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Abstract—Classification tasks on ultra-lightweight devices
demand devices that are resource-constrained and deliver swift
responses. Binary Vector Symbolic Architecture (VSA) is a
promising approach due to its minimal memory requirements and
fast execution times compared to traditional machine learning
(ML) methods. Nonetheless, binary VSA’s practicality is limited
by its inferior inference performance and a design that prioritizes
algorithmic over hardware optimization. This paper introduces
UniVSA, a co-optimized binary VSA framework for both
algorithm and hardware. UniVSA not only significantly enhances
inference accuracy beyond current state-of-the-art binary VSA
models but also reduces memory footprints. It incorporates novel,
lightweight modules and design flow tailored for optimal hardware
performance. Experimental results show that UniVSA surpasses
traditional ML methods in terms of performance on resource-
limited devices, achieving smaller memory usage, lower latency,
reduced resource demand, and decreased power consumption.

I. INTRODUCTION

TinyML frameworks are essential for edge devices, aiming

for low latency, minimal hardware overhead, and high through-

put [1]–[3], particularly in brain-computer interfaces (BCIs).

Traditional ML like SVMs [4] and linear classifiers [5] are

still favored for BCI due to their lightweight implementations,

while in modern ML, even the binary neural networks (BNNs)

fail to meet the power constraints of implanted BCI devices

[4], [6]. Thus, there’s a vital need for ML models that

are both lightweight and performant for advancing tinyML

applications on resource-stringent devices. We contend that the

emerging binary vector symbolic architecture (VSA) possesses

these characteristics. Binary VSA encodes objects and values

as binary vectors and executes operations through logical

operations, significantly enhancing performance on resource-

limited devices [7]–[10].

Currently, the state-of-the-art (SOTA) training approach

for lightweight binary VSA is low-dimensional computing

(LDC) [11]. Binary VSA models optimized by LDC strategy

can have vector dimension D ≈ 100, with only minimal loss

in inference accuracy compared with SOTA high-dimensional

models with D = 10, 000 [12]. The low-dimension binary VSA

results in kilobyte-scale model sizes and power consumption

within safe limits on BCIs, laying the groundwork for applying

binary VSA models in resource-stringent environments.

However, current binary VSA implementations still face

other challenges in resource-constrained devices such as BCIs.

Specifically, binary VSA models could underperform compared

to traditional ML approaches in certain BCI tasks. For instance,

an LDC-trained binary VSA model achieves an accuracy 5%

10 2 10 1 100 101

Power (W)
0.86

0.90

0.94

0.98

Ac
cu

ra
cy

SVM

KNN

QNN

VSA-H

VSA-L

UniVSA

Safe Power

Memory(KB) Latency(ms)

SVM ×103 − 104 ×102

KNN − ×102

QNN ×103 − 104 ×102

VSA-H ×103 − 104 ×10−2

VSA-L ×1− 10 ×10−3

UniVSA ×1− 10 ×10
−2

Fig. 1: Comparison between UniVSA, high-dimensional VSA

(noted as VSA-H [9], [12]), low-dimensional VSA (LDC [11]),

and other lightweight ML models (including QNN [13], BNN

[14], SVM [15], and KNN [16]).

lower than that of an SVM for the EEGMMI task (Table II).

Additionally, there is a notable saturation in accuracy with

increasing vector dimensions, such as around D = 128
in [11]. Innovations in binary VSA design are essential to

overcome these accuracy constraints within power limitations.

Furthermore, past binary VSA hardware implementations

are often developed separately from the model design, as

independent accelerators [9], [11], without considering the

hardware overhead and its suitability for the intended applica-

tion. A binary VSA designed solely with performance under

consideration may be suboptimal or even unsuitable for specific

hardware, especially with severe resource constraints.

In this work, we address crucial challenges by proposing a

universal binary VSA framework, namely UniVSA, highlighting

its underlying algorithm-hardware co-optimization mechanisms.

Importantly, our approach does not only involve algorithmic

optimization to define an improved binary VSA model, but also

specifies the hardware implementation based on the well-trained

model. On the algorithm side, we emphasize a previously

overlooked issue in binary VSA — the absence of interaction

between features when generating vector representations. To

remedy this, we introduce a binary feature extraction module

that establishes relationships between features. Additionally,

we enrich the binary VSA models with other efficient designs.

In terms of hardware, we propose modules for UniVSA which

consist of essential primitives and a controller for execution

scheduling. In Fig. 1, we highlight the general comparison

between UniVSA and other lightweight ML methods.

Our main contributions are three-fold as summarized below:

• Algorithm-optimization: Model Design. We propose an

improved binary VSA model in our UniVSA framework.

This model has more capability and flexibility in the



configuration to improve the inference accuracy.

• Hardware-optimization: Implementation. We specify mod-

ules to accelerate UniVSA. Implementing UniVSA employs

parallelization and pipelining within critical modules to

minimize hardware overhead. Meanwhile, resource usage

is carefully managed to facilitate parallelism for reduced

latency while preventing excessive power consumption.

• Evaluation: We evaluate UniVSA compared with other

lightweight ML methods under resource-stringent scenarios.

These results validate the algorithmic optimization of Uni-

VSA, and demonstrate the lightweight and high efficiency

of UniVSA hardware implementation.

II. PRELIMINARIES

A. Binary Vector Symbolic Architecture

For a sample x with N features and M available values

for each feature, binary VSA generates bipolar vector sets

F = {fi} ∈ {−1, 1}N×D, i = [1, N ] and V = {vm} ∈
{−1, 1}M×D, m = [1,M ] to represent feature positions

and values, respectively. Note for continuous values, they are

discretized into M intervals to suit the VSA computing. The

sample x is encoded as a bipolar vector s as

s = sgn

(

N
∑

i=1

fi ◦ vxi

)

(1)

where sgn(·) is the sign function to binarize the accumulation

result. We set sgn(0) = 1 as a tiebreaker. A toy example of

binary VSA encoding is illustrated in the upper part of Fig. 2,

explaining how a sample is encoded as a bipolar vector.

B. Binary VSA on Classification Tasks

For a classification task, binary VSA generates a bipolar

vector for each category (i.e., class). Assuming that there are

C classes, the training of a binary VSA model is to derive a

class vector set C = {c} ∈ {−1, 1}C×D. During inference,

a query sample is encoded as binary vector s using Eq. 1.

Then, the query sample vector will be compared with all class

vectors, for which the one with the highest similarity will be

determined as the predicted label:

label = argmax
j

SIM(s, cj) (2)

SIM(·) can be any similarity measurements, where Hamming

distance and dot-product are commonly used in binary VSA.

In summary, binary VSA behaves as follows for a query input

x:

x
xi→vxi−−−−−→ [vx1

, ...,vxN
]

sgn(
∑

f◦v)
−−−−−−−→ s

arg maxCs
−−−−−−−→ label (3)

The lower part of Fig. 2 demonstrates an example of the dot-

product metric as the similarity measurement.

C. Low-Dimensional Training on Binary VSA

Considering the necessity of low dimension to implement

binary VSA on resource-constrained devices, we explain the

low-dimensional computing (LDC) strategy [11] for binary

VSA training. LDC maps the binary VSA model (i.e., Eq. 1
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Fig. 2: Encoding x using binary VSA (upper) and measuring

similarity between x and stored class vectors C (lower). Assume

x has three features and two available values, thus N = 3,M =
2; there are two categories C = 2.

and Eq. 2) onto a partial BNN, which is then optimized for

vector generation:

Value Projection. A unique neural network, namely Val-

ueBox (VB), is proposed to project an feature value xi to a

bipolar vector vxi
, mimicking the look-up step “xi → vxi

”

in Eq. 3. VB is composed of multi-layer perceptron (MLP)

followed by binarization, i.e., vx = VB(x) = sgn(MLP(x)).
During binary VSA implementation, V = {vm} is collected

by evaluating all available values m = [1,M ] through VB(m).
Vector Encoding. LDC interprets the vector encoding (i.e.,

the second step in Eq. 3) as a specially structured binary layer.

In this view, vx are regarded as the layer input, and F = {fi}
are the binary weights.

Similarity Measurement. The equivalence of the Hamming

distance and the dot-product is proved in [11]. Therefore, the

similarity measurement can be achieved with a binary dense

layer (at the third step in Eq. 3), where the binary weights

correspond to the class vector set C.

After optimizing this partial BNN, the feature vector set F

and class vector set C are directly extracted from the binary

layers, while the value vector set V is derived from VB. During

inference, only V, F, and C are required in VSA process (Eq. 1

and 2); partial BNN is only utilized for training. Although

LDC offers a strategy to reduce vector dimensions, binary

VSA still falls short in resource-constrained applications due

to performance constraints and undeveloped design flow.

III. UNIVSA: MODEL DESIGN

For resource-stringent scenarios, binary VSA should meet

two critical requirements: ultra-lightweight (i.e., low dimen-

sion) and high accuracy. We extend the binary VSA model

in terms of these goals, with three-fold enhancements: 1 Dis-

criminated Value Projection – the features with less importance

for classification can be represented with fewer elements; 2

Binary Feature Extraction – a binary convolutional layer is

introduced to construct interactions between features; 3 Soft

Voting – ensemble strategy is embedded. We demonstrate the

overview of our UniVSA model in Fig. 3.

A. Binary VSA Model under UniVSA Framework

We take the electrocorticography (ECoG) signal [17] as

an example for the model input, which is one typical format
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Fig. 3: The UniVSA model design. Symbols in parentheses show the vector/matrix dimensions for each stage.

of implanted BCI signals. Specifically, it is preprocessed and

evenly divided into W sliding windows with overlap, where

each window contains a signal snippet of length L [4], i.e.,

the input is shaped as (W,L), in total N = W × L features.

1) Discriminated Value Projection: Current binary VSA

models consider all input features with the same importance.

However, some time or frequency intervals of an ECoG signal

are simply irrelevant or noisy information. We define a feature’s

importance as whether it has obvious impacts on accuracy

for classification. Specifically, an input-wise binary mask is

generated through the feature subset selection strategy [18]. The

features corresponding to 1 in mask represent high importance,

while others with 0 are low-importance. The input passes

through a discriminator defined by mask, where values under

high-importance features go to VBH and under low-importance

ones go to VBL (in Fig. 3). Specifically, VBL produces bipolar

vectors of lower dimension than those from VBH .

2) Binary Feature Interaction by Convolution: The features

are independently encoded in current binary VSA models

(Eq. 1), while interactions between features are overlooked;

accordingly, we propose to use convolution to extract relation-

ships between features. Given the strict resource and power

constraints in resource-stringent scenarios, we employ binary

convolution for the feature extraction on binary value vectors.

3) Vector Encoding: We follow the LDC training to apply

the encoding procedure (Eq. 1). As aforementioned in Sec. II-C,

the binary weights in this layer correspond to feature vector

set F. Yet, unlike other binary VSA models where fi ∈ F

is generated for each feature position, the fi in our UniVSA

model represents the channel position of the binary convolution

output. Consequently, the output of encoding s is the binary

vector representation of the input ECoG signal.

4) Similarity Measurement with Soft Voting: In LDC

training [11], the similarity measurement layer generates

low-dimension class vectors, by optimizing a binary dense

layer. However, more bias (also known as underfitting) will

be introduced as the vector dimension decreases [19]. We

upgrade this design, by using multiple binary dense layers in

parallel, as an ensemble layer for classification. Therefore, a

sample is evaluated by multiple similarity layers with average

probabilities. Assuming Θ similarity layers, we have Θ sets
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Fig. 4: The ablation study of the three-fold enhancements over

binary VSA. The inference accuracy (bar) of binary VSA is

significantly improved with little memory footprint (line).

of class vectors C generated. Eq.2 can be rewritten as

label = argmax
j

1

Θ

Θ∑

θ=1

SIM(s, cθj ) = argmax
j

Θ∑

θ=1

C
θs (4)

By jointly considering the similarity results of every dense

layer, the output produces the category prediction on the class

with the highest similarity.

B. Preliminary Assessment on UniVSA Model

We validate the positive impact of discriminated value projec-

tion (DVP), binary feature extraction (BiConv), and soft voting

(SV) on inference accuracy and their memory footprint for

resource-stringent scenarios, in Fig. 4. The evaluation is based

on the EEGMMI dataset [20]. BiConv consistently improves the

accuracy of binary VSA across all vector dimensions and help

ensures a stable training process, evidenced by low accuracy

deviations. This underscores the necessity to incorporate feature

interaction in binary VSA models. DVP is less stable and

initially underperforms BiConv when vector dimensions are

low, but performs better as the vector dimension increases,

even comparable to BiConv. SV underperforms the other two

methods, yet still positively impacts binary VSA accuracy

at lower vector dimensions, helping alleviate underfitting

issues in low-capacity binary VSA models. By harnessing

the unique strengths of these methods, UniVSA achieves a

notable enhancement in binary VSA inference. In particular,

the result of the memory footprint shows that these extensions

have tiny overhead for the model size, i.e., +0.59% on DVP,

+5.64% on BiConv, and +0.39% on SV, considering the overall

kilobyte-scale memory requirement.
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IV. UNIVSA: HARDWARE IMPLEMENTATION

A. Module Design

The hardware implementation of UniVSA contains four mod-

ules: binary convolution, encoding, similarity measurement,

and central controller. Besides, we employ auxiliary circuits

for discriminated value projection (DVP) and intermediate

data buffering. We illustrate the hardware architecture in Fig. 5.

Discriminated Value Projection. The input features go

through VBH /VBL (decided by their feature importance mask)

to derive the value vector for each feature. Since DVP operates

significantly faster than BiConv (bottom right of Fig. 5).

Parallelism on DVP would increase hardware overhead without

reducing the latency of UniVSA. Thus, we do sequential

execution on DVP to minimize resource usage and power

consumption. A data FIFO is integrated at the DVP input

to sequentially feed data elements.

Binary Convolution. The binary convolution layer extracts

implicit features in the binary value vectors. As notation, value

vectors have size (DH ,W,L) and the binary kernel K has size

(O,DH , DK , DK), where O is the output channel number and

DK is the kernel size. The binary convolution is accelerated by

a double buffering strategy [21] to preload the next data block,

without waiting for the accomplishment of current convolution.

During convolution, we parallelize the computation by splitting

kernels into O parts with size (DH , DK , DK). Each part

participates in computing to determine the binary value for one

channel. Therefore, considering the output feature map with

size (O,W ′, L′), W ′ × L′ ×DK iterations are required.

Encoding and Similarity Measurement. We flatten the

output of binary convolution into shape (O,W ′×L′), to prepare

for encoding. The encoding input is XNORed with feature

vectors F and summed along the O-axis through an adder tree.

The binarization is then performed to produce a sample vector

s of dimension W ′ ×L′. Similarly, s is XNORed with Θ sets

of class vectors C for the similarity measurement. For each

category, the XNORed results are summed up to derive the final

similarity. Only partial parallelism is applied on Encoding

and Similarity along dimension O and Θ, to balance the

vector operation and resource usage. Akin to DVP, their latency

can be covered by BiConv under streaming inputs.

B. Hardware Consideration

Given the limited resource in tiny devices, we consider the

Memory and Resource to quantify the hardware efficiency. The

memory is determined by vector groups V, F, K, and C. With

the input size (W and L), number of available values (M ),

number of categories (C), value vector dimension (DH/DL),

kernel size (DK) and output channel (O) in convolution, and

number of voters (Θ), the required memory is

Memory = M × (DH +DL) +O ×DH ×D
2

K

+W × L×O +W × L×Θ× C
(5)

Since BiConv dominate resource usage (in Fig. 6), we

mainly consider their resource for configuration. Without loss

of generality, we define the resource overhead as

Resource ≈ β ×DK ×O ×DH (6)

where β is a coefficient indicating that the resource usage

increment is approximately proportional to the kernel size and

input/output channel of binary convolution.

We treat the memory footprint and resource usage as a

penalty for UniVSA configurations, to balance the accuracy

and the hardware overhead in the model design. The hardware

overhead is normalized by taking the basis M0 and R0 with

configuration (DH , DL, DK , O,Θ,M) = (4, 2, 3, 64, 1, 256):

LHW = λ1

Memory

M0

+ λ2

Resource

R0

(7)

Here, λ1 and λ2 are scaling factors to align with the inference

accuracy and differentiate these two hardware overheads.

V. EVALUATION

A. Experiment Setup

Datasets. We evaluate the UniVSA framework on real-

world BCI classification tasks and VSA tasks (in Table I):



TABLE I: Benchmark configurations.

Domain
# of

Classes
Input Size
(W,L)

Model Config.
(DH , DL, DK , O,Θ)

EEGMMI Time 2 (16,64) (8, 2, 3, 95, 1)
BCI-III-V Frequency 3 (16,6) (8, 1, 3, 151, 3)
CHB-B Frequency 2 (23,64) (8, 2, 3, 16, 3)
CHB-IB Frequency 2 (23,64) (4, 1, 5, 16, 1)
ISOLET Time 26 (16,40) (4, 4, 3, 22, 3)
HAR Time 6 (16,36) (8, 4, 3, 18, 3)

EEGMMI [20], BCI-III-V [22], CHB-B [23], CHB-IB [23],

ISOLET [24], HAR [25]. The first four datasets are collected

in electroencephalography (EEG) signals for BCI devices.

EEGMMI records volunteers’ activities from 64 channels, and

BCI-III-V is collected for mental imagery activities. We follow

the preprocessing in [26] and [22] for each dataset, respectively.

The CHB (balanced and imbalanced version) dataset is for

seizure detection. In addition, we include two tasks commonly

evaluated for VSA models. ISOLET is a voice recording of

26-letter speaking, and HAR is an activity gesture recording

from accelerometers and gyroscopes. Inputs for UniVSA are

discretized to 256 levels in advance [11], i.e., M = 256, and

shaped as 2-D of size (W,L).
Model Design. We determine the configuration of UniVSA

model by considering both the accuracy and hardware overhead,

i.e., obj = (Acc − LHW ) with λ1 = λ2 = 0.005. The

optimization procedure on configuration can also be referred

to [27]. To search for the optimal configuration for each task,

we utilize the evolutionary search with elitist preservation [28].

In Table I, we demonstrate the optimal searched configurations

to all benchmarks. The UniVSA models are trained on Python

3.7 with NVIDIA A10 GPU acceleration.

Hardware Implementation. We construct the UniVSA

on Ultra96-V2 SoC equipped with a ZU3EG FPGA [29].

Communication of control signals, data input, and final

output between the CPU and the FPGA is conducted through

AXI_HPM_LPD [30] interface. To optimize resource usage

and scheduling, we develop the hardware implementation in

Verilog using Vivado 2022.2.

B. Performance of Software Design

In Table II, we present the comparison of the accuracy and

memory footprint between UniVSA and other efficient methods,

including SOTA high-dimensional binary VSA training strate-

gies (i.e., LeHDC [12] with D = 10, 000), low-dimensional

binary VSA training (i.e., LDC with D = 128 [11]), LDA

(32-bit float), SVM (16-bit float with RBF kernel), and KNN

(K=5). Although deep learning approaches were also explored,

we exclude dense comparisons with them because of their

failure on resource and power budget [2].

Among traditional ML models, SVM generally has better

performance, notwithstanding its significantly larger model

size (×255 on LDA). Although SVM is a favored method

for BCIs [4], it could perform poorly on certain tasks, such

as BCI-III-V and HAR, according to our evaluations. On the

other hand, binary VSA models trained by LDC can have

TABLE II: Model comparison between UniVSA and other

lightweight methods on accuracy and memory. Memory foot-

print (KB) is shown in parentheses.

LDA KNN SVM LeHDC [12] LDC [11] UniVSA

EEGMMI
0.7004
(8.19)

0.8262
(−)

0.8766
(11223.04)

0.7980
(1602.50)

0.8279
(16.54)

0.8971
(13.59)

BCI-III-V
0.8599
(1.15)

0.9888
(−)

0.8971
(510.22)

0.8235
(443.75)

0.9370
(1.71)

0.9545
(3.57)

CHB-B
0.9067
(11.78)

0.9744
(−)

0.9819
(1990.14)

0.8992
(2162.50)

0.9669
(23.71)

0.9774
(4.51)

CHB-IB
0.9142
(11.78)

0.9488
(−)

0.9729
(3612.29)

0.8675
(2162.50)

0.9639
(23.71)

0.9684
(3.67)

ISOLET
0.9410
(66.56)

0.9140
(−)

0.9602
(5048.32)

0.9489
(1152.50)

0.9133
(10.78)

0.9282
(8.36)

HAR
0.7625
(13.82)

0.5582
(−)

0.7852
(6743.81)

0.9523
(1047.50)

0.9256
(9.44)

0.9338
(3.14)

average
0.8475

(18.88 KB)
0.8685

(−)
0.9124

(4.24 MB)
0.8816

(1.29 MB)
0.9225

(15.05 KB)
0.9445

(8.31 KB)

comparable SVM inference performance on average while

consuming significantly less memory, i.e., 0.5% of the memory

required by SVM. However, LDC underperforms SVM on some

tasks, e.g., 4.87% lower on EEGMMI and 4.69% lower on

ISOLET, echoing the accuracy challenges in Sec. I. In addition,

high-dimensional binary VSA models (LeHDC) achieve better

accuracy on certain tasks, yet require memory on the MB scale.

Our proposed UniVSA framework on average outperforms

other ML methods in terms of accuracy. When compared

to LDC, UniVSA shows superior accuracy across all tasks,

underscoring its improved model design and inference per-

formance. Additionally, UniVSA’s design strategy, which

considers hardware overhead, results in a smaller memory

footprint than LDC for most evaluated tasks. Notably, the

memory footprint of UniVSA on CHB tasks is much lower

than that of LDC. This is because the memory overhead (Eq.5)

of binary VSA is dominated by the size of feature vectors F,

i.e., (O,W ×L) for UniVSA and (D,W ×L) for LDC, where

the searched O = 16 in UniVSA is much smaller than D = 128
in binary VSA trained from LDC. While UniVSA does not

always outperform all other ML methods, with SVM frequently

delivering the highest performance, it does offer consistently

high accuracy. The performance of SVM, however, is task-

dependent and it underperforms on certain tasks. In contrast,

UniVSA generally delivers close-to-best results, except for

the ISOLET task, demonstrating its generality in lightweight

classification tasks.

C. Performance of Hardware Implementation

Framework Comparison. We compare the hardware im-

plementation of UniVSA with ML methods including SVM

[32] and KNN [16], and SOTA binary VSA hardware imple-

mentations, LookHD [9] with D = 2000 and LDC [11] with

D = 64. Additionally, we consider lightweight NN approaches,

i.e., BNN [14]/QNN [13]. We choose the comparison by the

closest FPGA architecture in the previous work so that the

lowest variations in resource allocation and power consumption

are induced during implementation. The results are summarized

in Table III.

1 Compared with conventional ML methods and NN models,

UniVSA can achieve much lower hardware overhead, with only



TABLE III: The hardware performance of UniVSA against other models. Values in parentheses are estimated. ISOLET is

selected for UniVSA since it has the closest input size to other binary VSA models.

FPGA Arch. Input Size / Classes Frequency (MHz) Memory (KB) Latency (ms) Power (W) LUTs (×103) BRAMs DSPs

SVM [31] Virtex-5 (20,20) / −⋆ 84 (406) 14.29 3.2 31.85 131 59
KNN [16] Stratix IV 64 / 2 131.42 − 69.12 24 135 − 80
BNN [14] Zynq-ZU3EG (3,32,32) / 10 250 − (0.36) 4.1 51.44 212 126
QNN [13] Zynq-ZU3EG (3,224,224) / 1000 250 (1450) (24.33) 5.5 51.78 159 360

LookHD [9] Kintex-7 617 / 26 200 (165) − (9.52) 165 175 807
LDC [11] Zynq-ZU3EG 784 / 10 200 6.48 0.004 (0.016) 0.75 5 1

UniVSA Zynq-ZU3EG (16,40) / 26 250 8.36 0.044 0.11 7.92 1 0

⋆ The SVM implementation is evaluated on a detection task, not classification.
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Fig. 6: The hardware overhead of each stage in UniVSA.

0.1∼0.5× resource usage. UniVSA also consumes order-of-

magnitude lower power and latency than these ML methods.

On the other hand, as indicated in an FPGA-based SVM survey

[15], all the collected SVMs have power consumption greater

than 1.5W. Taking into account this solid line, except for

low-dimensional binary VSA (i.e., LDC) and UniVSA, other

models in Table III are not suitable for BCI tasks. Note that

BNN and QNN possibly have better inference performance than

binary VSA models, especially on complex classification tasks.

However, we propose UniVSA as a binary VSA framework

to conduct easy classification tasks while requiring ultra-high

efficiency, where UniVSA can achieve comparable inference

accuracy and a minimal hardware budget.

2 Compared with other binary VSA work, such as LookHD

[9] and LDC [11], UniVSA shows comprehensive superiority

over LookHD, yet consumes more power and resources than

LDC. Nevertheless, considering that UniVSA can achieve

better accuracy and lower memory footprint (Table II), and

the resource usage is still acceptable (less than SVM [32])

by BCIs, we account for this as a feasible trade-off to better

support classification tasks on resource-stringent devices.

Ablation Study. We further demonstrate the hardware

overhead of the computing stages in UniVSA, in Fig. 6. The

BiConv layer consumes the most resources and execution

time in all tasks, far more than other stages. This supports

our previous discussion that BiConv dominates the UniVSA

execution, which is the motivation that we sequentialize the

DVP, Encoding, and Similarity stages to minimize

the resource usage, rather than optimize their latency using

parallelism. Moreover, the memory footprint of BiConv is very

TABLE IV: The hardware performance of UniVSA on all tasks.

The throughput is estimated for streaming inputs to UniVSA.

Benchmark
Latency

(ms)
Power
(W)

LUTs

(×103)
BRAMs DSPs

Throughput

(×103)

EEGMMI 0.070 0.45 33.62 3 0 17.34
BCI-III-V 0.007 0.18 10.10 1 0 184.84
CHB-B 0.100 0.34 13.92 1 0 12.06
CHB-IB 0.206 0.21 16.46 1 0 5.30
ISOLET 0.044 0.11 7.92 1 0 27.78
HAR 0.039 0.10 6.78 1 0 30.85

low, since only the kernel K is stored with a small dimension

(O,DH ,K,K); yet, F with size (O,W × L) or C with size

(Θ, C,W × L) occupies most of the memory footprint when

the input size or classes is large.

Hardware Performance on Benchmark. We provide the

hardware performance for all tasks in Table IV. Overall, all

tasks demonstrate power consumption of less than 0.5W and

latency under 0.2ms on the FPGA. The throughput analysis

under streaming inputs demonstrates the efficiency of UniVSA,

that all tasks can achieve over 5,000 throughput, sufficient for

BCI applications. With pipeline, the execution time is close

to the BiConv latency. Comparison between tasks reveals

a strong correlation between hardware overhead and factors

such as data input size and convolution channels. This finding

bolsters our co-optimization strategy for UniVSA model design,

taking hardware into consideration.

VI. CONCLUSION

In this paper, we present an end-to-end algorithm-hardware

co-optimization framework, UniVSA, solving the challenges

in current binary VSA design on resource-stringent devices.

UniVSA advances the binary VSA by model designing and

hardware acceleration with a completed process. Our evaluation

demonstrates the effectiveness of UniVSA on benchmarks

selected under resource-stringent scenarios, achieving the best

inference accuracy on average and lowest memory footprint

against other ML models. Further evaluation also demonstrates

the efficiency and lightweight of UniVSA.
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