that, after applying our method to
the base model, the performance all increased significantly, and
performance gains for our method and base model between two
different networks take almost the same value. The results imply
that the performance improvement of LEM is available for other
network architectures.

D. DR on Real Dataset

To further verify the effectiveness of LFM, we conduct exper-
iments on the ANIMAL-10 dataset [75]. ANIMAL-10 dataset
is a noisy dataset with human-labeled images. ANIMAL-10
contains 5 pairs of confusing animals with a total of 55000
images, of which 50000 are training samples, and 5000 are
test samples. The five pairs are as follows: (cat, lynx), (ham-
ster, guinea pig), (wolf, coyote), (jaguar, cheetah), (chimpanzee,
orangutan), where two animals in each pair look very similar,
as shown in Fig. 9. The overall noise rate of ANIMAL-10 is
about 8%.

In this experiment, we use Vgg19-BN [76] as the base model
and apply our LFM framework to it. The base model was trained
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Fig. 9.

Image samples from ANIMAL-10.

TABLE IX
CLASSIFICATION ACCURACY (%) ON THE ANIMAL-10 TEST SET

Method | Accuracy | Method | Accuracy
NCT [77] 84.1 PLC [78] 83.4
SELFIE [75] 81.8 CE Dropout [77] 81.3
Vegl9-BN [76] | 794 | LFM 86.4

using SGD with a momentum of 0.9, a weight decay of be — 4,
and its initial learning rate is le — 1. The settings of the LFM
hyper-parameters are the same as in the last experiment.

The results are summarized in Table IX. All the methods
of comparison used Vggl9-BN as the baseline network. To
summarize, our method achieves better performance in relation
to the current state-of-the-art.

V. CONCLUSION

In this article, we proposed a novel optimization framework,
LEM, which is inspired by the practical human learning skill
of learning from the mistakes corresponding to the topics the
learner learns currently. To formalize the idea of LFM, we de-
sign a multilevel optimization framework to solve the problem.
Compared with other prevailing methods, LFM can develop the
weighting function without prior knowledge. It can modulate
the weights of different training samples automatically for the
degree of difficulty of its task. In our method, three metrics have
been used to measure the extent of mistakes the learner made.
Our experiments show the effectiveness of the proposed method
in generic data bias cases.

Our method requires the use of two learners who have similar
learning capabilities so that one can learn from the mistakes of
others. This increases the memory requirements and makes the
learning slow compared to the traditional approaches. In future
work, we explore reducing memory cost during architecture
search by parameter-sharing between the three models W7,
W5, and V. For W; and W5, we let them share the same
convolutional layers but have different classification heads. For
V', we replace ResNet-18 with 1W;. As shown in Table X that via
parameter sharing (PS), the memory and computation costs of
our method are reduced to a level similar to traditional DARTS
and PDARTS, while our method still achieves significantly
lower test errors than DARTS and PDARTS. A future work
direction is to improve memory usage while keeping the full
performance of the LFM method. Another direction is to extend
the applicability of LFM to other meta-learning tasks such as
tasks like semantic segmentation. LFM can also be extended
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TABLE X
TEST ERROR (%), MEMORY COST (MIB) AND COMPUTATION
CosT (GPU DAYS) OF DIFFERENT MODELS ON CIFAR-100

Test error Memory Cost
Method %) (MiB) _ (days)
LFM+DARTS, no PS 17.65£0.45 23 702 54
LFM+DARTS+PS 18.77£0.31 12 138 1.6
DARTS 20.58+0.44 11 053 1.5
LFM+PDARTS, no PS | 16.4440.11 20 744 2.0
LFM+PDARTS+PS 16.8340.08 10 582 0.3
PDARTS 17.49 9659 0.3

to language modeling tasks as well. Further, recent theoretical
work on phase transitions in time-varying complex networks
(TVCNSs) by Znaidi et al. [79] highlights how local changes
can trigger abrupt shifts in global properties. This mirrors the
behavior seen in NAS, where small architecture adjustments
can lead to significant performance changes. The Forman—Ricci
curvature framework used in TVCNs could also be applied to
NAS to identify critical performance shifts, potentially enhanc-
ing the LFM framework by targeting such transition points.
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