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Abstract—Classification tasks on ultra-lightweight devices
demand devices that are resource-constrained and deliver swift
responses. Binary Vector Symbolic Architecture (VSA) is a
promising approach due to its minimal memory requirements and
fast execution times compared to traditional machine learning
(ML) methods. Nonetheless, binary VSA’s practicality is limited
by its inferior inference performance and a design that prioritizes
algorithmic over hardware optimization. This paper introduces
UniVSA, a co-optimized binary VSA framework for both
algorithm and hardware. UniVSA not only significantly enhances
inference accuracy beyond current state-of-the-art binary VSA
models but also reduces memory footprints. It incorporates novel,
lightweight modules and design flow tailored for optimal hardware
performance. Experimental results show that UniVSA surpasses
traditional ML methods in terms of performance on resource-
limited devices, achieving smaller memory usage, lower latency,
reduced resource demand, and decreased power consumption.

I. INTRODUCTION

TinyML frameworks are essential for edge devices, aiming
for low latency, minimal hardware overhead, and high through-
put [1]-[3], particularly in brain-computer interfaces (BClIs).
Traditional ML like SVMs [4] and linear classifiers [5] are
still favored for BCI due to their lightweight implementations,
while in modern ML, even the binary neural networks (BNNs)
fail to meet the power constraints of implanted BCI devices
[4], [6]. Thus, there’s a vital need for ML models that
are both lightweight and performant for advancing tinyML
applications on resource-stringent devices. We contend that the
emerging binary vector symbolic architecture (VSA) possesses
these characteristics. Binary VSA encodes objects and values
as binary vectors and executes operations through logical
operations, significantly enhancing performance on resource-
limited devices [7]-[10].

Currently, the state-of-the-art (SOTA) training approach
for lightweight binary VSA is low-dimensional computing
(LDC) [11]. Binary VSA models optimized by LDC strategy
can have vector dimension D =~ 100, with only minimal loss
in inference accuracy compared with SOTA high-dimensional
models with D = 10, 000 [12]. The low-dimension binary VSA
results in kilobyte-scale model sizes and power consumption
within safe limits on BClIs, laying the groundwork for applying
binary VSA models in resource-stringent environments.

However, current binary VSA implementations still face
other challenges in resource-constrained devices such as BCls.
Specifically, binary VSA models could underperform compared
to traditional ML approaches in certain BCI tasks. For instance,
an LDC-trained binary VSA model achieves an accuracy 5%
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Fig. 1: Comparison between UniVSA, high-dimensional VSA
(noted as VSA-H [9], [12]), low-dimensional VSA (LDC [11]),
and other lightweight ML models (including QNN [13], BNN
[14], SVM [15], and KNN [16]).

lower than that of an SVM for the EEGMMI task (Table II).
Additionally, there is a notable saturation in accuracy with
increasing vector dimensions, such as around D = 128
in [11]. Innovations in binary VSA design are essential to
overcome these accuracy constraints within power limitations.
Furthermore, past binary VSA hardware implementations
are often developed separately from the model design, as
independent accelerators [9], [11], without considering the
hardware overhead and its suitability for the intended applica-
tion. A binary VSA designed solely with performance under
consideration may be suboptimal or even unsuitable for specific
hardware, especially with severe resource constraints.

In this work, we address crucial challenges by proposing a
universal binary VSA framework, namely UniVSA, highlighting
its underlying algorithm-hardware co-optimization mechanisms.
Importantly, our approach does not only involve algorithmic
optimization to define an improved binary VSA model, but also
specifies the hardware implementation based on the well-trained
model. On the algorithm side, we emphasize a previously
overlooked issue in binary VSA — the absence of interaction
between features when generating vector representations. To
remedy this, we introduce a binary feature extraction module
that establishes relationships between features. Additionally,
we enrich the binary VSA models with other efficient designs.
In terms of hardware, we propose modules for UniVSA which
consist of essential primitives and a controller for execution
scheduling. In Fig. 1, we highlight the general comparison
between UniVSA and other lightweight ML methods.

Our main contributions are three-fold as summarized below:
o Algorithm-optimization: Model Design. We propose an

improved binary VSA model in our UniVSA framework.
This model has more capability and flexibility in the



configuration to improve the inference accuracy.

« Hardware-optimization: Implementation. We specify mod-
ules to accelerate UniVSA. Implementing UniVSA employs
parallelization and pipelining within critical modules to
minimize hardware overhead. Meanwhile, resource usage
is carefully managed to facilitate parallelism for reduced
latency while preventing excessive power consumption.

o Evaluation: We evaluate UniVSA compared with other
lightweight ML methods under resource-stringent scenarios.
These results validate the algorithmic optimization of Uni-
VSA, and demonstrate the lightweight and high efficiency
of UniVSA hardware implementation.

II. PRELIMINARIES
A. Binary Vector Symbolic Architecture

For a sample = with N features and M available values
for each feature, binary VSA generates bipolar vector sets
F={fi} ¢ {-1,1}Pi =[,N] and V = {v,,,} €
{~=1,13M*P 4 = [1,M] to represent feature positions
and values, respectively. Note for continuous values, they are
discretized into M intervals to suit the VSA computing. The
sample z is encoded as a bipolar vector s as

N
s =sgn (Z fio vzi> @)
where sgn(-) is the sign function to binarize the accumulation
result. We set sgn(0) = 1 as a tiebreaker. A toy example of
binary VSA encoding is illustrated in the upper part of Fig. 2,
explaining how a sample is encoded as a bipolar vector.

B. Binary VSA on Classification Tasks

For a classification task, binary VSA generates a bipolar
vector for each category (i.e., class). Assuming that there are
C classes, the training of a binary VSA model is to derive a
class vector set C = {c} € {~1,1}“*P. During inference,
a query sample is encoded as binary vector s using Eq. 1.
Then, the query sample vector will be compared with all class
vectors, for which the one with the highest similarity will be
determined as the predicted label:

label = arg max SIM(s, ¢;) (2)
J

SIM(-) can be any similarity measurements, where Hamming
distance and dot-product are commonly used in binary VSA.
In summary, binary VSA behaves as follows for a query input
x:
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The lower part of Fig. 2 demonstrates an example of the dot-
product metric as the similarity measurement.

C. Low-Dimensional Training on Binary VSA

Considering the necessity of low dimension to implement
binary VSA on resource-constrained devices, we explain the
low-dimensional computing (LDC) strategy [11] for binary
VSA training. LDC maps the binary VSA model (i.e., Eq. 1
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Fig. 2: Encoding = using binary VSA (upper) and measuring
similarity between x and stored class vectors C (lower). Assume
x has three features and two available values, thus N = 3, M =
2; there are two categories C' = 2.

and Eq. 2) onto a partial BNN, which is then optimized for
vector generation:

Value Projection. A unique neural network, namely Val-
ueBox (VB), is proposed to project an feature value x; to a
bipolar vector v,,, mimicking the look-up step “z; — v,”
in Eq. 3. VB is composed of multi-layer perceptron (MLP)
followed by binarization, i.e., v, = VB(z) = sgn(MLP(z)).
During binary VSA implementation, V = {v,,} is collected
by evaluating all available values m = [1, M] through VB(m).

Vector Encoding. LDC interprets the vector encoding (i.e.,
the second step in Eq. 3) as a specially structured binary layer.
In this view, v, are regarded as the layer input, and F = {f;}
are the binary weights.

Similarity Measurement. The equivalence of the Hamming
distance and the dot-product is proved in [11]. Therefore, the
similarity measurement can be achieved with a binary dense
layer (at the third step in Eq. 3), where the binary weights
correspond to the class vector set C.

After optimizing this partial BNN, the feature vector set F
and class vector set C are directly extracted from the binary
layers, while the value vector set V is derived from VB. During
inference, only V, F, and C are required in VSA process (Eq. 1
and 2); partial BNN is only utilized for training. Although
LDC offers a strategy to reduce vector dimensions, binary
VSA still falls short in resource-constrained applications due
to performance constraints and undeveloped design flow.

III. UNIVSA: MODEL DESIGN

For resource-stringent scenarios, binary VSA should meet
two critical requirements: ultra-lightweight (i.e., low dimen-
sion) and high accuracy. We extend the binary VSA model
in terms of these goals, with three-fold enhancements: (D Dis-
criminated Value Projection — the features with less importance
for classification can be represented with fewer elements; @
Binary Feature Extraction — a binary convolutional layer is
introduced to construct interactions between features; Q) Soft
Voting — ensemble strategy is embedded. We demonstrate the
overview of our UniVSA model in Fig. 3.

A. Binary VSA Model under UniVSA Framework

We take the electrocorticography (ECoG) signal [17] as
an example for the model input, which is one typical format
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Fig. 3: The UniVSA model design. Symbols in parentheses show the vector/matrix dimensions for each stage.

of implanted BCI signals. Specifically, it is preprocessed and
evenly divided into W sliding windows with overlap, where
each window contains a signal snippet of length L [4], i.e.,
the input is shaped as (W, L), in total N = W x L features.

1) Discriminated Value Projection: Current binary VSA
models consider all input features with the same importance.
However, some time or frequency intervals of an ECoG signal
are simply irrelevant or noisy information. We define a feature’s
importance as whether it has obvious impacts on accuracy
for classification. Specifically, an input-wise binary mask is
generated through the feature subset selection strategy [18]. The
features corresponding to 1 in mask represent high importance,
while others with 0 are low-importance. The input passes
through a discriminator defined by mask, where values under
high-importance features go to VB and under low-importance
ones go to VB, (in Fig. 3). Specifically, VB, produces bipolar
vectors of lower dimension than those from VBy.

2) Binary Feature Interaction by Convolution: The features
are independently encoded in current binary VSA models
(Eq. 1), while interactions between features are overlooked;
accordingly, we propose to use convolution to extract relation-
ships between features. Given the strict resource and power
constraints in resource-stringent scenarios, we employ binary
convolution for the feature extraction on binary value vectors.

3) Vector Encoding: We follow the LDC training to apply
the encoding procedure (Eq. 1). As aforementioned in Sec. II-C,
the binary weights in this layer correspond to feature vector
set F. Yet, unlike other binary VSA models where f; € F
is generated for each feature position, the f; in our UniVSA
model represents the channel position of the binary convolution
output. Consequently, the output of encoding s is the binary
vector representation of the input ECoG signal.

4) Similarity Measurement with Soft Voting: In LDC
training [11], the similarity measurement layer generates
low-dimension class vectors, by optimizing a binary dense
layer. However, more bias (also known as underfitting) will
be introduced as the vector dimension decreases [19]. We
upgrade this design, by using multiple binary dense layers in
parallel, as an ensemble layer for classification. Therefore, a
sample is evaluated by multiple similarity layers with average
probabilities. Assuming O similarity layers, we have © sets
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Fig. 4: The ablation study of the three-fold enhancements over
binary VSA. The inference accuracy (bar) of binary VSA is
significantly improved with little memory footprint (line).

of class vectors C generated. Eq.2 can be rewritten as
label = 1@SIM ) = 609 4
abe —argmjaxé; (s,cj)—argm?x(; s 4
By jointly considering the similarity results of every dense
layer, the output produces the category prediction on the class
with the highest similarity.

B. Preliminary Assessment on UniVSA Model

We validate the positive impact of discriminated value projec-
tion (DVP), binary feature extraction (BiConv), and soft voting
(SV) on inference accuracy and their memory footprint for
resource-stringent scenarios, in Fig. 4. The evaluation is based
on the EEGMMI dataset [20]. BiConv consistently improves the
accuracy of binary VSA across all vector dimensions and help
ensures a stable training process, evidenced by low accuracy
deviations. This underscores the necessity to incorporate feature
interaction in binary VSA models. DVP is less stable and
initially underperforms BiConv when vector dimensions are
low, but performs better as the vector dimension increases,
even comparable to BiConv. SV underperforms the other two
methods, yet still positively impacts binary VSA accuracy
at lower vector dimensions, helping alleviate underfitting
issues in low-capacity binary VSA models. By harnessing
the unique strengths of these methods, UniVSA achieves a
notable enhancement in binary VSA inference. In particular,
the result of the memory footprint shows that these extensions
have tiny overhead for the model size, i.e., +0.59% on DVP,
+5.64% on BiConv, and +0.39% on SV, considering the overall
kilobyte-scale memory requirement.
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Fig. 5: The hardware overview of UniVSA. We indicate the execution scheduling under each module in parentheses, and
demonstrate the overall pipelined scheduling of UniVSA for streaming inputs at the bottom right, where o =max{Dg,logo D}

is the execution time for a single convolution iteration.

IV. UNIVSA: HARDWARE IMPLEMENTATION
A. Module Design

The hardware implementation of UniVSA contains four mod-
ules: binary convolution, encoding, similarity measurement,
and central controller. Besides, we employ auxiliary circuits
for discriminated value projection (DVP) and intermediate
data buffering. We illustrate the hardware architecture in Fig. 5.

Discriminated Value Projection. The input features go
through VB /VB[, (decided by their feature importance mask)
to derive the value vector for each feature. Since DVP operates
significantly faster than BiConv (bottom right of Fig. 5).
Parallelism on DVP would increase hardware overhead without
reducing the latency of UniVSA. Thus, we do sequential
execution on DVP to minimize resource usage and power
consumption. A data FIFO is integrated at the DVP input
to sequentially feed data elements.

Binary Convolution. The binary convolution layer extracts
implicit features in the binary value vectors. As notation, value
vectors have size (Dy, W, L) and the binary kernel K has size
(O,Dp, Dk, D), where O is the output channel number and
Dy is the kernel size. The binary convolution is accelerated by
a double buffering strategy [21] to preload the next data block,
without waiting for the accomplishment of current convolution.
During convolution, we parallelize the computation by splitting
kernels into O parts with size (Dp, Dk, Dk). Each part
participates in computing to determine the binary value for one
channel. Therefore, considering the output feature map with
size (O, W', L"), W' x L' x Dk iterations are required.

Encoding and Similarity Measurement. We flatten the
output of binary convolution into shape (O, W’ x L’), to prepare
for encoding. The encoding input is XNORed with feature
vectors F and summed along the O-axis through an adder tree.
The binarization is then performed to produce a sample vector
s of dimension W’ x L’. Similarly, s is XNORed with © sets
of class vectors C for the similarity measurement. For each
category, the XNORed results are summed up to derive the final
similarity. Only partial parallelism is applied on Encoding

and Similarity along dimension O and ©, to balance the
vector operation and resource usage. Akin to DVP, their latency
can be covered by BiConv under streaming inputs.

B. Hardware Consideration

Given the limited resource in tiny devices, we consider the
Memory and Resource to quantify the hardware efficiency. The
memory is determined by vector groups V, F, K, and C. With
the input size (W and L), number of available values (M),
number of categories (C), value vector dimension (Dg /D),
kernel size (D) and output channel (O) in convolution, and
number of voters (O), the required memory is

Memory = M x (Dy + D)+ O x Dy x D3

5
+WXLxO4+WXxLx0OxC )

Since BiConv dominate resource usage (in Fig. 6), we
mainly consider their resource for configuration. Without loss
of generality, we define the resource overhead as

Resource ~ 3 X Dx x O X Dy 6)

where [ is a coefficient indicating that the resource usage
increment is approximately proportional to the kernel size and
input/output channel of binary convolution.

We treat the memory footprint and resource usage as a
penalty for UniVSA configurations, to balance the accuracy
and the hardware overhead in the model design. The hardware
overhead is normalized by taking the basis My and Ry with
configuration (Dg, Dy, Dk,0,0, M) = (4,2,3,64,1,256):

Mel\l/ill:ry o Resl(;)lrce 7
Here, \; and A\, are scaling factors to align with the inference
accuracy and differentiate these two hardware overheads.

Law = A1

V. EVALUATION
A. Experiment Setup

Datasets. We evaluate the UniVSA framework on real-
world BCI classification tasks and VSA tasks (in Table I):



TABLE I: Benchmark configurations.

Domain # of Input Size Model Config.
Classes (W, L) (Dg,Dr,Dk,0,0)

EEGMMI | Time 2 (16,64) 8,2,3,95 1)
BCI-III-V | Frequency 3 (16,6) 8,1, 3,151, 3)
CHB-B Frequency 2 (23,64) 8,2, 3,16, 3)
CHB-IB Frequency 2 (23,64) 4,1,5,16, 1)
ISOLET Time 26 (16,40) (4, 4,3,22,3)
HAR Time 6 (16,36) (8,4, 3,18, 3)

EEGMMI [20], BCI-III-V [22], CHB-B [23], CHB-IB [23],
ISOLET [24], HAR [25]. The first four datasets are collected
in electroencephalography (EEG) signals for BCI devices.
EEGMMI records volunteers’ activities from 64 channels, and
BCI-III-V is collected for mental imagery activities. We follow
the preprocessing in [26] and [22] for each dataset, respectively.
The CHB (balanced and imbalanced version) dataset is for
seizure detection. In addition, we include two tasks commonly
evaluated for VSA models. ISOLET is a voice recording of
26-letter speaking, and HAR is an activity gesture recording
from accelerometers and gyroscopes. Inputs for UniVSA are
discretized to 256 levels in advance [11], i.e., M = 256, and
shaped as 2-D of size (W, L).

Model Design. We determine the configuration of UniVSA
model by considering both the accuracy and hardware overhead,
ie, obj = (Acc — Lyw) with Ay = Ay = 0.005. The
optimization procedure on configuration can also be referred
to [27]. To search for the optimal configuration for each task,
we utilize the evolutionary search with elitist preservation [28].
In Table I, we demonstrate the optimal searched configurations
to all benchmarks. The UniVSA models are trained on Python
3.7 with NVIDIA A10 GPU acceleration.

Hardware Implementation. We construct the UniVSA
on Ultra96-V2 SoC equipped with a ZU3EG FPGA [29].
Communication of control signals, data input, and final
output between the CPU and the FPGA is conducted through
AXI_HPM_LPD [30] interface. To optimize resource usage
and scheduling, we develop the hardware implementation in
Verilog using Vivado 2022.2.

B. Performance of Software Design

In Table II, we present the comparison of the accuracy and
memory footprint between UniVSA and other efficient methods,
including SOTA high-dimensional binary VSA training strate-
gies (i.e., LeHDC [12] with D = 10, 000), low-dimensional
binary VSA training (i.e., LDC with D = 128 [11]), LDA
(32-bit float), SVM (16-bit float with RBF kernel), and KNN
(K=5). Although deep learning approaches were also explored,
we exclude dense comparisons with them because of their
failure on resource and power budget [2].

Among traditional ML models, SVM generally has better
performance, notwithstanding its significantly larger model
size (x255 on LDA). Although SVM is a favored method
for BCIs [4], it could perform poorly on certain tasks, such
as BCI-III-V and HAR, according to our evaluations. On the
other hand, binary VSA models trained by LDC can have

TABLE II: Model comparison between UniVSA and other
lightweight methods on accuracy and memory. Memory foot-
print (KB) is shown in parentheses.

| LDA KNN SVM | LeHDC [12] LDC [11]  UniVSA
07004 08262  0.8766 0.7980 0.8279 0.8971

EEGMMI | g 19) (—)  (11223.04) | (1602.50) (16.54) (13.59)
BCLILy | 08599 09888 08971 0.8235 0.9370 0.9545
(1.15) -) (510.22) (443.75) (1.71) (3.57)
CHB.B 09067 09744 09819 0.8992 0.9669 0.9774
(11.78) (=) (1990.14) | (2162.50) @23.71) @51)
CHBLIB 09142 09488 09729 0.8675 0.9639 0.9684
(11.78) (=) (361229) | (2162.50) 23.71) (3.67)
ISOLET 09410 09140  0.9602 0.9489 09133 0.9282
(66.56) (=) (5048.32) | (1152.50) (10.78) (8.36)
HAR 07625 05582 07852 0.9523 0.9256 0.9338
(13.82) (=) (674381) | (1047.50) (9.44) (3.14)
08475 08685 09124 0.8816 0.9225 0.9445

average | (1388 KB) (—) (424 MB) | (129 MB)  (1505KB) (8.31 KB)

comparable SVM inference performance on average while
consuming significantly less memory, i.e., 0.5% of the memory
required by SVM. However, LDC underperforms SVM on some
tasks, e.g., 4.87% lower on EEGMMI and 4.69% lower on
ISOLET, echoing the accuracy challenges in Sec. I. In addition,
high-dimensional binary VSA models (LeHDC) achieve better
accuracy on certain tasks, yet require memory on the MB scale.

Our proposed UniVSA framework on average outperforms
other ML methods in terms of accuracy. When compared
to LDC, UniVSA shows superior accuracy across all tasks,
underscoring its improved model design and inference per-
formance. Additionally, UniVSA’s design strategy, which
considers hardware overhead, results in a smaller memory
footprint than LDC for most evaluated tasks. Notably, the
memory footprint of UniVSA on CHB tasks is much lower
than that of LDC. This is because the memory overhead (Eq.5)
of binary VSA is dominated by the size of feature vectors F,
i.e., (O,W x L) for UniVSA and (D, W x L) for LDC, where
the searched O = 16 in UniVSA is much smaller than D = 128
in binary VSA trained from LDC. While UniVSA does not
always outperform all other ML methods, with SVM frequently
delivering the highest performance, it does offer consistently
high accuracy. The performance of SVM, however, is task-
dependent and it underperforms on certain tasks. In contrast,
UniVSA generally delivers close-to-best results, except for
the ISOLET task, demonstrating its generality in lightweight
classification tasks.

C. Performance of Hardware Implementation

Framework Comparison. We compare the hardware im-
plementation of UniVSA with ML methods including SVM
[32] and KNN [16], and SOTA binary VSA hardware imple-
mentations, LookHD [9] with D = 2000 and LDC [11] with
D = 64. Additionally, we consider lightweight NN approaches,
i.e., BNN [14]/QNN [13]. We choose the comparison by the
closest FPGA architecture in the previous work so that the
lowest variations in resource allocation and power consumption
are induced during implementation. The results are summarized
in Table III.

(D Compared with conventional ML methods and NN models,
UniVSA can achieve much lower hardware overhead, with only



TABLE III: The hardware performance of UniVSA against other models. Values in parentheses are estimated. ISOLET is
selected for UniVSA since it has the closest input size to other binary VSA models.

‘ FPGA Arch. Input Size / Classes  Frequency (MHz) ‘ Memory (KB)  Latency (ms) Power (W)  LUTSs (x 103) BRAMs DSPs
SVM [31] Virtex-5 (20,20) / —* 84 (406) 14.29 3.2 31.85 131 59
KNN [16] Stratix IV 64 /2 131.42 — 69.12 24 135 — 80
BNN [14] Zynq-ZU3EG  (3,32,32) / 10 250 — (0.36) 4.1 51.44 212 126
QNN [13] Zynq-ZU3EG  (3,224,224) / 1000 250 (1450) (24.33) 5.5 51.78 159 360
LookHD [9] | Kintex-7 617 /26 200 (165) — (9.52) 165 175 807
LDC [11] Zyng-ZU3EG 784 /10 200 6.48 0.004 (0.016) 0.75 5 1
UniVSA ‘ Zyng-ZU3EG  (16,40) / 26 250 ‘ 8.36 0.044 0.11 7.92 1 0

* The SVM implementation is evaluated on a detection task, not classification.
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Fig. 6: The hardware overhead of each stage in UniVSA.

0.1~0.5x resource usage. UniVSA also consumes order-of-
magnitude lower power and latency than these ML methods.
On the other hand, as indicated in an FPGA-based SVM survey
[15], all the collected SVMs have power consumption greater
than 1.5W. Taking into account this solid line, except for
low-dimensional binary VSA (i.e., LDC) and UniVSA, other
models in Table III are not suitable for BCI tasks. Note that
BNN and QNN possibly have better inference performance than
binary VSA models, especially on complex classification tasks.
However, we propose UniVSA as a binary VSA framework
to conduct easy classification tasks while requiring ultra-high
efficiency, where UniVSA can achieve comparable inference
accuracy and a minimal hardware budget.

@ Compared with other binary VSA work, such as LookHD
[9] and LDC [11], UniVSA shows comprehensive superiority
over LookHD, yet consumes more power and resources than
LDC. Nevertheless, considering that UniVSA can achieve
better accuracy and lower memory footprint (Table II), and
the resource usage is still acceptable (less than SVM [32])
by BCIs, we account for this as a feasible trade-off to better
support classification tasks on resource-stringent devices.

Ablation Study. We further demonstrate the hardware
overhead of the computing stages in UniVSA, in Fig. 6. The
BiConv layer consumes the most resources and execution
time in all tasks, far more than other stages. This supports
our previous discussion that BiConv dominates the UniVSA
execution, which is the motivation that we sequentialize the
DVP, Encoding, and Similarity stages to minimize
the resource usage, rather than optimize their latency using
parallelism. Moreover, the memory footprint of BiConv is very

TABLE IV: The hardware performance of UniVSA on all tasks.
The throughput is estimated for streaming inputs to UniVSA.

LUTs Throughput
Benchmark Le(lirelrsl)c Y P(ox()er ( leog) BRAMs  DSPs ( ;(J 1% 35‘
EEGMMI 0.070 0.45 33.62 3 0 17.34
BCI-III-V 0.007 0.18 10.10 1 0 184.84
CHB-B 0.100 0.34 13.92 1 0 12.06
CHB-IB 0.206 0.21 16.46 1 0 5.30
ISOLET 0.044 0.11 7.92 1 0 27.78
HAR 0.039 0.10 6.78 1 0 30.85

low, since only the kernel K is stored with a small dimension
(O,Dy, K, K); yet, F with size (O,W x L) or C with size
(©,C, W x L) occupies most of the memory footprint when
the input size or classes is large.

Hardware Performance on Benchmark. We provide the
hardware performance for all tasks in Table IV. Overall, all
tasks demonstrate power consumption of less than 0.5W and
latency under 0.2ms on the FPGA. The throughput analysis
under streaming inputs demonstrates the efficiency of UniVSA,
that all tasks can achieve over 5,000 throughput, sufficient for
BCI applications. With pipeline, the execution time is close
to the BiConv latency. Comparison between tasks reveals
a strong correlation between hardware overhead and factors
such as data input size and convolution channels. This finding
bolsters our co-optimization strategy for UniVSA model design,
taking hardware into consideration.

VI. CONCLUSION

In this paper, we present an end-to-end algorithm-hardware
co-optimization framework, UniVSA, solving the challenges
in current binary VSA design on resource-stringent devices.
UniVSA advances the binary VSA by model designing and
hardware acceleration with a completed process. Our evaluation
demonstrates the effectiveness of UniVSA on benchmarks
selected under resource-stringent scenarios, achieving the best
inference accuracy on average and lowest memory footprint
against other ML models. Further evaluation also demonstrates
the efficiency and lightweight of UniVSA.
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