
IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 6, NO. 6, JUNE 2025 1651

Learning From Mistakes: A Multilevel

Optimization Framework
Li Zhang , Bhanu Garg , Pradyumna Sridhara , Ramtin Hosseini , and Pengtao Xie

Abstract—Bi-level optimization methods in machine learning
are popularly effective in subdomains of neural architecture
search, data reweighting, etc. However, most of these methods do
not factor in variations in learning difficulty, which limits their
performance in real-world applications. To address the above
problems, we propose a framework that imitates the learning
process of humans. In human learning, learners usually focus
more on the topics where mistakes have been made in the
past to deepen their understanding and master the knowledge.
Inspired by this effective human learning technique, we propose
a multilevel optimization framework, learning from mistakes
(LFM), for machine learning. We formulate LFM as a three-
stage optimization problem: 1) the learner learns, 2) the learner
relearns based on the mistakes made before, and 3) the learner
validates his learning. We develop an efficient algorithm to solve
the optimization problem. We further apply our method to
differentiable neural architecture search and data reweighting.
Extensive experiments on CIFAR-10, CIFAR-100, ImageNet, and
other related datasets powerfully demonstrate the effectiveness
of our approach. The code of LFM is available at: https://github.
com/importZL/LFM.

Impact Statement—Bi-level optimization (BLO) has emerged
as a compelling approach in machine learning, offering a hi-
erarchical solution to complex optimization challenges. However,
conventional BLO methods often struggle with learning difficulty
variations present in real-world applications. To this end, we
introduce learning from mistakes (LFM), a novel framework
inspired by human learning. LFM automatically adjusts train-
ing example weights based on learning difficulties, significantly
enhancing model robustness. Integrated into neural architecture
search (NAS) and data reweighting (DR), LFM demonstrates
remarkable improvements in adaptability and reliability across
scenarios like class imbalance and noisy labels. This work
marks a pivotal step towards more effective optimization of
machine learning models, crucial for addressing complex real-
world challenges.

Received 7 May 2024; revised 13 December 2024; accepted 20 January
2025. Date of publication 27 January 2025; date of current version 30 May
2025. This work was supported in part by NSF under Grant IIS2405974
and Grant IIS2339216. This article was recommended for publication by
Associate Editor Diego Oliva upon evaluation of the reviewers’ comments.
(Corresponding author: Pengtao Xie.)

The authors are with the Department of Electrical and Computer
Engineering, University of California, San Diego, CA 92093 USA
(e-mail: liz042@ucsd.edu; bgarg@ucsd.edu; prsridha@ucsd.edu; rhossein@
eng.ucsd.edu; p1xie@ucsd.edu).

This article has supplementary downloadable material available at https://
doi.org/10.1109/TAI.2025.3534151, provided by the authors.

Digital Object Identifier 10.1109/TAI.2025.3534151

Index Terms—Data reweighting (DR), learning from mistakes
(LFM), multilevel optimization, neural architecture search (NAS).

I. INTRODUCTION

B
I-LEVEL optimization (BLO) is a hierarchical optimiza-

tion problem of two or more layers [1] and is recently

gaining popularity in machine learning (ML). In BLO, the outer

optimization problem (upper-level problem) is restricted by the

solution set mapping of the inner-level optimization problem

(lower-level problem) [2]. Common BLO-based methods in-

clude neural architecture search (NAS) [3], [4], [5] and data

reweighting (DR) [6], [7], [8], etc. Most BLO-based methods

update the model weights by minimizing the training loss. In

contrast, the meta parameters (architecture parameters, weights

of data examples, etc.) are learned by minimizing the validation

loss. This approach [9] has shown success in tasks such as

image classification, object detection, etc.

Most traditional BLO approaches do not factor in variations

in learning difficulty. Consider the case of challenging images

obtained by driving the vehicle in harsh weather conditions,

complex backgrounds, etc., in deep learning-based self-driving

applications [10]; or deep learning in healthcare, where the

training data are highly heterogeneous, ambiguous, noisy, and

with an imbalanced distribution [11]—the BLO-based methods

can easily overfit and result in instability of prediction results

[12], [13].

To address the above issues, researchers propose various

DR strategies like AdaBoost [14], Focal Loss [15], and Active

Bias [16], which monotonically increase the weights of samples

with larger loss because they may be samples whose features

are difficult to learn or samples with class imbalance. Another

paradigm—Self-paced Learning [17], MentorNet [18], and It-

erative Reweighting [19] aims to emphasize samples with a

smaller loss. The rationale is that samples with larger losses are

likely to have corrupted labels. However, both paradigms design

a specific form of the reweighting function to weigh samples

based on expert opinion because it’s hard to determine the

relationship between data weights and loss values. Moreover,

the specificity of the weighting function limits the applicability

of the method to other situations.

Standing around the above problems, this article proposes an

original multi-level framework, learning from mistakes (LFM),

inspired by the practical learning technique of humans to cal-

culate the weights for training samples automatically. Over the

2691-4581 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

1652 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 6, NO. 6, JUNE 2025

Fig. 1. The simple process flow of human learning.

years, humans have accumulated a lot of valuable learning tech-

niques. One such effective learning method is to learn from pre-

vious mistakes. As shown in Fig. 1, initially, the learner learns a

concept and evaluates themselves through a test to measure their

level of understanding. The topics in the idea where the learner

makes more mistakes are identified as not having been learned

well by the learner. Therefore, the learner will restudy the issue

while focusing on the topics where the learner made mistakes

before. The above learning process can prevent the repetition of

similar errors in the future while also strengthening previously

well-learned issues. Inspired by this human learning technique,

we propose a methodology that can be applied to the training

process of machine learning to improve its performance.

The major contributions of this article are as follows.

1) Inspired by the human learning process, we propose a

novel optimization framework, Learning From Mistakes

(LFM), which can apply to the most regular model train-

ing process of machine learning.

2) We formulate LFM as a multi-level optimization frame-

work that includes three steps: learner learns; learner

relearns to correct its mistakes; learner validates its

performance.

3) We applied LFM to NAS and DR, aiming to verify the

effectiveness of our method. We conducted a series of

experiments, including experiments about NAS, experi-

ments under class imbalance, and noisy label cases. The

results demonstrate the effectiveness of LFM in improv-

ing the robustness of a learning algorithm on biased train-

ing samples.

II. RELATED WORKS

A. BLO

BLO derives from the area of economic game theory [2]

and has been introduced in model optimization. BLO can solve

problems that involve two levels of optimization tasks, of which

one task is usually nested inside the other, including hyper-

parameter optimization [20], meta-learning [21], NAS [22],

DR [6], etc. These methods optimize meta-parameters (e.g.,

neural architectures, data weights, etc.) by minimizing average

validation loss in the upper-level tasks. Model weights are up-

dated by minimizing average training loss in the lower-level

functions. For example, Franceschi et al. [23] presented a novel

BLO framework that uses average validation loss in hyperpa-

rameter optimization. These methods can achieve tremendous

average-case performance but are more likely to perform poorly

in worst-case scenarios. To address this problem, Shu et al.

[24] dynamically selected a sequence of validations based on

adversarial examination. While this work does not focus on

average-case performance, it also does not leverage the eval-

uation results to retrain the model for further improvement.

To address the limitations, our methods can automatically

calculate a training weight for each training sample based on

the evaluation results of the validation set.

B. NAS

Recently, NAS has come to the forefront of deep learning

techniques due to its success in discovering neural architec-

tures that can substantially outperform manually designed ones.

Early versions of NAS such as [3], [25], [26] used computation-

ally intensive approaches like reinforcement learning—where

the accuracy of the validation set was defined as the reward

and a policy network was trained to generate architectures that

can maximize these rewards. Another contemporary approach

[4], [27] was using evolutionary learning techniques—where

the set of all architectures represents a population, and the

fitness score is the validation accuracy of each architecture. The

architectures with lower fitness scores would be replaced with

higher fitness score architectures. However, even this approach

is computationally intensive. To address this problem, differ-

entiable architecture search techniques were explored [5], [28],

[29] and their results are much more promising because of the

use of weight-sharing techniques and the application of gradient

descent in a continuous architecture search space.

Differentiable architecture search (DARTS) [5] made the first

breakthrough in Differentiable NAS. Several other DARTS-

based techniques [30], [31], [32], [33] have been explored to

reduce the cost of computation for differentiable NAS. Some

of the approaches include—Progressive differentiable architec-

ture search (PDARTS) [30] increases the depth of architectures

progressively during the search, Partial channel connections for

memory-efficient architecture search (PC-DARTS [31]) eval-

uates only a subset of channels, thereby reducing the search

space’s redundancy. The LFM framework proposed in this arti-

cle can be applied to any differentiable NAS method for further

enhancement.

C. DR

DR has been well-studied in the literature. The broad

paradigms include methods that reweight the samples based

on specific prior knowledge of the task or data. For example,

synthetic minority over-sampling technique (SMOTE) [6] ran-

domly synthesizes data to supplement categories with small

samples after analyzing the data distribution first. Additionally,

Zadrozny et al. [7] presented a bias correction method for

handling different distributions between training data and test

examples.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING FROM MISTAKES 1653

Furthermore, several works [8], [34] proposed designing a

weighting function mapping that can assign weights to sam-

ples based on training loss. There are two different principles

of the weighting function. One principle is to increase the

weights of samples with higher losses. For example, AdaBoost

[35] trains subsequent classifiers based on data selected from

more difficult training samples, while hard example mining [36]

trains Exemplar-support vector machines (SVMs) [37] to ex-

ploit challenging training samples and downsample the majority

category. Focal loss [15] emphasizes more difficult training

samples based on a soft weighting scheme. These methods

heavily weigh samples with higher losses, making them suitable

for datasets with class imbalance. On the other hand, another

paradigm of methods imposes higher weights on samples with

smaller loss values. For example, self-paced learning (SPL) [17]

prioritizes training easier samples first, MentorNet [18] uses a

meta-learning long short-term memory [38] to calculate weights

for data with potentially corrupted labels, and curriculum learn-

ing [39] prioritizes easier training sets. This strategy is effective

for datasets with label noise. However, practical datasets often

exhibit both class imbalance and label noise simultaneously,

making it challenging to strictly increase or decrease weights

based solely on loss values. Instead, a balanced approach is nec-

essary based on the specific dataset characteristics. Currently,

most methods require manual design of a specific weighting

function based on domain knowledge.

Unlike the mentioned methods, our method, LFM, focuses

on the samples likely to make mistakes rather than simply

increasing or decreasing the weights of training samples based

on the losses. For data with class imbalance, the data loss

corresponding to the category with a smaller sample size must

be higher, so using label similarity, the samples’ weights of this

category are increased. And for data with label noise, even if

two training samples have the same label, their visual similarity

is likely to be smaller, so we can avoid increasing the weight

of the data with a corrupted label.

III. METHODS

In this section, we propose a framework that can imitate

human learning in the form of LFM and present an optimization

algorithm for solving the problem of LFM when applying to

NAS and DR with the fixed network.

A. Overview

Inspired by an effective human learning technique, LFM,

where the learners focus more on the topics where they made

mistakes, to deepen their understanding, we investigate if ma-

chine learning methods can apply this human learning strategy.

We propose a novel machine learning framework called LFM,

wherein the learner improves his ability to learn by focusing

more on the mistakes during revision.

The framework contains two sets of network weights W1

and W2—that are two parts of the same learner and are trying

to learn to perform the same target task, assuming the clas-

sification task in this article. The primary goal of W2 here is

to help the first learner, W1, correct the mistakes (made when

studying for the first time) during the revision. Further, to help

map the topics in the test to issues in the syllabus, there is an

encoder with predefined neural architecture (by human experts)

with learnable network weights V , a coefficient vector r, and a

learnable weight set B.

We begin by training the first network’s weights on a training

dataset. We then see what mistakes our model makes while

predicting the validation set. Then, for each training example,

we assign specific weights based on the errors made by the

model and the similarity of this example to an incorrectly pre-

dicted validation example. More specifically, these weights are

computed based on a combination of validation performance

and the similarity between training and validation examples.

The second set of network weights is trained on these weighted

examples, making the model learn from its mistakes and correct

them. In this way, each training sample automatically assigns

a weight based on the model’s performance on the validation

set. Finally, the learnable weight set, encoder, and coefficient

vectors are updated based on the second model’s validation

performance.

B. The Multilevel Optimization Framework

We organize our framework into three stages.

Stage I: In the first stage, we train the first set of network

weights W1 by minimizing the loss on the training dataset

D(tr). The optimal weights W ∗

1 (B) is a function of hyperpa-

rameter B, which at this stage is fixed, and hence

W ∗

1 (B) = argmin
W1

L(B,W1, D
tr). (1)

The hyperparameter B could be an architecture parameter of

the network or a weight parameter for training samples, which

is used to define the training loss but is not updated at this

stage. If we were to directly learn B by minimizing this training

loss, a trivial solution would be yielded where B is very large

and complex that would perfectly overfit the training data but

generalize poorly on unseen data.

Stage II: In the second stage, the goal is to reweight the

training samples based on LFM for training the learner’s second

set of network weights W2. We apply W ∗

1 (B) to the validation

dataset D(val) and check its performance on the validation ex-

amples. To make the model relearn while paying more attention

to mistakes in the validation examples by W ∗

1 (B), we reweight

each training example d
(tr)
i based on the following metrics.

1) Visual similarity between d
(tr)
i and d

(val)
j , as xij

2) Label similarity of d
(tr)
i and d

(val)
j , as zij

3) Validation performance of W ∗

1 (B) on d
(val)
j , as uj .

In human learning, a question incorrectly learned previously

can be corrected during the relearning stage by focusing more

on examples similar to the wrongly learned question. Here, the

metric xij tries to measure how similar a previously incorrectly

predicted d
(val)
j is to a training example d

(tr)
i and zij depicts

whether they describe the same topic. The term uj measures

how much W ∗

1 (B) is wrong for each validation example j.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

1654 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 6, NO. 6, JUNE 2025

Fig. 2. The process flow to calculate the weights ai for training example i.

We use these reweighted training examples to train W2. This

allows W2 to focus on the topics that W1, after training, could

not get right.

Visual similarity measures how similar the training example

d
(tr)
i is to each validation example d

(val)
j . Let V denote an

image encoder. For each validation example d
(val)
j , its similarity

with d
(tr)
i is defined as the dot-product attention [40] as

xij = align(V (d
(tr)
i), V (d

(val)
j))

=
exp(V (d

(tr)
i).V (d

(val)
j))

∑N(val)

k=1 exp(V (d
(tr)
i).V (d

(val)
k))

(2)

where N (val) is the number of validation examples. V (d) de-

notes the K-dimensional visual representation of the data ex-

ample d.

Label similarity measures the similarity between the label of

the training example and the label of each validation example.

Let zij denote the label similarity between a validation example

d
(val)
j and a training example d

(val)
j . We define zij as

zij = I{y
(tr)
i = y

(val)
j } (3)

where y is the label of the corresponding data example, and I{}
is the indicator function on the condition being true or not.

The validation performance uj of W ∗

1 (B) on a validation

example d
(val)
j is the cross entropy loss on this example

uj = crossentropy(f(d
(val)
j ;W ∗

1 (B)), y
(val)
j) (4)

where f(d
(val)
j ;W ∗

1 (B)) is the predicted probabilities of

W ∗

1 (B) on d
(val)
j and y

(val)
j is the class label of d

(val)
j .

Let xi, zi, and u be N (val)-dimensional vectors where the

jth element is xij , zij , and uj defined before. We calculate the

weight ai of the training example d
(tr)
i as

ai = sigmoid((xi � zi � u)T r) (5)

where � denotes element-wise multiplication, and r is a coef-

ficient vector. Note ai is a function of V , W ∗

1 (B), and r. We

summarise the calculation of ai in the process flow diagram

Fig. 2.

Fig. 3. The overall process flow of our method. The red arrows indicate
stage 1 processes, the blue arrows indicate stage 2 processes, and the black
arrows indicate stage 3 processes. In each stage, the solid lines starting from
data blocks represent the beginning of each stage, indicating feeding the
corresponding data into the model, and the dashed lines represent the end
of each stage, indicating updating the corresponding model components.

Given the weight ai of each training example, we train the

second set of network weights W2 by minimizing the weighted

training loss, with the architecture, encoder V , and r fixed.

W ∗

2 (W
∗

1 (B), V, r) = argmin
W2

Ntr∑

i=1

ai�(W2, d
(tr)
i , y

(tr)
i). (6)

Stage III: In the third and final stage, update the encoder V ,

coefficient vector r, and the hyperparameter B by minimizing

the validation loss of W ∗

2 (W
∗

1 (B), V, r).

B, V, r = arg min
B,V,r

L(W ∗

2 (W
∗

1 (B), V, r), D(val)). (7)

We summarise the above equations in the process flow dia-

gram Fig. 3. It shows the input data and output data in every

stage in detail.

We represent the hyperparameter B of the learner in a differ-

entiable way. In stages 1 and 2, B is fixed and updated in stage

3. In this way, we turn this problem into a tri-level optimization.

As shown above, after the weights W2 of model 2 are trained

by correcting the mistakes made by W1, the parameter B will

be updated accordingly since the gradient of B depends on W2;

an updated B will also render W1 to change as well since the

gradient of W1 depends on B. Along with this W1 →W2 →B

chain, W1 is indirectly influenced by W2, since W2 corrects

the mistakes, W1 will avoid these mistakes in the next round of

training as well. All in all, in our end-to-end framework, model

1 will learn from its previous mistakes and avoid making the

same mistakes indirectly.

The overall algorithm of LFM is summarised in Algorithm 1.

C. Applications

We apply our framework for two applications: differentiable

NAS and DR with fixed human-designed networks.

Differentiable NAS aims to search for high-performance net-

work architecture in a differentiable way. To apply our frame-

work for Differentiable NAS, we set B in (1) to be neural

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING FROM MISTAKES 1655

Algorithm 1: Optimization Algorithm for LFM.

1: Input: Sub-datasets Dtr, Dval. Parameter initialization

W1, W2, V , r, and B.

2: for t= 1, 2, 3, · · · do

3: Sample a batch from Dtr. Update W1 via (1).

4: Sample a batch from Dtr. Update W2 via (6.

5: Sample a batch from Dval. Update V , r, B via (7).

6: end for

architectures. Similar to DARTS [5], the search space of B

is composed of a large number of building blocks, where the

output of each block is associated with weight b indicating the

importance of the block. Similar to the above, the framework

contains two sets of network weights W1 and W2. They share

a learnable architecture parameter B. The primary goal here is

to learn an architecture that performs better. We also organized

the learning into three stages. The overall optimization problem

with learnable architecture is as follows:

B, V, r = argmin
B,V,r

L(B,W ∗

2 (W
∗

1 (B), V, r), D(val))

s.t. W ∗

2 (B) = argmin
W2

Ntr∑

i=1

ai�(A,W2(B), d
(tr)
i)

W ∗

1 (B) = argmin
W1

L(B,W1, D
tr). (8)

DR aims to identify and remove the influence of train exam-

ples, which limits the improvement of models’ performance. To

apply our framework for DR we specialize (1) to the following:

W ∗

1 (B) = argmin
W1

Ntr∑

i=1

biL(W1, d
tr)

whereB = {bi}
N
i=1. bi is the weight of a data sample d

(tr)
i and is

used to reweight the training loss of each sample. After applying

our framework to DR, the model can automatically pay more

attention to the examples that would be more difficult to classify

during the training process. The overall optimization problem

with DR can be summarized as follows:

B, V, r = arg min
B,V,r

L(W ∗

2 (W
∗

1 (B), V, r), D(val))

s.t. W ∗

2 (B) = argmin
W2

Ntr∑

i=1

ai�(W2(B), d
(tr)
i)

W ∗

1 (B) = argmin
W1

Ntr∑

i=1

biL(W1, d
tr). (9)

D. Optimization Algorithm

We promote an efficient algorithm to solve the LFM prob-

lems when applying to NAS and DR, as described in (8) and

(9). Inspired by DARTS [5], we approximate W ∗

1 and W ∗

2 by

one-step gradient descent updates for the inner optimization

equations to reduce the computational complexity. For Stage

1, we approximate W ∗

1 (B) using one step descent for the loss

on training data L(B,W1, D
tr), where the hyperparameter B

keeps fixed. For Stage 2, we use W ′

1 from the previous update to

get uj . To get the weights ai for training samples, we compute

xi and zi for each training sample dtri . Then based on the

reweighted training set, we use one-step gradient descent to

approximate W ∗

2 (B,W ∗

1 (B), V, r), where the hyperparameter

B keeps fixed. For Stage 3, we plug W ′

2 to learn hyperparameter

B, encoder V , and coefficient vector r from the validation loss

L(B,W ′

2(W
′

1(B), V, r), D(val)).
To save space, the complete derivations of these two appli-

cations can be found in Appendix A and Appendix B of the

supplement file, respectively.

IV. EXPERIMENTS

In this section, we investigate the effectiveness of our pro-

posed LFM framework. We explore the performance of LFM

with searchable architectures in image classifications. Further,

we designed both class imbalance and noisy label settings ex-

periments on standard CIFAR-10 and CIFAR-100 benchmarks

with fixed human-designed networks to verify the effectiveness

of our method when applied to DR.

A. Differentiable NAS

In this section, we applied our method to differentiable NAS

for image classification tasks. Following DARTS [5], the ap-

proaches consist of architecture search and evaluation stages,

where the optimal cell obtained from the search stage is stacked

several times into a more extensive composite network. We

then train the resultant composite network from scratch in the

evaluation stage.

1) Datasets: The experiments were performed on three pop-

ular NAS datasets, namely CIFAR-10, CIFAR-100, and Im-

ageNet. We conducted architecture searching on CIFAR-10

and CIFAR-100 datasets. For ImageNet dataset, we conduct

experiments with the model architectures searched on CIFAR-

10 and CIFAR-100 datasets. Both CIFAR-10 and CIFAR-100

datasets contain 60K images, with each class having the same

number of images. We split each dataset into a training set

with 25K images, a validation set with 25K images, and a

test set with 10K images. During the architecture search, the

training set is notated as Dtr, and the validation set is notated

as Dval. During architecture evaluation, the learned network is

trained on the combination of Dtr and Dval. Further, ImageNet

contains 1.2M training images and 50K test images with 1000

objective classes.

2) Experimental Settings: Our framework is orthogonal to

existing NAS approaches and can be applied to any differen-

tiable NAS method. In our experiments, we applied LFM to

DARTS [5] and PDARTS [30]. The search spaces of these

methods are kept the same as their backbone. For the encoder

V , ResNets that pretrained on Imagenet were used. Each LFM

experiment was repeated three times with different random

seeds. The mean and standard deviation of classification errors

obtained from the three runs are reported.

During the architecture search for CIFAR-10 and CIFAR-

100, the architectures of W1 and W2 are a stack of 8 cells. Each

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

1656 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 6, NO. 6, JUNE 2025

TABLE I
TEST ERROR ON CIFAR-100

Method Error (%)

*ResNet [41] 22.10
*DenseNet [43] 17.18

*PNAS [44] 19.53
*ENAS [25] 19.43
*AmoebaNet [27] 18.93

*GDAS [45] 18.38
*R-DARTS [46] 18.01±0.26

*DARTS− [33] 17.51±0.25

*DARTS+ [32] 17.11±0.43
*DropNAS [47] 16.39
Random search 21.92±0.34
Random sampling 21.37±0.48

*DARTS-2nd [5] 20.58±0.44
LFM-DARTS-2nd-R18 (ours) 17.65±0.45

*PDARTS [30] 17.49
LFM-PDARTS-R18 (ours) 16.44±0.11
LFM-PDARTS-R34 (ours) 15.69±0.15

Note: LFM-PDARTS-R18 denotes applying LFM
to PDARTS with ResNet-18 as encoder; such for-
mat apply to other results. Results marked with *
are from Skillearn [42].

cell consists of 7 nodes. We set the initial channel number to

16. For the architecture of the encoder model, we experimented

with ResNet-18 and ResNet-34 [41]. The search algorithm was

based on stochastic gradient descent (SGD) optimizer, and the

hyperparameters of epochs, initial learning rate, and momentum

follow the original implementation of the respective DARTS [5]

and PDARTS [30]. During architecture evaluation for CIFAR-

10 and CIFAR-100, a more extensive network of each category-

specific model is formed by stacking 20 copies of the searched

cell.

The LFM method is used to learn the architecture B, while

the weights W1, W2, V , and r learned during the LFM search

are discarded during the architecture evaluation. All the archi-

tecture evaluations are run using the same standardized setup.

This results in a fair comparison between architectures learned

from different methods. All the models during evaluation have

the same number of parameters and hyper-parameters, such as

epochs, learning rate, and batch size. More detailed experimen-

tal settings can be found in Appendix C.

3) Results and Analysis: The experiments are performed

on three popular NAS datasets, namely CIFAR-10, CIFAR-100

[64], and ImageNet [65]. More detailed results can be found in

the Appendix, including information about parameters, search

cost, more compared methods, and other ablation studies. The

results of the classification error (%) of different NAS methods

on CIFAR-100 are shown in Table I. We make the following

observations from this table.

1) When LFM is applied to DARTS-2nd (second-order ap-

proximation) and PDARTS, significant reductions in clas-

sification errors are observed. For example, when LFM

is applied to DARTS-2nd, the error rate decreases from

20.58 to 17.70%. Similarly, in PDARTS, the error rate

TABLE II
TEST ERROR ON CIFAR-10

Method Error (%)

*DenseNet [43] 3.46

*HierEvol [48] 3.75±0.12
*PNAS [44] 3.41±0.09
*ENAS [25] 2.89±0.13
*NASNet-A [26] 2.65±0.05
*AmoebaNet-B [27] 2.55±0.05

*R-DARTS [46] 2.95±0.21
*GTN [49] 2.92±0.06
*BayesNAS [50] 2.81±0.04
*MergeNAS [51] 2.73±0.02
*NoisyDARTS [52] 2.70±0.23
*ASAP [53] 2.68±0.11
*SDARTS [54] 2.61±0.02
*DropNAS [47] 2.58±0.14
*DrNAS [55] 2.54±0.03
Random search 3.07±0.17
Random sampling 2.75±0.09

*DARTS-2nd [5] 2.76±0.09
LFM-DARTS-2nd-R18 (ours) 2.70±0.06

*PDARTS [30] 2.50
LFM-PDARTS-R18 (ours) 2.46±0.04

Note: Results marked with * are obtained from
Skillearn [42]. The other notations are the same
as described in Table I.

decreases from 17.49 to 16.44% (when using ResNet-

18 as encoder V). These results demonstrate the effec-

tiveness of our method in improving the performance

of architecture search. In baseline NAS approaches, all

training examples are assigned equal weights. In contrast,

our method dynamically reweights training examples at

each stage based on the current learning capability of the

model, assigning more weight to samples that are chal-

lenging to learn. This approach reflects a more realistic

learning scenario.

2) LFM-PDARTS-R34 outperforms LFM-PDARTS-R18 by

0.75%, where the former uses ResNet-34 as the image

encoder, while the latter uses ResNet-18. ResNet-34 is

a deeper and more robust data encoder than ResNet-18.

This shows that mapping the validation examples to sim-

ilar training examples is a core component contributing

to the effectiveness of our proposed LFM method.

3) LFM-PDARTS-R34 achieves the best performance

among all methods, which demonstrates the effectiveness

of applying LFM to differentiable NAS methods and

improving their performance.

The results of the classification error (%) of different NAS

methods on CIFAR-10 are shown in Table II. As can be seen,

LFM applied to DARTS-2nd and PDARTS reduces the errors

of these baselines by roughly 0.05%. This further demonstrates

the effectiveness of our method.

The results of the classification error (%) for top-1 and

top-5 of different NAS methods on ImageNet are presented

in Table III. In the methods LFM-DARTS-2nd-CIFAR10

and LFM-PDARTS-CIFAR10, the architectures searched

on CIFAR-10 are evaluated on ImageNet, while in LFM-

PDARTS-CIFAR100, the architecture searched on CIFAR-100

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING FROM MISTAKES 1657

TABLE III
TEST ERRORS ON IMAGENET

Method
Top-1 Top-5

Error (%) Error (%)

*Inception-v1 [56] 30.2 10.1
*MobileNet [57] 29.4 10.5
*ShuffleNet 2× (v1) [58] 26.4 10.2
*ShuffleNet 2× (v2) [59] 25.1 7.6

*NASNet-A [26] 26.0 8.4
*PNAS [44] 25.8 8.1
*MnasNet-92 [60] 25.2 8.0
*AmoebaNet-C [27] 24.3 7.6

*SNAS-CIFAR10 [29] 27.3 9.2
*PARSEC-CIFAR10 [61] 26.0 8.4
*DSNAS-ImageNet [62] 25.7 8.1
*SDARTS-ADV-CIFAR10 [54] 25.2 7.8
*FairDARTS-ImageNet [63] 24.4 7.4
*DrNAS-ImageNet [55] 24.2 7.3
*ProxylessNAS-ImageNet [28] 24.9 7.5
*GDAS-CIFAR10 [45] 26.0 8.5

*DARTS2nd-CIFAR10 [5] 26.7 8.7
LFM-DARTS-2nd-CIFAR10 (ours) 25.1 7.6

*PDARTS (CIFAR10) [30] 24.4 7.4
LFM-PDARTS-CIFAR10 (ours) 24.1 6.8

*PDARTS (CIFAR100) [30] 24.7 7.5
LFM-PDARTS-CIFAR100 (ours) 24.1 6.7

Note: The first three blocks represent: 1) manually designed net-
works, 2) non-gradient-based NAS methods, and 3) gradient-based
NAS methods. The rest of the notations follow the Table I.

is evaluated on ImageNet. Specifically, LFM-DARTS-2nd-

CIFAR10 outperforms the baseline DARTS-2nd-CIFAR10

by 1.6%, whereas LFM-PDARTS-CIFAR100 outperforms its

corresponding baseline by 0.6%, and LFM-PDARTS-CIFAR10

by 0.3%. These results demonstrate that the LFM methods

consistently outperform their corresponding baselines,

highlighting the effectiveness of our approach.

4) Ablation Studies on LFM-NAS:

Ablation 1: Our method introduces three important com-

ponents to the reweighting parameter ai: x, u, and z. In this

study, we demonstrate the effect of ablating each component.

We conducted experiments on CIFAR-100 using ResNet-18 as

the encoder, with other details matching the base experiments

described in earlier sections. The performances of the ablated

models are shown in Fig. 4. These results highlight the effec-

tiveness and necessity of incorporating measurements of mis-

takes (u) on validation examples, calculating visual similarity

(x), and evaluating label similarity (z) between training and

validation examples within our method.

Ablation 2: For visual similarity, we utilize dot product at-

tention, which has demonstrated effectiveness in various ap-

plications and is straightforward to implement. To showcase

its efficacy within LFM, we compared it with other metrics

such as cosine similarity and L2 distance. The experimental

setup closely follows the base experiments described in earlier

sections. The results, depicted in Fig. 5, show that dot product

attention used in our framework performs better than the other

two metrics.

Ablation 3: We experiment to evaluate the necessity of the

second network. A degenerated way of learning a single set of

weights is to discard the end-to-end tri-level framework and

Fig. 4. Ablation on components of ai. The left bar column shows the
comparison of ablated models 1) without x, 2) without u, 3) without z, and
4) the full models.

Fig. 5. Comparison of different visual similarity metrics.

TABLE IV
TEST ERROR COMPARISON OF

SINGLE NETWORK (SN) AND TWO

NETWORKS (TN) ON CIFAR-100.
DARTS DEFAULTS THE DARTS

OPTIMIZED IN THE SECOND ORDER

Method Test error (%)

SN+DARTS 19.28±0.31
TN+DARTS 17.65±0.45

SN+PDARTS 17.37±0.23
TN+PDARTS 16.44±0.11

learn the weights in two separate stages: train the weights,

use them to reweight training examples, and then retrain the

weights on reweighted examples. However, in this case, the

method is no longer an end-to-end framework, which leads to

inferior performance. We experimented with this degenerated

method and its performance is worse than our tri-level end-to-

end framework. The results are shown in Table IV.

Ablation 4: We conduct experiments to evaluate the impact of

the image encoder used in the second stage, where larger models

(ResNet-101 and ResNet-152) are applied to compute visual

similarity. Specifically, we aim to assess how the capacity of the

image encoder influences the overall model’s ability to extract

meaningful representations. The model architecture is searched

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

1658 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 6, NO. 6, JUNE 2025

TABLE V
TEST ERROR ON CIFAR-100 AND IMAGENET TEST SETS

WITH DIFFERENT SIZE OF IMAGE ENCODERS

Dataset Encoder Test error (%)

CIFAR-100
LFM-PDARTS-R18 16.44
LFM-PDARTS-R101 15.45
LFM-PDARTS-R152 14.88

ImageNet
LFM-PDARTS-R18 24.10
LFM-PDARTS-R101 23.52
LFM-PDARTS-R152 23.02

by PDARTS on the CIFAR-100 dataset, and the discovered

architecture is then applied to both the CIFAR-100 and Ima-

geNet datasets. As shown in Table V, increasing the size of the

image encoder enhances model performance. A more powerful

encoder not only enhances feature extraction but also improves

the accuracy of identifying training examples that significantly

impact model capability. This precision in example selection

ensures that the model learns from instances that maximize

its generalization, thereby reducing overfitting and improving

robustness across datasets.

B. DR Under Class Imbalance

1) Datasets: We apply LFM-DR for image classification,

specifically using long-tailed datasets based on CIFAR-10 and

CIFAR-100 to evaluate the performance of LFM-DR. Follow-

ing the approach described in [66] for creating long-tailed

datasets, we reduce the number of training samples per class

according to an exponential function n= niμ
i, where i is the

class index, ni is the original number of samples in class i, and

μ ∈ (0, 1). In this experiment, the imbalance factor represents

the degree of data imbalance and is defined as the number of

training samples in the largest class divided by the number in

the smallest class.

2) Experimental Settings: Same as the article [12], we ap-

plied LFM to ResNet-32 [41]. About the settings specified in

the LFM-DR, the ResNet-18 is used as the data encoder when

calculating the weight ai in stage 2. Finally, the learning rate

of ResNet-32 is divided by 10 after 80 and 90 epochs (for a

total of 100 epochs). The compared methods include 1) Base

Model, which uses a softmax cross-entropy loss to train ResNet-

32 on the training set; 2) Focal loss [15], Class-Balanced [66],

Learning to reweight (L2RW) [67], and Meta-Weight-Net [12]

represent the state-of-the-art of the DR techniques. And LFM-

DR represents our means of applying LFM to DR. More de-

tailed experimental settings can be found in the Appendix.

3) Results and Analysis: The classification accuracy results

of LFM-DR applied to ResNet-32 on long-tailed datasets of

CIFAR-10 are shown in Table VI. As shown in the tables that

1) After applying our LFM framework to the base model, the

classification accuracy is improved significantly across

all imbalance factors. For example, on an imbalance fac-

tor equal to 200, the test accuracy improves from 65.68

to 73.72%, by more than 8%. Our method significantly

enhances the test accuracy of the model, demonstrating

the effectiveness of LFM in addressing class imbalance

challenges within the training set. By integrating LFM

into the base model, each training sample autonomously

learns a specific weight, enabling the model to focus

more on challenging examples. This adaptive weighting

mechanism equips the learner with enhanced capabili-

ties to tackle complex tasks effectively. The observed

improvement in test accuracy underscores LFM’s ability

to optimize model performance amidst class imbalance,

showcasing its potential to bolster machine learning sys-

tems for real-world applications.

2) For imbalance factors between 200 and 10, our method

achieves the best performance among all baselines,

demonstrating the effectiveness of applying LFM to the

base model and improving its performance. It also shows

the superiority of our method over other comparison

methods.

3) When the imbalance factor is 1, which means all the

classes have the same number of training samples, after

applying our method, the model attains a comparable

performance with the base model, showing its robustness

in different situations.

4) For a long-tailed CIFAR-10 dataset with imbalance factor

200, there are only 24 images in the training set of the

class with the least amount of data (class 9). While there

are 4990 images in the training set of the class with the

most amount of data (class 0). The great bias of training

set is the reason leading to an imbalance results. However,

as shown in Fig. 6, comparing to the base model, after

applying LFM, the problem about imbalance prediction

results on test set have been greatly mitigated. Specifi-

cally, we improve the performance of the category with

the least amount of training data from 14.4 to 47.3%.

The classification accuracy results of ResNet-32 that are

trained in a standard way and trained in our framework on long-

tailed datasets of CIFAR-100 are also shown in Table VI. It can

be seen that our method, LFM-DR, has shown better perfor-

mance in any case, from the imbalance factor equal from 200

to 1. The results on long-tailed CIFAR-100 further demonstrate

the effectiveness of our strategy that, after applying our method,

the robustness of the model can be improved significantly.

C. DR Under Corrupted Labels

1) Datasets: We evaluated our method on datasets with cor-

rupted labels in the training set, and two different types of noises

were applied to the original samples. One is the uniform noise,

which means the label of each training sample can uniformly

change to another random class with probability p following

the instruction in [72] and is the most common phenomenon

in the literature. Another type is the flip noise: the label of

each sample is independently flipped to similar classes with

total probability p [12]. Here, two specific classes are selected

as similar classes. These two types of noise are employed for

CIFAR-10 and CIFAR-100 [73].

2) Experimental Settings: We use the Wide ResNet-28-

10 (WRN-28-10) [74] for uniform noise, and ResNet-32 [41]

for flip noise as their base models. We use different classifier

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING FROM MISTAKES 1659

TABLE VI
TEST ACCURACY (%) OF RESNET-32 ON LONG-TAILED CIFAR-10 AND CIFAR-100

Dataset name Long-tailed CIFAR-10 Long-tailed CIFAR-100

Imbalance Factor 200 100 50 20 10 1 200 100 50 20 10 1

*Base Model 65.68 70.36 74.81 82.23 86.39 92.89 34.84 38.32 43.85 51.44 55.71 70.50

*Focal Loss [15] 65.29 70.38 76.71 82.76 86.66 93.03 35.62 38.41 44.32 51.95 55.78 70.52

*Class-Balance [66] 68.89 74.57 79.27 84.36 87.49 92.89 36.23 39.60 45.32 52.59 57.99 70.50
*L2RW [67] 66.51 74.16 78.93 82.12 85.19 89.25 33.38 40.23 44.44 51.64 53.73 64.11
*Meta-Net [12] 68.91 75.21 80.06 84.94 87.84 92.66 37.91 42.09 46.74 54.37 58.46 70.37

LFM-DR 73.72 78.89 83.46 86.98 89.24 92.92 39.08 43.27 47.42 56.10 59.70 70.58

Note: The best and the second best results are highlighted in bold and italic bold, respectively. LFM-DR refers to applying LFM to
the base model. Results marked with * are obtained from [12].

Fig. 6. Confusion matrices for the BaseModel and Ours on long-tailed CIFAR-10 dataset with imbalance factor 200.

TABLE VII
TEST ACCURACY (%) COMPARISON ON CIFAR-10 AND CIFAR-100 OF RESNET-32 WITH VARYING NOISE RATES

UNDER FLIP NOISE

Dataset name Corrupted CIFAR-10 Corrupted CIFAR-100

Noise Rate 0% 20% 40% 0% 20% 40%

*Base Model 92.89±0.32 76.83±2.30 70.77±2.31 70.50±0.12 50.86±0.27 43.01±1.16

*Reed-Hard [68] 92.31±0.25 88.28±0.36 81.06±0.76 69.02±0.32 60.27±0.76 50.40±1.01
*Self-paced [17] 88.52±0.21 87.03±0.34 81.63±0.52 67.55±0.27 63.63±0.30 53.51±0.53
*Focal Loss [15] 93.03±0.16 86.45±0.19 80.45±0.97 70.02±0.53 61.87±0.30 54.13±0.40
*Co-teaching [69] 89.87±0.10 82.83±0.85 75.41±0.21 63.31±0.05 54.13±0.55 44.85±0.81
*D2L [70] 92.02±0.14 87.66±0.40 83.89±0.46 68.11±0.26 63.48±0.53 51.83±0.33
*Fine-tining 93.23±0.23 82.47±3.64 74.07±1.65 70.72±0.22 56.98±0.50 46.37±0.25
*MentorNet [18] 92.13±0.30 86.36±0.31 81.76±0.28 70.24±0.21 61.97±0.47 52.66±0.56
*L2RW [67] 89.25±0.37 87.86±0.36 85.66±0.51 64.11±1.09 57.47±1.16 50.98±1.55
*GLC [71] 91.02±0.20 89.68±0.33 88.92±0.24 65.42±0.23 63.07±0.53 62.22±0.62
*Meta-Net [12] 92.04±0.15 90.33±0.61 87.54±0.23 70.11±0.33 64.22±0.28 58.64±0.47

LFM-DR 92.85±0.11 91.28±0.58 89.06±0.17 70.93±0.44 65.88±0.27 60.73±0.51

Note: The baselines include base model, reed-hard, self-paced, focal loss, co-teaching, d2l, fine-tining, mentronet,
l2rw, glc, and meta-net.

networks as base models that aim to show that networks with

different architectures can adapt our strategy to make an im-

provement. We use the same hyperparameter settings as in class

imbalance experiments. The results of each competing method

are an average of 5 trials.

3) Results and Analysis: The classification accuracy results

of LFM-DR applied to ResNet-32 on datasets with flip noise of

CIFAR-10 and CIFAR-100 are shown in Table VII. It can be

seen from these tables that:

1) After adopting our strategy, the performance of the

base model has shown significant improvement, partic-

ularly evident under flip noise scenarios. The integra-

tion of LFM with DR (LFM-DR) resulted in notable

enhancements across most datasets and noise rates, with

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

1660 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 6, NO. 6, JUNE 2025

TABLE VIII
TEST ACCURACY (%) COMPARISON ON CIFAR-10 AND CIFAR-100 OF WRN-28-10 WITH VARYING NOISE RATES

UNDER UNIFORM NOISE. OTHERS ARE THE SAME AS TABLE VII

Dataset name Corrupted CIFAR-10 Corrupted CIFAR-100

Noise Rate 0% 20% 40% 0% 20% 40%

*Base Model 95.60±0.22 68.07±1.23 53.12±3.03 79.95±1.26 51.11±0.42 30.92±0.33

*Reed-Hard [68] 94.38±0.14 81.26±0.51 73.53±1.54 64.45±1.02 51.27±1.18 26.95±0.98
*Self-paced [17] 90.81±0.34 86.41±0.29 53.10±1.78 59.79±0.46 46.31±2.45 19.08±0.57
*Focal Loss [15] 95.70±0.15 75.96±1.31 51.87±1.19 81.04±0.24 51.19±0.46 27.70±3.77
*Co-teaching [69] 88.67±0.25 74.81±0.34 73.06±0.25 61.80±0.25 46.20±0.15 35.67±1.25
*D2L [70] 94.64±0.33 85.60±0.13 68.02±0.41 66.17±1.42 52.10±0.97 41.11±0.30
*Fine-tining 95.65±0.15 80.47±0.25 78.75±2.40 80.88±0.21 52.49±0.74 38.16±0.38
*MentorNet [18] 94.35±0.42 87.33±0.22 82.80±1.35 73.26±1.23 61.39±3.99 36.87±1.47
*L2RW [67] 92.38±0.10 86.92±0.19 82.24±0.36 72.99±0.58 60.79±0.91 48.15±0.34
*GLC [71] 94.30±0.10 88.28±0.03 83.49±0.24 73.75±0.51 61.31±0.22 50.81±1.00
*Meta-Net [12] 94.52±0.25 89.27±0.28 84.07±0.33 78.76±0.24 67.73±0.26 58.75±0.11

LFM-DR 95.56±0.11 89.66±0.58 84.78±0.17 80.64±0.44 68.71±0.27 60.74±0.51

Fig. 7. Performance of comparison for different classifier networks (WRN-
28-10 and ResNet32) under CIFAR-10 flip noise.

the exception of the corrupted CIFAR-10 dataset at

0% noise rate. Notably, compared to the base model,

LFM-DR improved accuracy from 70.77 to 89.06% on

corrupted CIFAR-10 and from 43.01 to 60.73% on

CIFAR-100 at a 40% noise rate. These results high-

light the effectiveness of our method in empowering the

base model to effectively manage label noise challenges.

LFM-DR’s ability to substantially boost accuracy under

noisy conditions underscores its practical utility in en-

hancing model robustness and reliability in real-world

scenarios.

2) Compared to other mainstream methods, the robustness

of our approach can be seen in almost all situations. Our

method outperforms the method ranked second by more

than 2% for a 40% noise rate on the corrupted CIFAR-100

dataset. In other cases, our method also obtains a rela-

tively higher classification accuracy. This further demon-

strates the effectiveness of our approach.

3) Not only for ResNet-32 but also for WRN-28-10 under

uniform noise, whose results are shown in Table VIII, our

method shows significant performance. After applying

LFM, the base models became more robust means that

they can handle more difficult tasks in various cases. This

demonstrates the applicability of our method to different

machine learning methods.

Fig. 8. Performance of comparison for different classifier networks (WRN-
28-10 and ResNet32) under CIFAR-100 flip noise.

To further demonstrate the effectiveness of our method, we

arranged experiments to compare the performance of WRN-28-

10 and ResNet32 under flip noise and the improvements after

implying our approach to the base models. As shown in Fig. 7

and Fig. 8, we can observe that, after applying our method to

the base model, the performance all increased significantly, and

performance gains for our method and base model between two

different networks take almost the same value. The results imply

that the performance improvement of LFM is available for other

network architectures.

D. DR on Real Dataset

To further verify the effectiveness of LFM, we conduct exper-

iments on the ANIMAL-10 dataset [75]. ANIMAL-10 dataset

is a noisy dataset with human-labeled images. ANIMAL-10

contains 5 pairs of confusing animals with a total of 55 000

images, of which 50 000 are training samples, and 5000 are

test samples. The five pairs are as follows: (cat, lynx), (ham-

ster, guinea pig), (wolf, coyote), (jaguar, cheetah), (chimpanzee,

orangutan), where two animals in each pair look very similar,

as shown in Fig. 9. The overall noise rate of ANIMAL-10 is

about 8%.

In this experiment, we use Vgg19-BN [76] as the base model

and apply our LFM framework to it. The base model was trained

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING FROM MISTAKES 1661

Fig. 9. Image samples from ANIMAL-10.

TABLE IX
CLASSIFICATION ACCURACY (%) ON THE ANIMAL-10 TEST SET

Method Accuracy Method Accuracy

NCT [77] 84.1 PLC [78] 83.4
SELFIE [75] 81.8 CE Dropout [77] 81.3
Vgg19-BN [76] 79.4 LFM 86.4

using SGD with a momentum of 0.9, a weight decay of 5e− 4,

and its initial learning rate is 1e− 1. The settings of the LFM

hyper-parameters are the same as in the last experiment.

The results are summarized in Table IX. All the methods

of comparison used Vgg19-BN as the baseline network. To

summarize, our method achieves better performance in relation

to the current state-of-the-art.

V. CONCLUSION

In this article, we proposed a novel optimization framework,

LFM, which is inspired by the practical human learning skill

of learning from the mistakes corresponding to the topics the

learner learns currently. To formalize the idea of LFM, we de-

sign a multilevel optimization framework to solve the problem.

Compared with other prevailing methods, LFM can develop the

weighting function without prior knowledge. It can modulate

the weights of different training samples automatically for the

degree of difficulty of its task. In our method, three metrics have

been used to measure the extent of mistakes the learner made.

Our experiments show the effectiveness of the proposed method

in generic data bias cases.

Our method requires the use of two learners who have similar

learning capabilities so that one can learn from the mistakes of

others. This increases the memory requirements and makes the

learning slow compared to the traditional approaches. In future

work, we explore reducing memory cost during architecture

search by parameter-sharing between the three models W1,

W2, and V . For W1 and W2, we let them share the same

convolutional layers but have different classification heads. For

V , we replace ResNet-18 with W1. As shown in Table X that via

parameter sharing (PS), the memory and computation costs of

our method are reduced to a level similar to traditional DARTS

and PDARTS, while our method still achieves significantly

lower test errors than DARTS and PDARTS. A future work

direction is to improve memory usage while keeping the full

performance of the LFM method. Another direction is to extend

the applicability of LFM to other meta-learning tasks such as

tasks like semantic segmentation. LFM can also be extended

TABLE X
TEST ERROR (%), MEMORY COST (MIB) AND COMPUTATION

COST (GPU DAYS) OF DIFFERENT MODELS ON CIFAR-100

Method
Test error Memory Cost

(%) (MiB) (days)

LFM+DARTS, no PS 17.65±0.45 23 702 5.4
LFM+DARTS+PS 18.77±0.31 12 138 1.6
DARTS 20.58±0.44 11 053 1.5

LFM+PDARTS, no PS 16.44±0.11 20 744 2.0
LFM+PDARTS+PS 16.83±0.08 10 582 0.3
PDARTS 17.49 9659 0.3

to language modeling tasks as well. Further, recent theoretical

work on phase transitions in time-varying complex networks

(TVCNs) by Znaidi et al. [79] highlights how local changes

can trigger abrupt shifts in global properties. This mirrors the

behavior seen in NAS, where small architecture adjustments

can lead to significant performance changes. The Forman–Ricci

curvature framework used in TVCNs could also be applied to

NAS to identify critical performance shifts, potentially enhanc-

ing the LFM framework by targeting such transition points.

REFERENCES

[1] S. Dempe et al., “Bilevel optimization: Theory, algorithms, applications
and a bibliography,” in Bilevel Optimization. Springer Optimization and

Its Applications, Cham: Springer, 2020, pp. 581–672.
[2] R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin, “Investigating bi-level

optimization for learning and vision from a unified perspective: A survey
and beyond,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12,
pp. 10045–10067, Dec. 2022.

[3] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016, arXiv:1611.01578.

[4] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” in Proc.

Int. Conf. Learn. Represent., vol. 7, 2018, pp. 5008–5020.
[5] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture

search,” in Proc. Int. Conf. Learn. Represent., 2018.
[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol.
16, pp. 321–357, 2002.

[7] B. Zadrozny, “Learning and evaluating classifiers under sample selection
bias,” in Proc. 21st Int. Conf. Mach. Learn., 2004, p. 114.

[8] C. Elkan, “The foundations of cost-sensitive learning,” in Proc. Int. Joint

Conf. Artif. Intell., vol. 17, no. 1, 2001, pp. 973–978.
[9] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A

survey,” J. Mach. Learn. Res., vol. 20, no. 1, pp. 1997–2017, 2019.
[10] J. Ni, Y. Chen, Y. Chen, J. Zhu, D. Ali, and W. Cao, “A survey on

theories and applications for self-driving cars based on deep learning
methods,” Appl. Sci., vol. 10, no. 8, p. 2749, 2020.

[11] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning
for healthcare: review, opportunities and challenges,” Brief. Bioinf., vol.
19, no. 6, pp. 1236–1246, 2018.

[12] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-
weight-net: Learning an explicit mapping for sample weighting,” in
Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 1919–1930.

[13] Z. Shen, P. Cui, T. Zhang, and K. Kunag, “Stable learning via sample
reweighting,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 04, 2020,
pp. 5692–5699.

[14] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting
for classification of imbalanced data,” Pattern Recognit., vol. 40, no. 12,
pp. 3358–3378, 2007.

[15] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vision, 2017,
pp. 2980–2988.

[16] H.-S. Chang, E. Learned-Miller, and A. McCallum, “Active bias:
Training more accurate neural networks by emphasizing high variance
samples,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, pp. 1002–
1012, 2017.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

1662 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 6, NO. 6, JUNE 2025

[17] M. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent
variable models,” in Proc. Adv. Neural Inf. Process. Syst., vol. 23, pp.
1189–1197, 2010.

[18] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “Mentornet:
Learning data-driven curriculum for very deep neural networks on
corrupted labels,” in Proc. Int. Conf. Mach. Learn.. PMLR, 2018, pp.
2304–2313.

[19] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for
training deep neural networks with noisy labels,” in Proc. 32nd Conf.

Neural Inf. Process. Syst. (NeurIPS), 2018.
[20] M. Feurer, J. Springenberg, and F. Hutter, “Initializing Bayesian hyper-

parameter optimization via meta-learning,” in Proc. AAAI Conf. Artif.

Intell., vol. 29, no. 1, 2015.
[21] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for

fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1126–1135.

[22] Y. Hu, X. Wu, and R. He, “TF-NAS: Rethinking three search freedoms
of latency-constrained differentiable neural architecture search,” in Proc.

Eur. Conf. Comput. Vision, 2020, pp. 123–139.
[23] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel

programming for hyperparameter optimization and meta-learning,” in
Proc. Int. Conf. Mach. Learn., 2018, pp. 1568–1577.

[24] M. Shu, C. Liu, W. Qiu, and A. Yuille, “Identifying model weakness
with adversarial examiner,” in Proc. AAAI Conf. Artif. Intell., vol. 34,
no. 07, 2020, pp. 11 998–12 006.

[25] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in Proc. Int. Conf. Mach.

Learn., 2018, pp. 4095–4104.
[26] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable

architectures for scalable image recognition,” in Proc. IEEE Conf.

Comput. Vision Pattern Recognit., 2018, pp. 8697–8710.
[27] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution

for image classifier architecture search,” in Proc. AAAI Conf. Artif.

Intell., vol. 33, no. 01, 2019, pp. 4780–4789.
[28] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture

search on target task and hardware,” in Proc. Int. Conf. Learn. Repre-

sent., 2018.
[29] S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: stochastic neu-

ral architecture search,” in Proc. Int. Conf. Learn. Represent.,
2018.

[30] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable
architecture search: Bridging the depth gap between search and
evaluation,” in Proc. IEEE/CVF Int. Conf. Comput. Vision, 2019,
pp. 1294–1303.

[31] Y. Xu et al., “PC-DARTS: Partial channel connections for memory-
efficient architecture search,” in Proc. Int. Conf. Learn. Represent., 2019.

[32] H. Liang et al., “Darts+: Improved differentiable architecture search with
early stopping,” 2019, arXiv:1909.06035.

[33] X. Chu, X. Wang, B. Zhang, S. Lu, X. Wei, and J. Yan, “Darts-: Robustly
stepping out of performance collapse without indicators,” in Proc. Int.

Conf. Learn. Represent., 2020.
[34] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri,

“Cost-sensitive learning of deep feature representations from imbalanced
data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8, pp. 3573–
3587, Aug. 2017.

[35] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[36] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-
svms for object detection and beyond,” in Proc. 2011 Int. Conf. Comput.

Vision. IEEE, 2011, pp. 89–96.
[37] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf,

“Support vector machines,” IEEE Intell. Syst. their Appl., vol. 13, no.
4, pp. 18–28, Jul./Aug. 1998.

[38] S. Hochreiter, “Long short-term memory,” Neural Comput., vol. 9, no.
9, pp. 1735–1780, 1997.

[39] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[40] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. 2015 Conf. Empir.

Methods Natural Lang. Process., 2015, pp. 1412–1421.
[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
2016, pp. 770–778.

[42] P. Xie, X. Du, and H. Ban, “Skillearn: Machine learning inspired by
humans’ learning skills,” 2020, arXiv:2012.04863.

[43] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vision

Recognit., 2017, pp. 4700–4708.
[44] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur. Conf.

Comput. Vision, 2018, pp. 19–35.
[45] X. Dong and Y. Yang, “Searching for a robust neural architecture in four

gpu hours,” in Proc. IEEE/CVF Conf. Comput. Vision Pattern Recognit.,
2019, pp. 1761–1770.

[46] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter,
“Understanding and robustifying differentiable architecture search,” in
Int. Conf. Learn. Represent., 2019.

[47] W. Hong et al., “Dropnas: grouped operation dropout for differentiable
architecture search,” in Proc. 29th Int. Conf. Int. Joint Conf. Artif. Intell.,
2021, pp. 2326–2332.

[48] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” 2018,
arXiv:1711.00436.

[49] F. P. Such, A. Rawal, J. Lehman, K. Stanley, and J. Clune, “Generative
teaching networks: Accelerating neural architecture search by learning
to generate synthetic training data,” in Proc. Int. Conf. Mach. Learn.,
2020, pp. 9206–9216.

[50] H. Zhou, M. Yang, J. Wang, and W. Pan, “Bayesnas: A Bayesian
approach for neural architecture search,” in Int. Conf. Mach. Learn.,
2019, pp. 7603–7613.

[51] X. Wang, C. Xue, J. Yan, X. Yang, Y. Hu, and K. Sun, “Mergenas: Merge
operations into one for differentiable architecture search,” in Proc. 29th

Int. Conf. Int. Joint Conferences Artif. Intell., 2021, pp. 3065–3072.
[52] X. Chu and B. Zhang, “Noisy differentiable architecture search,” 2020,

arXiv:2005.03566.
[53] A. Noy et al., “Asap: Architecture search, anneal and prune,” in Proc.

Int. Conf. Artif. Intell. Stat., 2020, pp. 493–503.
[54] X. Chen and C.-J. Hsieh, “Stabilizing differentiable architecture search

via perturbation-based regularization,” in Proc. Int. Conf. Mach. Learn.,
2020, pp. 1554–1565.

[55] X. Chen, R. Wang, M. Cheng, X. Tang, and C.-J. Hsieh, “DrNAS:
Dirichlet neural architecture search,” in Proc. Int. Conf. Learn. Rep-

resent., 2020.
[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.

Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convo-
lutions,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2015,
pp. 1–9.

[57] A. G. Howard et al., “Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications,” 2017, arXiv:1704.

04861.
[58] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely

efficient convolutional neural network for mobile devices,” in Proc. IEEE

Conf. Comput. vision pattern Recognit., 2018, pp. 6848–6856.
[59] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical

guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.

Comput. Vision, 2018, pp. 116–131.
[60] M. Tan et al., “Mnasnet: Platform-aware neural architecture search for

mobile,” in Proc. IEEE/CVF Conf. Comput. Vision Pattern Recognit.,
2019, pp. 2820–2828.

[61] F. P. Casale, J. Gordon, and N. Fusi, “Probabilistic neural architecture
search,” 2019, arXiv:1902.05116.

[62] S. Hu, S. Xie, H. Zheng, C. Liu, J. Shi, X. Liu, and D. Lin, “DSNAS:
Direct neural architecture search without parameter retraining,” in Proc.

IEEE/CVF Conf. Comput. Vision Pattern Recognit., 2020, pp. 12084–
12092.

[63] X. Chu, T. Zhou, B. Zhang, and J. Li, “Fair darts: Eliminating unfair
advantages in differentiable architecture search,” in Eur. Conf. Comput.

Vision, 2020, pp. 465–480.
[64] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Im-

ages,” Citeseer, p. 60, 2009.
[65] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in Proc. 2009 IEEE Conf.

Comput. Vision Pattern Recognit., 2009, pp. 248–255.
[66] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced

loss based on effective number of samples,” in Proc. IEEE/CVF Conf.

Comput. Vision Pattern Recognit., 2019, pp. 9268–9277.
[67] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight

examples for robust deep learning,” in Int. Conf. Mach. Learn., 2018,
pp. 4334–4343.

[68] S. E. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A.
Rabinovich, “Training deep neural networks on noisy labels with boot-
strapping,” in Proc. ICLR (Workshop), 2015.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING FROM MISTAKES 1663

[69] B. Han et al., “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 31, 2018.

[70] X. Ma et al., “Dimensionality-driven learning with noisy labels,” in Proc.

Int. Conf. Mach. Learn., 2018, pp. 3355–3364.
[71] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted

data to train deep networks on labels corrupted by severe noise,” in Proc.

Adv. Neural Inf. Process. Syst., vol. 31, 2018.
[72] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-

ing deep learning (still) requires rethinking generalization,” Commun.

ACM, vol. 64, no. 3, pp. 107–115, 2021.
[73] A. Krizhevsky et al., “Learning multiple layers of features from tiny

images,” Citeseer, 2009.
[74] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Brit.

Mach. Vision Conf. 2016, 2016.

[75] H. Song, M. Kim, and J.-G. Lee, “Selfie: Refurbishing unclean samples
for robust deep learning,” in Proc. Int. Conf. Mach. Learn., 2019, pp.
5907–5915.

[76] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[77] Y. Chen, X. Shen, S. X. Hu, and J. A. Suykens, “Boosting
co-teaching with compression regularization for label noise,” in
Proc. IEEE/CVF Conf. Comput. Vision Pattern Recognit., 2021,
pp. 2688–2692.

[78] Y. Zhang, S. Zheng, P. Wu, M. Goswami, and C. Chen, “Learning with
feature-dependent label noise: A progressive approach,” in Int. Conf.

Learn. Represent., 2020.
[79] M. R. Znaidi, J. Sia, S. Ronquist, I. Rajapakse, E. Jonckheere, and

P. Bogdan, “A unified approach of detecting phase transition in time-
varying complex networks,” Sci. Reports, vol. 13, no. 1, p. 17948, 2023.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 25,2025 at 21:57:57 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

