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Abstract— The proliferation of online face images has height-
ened privacy concerns, as adversaries can exploit facial features
for nefarious purposes. While adversarial perturbations have
been proposed to safeguard these images, their effectiveness
remains questionable. This paper introduces IVORY, a novel ad-
versarial purification method leveraging Diffusion Transformer-
based Stable Diffusion 3 model to purify perturbed images
and improve facial feature extraction. Evaluated across gender
recognition, ethnicity recognition and age group classification
tasks with CNNs like VGG16, SENet and MobileNetV3 and
vision transformers like SwinFace, IVORY consistently restores
classifier performance to near-clean levels in white-box settings,
outperforming traditional defenses such as Adversarial Train-
ing, DiffPure and IMPRESS. For example, it improved gender
recognition accuracy from 37.8% to 96% under the PGD attack
for VGG16 and age group classification accuracy from 2.1%
to 52.4% under AutoAttack for MobileNetV3. In black-box
scenarios, IVORY achieves a 22.8% average accuracy gain.
IVORY also reduces SSIM noise by over 50% at 1x resolution
and up to 80% at 2x resolution compared to DiffPure. Our
analysis further reveals that adversarial perturbations alone do
not fully protect against soft-biometric extraction, highlighting
the need for comprehensive evaluation frameworks and robust
defenses.

I. INTRODUCTION

The sharing of personal images has become a daily routine
for billions of users worldwide. Platforms such as Facebook,
Instagram and X see the constant uploading of pictures,
many of which prominently feature human faces. These
faces contain a wealth of biometric data, including not
only identity, but also more nuanced soft-biometrics such as
gender, age and ethnicity [8], [39]. Researchers have raised
concerns regarding the misuse of this information [7], [36],
such as surveillance, unauthorized profiling and targeting in
social engineering attacks. The lack of awareness among
users about the extent of this data mining further exacerbates
the issue, as they inadvertently expose highly personal infor-
mation with every shared photo [24], [48], [52]. As a result,
there is a growing need for privacy-preserving techniques
that can allow users to maintain control over their biometric
data while continuing to share images online.

One of the most promising methods for safeguarding facial
data involves using adversarial perturbations to obfuscate
soft-biometrics [11], [42], [43], [57], [62]. These perturba-
tions manipulate the images to confuse models trained to
identify facial soft-biometrics while maintaining high fidelity
for human viewers.

In addition to its use in protecting facial soft-biometrics,
adversarial perturbation has been explored as a means to
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shield artists’ unique styles from being mimicked by text-
to-image generative models [40], [56], [64]. Style mimicry,
wherein a model can replicate an artist’s distinctive aesthetic,
poses a significant threat to contemporary artists who rely on
their creative identity to sustain their careers. In response, ad-
versarial techniques have been applied to published artworks,
introducing subtle perturbations that disrupt the fine-tuning
process of generative models, making it difficult for them to
learn and replicate artists’ styles accurately.

Unfortunately for both privacy-concerned users and artists,
researchers have demonstrated that these uses of adversarial
examples are not secure. Recent advancements in adversarial
purification, such as DiffPure [47] and IMPRESS [9], can
reverse the effects of style protection perturbations, rendering
them ineffective. These methods operate by purifying images
of the adversarial noise, thus enabling generative models to
bypass the embedded protections and once again accurately
mimic an artist’s style.

Given the success of adversarial purification, we sought
to explore how emerging diffusion-transformer models could
further enhance the purification process, specifically in the
context of adversarially perturbed facial images. The Multi-
Modal Diffusion Transformer (MMDIT) [23] found in Stable
Diffusion 3 has demonstrated strong performance across a
variety of image restoration tasks, making it a promising
candidate for adversarial purification.

In this paper, we introduce IVORY, a novel purification
method that leverages the MMDIT architecture. By inte-
grating MMDiT’s diffusion capabilities, IVORY effectively
purifies adversarially perturbed images, restoring them to a
state where facial feature extraction is significantly enhanced
as illustrated in Fig. 1.

The key contributions of this papers are:

« We propose IVORY, a novel diffusion-based purification
method leveraging diffusion transformers to effectively
counter adversarial perturbations.

o IVORY demonstrates significant improvements in adver-
sarial defense, restoring classification accuracy across
tasks like gender, ethnicity and age group recognition in
both white-box and black-box attack scenarios.

e Our results show that IVORY consistently outperforms
traditional adversarial training, DiffPure and IMPRESS,
achieving superior purification across various CNN and
Vision Transformer (ViT) architectures and attack meth-
ods, gaining 22.8% average accuracy in the black-box
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An overview of IVORY, which integrates a MMDIT (Stable Diffusion 3) model to purify adversarially perturbed images. The process begins with

the input of user image and the generation of adversarially perturbed obfuscated images. The MMDIT adds Gaussian noise to the obfuscated image in the
forward diffusion process which is then denoised using the Img2Img pipeline with a guidance scale to obtain the purified images, ready for soft-biometric

extraction.

setting.

o We show that IVORY also reduces SSIM noise by over
50% at 1x resolution and up to 80% at 2x resolution
compared to DiffPure.

This study highlights the limitations of adversarial perturba-

tions in soft-biometric privacy protection and emphasizes the

need for more robust privacy-preserving techniques.

II. RELATED WORK

Adversarial Training. Adversarial training has emerged as
one of the most prominent and effective defense strategies
against adversarial examples [4], [25]-[27], [41], [44], [51],
[67], [68]. Despite extensive research, adversarial training
still struggles with an inherent trade-off: more robust models
lose performance on clean data [6].

Adversarial Purification. Adversarial purification has gained
significant attention as an alternative to adversarial training,
focusing on removing adversarial noise from perturbed im-
ages before classification [14], [28], [31], [32], [53], [61].
More recent developments, such as DiffPure [47], highlight
the capacity of diffusion models to reduce the KL divergence
between clean and adversarial images, leading to more
aligned and purified outputs. DiffPure, however, is time-
consuming and impractical for real-time applications [65].
IMPRESS [9] marked another leap forward by targeting
adversarial style mimicry and offering robust purification
specifically against artistic style extraction, but it also suffers
from a longer purification time. Diffusion models like those
proposed by Ankile et al. [3] and Shi et al. [59] continue to
enhance purification techniques with novel architectures and
improved noise-scheduling methods.

Diffusion Models. Diffusion models have shown remark-
able capabilities for image-editing tasks, including image-to-
image translation [18], [45] and text-guided image manipu-
lation [37], [46]. Adversarial purification shares similarities
with these tasks, as seen in DiffPure [47] and SDEdit [45].
Few works, however, have explored the most recent diffusion
models, such as SDXL [49], SDXL-Turbo [54], Pixart-o [17]
and Stable Diffusion 3 [23], for improving model robustness.

The only work we know of is by Honig et al. [33], who
showed the value of SDXL as a purifier. No work has
yet evaluated Stable Diffusion 3’s MMDIT architecture for
adversarial purification.

III. THREAT MODEL

In this work, we aim to evaluate the purification capabil-
ities of the MMDIT in reducing adversarial noise for facial
soft-biometric obfuscation tasks.

Our assumptions are grounded in the real-world challenge
of adversarial purification, where an adversary seeks to
reverse the obfuscation applied by a user to preserve their
privacy. Specifically, we consider the following assumptions:
o Attacker’s Goal: The attacker aims to purify images that

have been obfuscated by the user through methods such as

AutoAttack [19] or Carlini & Wagner (C&W) [16]. This

noise is designed to prevent soft-biometrics (e.g., gender,

age, ethnicity) from being extracted.

o Soft-Biometrics Extraction: Once the adversary purifies
the image, they attempt to extract soft-biometrics from it
using a CNN-based or ViT-based soft-biometric classifier.
Thus, the purification process should not degrade or mod-
ify the image and ideally would restore the image visually
as close as possible to the original.

Unknown Adversarial Noise: The adversary is unaware of
the specific type of adversarial noise added to the image.

a) White-Box Scenario: In the white-box scenario, we
assume that the user and the adversary share the same
CNN or ViT models (including weights) for soft-biometric
extraction. The user uses the model to create adversarial
perturbations for their images, which improves their effec-
tiveness in fooling the same model used by the adversary.
Although the adversary may know which model the user
has, it provides no advantage to the purification algorithms.

b) Black-Box Scenario: The black-box scenario reflects
a more realistic setting where the user and adversary are
not aware of what the other one is using. We model this by
having each party use a different model architecture: the user
generates their adversarial samples with one model, while the



adversary evaluates the sample after purification on another
model. This will generally reduce the effectiveness of the
user’s adversarial perturbations. We note that our black-box
experiments are in what may more properly be called a gray-
box scenario, as both parties train on a single training dataset
and share knowledge of the task (gender, ethnicity, or age
group classification).

IV. IVORY: METHODOLOGY
A. Soft Biometric Extraction

Over the years, various methods have been proposed for
extracting soft-biometrics from facial images [12], [20], [29],
[30]. The tasks we use are: (i) gender recognition is typically
a binary classification task (male/female) [S]; (ii) age esti-
mation classifies individuals into predefined age groups [12];
and (iii) ethnicity recognition involves classifying individuals
into groups such as Caucasian, African American, East Asian
and Asian Indian [29]. These classification tasks serve as the
foundation for evaluating soft-biometrics extraction in the
context of adversarial purification.

In our work, we selected three CNN models that have
been employed in one of the most recent studies [11]
on soft-biometrics extraction and consistently demonstrated
strong performance in facial analysis tasks: VGG-16 [60],
SENet [35] and MobileNetV3 [34]. These models have been
pre-trained on large-scale datasets such as VGGFace2 [10]
and ImageNet [21], making them ideal for transfer learning
and soft-biometrics classification tasks.

To examine Transformer-based approaches, we also in-
cluded SwinFace [50], a ViT-based face perception model
that uses the Swin Transformer as its backbone. Unlike
CNN-based models, SwinFace uses a hierarchical feature
representation that captures multi-scale facial features, mak-
ing it particularly robust to pose variations and occlusions.
Additionally, it incorporates the Multi-Level Channel At-
tention (MLCA) module to resolve conflicts in multi-task
learning, allowing it to jointly learn facial attributes more
effectively. SwinFace achieves state-of-the-art performance
while efficiently handling over 40 facial perception tasks,
including face recognition, facial expression analysis, age
estimation and facial attribute classification.

B. Datasets

We use the same datasets as Carletti et al. in the most
recent studies on soft-biometrics extraction: VGGFace2,
VMER, VMAGE and Adience [11].

VGGFace2. VGGFace2 [10] is one of the largest publicly
available face datasets, consisting of over 3 million images
of more than 9,000 individuals. It includes a wide range of
variations in pose, age, gender and ethnicity.

VMER and VMAGE. The VGGFace2 MIVIA Ethnicity
Recognition (VMER) [29] and VGGFace2 MIVIA Age
(VMAGE) [30] datasets extend the original VGGFace2
dataset by providing additional labels for ethnicity and age,
respectively. VMER categorizes individuals into four ethnic
groups: African American, East Asian, Caucasian Latin and

Asian Indian. VMAGE assigns each individual to an age
group (0-15, 16-25, 26-35, 36-45, 46-60, 61+).

Adience. This dataset [38] is specifically designed for gender
and age classification with 26,580 face images in a wide
range of variations in appearance, lighting and image quality,
making it suitable for evaluating the robustness of soft-
biometrics extraction models under real-world conditions. Its
age categories range from 0-2 years to 60+ years.

C. Generating Adversarial Samples

We employ three well-known adversarial attacks: Au-
toAttack [19], PGD [44] and C&W [16]. These methods
are widely regarded for their robustness and efficacy in
generating adversarial examples [55].

D. Purification of Adversarial Samples with MMDiT

IVORY leverages the power of the MMDIT to purify
adversarial samples. In this section, we describe how IVORY
handles adversarial input images, how it performs forward
diffusion and how the reverse process restores the clean
image for soft-biometrics extraction.

a) Processing the Input Adversarial Image: The purifi-
cation process in IVORY’s application of MMDIiT begins by
processing the adversarial image x.,4, = = + J, where x
represents the original image and ¢ is the adversarial noise.
The image is first tokenized into a sequence of patches, with
each patch linearly embedded into a vector of dimension
d. This is similar to the patch embedding mechanism used
in the ViT architecture [22]. Given an image .4, Of size
I x I x C, MMDIT divides it into patches of size p X p,
resulting in a sequence of tokens of length T = (I/p)2.
Each patch is then embedded as a token, forming the input
sequence for the MMDIT transformer blocks. In addition
to image tokens, MMDIT incorporates auxiliary inputs such
as noise timesteps ¢ and potentially textual descriptions or
class labels ¢, which are appended as extra tokens to the
input sequence. This multi-modal approach enables MMDiT
to process both image data and additional context.

b) Forward Diffusion Process: Once the input sequence
has been prepared, the forward diffusion process is applied.
Each forward diffusion step adds Gaussian noise to the image
up to a predefined timestep t*, reducing the impact of the
adversarial noise.This process can be described by Eqn. 1,
where ay« controls the noise intensity at timestep t* and
€ ~ N (0, I) represents samples from a normal distribution.

(xadv)t* = (\/@) Tadv + (\/ 1- dt*) € (1)

If we set t* too high, the noisy image will lose key image
details, making accurate recovery difficult. So we must select
t* to balance the amount of purification against the risk of
losing image features.

¢) Reverse Diffusion and Purification: Starting from the
noisy image z;-, the reverse diffusion process gradually
removes the noise by approximating the reverse transitions
using a neural network pp(z:—1|x+). This reverse process is



mathematically defined in Eqn. 2, where pg is the network
parameterized by 6, which predicts the denoised image at
each timestep by learning the reverse Markov process.

~adv

MY = py(2i_q|xy) for t=tt"—1,...,0 (2)

MMDIT improves the effectiveness of this reverse process
by utilizing multi-head attention mechanisms that integrate
both image and auxiliary token information (such as noise
timesteps t and class labels c¢). This attention mechanism
allows the model to consider both the visual details of the
image and any contextual information that can guide the
purification process. More details on diffusion purification
and MMDIT are provided in Appendix B.

By iteratively applying the reverse denoising steps, [VORY
outputs a purified image 233" that closely resembles the origi-
nal image x while being stripped of adversarial perturbations.
This purified image can then be used by the classifier C' to
accurately extract soft-biometrics, free from the distortions
caused by adversarial noise.

V. EXPERIMENTAL SETUP

Our experiments were conducted on a machine equipped
with an NVIDIA A100 GPU with 80 GB of VRAM and 125
GB of system RAM running on Ubuntu 22.04.4 LTS.

a) Models for Soft Biometrics Recognition: The CNNs
and ViT used for facial soft biometrics recognition were
trained on VGGFace2, along with its extensions VMER
(for ethnicity recognition) and VMAGE (for age estimation).
For evaluating performance, gender and ethnicity recognition
tasks were tested on the VGGFace2 test set, which contains
170,000 images from 500 identities. Age estimation was
tested using the Adience dataset. While some models used
in the experiments were finetuned from publicly available
pre-trained weights, others were trained specifically for this
study. Pre-trained models for age classification [30] and gen-
der recognition (VGG-16 and SENet) were publicly available
from [12], [29]. These pre-trained networks were chosen due
to their state-of-the-art performance and robustness against
common real-world corruption. For this work, we trained
MobileNetV3 [34] for gender recognition and ethnicity clas-
sification, following similar training procedures as those used
for the pre-trained models.

b) Face Cropping and Data Preprocessing: We followed
the preprocessing procedure described by Carletti et al. [11].
We used a Single Shot Detector (SSD) based on the ResNet-
10 architecture to crop the faces from the images in the
VGGFace?2 dataset. As the cropped faces may vary in shape,
padding was applied to make the final input size 224x224
pixels, ensuring that the face was centered and occupied
approximately 80% of the input image [10]. This prepro-
cessing step was crucial for ensuring that the CNNs received
consistent input during training, eliminating potential errors
due to face detection. The images were normalized by
subtracting the mean value of each color channel, calculated
over the entire dataset.

¢) Training Procedure: The CNNs were trained using
SGD with a batch size of 128 for MobileNetV3 and 32
for VGG-16 and SENet. The training process was initialized
with a learning rate of 0.005, which decayed by a factor of
0.2 every 20 epochs and a weight decay of 0.05 for regu-
larization. We fine-tuned SwinFace according to its publicly
available codebase, carefully adjusting hyperparameters to
optimize performance.

d) Adversarial Attack Parameters: The user’s objective
is to confuse soft biometric classifiers without modifying the
image too much when posting about themselves online. In
our experimental setup, we thus configured the adversarial
attack parameters to balance the effectiveness of the pertur-
bations with the preservation of image quality. Carletti et
al. [11] prepared samples with varying noise intensities for
each attack type and had five human observers assess the
maximum level of noise that remained imperceptible. Based
on their findings, they constrained the /., and /5 norms to

15 and 900, respectively. We use the same values.

For generating adversarial examples, we used the Adver-
sarial Robustness Toolbox (ART) to implement the attacks
and applied the following attack parameters:

e PGD: The attack was iterated for a maximum of 40 steps
with a step size of @ = 0.01 and a perturbation size of
€ = 0.005 for ethnicity and gender recognition tasks. For
age estimation, we used a = 0.007 and € = 0.007.

o Carlini & Wagner (C&W) f5: We used a learning rate of
0.02 and a maximum of 50 iterations.

o AutoAttack: The parameters included a maximum iteration
count of 40, a step size of 0.005 and o = 0.01.

The rest of the attack parameters were kept at default
values, following the ART Library instructions.

e) Adversarial Training: As a baseline, we implemented
adversarial training for both white-box and black-box attack
scenarios. In a real-world white-box setting, the attacker
would adversarially train the best-performing model using
the most transferable adversarial samples. As shown in Ta-
ble I, we found that MobileNetV3 had the best performance
among the three base CNN models, so we focused on it for
our computationally expensive adversarial training tests for
both white-box and black-box attack scenarios.

We performed adversarial training by finetuning Mo-
bileNetV3 rather than training it from scratch, following
the training setup in [11]. We extracted 750,000 random
samples from the original training set and created adversarial
examples using PGD and AutoAttack. Note that PGD and
AutoAttack are designed to be more transferable compared
to C&W [19], [44]. This resulted in a total of 2.2 million
images per task across clean, AutoAttack and PGD samples,
culminating in a dataset of 6.75 million images.

In the black-box setting, we evaluated the adversarially
trained MobileNetV3 on PGD and AutoAttack samples
generated using VGG16 and SENet. In this scenario, the
adversarially trained model had no direct knowledge of the
adversarial samples generated with the other models.



The training was conducted using SGD with an initial
learning rate of 0.001 and we applied a learning rate decay
factor of 0.5 every five epochs.

f) DiffPure: Among recent diffusion-based purification
techniques, we chose to benchmark the CNN and ViT
models against DiffPure [47]. Honig et al.’s recent report
found that DiffPure performed about as well as the more
complex IMPRESS++ [33]. We implemented DiffPure with
Stable Diffusion XL 1.0 (SDXL) [49] using the HuggingFace
AutoPipelineForImage2Image pipeline, with a guid-
ance scale of 7.5, prompt P = “High Quality,” and strength
parameter of 0.2. The guidance scale and strength parameters
were based on empirical best practices [33]. As the prompt
is subject-agnostic, it guides the reverse diffusion process to
reconstruct the original image, rather than modifying it.

g) IMPRESS: IMPRESS [9] is one of the most recent
diffusion-based adversarial purification methods and it opti-
mizes images in the latent space using the Variational Au-
toencoder (VAE) of a latent diffusion model (LDM). Given
the significant computational cost and extended runtime of
IMPRESS, we limit its evaluation to white-box experiments.
We used the IMPRESS implementation provided by the
authors. To maintain consistency, we have configured IM-
PRESS using the same SDXL model, pipeline, parameters
and prompt as used for DiffPure.

h) IVORY: Instead of a regular diffusion model, IVORY
uses the best-performing publicly available diffusion-
transformer model, namely Stable Diffusion 3 (SD3).
We used SwarmUI 0.9.1 Beta to interface with the
model. Based on our empirical testing, we used the
Img2Img pipeline with a guidance scale of 7, a prompt
P = “High Quality,” and a strength parameter of
0.2 for the number of diffusion timesteps. We used
FlowMatchEulerDiscreteScheduler as the sched-
uler, which leverages the flow-matching sampling technique
introduced in SD3 [23] to denoise the encoded image latents.

i) Evaluation Metrics: We primarily gauge the effec-
tiveness of IVORY by the accuracy we get with standard
classifiers on our three downstream tasks — gender, ethnicity
and age group classification. We also measure the amount of
adversarial noise before and after purification by calculating
the Structural Similarity Index Measure (SSIM) [66], which
quantifies the perceptual similarity between the original
image and its perturbed or purified counterpart.

VI. RESULTS

Table I shows the baseline accuracy of our unprotected
models on unmodified samples. As expected, SwinFace out-
performs the CNN models [58]. We also use MobileNetV3
for our key findings, with results for VGG16 and SENet in
the appendices (available from the authors upon request).

A. White-Box Purification

In the white-box setting, the obfuscated adversarial sam-
ples are generated and evaluated, after the purification, by
the same model architecture. We find that IVORY effectively

TABLE I
CLEAN ACCURACY OF UNPROTECTED MODELS

Task ‘ MobileNetV3 VGG16 SENet  SwinFace
Gender 97.24% 96.85%  96.50% 97.51%
Ethnicity 93.67% 91.25%  92.30% 95.22%

Age 54.62% 57.51%  63.04% 66.88%

purifies adversarial noise and restores classifier performance
across various tasks and architectures.

Table II shows the main results of our whitebox experi-
ments. On the MobileNetV3 model, IVORY performs as well
as or better than DiffPure and IMPRESS in all settings. It
restores model accuracy to near-clean levels in many cases.
On age group classification, for example, IVORY improves
the accuracy from 2.14% against AutoAttack samples to
52.44% versus 51.61% for DiffPure, 51.60% for IMPRESS,
and 31.94% for adversarial training.

Using the more powerful SwinFace model, IVORY is
even more effective. The model suffered significant accu-
racy degradation under adversarial attacks. For example,
AutoAttack reduced SwinFace’s accuracy on Age Group
Classification to just 3.2%, highlighting the effectiveness of
the perturbations. IVORY successfully restored SwinFace’s
accuracy to 63.92%, compared to DiffPure’s 59.35%, demon-
strating its superior purification capabilities. Across most
task and attack settings, IVORY consistently outperformed
DiffPure by 2-3% for SwinFace.

B. Black-Box Purification

In the black-box setting, the adversary attempts to extract
soft-biometrics from the purified samples using a different
model than the one the user generates adversarial pertur-
bations with. IVORY demonstrates strong resilience across
various tasks and perturbation methods in this more realistic
setting as well.

On both the MobileNetV3 and SwinFace models, IVORY
outperforms DiffPure by 1% or more on nearly every task.
It produces an average accuracy gain across all tasks of
22.80%, compared to 19.48% for DiffPure. For instance,
in the gender recognition task under the C&W attack, Mo-
bileNetV3’s unprotected accuracy dropped to 51.2% under
attack, whereas it maintained a significantly higher accuracy
of 94.12% with IVORY (90.56% for DiffPure).

Overall, the performance gains across all these experi-
ments demonstrate that IVORY consistently provides superior
purification, regardless of the underlying model architecture.

C. Versus Adversarial Training & IMPRESS

In addition to comparisons with DiffPure, we com-
pare IVORY to adversarial training and IMPRESS using
MobileNetV3. Given IMPRESS’s substantial computational
cost, we limited its evaluation to a subset of 250 samples
per task-attack setting, while adversarial training, DiffPure
and IVORY were tested on the full dataset. Honig et al. and
Cao et al. used 180 and 80 samples, respectively, to evaluate
IMPRESS [9], [33]. Each image took approximately 5-7



TABLE II
WHITE-BOX: COMPARISON OF IVORY AND DIFFPURE ON CNN (MOBILENETV3) AND VIT (SWINFACE)

Model MobileNetV3 SwinFace Ave. Accuracy Gain
Adv. IMPRESS

Task Attack | Undef. Train DiffPure (250) IVORY Undef.  DiffPure Ivory DiffPure Ivory

Clean 97.24%  96.11% 97.24% 96.80% 97.24% | 97.51% 97.51% 97.51% - -
Gender PGD 54.96%  94.39% 96.22% 95.60 % 96.38% | 61.28% 95.25% 97.09 % 37.62% 38.62%
AA 53.15%  91.87% 91.97% 92.00% 92.51% | 56.68% 92.46% 93.14% 37.30% 37.91%
C&W 49.19%  90.26% 94.55% 94.80% 96.52% | 43.97% 94.03% 95.42 % 47.71% 49.39 %

Clean 93.67%  81.40% 93.67% 93.20% 93.67% | 95.22% 95.22% 95.22% - -
Ethnicity PGD 31.57%  83.81% 90.72% 88.00% 91.68% | 42.08% 91.28% 92.38% 54.18% 55.21%
AA 28.33%  84.07% 90.88% 92.00% 92.05% | 30.73% 90.89% 93.63 % 61.36% 63.31%
C&W 26.76%  87.64%  90.58% 90.40 % 90.24% | 21.84% 87.26% 90.71% 64.62% 66.18 %

Clean 54.62%  47.29% 54.62% 52.80% 54.62% | 66.88% 66.88% 66.88% - -
Age PGD 3.74% 41.03% 49.80% 51.20% 51.07% 7.21% 61.82% 64.53% 50.34% 52.33%
AA 2.14% 34.59% 51.61% 51.60% 52.44% 3.20% 59.35% 63.92% 52.81% 55.51%
C&W 46.06% 31.94%  52.02% 52.00% 52.65% | 29.16% 62.09% 65.70 % 19.45% 21.57%

(Ave.) 47.26%  (Ave.) 48.89%
TABLE III
BLACK-B0OX: COMPARISON OF IVORY AND DIFFPURE ON CNN (MOVILENETV3) AND VIT(SWINFACE)

Model MobileNetV3 SwinFace Ave. Accuracy Gain

Task Attack | Undef. DiffPure IVORY Undef.  DiffPure Ivory DiffPure Ivory
PGD 58.07% 93.87% 95.21% | 91.09% 92.35% 96.78 % 18.53% 21.42%
Gender AA 59.64% 91.64% 92.39% | 89.67% 90.42% 92.25% 16.38% 17.67%
C&W 51.22% 90.56% 94.12% | 88.24% 91.74% 94.83 % 21.42% 24.75%
PGD 45.32% 88.73% 91.24% | 86.47% 89.36% 91.49% 23.15% 25.47%
Ethnicity AA 43.95% 88.60% 91.32% | 85.89% 90.65% 92.04 % 24.71% 26.76 %
C&W 38.09% 84.29% 89.82% | 82.61% 85.20% 90.15% 24.40% 29.64 %
PGD 21.08% 46.03% 49.12% | 51.98% 58.29% 62.39% 15.63% 19.23%
Age AA 27.58% 47.89% 51.74% | 49.68% 57.34% 62.08 % 13.99% 18.28 %
C&W 31.93% 50.26% 52.18% | 40.43% 56.43% 64.19% 17.17% 22.01%

(Ave.) 19.48%  (Ave.) 22.80%
minutes for purification with our simplified implementation  periments.

of IMPRESS, whereas IVORY completed purification within
seconds (follow Sec VI-E for more details).

Across most settings, IVORY consistently restored model
accuracy more effectively than adversarial training, DiffPure
and IMPRESS. While IMPRESS maintained image fidelity
well, it marginally reduced clean accuracy by approximately
1%, a behavior also observed by its original authors [9].
Among the nine task-attack settings, DiffPure outperformed
IVORY in only one setting (Ethnicity Recognition, C&W
attack), while IMPRESS surpassed IVORY in two settings
(Ethnicity Recognition, C&W attack and Age Group Clas-
sification, PGD attack) as shown in Table II. However,
the performance gains of these methods over IVORY were
minimal, ranging from only 0.13% to 0.34%. In all remaining
settings, IVORY achieved the highest accuracy, demonstrating
its superior purification effectiveness.

For black-box testing, we evaluated MobileNetV3 and
SwinFace using adversarial samples generated from VGG16
and SENet. While DiffPure and IVORY were evaluated on
these black-box samples, running IMPRESS on this larger
dataset was computationally infeasible due to its iterative
nature. Thus, IMPRESS was excluded from black-box ex-

As shown in Table III, adversarial perturbations are gen-
erally less effective in this setting, as the user does not know
what model the attacker is using. Still, the user’s tactic does
meaningfully degrade accuracy, particularly on age group
classification, where it reaches a low of 21.08% against PGD
for MobileNetV3 and 40.43% against C&W for SwinFace.
However, IVORY consistently outperformed DiffPure across
all tasks and models with an average accuracy gain of
22.80%. Notably, in the Ethnicity Recognition task under
C&W attack, IVORY achieved 90.15% accuracy, surpassing
DiffPure’s 85.2%. Overall, IVORY demonstrated substantial
accuracy gains in both white-box and black-box settings,
reaffirming its effectiveness across various adversarial de-
fense scenarios.

D. SSIM Noise Analysis

SSIM provides a quantitative assessment of the perceptual
similarity between an original clean image and a modified
image and we can use it to measure both the level of
adversarial perturbation added by the user and the noise
remaining after the image purification process in IVORY and
DiffPure. Lower SSIM noise values indicate higher similarity



and therefore less perceptible degradation in image quality.

Fig. 2 shows the amount of noise introduced by IVORY
and DiffPure compared to adversarial examples. During our
experiments we noticed that IVORY consistently introduces
less noise compared to DiffPure, demonstrating its superior
ability to restore image quality. For instance, in the case of
AutoAttack, DiffPure (SDXL | 224) introduces an average
noise of 0.071, whereas IVORY (SD3 | 224) introduces
0.0341. Although IVORY introduces slightly higher SSIM
noise compared to adversarial samples, the values remain
imperceptible to the human eye.

Additionally, we explored the "Just Resize" technique,
available within SwarmUI, where the purified image is
upscaled using a latent upscaler, to upscale the purified image
by 2x. We observed further reduction of SSIM noise. For
example, with PGD adversarial samples, the SSIM noise
introduced by IVORY (SD3 | 224) reduces from 0.0331 to
0.0191 for the IVORY (SD3 + Just Resize | 448). These
results suggest that upscaling the purified images serves as a
viable strategy to enhance image quality without sacrificing
purification effectiveness. Overall, IVORY reduces SSIM
noise by over 50% at 1x resolution and up to 80% at 2x
resolution compared to DiffPure.

Fig. 3 showcases some purified samples by IVORY and
DiffPure. The adversarial images were generated using Au-
toAttack on MobileNetV3 model, which has the lowest
SSIM. We observe that the adversarial images purified by
DiffPure (SDXL) lack some fine details that IVORY (SD3)
retains — faces in rows 2-4 are all smoother with DiffPure.
Perhaps surprisingly, both IVORY and DiffPure keep odd
patterns added by the adversarial perturbation (the back-
ground of the first and second rows, forehead of the third
row, hat in the fourth row). It may be that these visible
patterns cannot be treated as noise by the diffusion models,
as they are visible and could be real image features, but
the less visible perturbations may have been removed. In
that sense, purification does not fully restore the original
image. The fourth column in Fig. 3 illustrates the output from
the combination of IVORY and Just Resize technique which
further improves the quality of IVORY outputs. Overall,
IVORY provides minimal image degradation.

E. Purification Time Analysis

To evaluate the performance of IVORY’s purification time
against DiffPure, we randomly selected 1000 samples from
three different adversarial attack techniques: PGD, AutoAt-
tack and C&W, all generated using MobileNetV3. The pu-
rification process was conducted on a machine equipped with
an NVIDIA A100 GPU.

Table IV reports single-image purification times for [VORY
and DiffPure across adversarial methods and diffusion
timesteps t*. As expected, inference time increases with t*.
At t* = 0.2, IVORY takes 2.54s (PGD), 2.21s (AutoAttack)
and 2.93s (C&W), slightly higher than DiffPure’s 1.79s,
2.26s and 2.57s, respectively. This marginal difference (<
0.5s) reflects SD3’s larger model size (8B vs. 3.5B in
SDXL) and more complex architecture, which contributes to
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Fig. 2. SSIM noise introduced by DiffPure and IVORY across different

adversarial samples and resolutions.

IVORY
(SD3)
224 x 224

Ivory
(SD3) + Just Resize
448 x 448

DiffPure
(SDXL)

224 x 224

Clean Adversarial
224 x 224 224 x 224

Fig. 3. Adversarial examples (second column) generated from clean images
are purified by DiffPure (SDXL),IVORY (SD3) and IVORY (SD3) + Just
Resize. The examples purified by IVORY (fourth column) are relatively
sharper and closer to the clean images compared to DiffPure (third column).

better purification. Compared to the 10-12s times originally
reported in [47] using DDPM on a V100 GPU, our setup
with SDXL on an A100 — leveraging Diffusers and PEFT
(Parameter Efficient Fine-Tuning) libraries — achieves a
10x speedup (1.1-1.5s at t* = 0.1), due to hardware
improvements and diffuser codebase optimizations.

In contrast, IMPRESS required approximately 300—400
seconds to purify a single image, significantly longer than
both IVORY and DiffPure. The original authors of IMPRESS
reported an average purification time of 141 seconds per
image [9]; however, in our experiments, we observed nearly
double that time. We hypothesize that this discrepancy arises
from the larger size of the underlying latent diffusion model’s
VAE (SDXL in our case), which may introduce additional
computational overhead. Regardless, IVORY remains dramat-
ically faster than IMPRESS, making it far more viable for
real-time deployment.

While purification times can still be optimized, particu-



TABLE IV
INFERENCE TIME (IN SECONDS) FOR IVORY AND DIFFPURE ACROSS
DIFFERENT ADVERSARIAL SAMPLES AND DIFFUSION TIMESTEPS t*

Adv. Method | IVORY  DiffPure IVORY DiffPure IVORY DiffPure
‘ t* =0 t* =0 t*=0.1 t*=01|t*=02 t*=02
PGD 0.34 0.32 1.26 1.18 2.54 1.79
AutoAttack 0.51 0.52 1.34 1.23 2.21 2.26
C&W 0.87 0.79 1.78 1.59 293 2.57

larly by exploring techniques like LoRAs with LCM, we
have focused on demonstrating the practical performance of
IVORY. Our results show that, despite being slightly slower
than DiffPure, IVORY’s inference times remain competitive,
especially given the more computationally complex attacks
like C&W. This solidifies IVORY ’s feasibility for real-world
deployment, where slight increases in computation time
are offset by its superior purification capabilities. Further
improvement and optimization of the purification time is left
for future work.

VII. DISCUSSION AND BROADER IMPACT

IVORY outperforms SDXL-based methods. From our experi-
mental results, it is evident that IVORY consistently surpasses
traditional adversarial defenses such as adversarial training,
as well as recent purification methods like IMPRESS and
DiffPure. The primary distinction between these methods lies
in the underlying diffusion model architecture. SD3 differs
significantly from SDXL, leveraging its transformer-based
architecture for image generation, which employs separate
weight sets for text and image modalities. This enables a
bidirectional flow of information between image and text
tokens, improving overall image generation [23]. In contrast,
SDXL relies on a simpler U-Net-based architecture. Another
crucial difference between the two models is their Variational
AutoEncoder (VAE). SD3-VAE operates with a 16-channel
latent space, significantly improving image detail retention
compared to the 4-channel latent space of SDXL-VAE [1],
[2]. Essentially, SD3’s VAE is designed to capture a richer
latent representation, leading to higher-quality reconstruc-
tions. In the context of adversarial purification, we hypoth-
esize that SD3-VAE’s higher latent capacity enables more
effective reconstruction of obfuscated images, which could
explain the observed performance improvements over SDXL.-
based purification methods. Unlike SDXL’s VAE, which
applies 48x compression, SD3-VAE uses a more modest 12x
compression, ensuring better preservation of critical details.
These architectural advancements contribute to IVORY ’s
superior purification performance.

Limitations of Adversarial Perturbations in Protecting Soft-
Biometrics. Our experiments reveal that advanced adversar-
ial purification techniques, such as IVORY, using off the shelf
Diffusion Transformer models like SD3, could easily remove
adversarial perturbations from obfuscated images. Our results
further prove that these perturbation methods do not offer
effective protection against soft-biometric extraction. The
fundamental issue lies in the fact that while adversarial
perturbations can obscure soft-biometric features to some
extent, they do not entirely shield them from extraction

methods designed to work even with perturbed data. This
limitation emphasizes that adversarial defenses should not
be relied upon for privacy preservation in soft-biometric
extraction systems.

The Need for Rigorous Evaluation of Protection Methods.
Our findings highlight the need for rigorous and adaptive
evaluations of protection methods. Similar to how adver-
sarial defenses in machine learning have often been found
vulnerable to adaptive attacks [15], [63], protections against
soft-biometric extraction are similarly susceptible to breaches
if not thoroughly tested. This observation underscores the
importance of continuously evolving evaluation strategies to
keep pace with advancements in both attack and defense
methodologies. This issue is exacerbated when protections
are widely publicized without sufficient validation, poten-
tially leading to a false sense of security among users.

Limitations and Future Work. Our study has several limita-
tions that warrant further investigation. First, the evaluation
was conducted with a limited number of adversarial samples
and defense techniques. Expanding the study to include a
broader range of adversarial attacks and defensive meth-
ods could provide a more comprehensive understanding of
their effectiveness and limitations. Additionally, future work
should explore the application of faster sampling techniques,
such as Low-Rank Adaptation (LoRA) with Latent Consis-
tency Models (LCM), to enhance the efficiency of diffusion-
based purification methods. Moreover, while IVORY shows
promise, there is room for improvement in reducing purifi-
cation time and SSIM noise. Alternative architectures and
optimization strategies could lead to more effective and
efficient methods. It is also important to investigate the
potential of countering IVORY with better privacy-preserving
techniques to achieve more comprehensive protection against
soft-biometric extraction.

VIII. CONCLUSIONS

We presented IVORY, an adversarial purification technique
using diffusion transformers to enhance robustness against
adversarial perturbations. IVORY effectively mitigates ad-
versarial noise and restores classifier performance across
tasks like gender, ethnicity and age group classification,
consistently outperforming adversarial training, DiffPure and
IMPRESS. For example, IVORY restored an average of 55%-
66% accuracy on ethnicity recognition in the white-box
setting. In the more realistic black-box setting, it restored
an average of 17%-29% in age group classification accuracy.
Our findings highlight that adversarial perturbations alone are
insufficient for protecting soft-biometric data, indicating the
need for better privacy-protecting techniques to help users.
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ETHICAL IMPACT STATEMENT

IVORY is an attack against users who would attempt to
protect their privacy by adding adversarial perturbations to
their images. It might also be adapted to remove perturba-
tions from artwork, undoing efforts meant to protect artists
from style copying. Some may argue that work on attacks is
unethical, but we strongly disagree. If adversarial examples
are found to be ineffective at protecting users, then more
effective approaches must be developed. Furthermore, if
anyone is relying on these insecure approaches for protection,
they need to be made aware of the vulnerability as soon as
possible so they can take down the images [13].
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