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For oviparous species, the external environment is replete with cues that contain diverse information
relevant to developing embryos, including potential predation threats. Information about predators
obtained during the egg stage is known to improve survival after hatching by allowing individuals to
recognize and respond to potential threats more effectively, but the development and mechanisms by
which embryos learn are not well studied. Here, we sought to identify the developmental onset of
embryonic learning in a freshwater fish, the fathead minnow, Pimephales promelas, by conditioning
embryos to identify a piscivorous predator, the bluegill sunfish, Lepomis macrochirus, and evaluating their
behaviour in response to predatory cues each day before hatching. In addition, we manipulated egg
number (small or large clutch) and configuration (clustered, isolated) in experimental clutches to
determine whether social attributes of the clutch, specifically, group size and embryo proximity, influ-
ence the acquisition of learned predator information or the expression of antipredator behaviour.
Behavioural evidence of learned predator recognition first emerged among predator-conditioned em-
bryos at 4 days postfertilization, expressed as a reduction in locomotor activity in the presence of
predator cues. In addition, we found general effects of both the number and proximity of neighbouring
eggs on embryonic activity levels but not on the developmental onset of predator recognition in
predator-conditioned embryos or the expression of antipredator behaviour. These findings contribute to
a growing body of knowledge on embryonic learning in oviparous aquatic vertebrate species and suggest
that aquatic vertebrate embryos may be more sensitive to the social environment of the clutch than is

commonly considered.
© 2024 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Evidence from diverse taxa with oviparous reproduction in-
dicates that experience during embryogenesis can influence the
behaviour and fitness of organisms after hatching (e.g. cephalo-
pods: Darmaillacq et al., 2008; Guibé & Dickel, 2011; Lee et al.,
2020; birds: Colombelli-Negrel et al., 2014; Noguera & Velando,
2019; Turatto et al., 2019; amphibians: Garcia et al., 2017; Mathis
et al., 2008; arthropods: Peralta Quesada & Schausberger, 2012;
Shannon et al.,, 2022; fish: Horn et al., 2019; Nelson et al., 2013;
Poisson et al., 2017). For these organisms, the ability to learn about
the postnatal environment prior to directly encountering it is
thought to be favoured by selection because it enables individuals
to recognize and exploit locally available resources (Guibé & Dickel,
2011; Guibé et al., 2012; O'Brien et al., 2017) and/or reduce risk (e.g.
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Garcia et al., 2019; Horn & Chivers, 2021). Such improved respon-
siveness is likely to be especially advantageous during the vulner-
able early stages of life, when mortality rates are high (May, 1974).
For example, there is excellent evidence that embryonic fish and
amphibians can learn to recognize a predator before hatching via a
conditioned association between predator chemical cues and alarm
cue, as evidenced by enhanced antipredator responses to predatory
cues after hatching (e.g. Ferrari & Chivers, 2009, 2010; Garcia et al.,
2017,2019; Horn et al., 2019; Mathis et al., 2008; Nelson et al., 2013;
Poisson et al., 2017), and that separately, learned recognition of
chemical cues indicative of predation risk significantly improves
survival (Chivers et al., 2002; Gazdewich & Chivers, 2002; Mathis &
Smith, 1993a). However, whereas the posthatch adaptive benefits
of developmental plasticity resulting from embryonic experience
are well established (Jonsson et al., 2022; Nettle & Bateson, 2015),
few studies have explicitly tested hypotheses related to learning in
aquatic embryos prior to hatching (Atherton & McCormick, 2015;
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Sehr et al., 2016). Consequently, we know comparatively little about
the proximate mechanisms of predator learning at this key stage of
ontogeny.

One area of research that has received relatively little attention
concerns the timing and developmental onset of embryonic
learning and behaviour. Predation poses a risk to individuals at all
stages of ontogeny, including the egg stage, and embryos of many
oviparous aquatic species can detect predatory cues in the envi-
ronment using a variety of sensory modalities and respond to those
cues in ways that minimize this risk (Du & Shine, 2022). For
example, individuals may adjust timing or behavioural decisions
related to hatching (Chivers et al., 2001; Gomez et al., 2023; Giiell
et al., 2022; Warkentin, 2011) or suppress conspicuous activity
within the egg to minimize the probability of detection (Gervais
et al.,, 2021; Kempster et al., 2013; Mezrai et al., 2020). However,
the earliest ability of an embryo to adjust its behaviour in response
to environmental cues is constrained by the development of sen-
sory and locomotor systems responsible for perceiving, processing
and responding to such stimuli (Fuiman & Magurran, 1994; Pereira
& Moita, 2016; Romagny et al., 2012; Warkentin et al.,, 2017;
Wiedenmayer, 2009). Conditioned context-specific behaviours,
such as acquired predator recognition, also require further estab-
lishment of functional connections and mechanisms for the for-
mation of associative memories (Eschbach et al., 2020; Fan et al,,
2022; Gross & Canteras, 2012). Because most studies of embry-
onic learning and acquired predator recognition in oviparous
aquatic vertebrates conducted to date have inferred learning via the
behaviour of individuals after birth, it is often unknown whether
embryos themselves show behavioural evidence of learned pred-
ator recognition and, if so, when during development the capacity
to learn emerges (Sehr et al., 2016).

Moreover, for many aquatic species the physical organization of
eggs within the nest presents an opportunity for learning through
social mechanisms, in addition to the direct evaluation of envi-
ronmental cues. Thus, a second understudied area of research
concerns the extent to which the social environment of the nest
influences learning performance and/or the expression of behav-
iour before hatching (Colombelli-Negrel et al., 2014; Du & Shine,
2022; Noguera & Velando, 2019). In aquatic vertebrates, conspe-
cific social interactions are known to contribute substantially to the
development of behaviour after hatching (Brown & Laland, 2003;
Crane et al., 2018), including the development of predator defences
(Chapman et al., 2008; Kelley et al., 2003; Kelley & Magurran, 2003;
Watve & Taborsky, 2019). For example, juvenile reef fish, Dascyllus
marginatus, show greater predator avoidance in the presence of an
adult conspecific compared to when alone or paired with another
juvenile fish (Karplus et al., 2006). However, even in the absence of
opportunities for social transmission of previously learned infor-
mation from experienced individuals (i.e. cases wherein all in-
dividuals in a group are naive), the social context can affect how
individuals evaluate and respond to environmental information
and influence independent learning processes. For example, in-
dividuals frequently show evidence of improved learning perfor-
mance in the presence of conspecifics versus in isolation (e.g.
Brandao et al., 2015; Stanbrook et al., 2020), and both cognitive
flexibility and learning rate have been shown to be correlated with
group size in some species (Gleason et al., 1977; Triki et al., 2024;
but see Manassa et al., 2014; Mathiron et al., 2015). Group size can
also influence the intensity of antipredator responses, with in-
dividuals in larger groups of some species showing enhanced
antipredator behaviour (Mathiron et al., 2015; but see Chivers &
Ferrari, 2015).

To gain insight into the mechanisms of embryonic learning and
behaviour in aquatic vertebrates, we evaluated the development

and expression of acquired predator recognition in embryonic
fathead minnows, Pimephales promelas. Our goals were to (1)
determine when learned predator recognition via direct evaluation
of environmental cues is first behaviourally expressed in embryos
and (2) test the hypothesis that embryonic antipredator behaviour
is influenced by two physical attributes of clutch structure: group
size and embryo proximity. During the reproductive season
(May—September), female minnows lay clutches of up to 400 eggs
in a single layer on the underside of wood, rocks and floating
aquatic substrates (Andrews & Flickinger, 1973; Page & Burr, 2011;
Wisenden et al., 2009). The eggs are typically densely organized,
and most individuals develop in close physical contact with sib-
lings. However, both the physical structure and social composition
of a nest may vary according to the natural ecology of the species.
Fathead minnows are fractional spawners (Gale & Buynak, 1982),
and eggs in smaller clutches may be more sparsely distributed on
the spawning substrate (B. Karasch & J. Ward, personal observa-
tions). In nature, female minnows also frequently lay their eggs in
the nests of males that are already guarding eggs, resulting in nests
that contain embryos of varying age and genetic relatedness
(Bessert et al., 2007; Stone et al., 2019; Unger & Sargent, 1988).
Embryonic development in P. promelas is well characterized
(Bohler, 2012; Devlin et al., 1996), with individuals passing through
several distinct stages before hatching at approximately 5 days
postfertilization at room temperature, under laboratory conditions
(Crowder & Ward, 2022). Fathead minnows are an ideal species for
investigations of embryonic behaviour and learning because they
exhibit well-developed, unconditioned antipredator responses to
chemical cues from injured conspecifics (i.e. conspecific alarm cue;
Chivers & Smith, 1994, 1998; Crane et al., 2020; Mathis & Smith,
1993a), including at the embryonic stage (Crowder & Ward,
2022). Embryonic P. promelas reared in the presence of olfactory
cues indicative of predatory threat exhibit reduced spontaneous,
conspicuous movement (e.g. embryonic ‘flexing’) inside the egg
under conditions of perceived predation risk (Crowder & Ward,
2022), which is thought to minimize detection by a predator
(Gervais et al., 2021; Kempster et al., 2013; Mezrai et al., 2020). This
research also showed that embryos conditioned to associate alarm
cue with the odour of a predator display enhanced antipredator
behaviour in the presence of predator odour alone after hatching,
which is evidence for embryonic learning in this species.

Our first objective was to determine whether embryos show
behavioural evidence of learned predator recognition prior to
hatching and, if so, to identify the developmental window in which
such behaviour is first expressed. In minnows, olfactory canals and
supporting structures develop between 24 and 50 hours post
fertilization (Devlin et al., 1996). Thus, we predicted that embryos
would not show behavioural evidence for learned predator recog-
nition until after the olfactory and neural structures responsible for
conspecific alarm cue recognition and learning were established, as
evidenced by reduced embryonic activity in the presence of pred-
ator cues. Our second objective was to evaluate the effect of social
features of the clutch (e.g. group size and embryo proximity) on
embryonic behaviour and predator learning (Manassa et al., 2014;
Mathiron et al., 2015). To assess the potential for clutch-specific
influences, we conditioned and tested embryos in either small
groups (2—5 embryos) or large groups (10—15 embryos) and in
direct contact with, or physically isolated from, neighbouring sib-
lings. If embryos are sensitive to the presence of conspecifics in the
nest, we predicted that those that were in physical contact with one
another and those in larger groups would show more pronounced
responses to predator cues than those that were not, given the
potential to obtain environmental information though both direct
sampling and indirect (social) means.
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METHODS
Animals, Maintenance and Housing

Reproductively mature minnows (6+ months) were purchased
from a laboratory culture facility (Aquatic Biosystems, Fort Collins,
CO, US.A.) and bred to generate minnow eggs for the study. The
hatchery population from which the parental generation was
sourced was raised in a single-species, indoor recirculating hatch-
ery, with no prior predator experience for at least 10 generations.
Upon arrival at the laboratory, breeding groups consisting of one
male and two females were introduced into 6-litre tanks breeding
tanks containing a PVC spawning tile in a recirculating flow-
through aquatic housing system (Aquaneering Inc., San Diego, CA,
U.S.A.). The fish were fed an ad libitum diet of live brine shrimp
(Artemia spp.) supplemented with bloodworms (Glycera spp.) twice
daily and were maintained under a 16:8 hour light:dark cycle at
23 °C for the duration of the experiment. Spawning tiles were
checked for the presence of eggs twice each day. Eggs were
immediately removed from the tank when found.

Ethical Note

All procedures and protocols were approved by the Institutional
Animal Care and Use Committee of Ball State University (protocol
number 1220881-24).

Developmental Treatments and Rearing

Newly laid clutches were assigned to one of two develop-
mental water treatments, control water or water containing ol-
factory cues from a piscivorous predator (bluegill sunfish, Lepomis
macrochirus) combined with conspecific alarm cue, following
previously described methods (Crowder & Ward, 2022). A stock
solution of conspecific alarm cue was created before the start of
the experiment from naturally deceased or humanely euthanized
(via a lethal dose of MS-222) frozen adult female minnows
(Cashner, 2004; Crowder & Ward, 2022; Mathis & Smith, 1993b).
To generate the alarm cue, 60 minnows were thawed at room
temperature and rinsed thoroughly in tap water. The skins were
removed with a scalpel, homogenized for 10 min in 20 ml of
deionized water and then diluted with 350 ml of deionized water.
The homogenate was mechanically filtered to remove any tissue
debris, and 3 ml quantities of the filtered cue solution were ali-
quoted into vials and frozen at -20 °C until use. Water containing
olfactory predator cues was obtained from a 140-gallon (530-litre)
tank (model LS-700, Frigid Units Inc., Toledo, OH, U.S.A.) con-
taining four adult bluegill sunfish. The sunfish were fed the same
diet as the minnow population to eliminate confounding novel
dietary cues. Fresh predator + alarm cue treatment water was
made each day by mixing 800 ml of the aged, aerated water
containing predator cue with 3 ml of conspecific alarm cue. Fresh
control treatments were also made each day, consisting only of
aged and aerated dechlorinated water that was free of predator or
alarm cues.

Eggs were selected at random from the spawning tile on the day
that they were laid and divided among four, 3.5 cm diameter
dishes containing 6 ml of the appropriate water treatment. The
number and arrangement of embryos in each of the dishes was
experimentally manipulated such that eggs were placed in either a
small group (5 embryos) or a large group (15 embryos). For each
group size treatment, half of the embryos were clustered, meaning
they were placed in physical contact with at least one other em-
bryo, and half were dispersed, meaning that they were not in
physical contact with any other embryos. We maintained the

embryos under these conditions for 5 days at 21-23 °C
(~12—24 hour before hatching). Each day, half (~3 ml) of the
water was gently removed from each dish using a fine pipette and
replaced with an equivalent volume of water containing freshly
prepared olfactory cues or fresh control water. Embryos were
assessed three times daily for mortality and dead embryos were
gently removed with forceps. Mean final group sizes were 3.8
(range 2—5 embryos) and 14.9 (range 10—15 embryos) for the small
and large groups, respectively.

Behavioural Tests

To determine whether embryos that develop in different clutch
configurations differ in their behaviour, embryos in large or small
groups and those physically clustered or dispersed were presented
with water containing either predator olfactory cues alone or
control water on days 3, 4 and 5 of development (Fig. 1). Embryos
remained in their dishes of residence during tests.

To begin a test, the dish was placed on the stage of a dissecting
microscope (Zeiss Stemi 508) outfitted with a camera (Axiocam 208
Color) and the embryos were permitted 2 min to acclimate. Thirty
to 60 s before the start of a test, 3 ml of either control water or
predator cue was added to the dish. Half of the clutches were
presented with predator cue on days 3—5 of development, and the
other half were tested with control water. Embryonic behaviour
was recorded for 5 min after administration of the stimulus, and an
automated behavioural detection program (DanioScope, EthoVi-
sion, Noldus, Leesburg, VA, U.S.A.) was used to extract embryonic
activity data from the tapes. For each embryo, we recorded the
proportion of trial time spent engaged in locomotor activity. Within
the egg, embryos exhibit frequent spontaneous locomotion in the
form of twitching or rolling. However, embryos are less conspicu-
ously active under perceived conditions of predation risk (Crowder
& Ward, 2022).

Statistical Analysis

General linear mixed-effects models (GLMMs) were used to
determine when embryonic learning was first expressed during
development and to assess the influence of group size and neigh-
bour proximity on embryo behaviour. In initial analyses, we
included developmental treatment (predator-conditioned or
naive), test stimulus (predator cue or control water), neighbour
proximity (clustered or dispersed), group size (small or large) and
developmental day (3, 4 or 5) as main factors in the model, as well
as all two-way interactions between these factors. In addition, we
included the three-way interaction between embryo develop-
mental treatment, test stimulus and developmental day to deter-
mine when embryonic antipredator behaviours are first expressed.
We also included three-way interactions between embryo devel-
opmental treatment, test stimulus and group size and between
embryo developmental treatment, test stimulus and neighbour
proximity, respectively, to evaluate whether the responses of
conditioned and nonconditioned embryos to a predatory stimulus
varied across social contexts. Clutch identity was included as a
random effect in all models. For significant interaction terms of
interest, we conducted additional GLMM analyses followed by
Tukey post hoc tests to determine the direction and magnitude of
the effect. All analyses were conducted using the package ‘nlme’ in
R (version 4.0.3; R Core Team, 2021).

RESULTS

A total of 58 clutches were collected during the experimental
period. Of these, 20 were reared under control conditions (11
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Figure 1. Testing conditions and experimental design. Predator-conditioned embryos (daily exposure to bluegill sunfish odour combined with minnow alarm cue, AC) and predator-
naive embryos (control water exposure) were reared to hatching in one of four social configurations (small or large group, with or without direct contact with other embryos).
Embryonic behaviour in response to predator cue or control water stimuli was tested on days 3, 4 and 5 of development.

clutches tested on day 5 of development for response to a control
stimulus and 9 tested in response to predator olfactory cues).
Thirty-eight clutches underwent daily exposure to predator cue
combined with conspecific alarm cue (14 of which were subse-
quently tested in response to control stimulus and 24 of which
were tested in response to predator olfactory cues).

Effects of Developmental Age and Clutch Structure on Embryonic
Behaviour

The proportion of trial time that embryos spent engaged in lo-
comotor activity was variable across trial scenarios (range 2.5—22.4%
across all treatments and days). However, mean activity levels
showed consistent decreases with increased developmental age.
Across groups, the mean (+ SD) proportion of embryonic activity was
13.51 + 0.69%onday 3 of development,12.63 + 0.69%onday 4
of development and 523 + 0.69% on day 5 of development.
Accordingly, there was a significant main effect of day of embryonic
development on activity level (Table 1). Pairwise Tukey post hoc tests
indicated that activity significantly and linearly decreased over the
developmental period (day 3 versusday 4: P = 0.02; day 3 versus
day 5: P < 0.0001; day 4 versus day 5: P < 0.0001; Fig. 2a).

Both the number of embryos in the clutch and the proximity of
embryos to one another had significant effects on behaviour
(Table 1). Specifically, mean (+ SD) trial embryonic activity levels
were moderately higher (18% increase) in larger experimental
clutches (11.32 + 0.67% versus 9.59 + 0.7%; Fig. 2b) and sub-
stantially lower (52% decrease) in trials in which embryos were in
physical contact with one another compared to trials in which they
were dispersed (12.62 + 0.68% versus 8.29 + 0.68%; Fig. 2c).

Table 1

Embryonic Learning

We did not observe significant main effects of either the
developmental environment (predator + alarm cue or control) or
test stimulus (predator cue or control) on the percentage of time
spent active during trials (Table 1). However, there was a significant
interaction between embryonic rearing environment and test
stimulus, indicating that embryos that were conditioned to learn
the identity of a predator responded differently to olfactory stimuli
than those that were not (Table 1). Subsequent analyses conducted
separately for embryos reared under control conditions and those
exposed to predator cues combined with alarm cue revealed that
whereas embryos reared under control conditions showed similar
levels of activity in the presence of control water or predator cues
(F11889 = 2.07, P = 0.15; Fig. 3), embryos reared in the pres-
ence of predator cue + alarm cue showed significantly reduced
activity in response to alarm cue alone compared to control water
(F1_36 = 125,P = 0.001; Fig. 3).

Emergence of Learned Predator Recognition during Development

The three-way interaction between developmental treatment,
test stimulus and day of development was significant (Table 1),
indicating that how predator-conditioned and nonconditioned
embryos responded to predator cues diverged over the develop-
mental period. Subsequent analyses conducted separately for
predator-conditioned and naive embryos on each day of the
experiment showed that changes in behaviour indicative of learned
predator recognition were first evident on day 4 of development
(Fig. 4). Neither predator-conditioned embryos (Fip9 = 2.85,

Results of a linear mixed-effects model examining the effects of developmental environment (control, predator cue + alarm cue), test stimulus (control, predator cue) and
clutch features (group size, neighbour proximity) on the development and expression of learned predator recognition prior to hatching (3, 4 or 5 days postfertilization)

F df P
Developmental environment 0.257 1, 4769 0.612
Test stimulus 0.0642 1, 4769 0.800
Day 417.520 2, 4769 <0.0001
Group size 26.637 1, 4769 <0.0001
Neighbour proximity 246.640 1, 4769 <0.0001
Developmental environment * test stimulus 6.742 1,54 0.012
Developmental environment =day of development 36.250 2, 4769 <0.0001
Test stimulus =day of development 6.287 2, 4769 0.002
Developmental environment = test stimulus * neighbour proximity 12.088 1, 4763 0.0005
Developmental environment *test stimulus = group size 0.420 1,4763 0.517
Developmental environment = test stimulus *day of development 15.239 2, 4769 <0.0001
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Figure 2. Marginal means from a linear mixed model showing main effects on embryonic locomotor activity (percentage of trial time spent active) of (a) embryonic development
on day 3 (N = 1723), day 4 (N = 1676) and day 5 (N = 1586) postfertilization, (b) embryo group size (small, 2—5 embryos, N = 1163; large, 10—15 embryos,
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Figure 3. Marginal means from a linear mixed model showing mean locomotor ac-
tivity (percentage of trial time spent active) of embryos as a combination of embryo

developmental environment and olfactory test stimuli. Control stimulus: N = 1067
naive fish, N = 1067 predator-conditioned fish; predator cue stimulus: N = 889
naive fish, N = 889 predator-conditioned fish. Points and whiskers represent means

and standard errors. ***P < 0.001 compared with control.

P = 0.102) nor naive embryos (Figp¢ = 0.67, P = 0411)
differed in their response to predator cues versus control water on
day 3. However, on day 4, predator-conditioned embryos showed a
~5% decrease in activity in the presence of predator cues compared to
their behaviour in control water (Fi33 = 7.76, P = 0.009),
which persisted through day 5 (Fi31 = 6.78, P = 0.014). By
contrast, naive embryos showed higher levels of activity in the
presence of predator cues compared to control water on both days 4
and 5 (day 4: Fig17 = 5.56,P = 0.012; day 5: Figo7 = 7.76,
P = 0.006; Fig. 4).

Effects of Clutch Size and Neighbour Proximity on Embryonic
Responses to Test Stimuli

Our initial results indicated that differences between naive
versus predator-conditioned embryos in their responses to the test
stimuli depended on aspects of clutch structure (group size and
embryo proximity; Table 1). Because we found that learned
behavioural responses to the predator did not emerge until day 4 of

= 2652; dispersed, no physical contact, N = 2185). Points and whiskers represent

development, we restricted follow-up analyses conducted sepa-
rately for naive and predator-conditioned embryos to data
collected on days 4 and 5 of development. Predator-conditioned
embryos showed consistent, parallel decreases in activity in the
presence of predator cues compared to control water irrespective of
group size (F195116 = 0.69, P = 0.50; Fig. 5a) or neighbour
proximity (F194888 = 128, P = 0.28; Fig. 5b). By contrast,
embryos reared in control water showed no difference in activity
levels in the presence of predator cues in larger or smaller groups
(Fo127228 = 0.63,P = 0.53; Fig. 5a) but were more active when
not in physical contact with any other embryos (F2127754 = 9.23,
P < 0.001; Fig. 5b).

DISCUSSION

In this study, we investigated (1) whether and at what stage of
development fathead minnow embryos express behavioural evi-
dence of acquired predator recognition and (2) whether social
features of the clutch have an observable influence on embryo
behaviour. We found that embryos conditioned to identify a
predator showed changes in locomotor activity in the presence
versus absence of predator cues consistent with an antipredator
interpretation and that behavioural expression of this response
emerged at approximately 4 days postfertilization. We also found
that two features of clutch structure and organization (group size
and embryo proximity) had a detectable influence on behaviour;
specifically, embryos in physical contact with other embryos and
those in smaller groups showed lower levels of activity than those
in isolation. However, this finding was observed in both naive and
predator-conditioned embryos, suggesting that embryos may
generally attend to the presence of neighbours regardless of prior
experience.

The finding that embryos conditioned to identify a predator
based on olfactory cues exhibited differences in spontaneous ac-
tivity in the presence versus absence of those olfactory cues adds to
a growing body of research demonstrating that not only do em-
bryos possess the capacity to acquire information from the envi-
ronment (Garcia et al., 2017; Godoy et al., 2021; Horn & Chivers,
2021; Poisson et al., 2017), but that they also respond to those
environmental cues before hatching (Horn et al., 2019; Mezrai et al.,
2020; Noguera & Velando, 2019). In the context of predation, the
ability to learn and respond to predator cues at the egg stage has
been shown to improve survival in one of two ways: by allowing for
escape or by decreasing the probability of detection (Fuiman &
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Figure 5. Marginal means from a linear mixed model showing mean response (percentage of trial time spent active) of naive (control) and predator-conditioned (predator + alarm)
embryos in response to control versus predator cues as a function of (a) group size (small, 2—5 embryos; large 10—15 embryos) and (b) neighbour proximity (clustered, in physical
contact; dispersed, no contact). Points and whiskers represent means and standard errors. Numbers below the symbols are the number of embryos in each test combination.

Magurran, 1994; Kelley & Magurran, 2003; Weihs & Webb, 1984).
The former phenomenon is well documented in multiple frog and
fish species, with individuals exposed to predator cues during
embryogenesis showing accelerated developmental rates and
earlier hatching times (e.g. Doody & Paull, 2013; Smith & Fortune,
2009; Wisenden et al, 2022) and/or rapid escape-hatching
behaviour in response to an immediate threat (Giiell et al., 2022;
Jung et al., 2022; Warkentin, 2005). For example, fathead minnow
embryos are sometimes vulnerable to cannibalism by parental and
alloparental males (Green et al., 2008; Stone et al., 2019). In such
cases, escape may be the only survival strategy available. However,
the immediate antipredator benefits associated with early hatching
may trade off with longer-term developmental fitness costs. For
example, individuals that hatch early are commonly smaller (Musa
et al.,, 2020) and have underdeveloped locomotor and/or sensory

systems (Delia et al., 2019) resulting in reduced posthatch indi-
vidual performance and higher posthatch mortality (Colbert et al.,
2010; Willink et al., 2014; Wisenden et al., 2022).

Alternatively, embryos may adjust their behaviour inside the
egg to reduce the probability of detection by predators (Kempster
et al,, 2013; Poisson et al., 2017). Such a strategy may be particu-
larly likely if predator olfactory cues are detected by embryos
without accompanying visual or tactile stimuli, indicative of an
initial phase of the predation sequence (i.e. before the predator has
detected the prey; Bronmark & Hansson, 2000; Landeira-Dabarca
et al., 2019). Consistent with this idea and previous work on this
species (Crowder & Ward, 2022), in this study minnow embryos
conditioned to recognize predator olfactory cues showed lower
levels of spontaneous activity within the egg in the presence of
olfactory predator cues compared with blank water control
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conditions. Reduced conspicuousness is also thought to explain
changes in the behaviour of other embryonic aquatic species in the
presence of predator cues, including cessation of movement of
embryonic sharks and cuttlefish (Gervais et al.,, 2021; Kempster
et al., 2013; Mezrai et al., 2020).

Behavioural evidence consistent with an interpretation of ac-
quired predator recognition first emerged at 4 days postfertiliza-
tion, corresponding to stage 30—31 of development at 25 °C
(Devlin et al., 1996). In minnows, the olfactory placodes are first
visible at stage 21 of embryonic development (approximately
24 hours postfertilization), with axons extending from the olfac-
tory groove to the olfactory lobes of the telencephalon by stage 28
(74 hours postfertilization) and sensory cells bordering the ol-
factory groove by stage 29 (85 hours postfertilization; Devlin
et al., 1996). By contrast, the first evidence of embryonic body
movement in minnow embryos occurs at stage 22 (approximately
26 hours postfertilization), preceding the development of the
olfactory sensory system (Bohler, 2012; Devlin et al., 1996). Indeed,
locomotor movement is well developed by 72 h postfertilization
and individuals show clear changes in behaviour in response to
other environmental cues (e.g. mechanical disturbance) at this time
(K. Steinberg & ]. Ward, personal observation), Thus, the timing of
the behavioural onset of associatively learned antipredator re-
sponses based on olfaction in minnows may more strongly reflect
development of the sensory and neural systems involved in
perception and/or processing rather than the functionality of the
motor system required to execute a response.

We also detected an observable influence of the structural or-
ganization of the clutch on embryonic behaviour, providing the first
evidence that embryonic P. promelas are sensitive to the presence
and behaviour of neighbours. Specifically, we found evidence that
embryos reared and tested in physical contact with one another
and those in smaller groups were less active than those lacking
contact with other embryos and those in bigger groups. Broadly,
our findings are consistent with those reported for other taxa that
found that embryos perceive cues produced by nestmates and
adjust their behaviour in response to them (Aubret et al., 2016;
Endo et al., 2019; McGlashan et al., 2012; Noguera & Velando, 2019;
Riley et al., 2020; Vergne & Mathevon, 2008). For example, younger
embryonic water snakes (Natrix maura) in mixed-age nests accel-
erate development to facilitate synchronized hatching with older
nestmates (Aubret et al., 2016), which is hypothesized to reduce
predation risk (Colbert et al., 2010; Endo & Numata, 2017). How-
ever, our specific predictions that the activity levels of individuals
within the chorion would be lower in clustered eggs and in larger
groups were only partially supported.

Assuming that all eggs in a clutch are equally vulnerable to
piscivorous predators, all members of the group are likely to benefit
from heightened responsiveness (Mathiron et al., 2015; Ward &
Webster, 2016). Indeed, group coordination has been shown to be
an important factor in the effective execution of a collective
response to predatory threat in fish (Handegard et al., 2012; Zheng
et al., 2005). Consistent with this interpretation, in our study, em-
bryos in physical contact with one another, who presumably had
access to social cues from neighbouring eggs in addition to personal
information, showed lower levels of activity than isolated eggs.
However, in contrast with our expectation, activity levels in larger
groups were greater than those in smaller groups. Moreover, we did
not find evidence that the presence or number of conspecifics
influenced the likelihood or onset timing of associative learning in
predator-conditioned embryos, which aligns with the results of
previous studies conducted after hatching (Davis et al, 2023;
Chivers & Ferrari, 2015; Manassa et al., 2014; Mathiron et al., 2015).

This study adds to a growing body of literature on embryonic
behaviour (Du & Shine, 2022) by demonstrating evidence for

learned predator recognition prior to hatching and identifying the
developmental window over which behavioural evidence of the
embryonic learning process emerges in fathead minnows, which is
becoming a model species for studies of the development and
mechanisms of embryonic learning in fish. Moreover, we present
evidence that suggests that embryos are sensitive to the presence of
adjacent conspecifics, suggesting the potential for social mecha-
nisms of embryonic learning in addition to direct (asocial) evalu-
ation of environmental cues. An intriguing area for future research
would be to understand how embryonic interactions change as a
function of nest composition. In P. promelas, as in other species,
females preferentially lay their eggs in nests that already contain
one or more (often older) clutches (Jamieson, 1995; Ridley &
Rechten, 1981); these new clutches are usually laid in direct con-
tact with older clutches laid hours to days earlier, and the coeffi-
cient of relatedness (r) among individuals in a nest may vary from
0 (in the case of sneak fertilizations or after a nest take-over by
another male; Bessert et al., 2007; Unger & Sargent, 1988) to 0.5. A
second potential area for follow-up concerns the roles played by
different sensory modalities in mediating information transfer
among nestmates. For example, one potential source of conspecific-
derived information is physical disturbance cues generated by the
movement of neighbouring embryos. Indeed, in both avian and
nonavian reptiles, physical disturbance cues produced by siblings,
including changes in cardiac activity (e.g. Aubret et al., 2016) and
motility within the egg (Noguera & Velando, 2019), function as
sources of social information that alter developmental program-
ming and coordinate behaviour within the clutch (Doody et al.,
2012; McGlashan et al., 2012). However, because fathead minnow
eggs are transparent, visual cues may provide an additional source
of information. Additional research is now underway to determine
whether and how embryos perceive and transmit social informa-
tion in the nest and how conspecific information influences em-
bryonic behaviour and learning in lower aquatic vertebrates.
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