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Abstract— We propose C-LAIfO, a computationally efficient
algorithm designed for imitation learning from videos in the
presence of visual mismatch between agent and expert domains.
We analyze the problem of imitation from expert videos with
visual discrepancies, and introduce a solution for robust latent
space estimation using contrastive learning and data augmen-
tation. Provided a visually robust latent space, our algorithm
performs imitation entirely within this space using off-policy
adversarial imitation learning. We conduct a thorough ablation
study to justify our design and test C-LAIfO on high-dimensional
continuous robotic tasks. Additionally, we demonstrate how C-
LAIfO can be combined with other reward signals to facilitate
learning on a set of challenging hand manipulation tasks with
sparse rewards. Our experiments show improved performance
compared to baseline methods, highlighting the effectiveness of
C-LAIfO. To ensure reproducibility, we open source our code.

I. INTRODUCTION

In recent years, there has been a significant surge in
research on imitation learning from expert videos, commonly
referred to as the Visual Imitation from Observations (V-IfO)
problem. The approach of mimicking experts from videos
holds great promise for the future, as it offers a cost-effective
way to teach autonomous agents new skills and behaviors.
To achieve this goal, prior research has developed methods
capable of concurrently addressing two primary challenges of
the V-IfO framework: the partial observability of the decision-
making process and the absence of expert actions [1]. Despite
these advancements, end-to-end state-of-the-art algorithms
still face significant barriers in real-world applications due to
the assumption that both the expert and learning agent operate
within the same environment [1], [2]. For instance, consider
the scenario described in Fig. 1, where expert videos are
collected under the conditions in Fig. 1a and an autonomous
agent is deployed in Fig. 1b or Fig. 1c. Current methods
are not designed to handle such variations in lighting and
background, leading to failures in these contexts. Our goal,
in this paper, is to enhance the imitation capabilities of
autonomous agents in the presence of visual mismatches.
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Fig. 1: Robotic manipulation task. Current end-to-end meth-
ods for imitation from expert videos assume that the expert
and the agent operate in the same environment. Consequently,
they are unable to handle variations in lighting or background.

We introduce a novel end-to-end pipeline for imitation from
expert videos with visual mismatch. We begin by analyzing
the V-IfO problem with visual mismatch and propose a novel,
simple, and computationally efficient algorithm called Con-
trastive Latent Adversarial Imitation from Observations (C-
LAIfO). Notably, C-LAIfO builds upon the recent LAIfO al-
gorithm [1] and achieves visually robust latent state estimation
through data augmentation and contrastive learning techniques
[3], [4]. We justify each design choice for our algorithm,
including the types of data augmentation and contrastive loss,
through a comprehensive ablation study. Furthermore, we
compare C-LAIfO against two V-IfO baselines—LAIfO [1]
and PatchAIL [2]—as well as DisentanGAIL [5], which serves
as a baseline for V-IfO with domain mismatch. Additionally,
we show how the reward signal learned from expert data
using C-LAIfO can be easily integrated with other signals
to enhance efficiency and enable learning in robotic tasks
with sparse reward functions. Therefore, we further evaluate
our algorithm on the Adroit platform for dynamic dexterous
manipulation [6]. These additional experiments highlight the
versatility of our approach, showcasing its efficacy in handling
complex robotic tasks.

II. RELATED WORK

a) Imitation from observation: Imitation Learning (IL)
is a powerful approach that allows agents to mimic expert
behavior by using demonstrations of a task typically in the
form of state-action pairs. Our work builds on Adversarial
Imitation Learning (AIL) [7], [8] which frames IL as a
two-player game between a discriminator and an agent’s
policy. Here, the discriminator distinguishes whether a state-
action pair is generated by the agent or the expert policy. In
practice, AIL is formulated as a joint process of Reinforcement
Learning (RL) and inverse RL [9], [10], [11], [12]. First a
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reward function is inferred from expert demonstrations and
then it is used in the RL step to train agents. In scenarios
with partial observability, AIL has been applied to cases with
missing information [13] and to Visual IL, where agents
learn from video frames as state observations [14]. Compared
to standard IL, Imitation from observation [15], [16], [17]
assumes that action information is not observable in the
demonstrations data. This setting is more practical compared
to IL but also more difficult to tackle. The combination of
learning from videos in the absence of expert actions gives
rise to the V-IfO problem, which is the primary focus of our
work. End-to-end state-of-the-art algorithms for the V-IfO
setting include PatchAIL [2], which applies AIL directly on
the pixel space utilizing a PatchGAN discriminator [18], [19],
and LAIfO [1], where AIL operates on a latent representation
of the agent state. Notably, these approaches are built on the
assumption that both the expert and the learning agent act
within the same decision process, which rarely holds true in
real-world scenarios.

b) Imitation from videos with environment mismatch:
Our research targets imitation from visual observations in
the presence of mismatches between the expert and the
learner environments, a problem referred to as third-person
IL [20], domain-adaptive IL [21], or cross-domain IL [22].
Solutions in the literature either decompose this problem into
sequential stages or formulate end-to-end methods. Sequential
approaches include: [23], where a reward function is learned
by leveraging video prediction with context translation; [24],
where reward functions are obtained using time-contrastive
networks trained offline; [25], where cycle-consistent adver-
sarial networks [19] are trained offline to generate instruction
images in the agent domain from videos; [26], which uses
inverse models and adversarial domain adaptation [27] to train
navigation policies from videos, and [28], where 3D trajectory
reconstruction from videos is used to obtain physically
plausible trajectories. Our work differs from this literature as
we formulate a fully end-to-end approach.

¢) End-to-end algorithms for imitation from videos with
mismatch: Previous end-to-end solutions were presented in
[20]1, [29], [5], [30]. The studies in [20] and [5] extract
domain-independent features to infer domain-independent
reward functions. More specifically, in [20], the authors
propose to learn domain-independent features using an
adversarial approach similar to [31], while DisentanGAIL in
[5] achieves a similar result by adding a mutual information
constraint to the binary cross-entropy loss used for AIL.
Similar to our algorithm, these studies formulate fully end-to-
end model-free algorithms that avoid costly generative steps
during the imitation process. Our approach adopts similar
reasoning to [20], [S]; however, we leverage contrastive
learning for domain-independent feature extraction and build
the entire AIL pipeline (both reward inference and RL step)
on this learned feature space, rather than only the reward
inference as done in [20], [5]. As shown in our experiments,
this leads to significant improvements in performance. Other
works rely on expensive generative steps to address the
mismatch problem. In [29], imitation is performed using

expert observation-action pairs through a learned domain-
agnostic recurrent state space model [32]. Our algorithm,
on the other hand, is model-free and only requires expert
observations. In [30], cycle-consistent adversarial networks
[19] are trained online to generate expert videos in the agent’s
domain, thus reducing the problem to the standard V-IfO
without mismatches. Our approach does not require such a
generative step, as it learns a domain-independent feature

space directly. III. PRELIMINARIES

We use uppercase letters (e.g., Sy) for random variables,
lowercase letters (e.g., s;) for values of random variables,
script letters (e.g., S) for sets, and bold lowercase letters (e.g.,
0) for vectors. Let [¢; : t2] be the set of integers ¢ such that
t1 <t < tg; we write Sy such that £ <t <tg as Si.,. We
denote with E[-] expectation, with P(-) probability, and with
Dy(-,-) an f-divergence between two distributions of which
the Jensen-Shannon divergence, Djs(||-), is a special case.

a) Partially Observable Markov Decision Process: We
model the decision processes as infinite-horizon discounted
Partially Observable Markov Decision Processes (POMDPs)
described by the tuple (S, A,X,T,U,R,po,7), where S
is the set of states, A is the set of actions, and X is the
set of observations. 7 : & x A - P(S) is the transition
probability function where P(S) denotes the space of
probability distributions over S, U : S - P(X) is the
observation probability function, and R : S x A - R is
the reward function which maps state-action pairs to scalar
rewards. Finally, pg € P(S) is the initial state distribution and
~ € [0, 1) the discount factor. The true environment state s € S
is unobserved by the agent. Given an action a € 4, the next
state is sampled such that s’ ~ T (-|s,a), an observation is
generated as x' ~U(+|s’), and a reward R(s, a) is computed.
Note that an MDP is a special case of a POMDP where the
underlying state s is directly observed.

b) Reinforcement learning: Given an MDP and a
stationary policy m : & - P(A), the RL objective is
to maximize the expected total discounted return J(7) =
E [Sr0v R(st,a:)] where T = (s9,a0,51,0a1,-..). A sta-
tionary policy 7 induces a normalized discounted state visi-
tation distribution defined as d,(s) = (1 -7) Y20 V' P(s: =
s|lpo,m™,T), and we define the corresponding normalized
discounted state-action visitation distribution as p.(s,a) =
d.(s)m(als). Finally, we denote the state value function of 7
as V7 (s) =E. [520 7" R(st,a1)|So = s] and the state-action
value function as Q" (s,a) = E, [0 7" R(st,a:)|S0 =
s, Ap = a]. When a function is parameterized with parameters
0 € O c R* we write mg.

c) Generative adversarial imitation learning: Assume
we have a set of expert demonstrations 75 = (So., Go:T)
generated by the expert policy 7g, a set of trajectories 7o
generated by the policy g, and a discriminator network D, :
S x A - [0,1] parameterized by x. Generative adversarial
IL [7] optimizes the min-max objective

mgn max E;,[log(Dy(s,a))] +Ey[log(1 - Dy(s,a))].
()



> .CQ + 1:(:/:5}
I A

3

\
5 0L

— Lp

(Discriminator)

[

Fig. 2: Summary of C-LAIfO. The target-POMDP has a blue
background while the source-POMDP has a white background.
In the diagram, black lines indicate shared weights among
networks, blue arrows indicate forward pass through the
networks, and red arrows indicate backward pass. The losses
Lp, Lo and L(zs) are respectively in (2), (3), and (5). L
indicates the deterministic actor-critic loss [34].

— 7y

Maximizing (1) with respect to x is effectively an inverse RL
step where a reward function, 7 (s,a) = —log(1-Dy(s,a)),
is inferred by leveraging 7g and 7¢. Minimizing (1) with
respect to 6 is an RL step, where the agent aims to minimize
its expected cost. Optimizing (1) is equivalent to minimizing
Dys(pre (8, a)||prp(s,a)), so we are recovering the expert
state-action visitation distribution [33].

d) Modeling the visual mismatch in POMDPs: Tradi-
tionally, the V-IfO problem assumes that both the expert
and the agent operate within the same POMDP. Throughout
this paper we relax this assumption and define two different
decision processes: namely a farget-POMDP for the agent
and a source-POMDP for the expert. The target-POMDP
is characterized by the tuple (S, A,X,T,Ur,R,po,7),
whereas the source-POMDP is characterized by the tuple
(S, A, X, T,Us, R, po,7). The primary distinction between
these POMDPs lies in their observation probability functions.
Despite sharing identical state and action spaces, given the
same state s, the expert’s observation z3 ~ Us(-|s;) from the
source-POMDP and the agent’s observation x; ~ Uz (:|s;)
from the target-POMDP may be different (i.e., we may have
x7 # 2T). We refer to this as visual mismatch.

IV. CONTRASTIVE LATENT ADVERSARIAL IMITATION
FROM OBSERVATIONS

Considering a target-POMDP and a source-POMDP as
introduced in the previous section, we can identify two levels
of information in the observation space X: (¢) information
related to task completion, and (4¢) visual distractors that do
not contribute to task completion. Thus, we define X as X =
(X, X ), where X represents the goal-completion information
that is invariant between source-POMDP and target-POMDP;
whereas, X represents the set of visual distractors that do

not contribute to goal completion. We express the source
and target observations respectively as x7 = (z7,47) and
x] = (] ,2]). Our objective is to filter out the visually-
distracting information X from both the source and the target
observations while retaining the goal-completion information
X to effectively solve the V-IfO problem. This objective can
be achieved by attaining domain invariance in a feature space
Z. As a result, our goal becomes to learn Z such that only
goal-completion information is retained while the visually-
distracting information is discarded (cf. Appendix VI-A for
formal analysis).

In the following, we present the main components of our
algorithm C-LAIfO, which performs imitation directly in
a domain-invariant feature space Z (Sec. IV-A). In order
to do so, we learn a domain-invariant encoder ¢s that can
successfully map .Z‘zt and a:ft to z; through two main steps.
First, we train the encoder ¢s alongside the critic networks
Q, where k= {1,2} (Sec. IV-B). This step is essential for
solving the imitation problem and embedding goal-completion
information within the latent space Z. We further train ¢s to
optimize an auxiliary contrastive loss and perform randomized
augmentation of the observations, taking into account the
type of visual mismatch between the source and the target
domains (Sec. IV-C). This step is crucial to efficiently discard
visually-distracting information from Z. A schematic diagram
summarizing the whole C-LAIfO pipeline is provided in
Fig. 2.

A. Adversarial imitation in latent space

Given a domain-invariant feature space Z, our AIL pipeline
is defined as follows. We initialize two replay buffers By
and B to respectively store the sequences of observations
generated by the expert and the agent policies, from which we
infer the latent state-transitions (zs, z5). We write (zs,25) ~
B to streamline the notation. Then, given a discriminator
Dy : Zx Z - [0,1], we write

max Bz 21) 55 [log(Dx (26, 25))]
+E(25,2)-5[l0g(1 = Dx (25, 25))]-

As mentioned, alternating (2) with an RL step using
Tx(2s,25) = —log(1-Dy/(zs,25)) leads to the minimization
of ]D)Js(pﬂe(za, 25 )prs (25, zg)) [35]. Therefore, we are
effectively imitating the expert in the latent space Z. Note
that the presented AIL can only succeed if Z is domain-
invariant and embeds the relevant goal-completion information
necessary to solve the imitation problem. Next, we show how
our algorithm C-LAIfO addresses this challenge.

@

B. Critic and encoder training step

We define the encoder as ¢5 : X¢ - Z, a function mapping
sequences of d € N observations to the latent space Z.
Specifically, we write zs = ¢5(24-¢) and z§ = P5(T4-11:041)
where t —t~ + 1 = d. When a data augmentation function
aug(+) is applied to the sequence of observations, we write

Z5 = ¢ps(aug(zs-)) and 25 = ds(aug(zi-41:041)). We train
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The steps in (3)—(4) follow the deep Q-network optimiza-
tion pipeline [36], [37], where we add a contrastive auxiliary
loss Ez,.5[L(Zs)] in (3) defined on the encoder ¢5. In (4),
the reward function 7, (25, z5) is computed through the AIL
step in (2). Note that we do not perform data augmentation
when computing 7, since, during reward inference, we are
deploying and not training the encoder ¢s. In practice, adding
data augmentation to AIL in (2) decreases the performance.
Refer to the supplementary material for empirical evidence
on this claim. In (3), the encoder ¢s is trained together with
the critic networks Q, (k = {1,2}) in order to regress y
in (4), where sg(-) stands for stop gradient of the encoder
parameters d. The value of y in (4) is computed by summing
ry with the discounted target critic network at time ¢ + 1.
In (4), a’ = me(Z5) + € where € ~ clip(N(0,0?),-c,c) is a
clipped exploration noise with c the clipping parameter and
N(0,0?) a univariate normal distribution with zero mean and
o standard deviation. ¢, and 1) are the slow moving weights
for the target critic networks. B is a replay buffer initialized
to store interactions (27, a;, 2L, | ) of the agent with the target
environment. Note that the latent state-transitions (Zs, Z§)
are inferred from sequences of observations using ¢s and, as
above, we write (Zs,Z5) ~ B to streamline the notation. Refer
to the supplementary material for the complete pseudo-code.

By solving the optimization problem in (3)—(4), our primary
goal is to train both the encoder network ¢s and the critic
networks @)y, to solve the RL problem with reward 7. In
other words, this step focuses on retaining the goal-completion
information within the latent space Z such that critic networks
Qq, are successfully learned. We show in our ablation study
that backpropagating the gradient from Q, to ¢s is an
important step for achieving this goal and solving the imitation
problem. Similarly, the types of augmentations performed
on the sequences of observations and the choice of auxiliary
loss play a crucial role in discarding the visually-distracting
information from Z and dealing with the visual mismatch.

C. Contrastive loss

In the following, we introduce the data augmentation
techniques and the auxiliary loss £ in (3) for C-LAIfO. We opt
for a contrastive method as this leads to good empirical results
and good computational efficiency. Contrastive learning con-
structs low-dimensional representations of high-dimensional
data by maximizing agreement between augmented views of
the same data example via a contrastive loss in the latent space
Z. In our specific case, we define equivalent data as sequences
of observations with the same goal-completion information.
The data augmentation is randomized by considering a set of
pre-determined functions. We will show in our experiments
(Section V) that both the choice of contrastive loss and the set

of augmentation functions play an important role in filtering
out visually-distracting information.

First, a stochastic data augmentation module transforms any
given sequence of observations x;-; into two views, denoted
aug(x-); and aug(x—),, which are denoted as the positive
pairs. Note that two positive pairs must contain the same
goal-completion information. Next, the encoder ¢g : X4 - Z
extracts representation vectors from augmented sequences
of observations. We write Z5(i) = ¢s(aug(x¢-¢);) and
25(j) = ¢ps(aug(z,-);). Finally, we apply the contrastive
loss function

exp(sim(25(4), Z5(5))/n) )
S Lipeq exp(sim(Z5 (i), Z6 (k) /n)

where 1., € {0,1} is an indicator function equal to 1 if
k # i, n denotes a temperature parameter, and sim(u,v) =
u'v/||ul|||v]| denotes the cosine similarity. We sample a
batch of N sequences of observations from the buffer 5
and define pairs of augmented sequences derived from the
batch, resulting in 2V data points. The negative data points
are not sampled explicitly. Instead, given a positive pair,
we treat the other 2(N — 1) augmented data points within
the batch as negatives. Note that the loss in (5) is called
the normalized temperature-scaled cross entropy loss or the
Information Noise-Contrastive Estimation (InfoNCE) loss
[38] and represents an upper bound of the negative mutual
information between positive pairs. Therefore, by minimizing
(5) as in (3) we are maximizing the mutual information
between positive pairs in the latent space Z.

L(zs) = —log

V. EXPERIMENTS

In this section, we begin with an ablation study to justify
the design choices of our algorithm (Sec. V-A). Next, we
demonstrate how C-LAIfO effectively handles various types
of visual mismatches in the V-IfO setting (Sec. V-B). Finally,
we showcase how C-LAIfO facilitates learning in challenging
robotic manipulation tasks with sparse rewards and realistic
visual inputs (Sec. V-C). In all the experiments, we use
DDPG [39] to train experts in a fully observable setting and
collect 100 episodes of expert data. The learned policies are
evaluated based on average return over 10 episodes. We report
the mean and standard deviation of the final return over 6
seeds and highlight the best performance.

A. Ablation study
In this section, we perform the following ablations:

1) Contrastive loss function: We demonstrate the impor-
tance of the contrastive loss function type by comparing
the InfoNCE loss in (5) with BYOL in [4].

2) Gradient backpropagation: We highlight the necessity
of backpropagating the gradient from @, to ¢s in (3)
for solving the imitation problem and embedding the
goal-completion information in the latent space Z.

3) Data augmentation: We emphasize the importance of
selecting the appropriate augmentation for a given mis-
match, showing that a mismatch-informed augmentation
outperforms general augmentations or no augmentation.



TABLE I: Summary of the ablation experiments. All algo-
rithms are trained for 10% steps. The experiments C-LAIfO
w/o @ backprop, C-LAIfO full aug, and C-LAIfO w/o aug
are only conducted in the easier setting due to their low
performance.

Source Env: , Performance = 950

C-LAIfO 808 +269 768 +231
BYOL-LAIfO 707 £ 337 142 £ 124
C-LAIfO w/o @ backprop 48.7 £ 8.7 -
C-LAIfO full aug 96.8 + 53.4 -
C-LAIfO w/o aug 113 +£25.3 -
\
2,
_ !
(@ (b) © ()

Fig. 3: Different environments used for the experiments in
Table II and the PCA in Fig. 4 and 5.

These results are summarized in Table I, which includes
results for C-LAIfO and its various configurations. All the
learning curves are provided in the supplementary material. In
Table I, C-LAIfO is implemented as described in Section 1V,
with the data augmentation function aug(-) defined as a
brightness transformation. In BYOL-LAIfO, we retain the
design identical to C-LAIfO except for replacing the InfoNCE
loss in (5) with BYOL [4]. In C-LAIfO w/o Q backprop,
we disable gradient backpropagation from @ to ¢s in
(3). Lastly, in C-LAIfO full aug and C-LAIfO w/o aug, we
respectively modify the data augmentation function aug(-) to
include full augmentation (brightness, color, and geometric
transformations, as detailed in the supplementary material)
and no augmentation. Notably, without backpropagating the
gradient from @, to ¢s, C-LAIfO fails to solve the imitation
task even in the simplest mismatch scenario. This result
demonstrates the importance of this step for embedding goal-
completion information in Z. Similar considerations can be
done for the design of aug(-) where C-LAIfO struggles to
efficiently solve the task both when the augmentation is too
generic and when it is absent. These results highlight the
critical role of properly defining aug(-) for efficient visual
generalization in Z. Finally, the superior performance of
the InfoNCE loss in (5) compared to BYOL is evident in
handling the hardest mismatch in Table I.

B. Visual Imitation from Observations with mismatch

In this section, we test C-LAIfO in the V-IfO setting with
different types of mismatches (cf. Fig. 3) and compare it
with three baselines: LAIfO [1] and PatchAIL [2], both

TABLE II: Summary of the experiments for the mismatches
in Fig. 3. The Light experiment consists in (3b) as source-
POMDP and (3a) as target-POMDP. The Full experiments
have (3b) as target-POMDP and (3c) as source-POMDP. We
train all the algorithms in the Light mismatch for 10° steps
and in the Full mismatch for 2 x 10° steps.

| Light Full
C-LAIfO 895+36.6 509235
LAIfO [1] w/ data aug 64.6 £ 62.9 206 + 210
DisentanGAIL [5] 28.1+8.7 30.6 £13.2
PatchAIL [2] w/ data aug 184 +5.6 122 + 66.6

o target random

«  source source random target

Fig. 5: PCA results on C-LAIfO for the Full experiment in
Table II and the unseen environment in Fig. 3d.

equipped with the same aug(-) used for C-LAIfO, and
DisentanGAIL [5]. The results, summarized in Table II,
demonstrate that C-LAIfO successfully addresses the V-
IfO with mismatch problem, achieving superior performance
compared to all the baselines across the proposed mismatches.
All the learning curves are provided in the supplementary
material. For the Light experiment, aug(-) is defined as a
brightness transformation; while for the others it is defined
as a color transformation. Details on aug(-) are provided in
the supplementary material. Furthermore, to assess whether
C-LAIfO achieves domain invariance in the feature space
Z, we perform PCA on the latent space Z learned by
different algorithms during training. In Fig. 4 we compare
the latent space Z learned by LAIfO, C-LAIfO, and LAIfO
with data augmentation in the Light setting from Table II.
Specifically, we define source and target as the observations
generated by an optimal policy in the source and target
POMDPs, respectively. Similarly, source random and target
random are observations generated by random policies. These
observations are processed with the encoder ¢5 : X% - Z
trained using the respective algorithms. We perform PCA
on this set of latent variables z;.7 and plot the first two
principal components. The results show that C-LAIfO is the
only algorithm capable of filtering out visual distractors and
clustering together data points with the same goal-completion
information. In Fig. 5, we focus on C-LAIfO and test for



(d)

() (2)

Fig. 6: Adroit environments used for the experiments in Table III.

TABLE III: Summary of the experiments in Fig. 6. The Door-Light and Door-Color experiments consider (6a) as the
source-POMDP and (6b) and (6¢) as the respective target-POMDPs. Similarly, the Hammer-Light and Hammer-Color
experiments consider (6d) as source-POMDP and (6e) and (6f) as the respective target-POMDPs, while the Pen-Light and
Pen-Color experiments consider (6g) as source-POMDP and (6h) and (6i) as the respective target-POMDPs. We use the VRL3
pipeline in [40] to train expert policies and collect 100 episodes of expert data. For these experiments, all the algorithms are

trained for 4 x 10° steps and we report mean and standard deviation over 10 random seeds.

Door Hammer Pen
Light Color Light Color Light Color
Expert | 170 | 184 | 73
RL+LAIfO [1] ‘ 106 + 75 96 + 80 ‘ 181 +4.0 103 + 86 ‘ 59+ 12 59 +4.8
RL+C-LAIfO ‘ 165+5.8 160+12 ‘ 183+1.4 178=x11 ‘ 64+5.6 62+6.9

generalization to the unseen environment in Fig. 3d. We train
¢s on the Full setting from Table II and perform PCA as
described. The results in the unseen setting match those in
the Full experiment, indicating that ¢s trained on (3¢) can
successfully generalize to (3d). Refer to the supplementary
material also for the t-SNE visualization and additional details.

C. C-LAIfO for dexterous manipulation

In the following section, we evaluate our algorithm on a
series of challenging robotic manipulation tasks from the
Adroit platform for dynamic dexterous manipulation [6].
These experiments demonstrate how the reward 7, learned
by C-LAIfO from expert videos, can be effectively combined
with a sparse reward R, collected by the agent through inter-
action with the environment, to enhance learning efficiency.
The RL problem, therefore, aims to maximize the total reward
Riot = R(5t,a¢) + rx(2t, 2e41), where 7y is learned through
the AIL step in (2). This approach is particularly relevant
for robotic tasks, where sparse rewards are often the most
feasible option in real-world settings. However, relying solely
on sparse rewards can make learning highly challenging
and inefficient [41]. In this context, leveraging expert videos
can significantly enhance efficiency. We compare C-LAIfO
with the standard LAIfO algorithm [1], which does not
explicitly address the visual mismatch between source and
target POMDPs. Both C-LAIfO and LAIfO utilize an encoder
to process pixel observations and extract embeddings in Z,
which are then concatenated with robot sensory observations.
Notably, the expert’s sensory observations are not used in the
imitation process, as we only assume access to expert videos.
Our approach, denoted as RL+C-LAIfO (or RL+LAIfO),
seeks to maximize Riy, rather than just r,, as in the
standard imitation learning problem. The results, summarized
in Table III, show that C-LAIfO more effectively leverages
expert videos with visual mismatches to facilitate learning

when compared to LAIfO. This demonstrates the potential of
our approach to enable learning in challenging robotic tasks
by utilizing a minimal form of supervision, relying solely
on expert videos. All learning curves are provided in the
supplementary material.

VI. CONCLUSION

In this work, we analyze the V-IfO problem with visual
mismatches and propose a novel algorithm named C-LAIfO
as an effective solution. Through comprehensive ablation
studies, we provide insights into our design and demonstrate
the superior performance of our approach compared to a
range of baselines in imitation from videos under various
mismatch scenarios. Furthermore, we illustrate how C-LAIfO
effectively utilizes expert videos with visual mismatches to
facilitate learning in challenging hand manipulation tasks
characterized by sparse rewards and realistic visual inputs.

A main limitation of the current approach is given by the
reliance of C-LAIfO on a well-designed, possibly mismatch-
informed, data augmentation function. As illustrated in our
ablations in Section V, general augmentation can lead to
poor performance or can remarkably reduce the algorithmic
sample efficiency. Furthermore, it can be challenging to design
effective augmentations for certain types of mismatches.
To address this problem, exploring generative models for
automatic data augmentation represents an interesting re-
search direction. Generative models could produce diverse,
mismatch-informed augmentations, potentially overcoming
the limitations of manually designed strategies. Alternatively,
investigating different auxiliary losses that are less reliant
on augmentation techniques represents another interesting
direction. Finally, future work will be devoted to go beyond
simulated environments and test our algorithms on hardware
in real-world scenarios.
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SUPPLEMENTARY MATERIAL
A. Analysis

In the following, we show how domain invariance in the
feature space Z leads to the same V-IfO guarantees as in [1],
even in the presence of visual mismatches.

Proposition 1: Consider source and target POMDPs re-
spectively defined by the tuples (S, A, X, T,Ur, R, po,7)
and (S, A, X, T, Us, R, po,7). Let X = (X, X), where X
is an observations set invariant between source and target
POMDP, and X is a set of visual distractors. We write
xy = (T4, ). Assume z; = P(x<) = ¢(Z<) such that
]P’(st\zt,at) = P(St|2t) = P(St|1’st,a<t) = P(stﬁghaq).
Then, the filtering posterior distributions P(s:|z:) and
P(s¢+1, $¢|2t+1, 2¢) do not depend on the policy 7 and are
invariant between source and target POMDPs.

Proof: Considering the definition of the latent variable
zt, which only depends on Z<; and not the visually-distracting
information Z;, we can write

P(s¢lze) = P(slay, ar-1, 20-1) = P(se|Ty, a1, 20-1).
Then, by leveraging Bayes rule we have that

P(st|2t) = P(8¢|T4, ar-1, 20-1)
_ P(@lst, a1, 20-1)P(selar-1, z-1)
P(Z¢|ai-1,2t-1)
B IP’(ﬂ_ft|8t)f5 T (selse-1, ar—1)P(s-1]2¢-1)dse-1
fg fs P(Z¢|5t) T (8¢l 8t-1, a1 )P(S¢-1]2e-1 ) dsdse—1
where the denominator can be seen as a normalizing factor.
Note that P(Z,|s;) is the same for both the source and target
POMDPs by the definition of X above. Therefore, P(s¢|2)
has no dependence on the policy 7 and is invariant between
source and target POMDP.
Similarly, for P(s¢41, S¢|2¢, 2¢+1) we have that

P(st41, 8|26, 2041) = P(8¢, St41[Te41, at, 2¢)
_ P(Zyealst, 5041, ar, 20)P(5¢, Sea1ar, 2¢)
- P(Z¢11|at, 2¢)
_ P(Zr1|5¢41) T (St1]5¢, ae )P(s¢|2¢)
fs [5 P(Zer1]5041) T (St41]8t, ar)P(selze ) dsperdse
Because P(sy|z;) does not depend on 7 and is the same
for both source and target POMDP, the result also holds for
P(st41, St|2t, 2e41)- n
Proposition 2: Given R : § x A - R, for the scenarios
described in Proposition 1 the following inequality holds:
2Rmax
I-~

|J(7TE)_J(779)’S ]D)TV(pﬂ'e(Z’Z/)?pﬂE(z’zl))+C’

where Rmax = Max(s q)esx.a |R(s,a)| and

2Rmax
- By, (221 []D)TV(IPM (alz,2"),Prp (alz, z'))]

(6)

C =

If R:S xS — R, then we have that
2Rmax
1

|J(7TE)_J(7T9)| < DTV(/)TFQ(Z’zl)7p7rE(Z?Z,))7

where Rpax = Max(s oyesxs [R(8,5")].

Proof: Because Proposition 1 holds, we can directly
follow the proofs of Theorem 1 and Theorem 2 in [1] for
the setting of no visual mismatch. [ ]

B. Pseudo-code and hyperparameters

Algorithm 1: C-LAIfO

Inputs:

Expert observations: (22 )o.n € Bg.

o, Dy, Qu,» Qus, Ps: networks for policy, discriminator,
Q functions and encoder.

Tiwain, 0 (t), d, aug, ¢, 7, B, o, ap, 7, n: training steps,
scheduled standard deviation, frames stack dimension,
stochastic data augmentation, clip value, target update rate,
batch size, learning rate, discriminator learning rate,
discount factor and temperature parameter.

for t =1,...,Timin do

ot < o(t)

if t >d—-1 then
L 2t < ¢6(m£d+1:t)

else
L 2t < @s (Igt)

ai < mo(z:) + € and € ~ N'(0,07)

st+1 ~ T (o|se,ar) and xeq ~ U (+|s41)

B« Bu (55?7(115,55”1)

UpdateEncoder(13)

UpdateDiscriminator(3, Bg)

UpdateCritic(3)

| UpdateActor(BB)

egin UpdateEncoder

{(& d10> 06, T{_gs2:4:1)} ~ B (sample B transitions)

Zs(i) < ¢s(aug(z;_gi1.):) and
Z5(j) < ds(aug(i_asr:)s)

| Update ¢s to minimize (5) with learning rate «

-3

-3

egin UpdateDiscriminator
s s
{(:Ct—qgl+1:t7xt—d+2:t+l)} ~ Bg and
{(2t-ds1:¢5 Te-as2:441) } ~ B (sample B transitions)
25 < ¢5(®i—ar1:t) and z5 < ¢5(X1—gs2:441) for both
agent and expert
| Update Dy to minimize BCE loss with learning rate ap

-3

egin UpdateCritic

{(@1-ds1:: 0, Tf_a2441) } ~ B (sample B transitions)
Zs < ps(aug(wi_g 1)) and Z5 < ds(aug(Ti_gi:441))
atr1 < ma(Z5) + € and € ~ clip(N(0,07), —¢, ¢)
Update Qq,, @, and ¢s to minimize (3) with
Tx(2zs,25) and learning rate o
%’(/Jke(l—T)'(/}k+T'¢k VkJG{l,Q}

egin UpdateActor

{x] 414} ~ B (sample B observations)

Zs « ¢s(aug(z a.14))

at < mg(Zs) + € and € ~ clip(N (0, 07), ¢, ¢)

Update g using DDPG [39] with learning rate o

-3




TABLE IV: Hyperparameter values for C-LAIfO experiments.

Hyperparameter Name Value
Frames stack (d) 3
Discount factor (vy) 0.99
Image size 64 x 64
Batch size (B) 256
Optimizer Adam
Learning rate (o) 107
Discriminator learning rate (ap) 4 x 107
Target update rate (1) 0.01
Clip value (¢) 0.3
Temperature parameter (77) 1.0

C. Data augmentation

The operations used in our data augmentation functions
for the experiments in Section V are summarized in Table V.
Fig. 7 shows an example of color augmentation as imple-
mented for the experiments in Table II, where we randomly
perform all the operations in the color transformations row in
Table V. On the other hand, Fig. 8 shows only a brightness
transformation as implemented in the ablation study in
Table. 1. Full augmentation in Table I performs all the
operations in Table V. For additional details refer to our
code!.

TABLE V: Operations used in our data augmentation function.

|  Operations

Brightness
Contrast
Saturation
Hue
Grayscale
Gaussian blur
Invert

Color
transformations

Horizontal flip
Vertical flip
Resized crop

Affine
transformations

D. Learning curves

All the experiments are run using Nvidia-A40 GPUs on an
internal cluster. For each algorithm, we run two experiments
in parallel on the same GPU and each experiment takes 1
to 4 days depending on the simulated environment and the
considered algorithm. For all the implementation details refer
to our code.

Fig. 9, Fig. 11, and Fig. 12 show the learning curves for
the results in Table I, Table II, and Table III, respectively.
Fig. 10 shows the effect of randomized data augmentation
when used in the AIL step in (2).

E. PCA and t-SNE analysis

In Fig. 13 we compare the latent space Z learned by LAIfO,
C-LAIfO, and LAIfO with data augmentation in the Light
setting from Table II and Fig. 9. Specifically, we define source
and target as the observations generated by an optimal policy

Uhttps://github.com/VittorioGiammarino/C-LAIfO

in the source and target POMDPs, respectively. Similarly,
source random and target random are observations generated
by random policies. These observations are processed with the
encoder ¢5: X% — Z trained using the respective algorithms.
We perform PCA and t-SNE on this set of latent variables z1.7
and plot the first two principal components. The results show
that C-LAIfO is the only algorithm capable of filtering out
visual distractors and clustering together data points with the
same goal-completion information. In Fig. 14, we focus on C-
LAIfO and test for generalization to the unseen environment
in Fig. 14c. We train ¢s on the Full setting from Table II
and Fig. 11 and perform PCA and t-SNE as described. In
Fig. 14, the Full figures have (14a)-(14b) as source-POMDP
and (14e)-(14f) as target-POMDP. Similarly the Full-unseen
figures have (14c)-(14d) as source-POMDP and (14e)-(14f)
as target-POMDP. The results in the Full-unseen setting match
those in the Full experiment, indicating that ¢s trained on
(14a) can successfully generalize to (14c).


https://github.com/VittorioGiammarino/C-LAIfO
https://anonymous.4open.science/r/C-LAIfO-44E5/README.md
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Fig. 8: Examples of augmentation as brightness transformation.
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Fig. 9: Learning curves for the results in Table I. Plots show the average return per episode as a function of training steps. The
environment in (9a) represents the source-POMDP used to collect expert data, while (9b)—(9f) are different target-POMDPs.
In these experiments, visual mismatch is introduced by varying the light intensity, with the degree of mismatch increasing

linearly from (9b) to (9f).
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Fig. 10: Experiments on the use of data augmentation in AIL in (2). Plots show the average return per episode as a
function of training steps. The environment in (9a) represents the source-POMDP used to collect expert data, while (9f) the
target-POMDPs. These experiments show how randomized data augmentation used during AIL triggers instability.
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Fig. 11: Learning curves for the results in Table II. Plots show the average return per episode as a function of training steps.
The Light experiment consists in (11b) as source-POMDP and (11a) as target-POMDP. The Body, Floor, Background, and
Full experiments have (11b) as target-POMDP and respectively (11c), (11d), (11e), and (11f) as source-POMDP.
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Fig. 12: Learning curves for the results in Table III. Plots show the average return per episode as a function of training steps.
The Door-Light and Door-Color experiments consider (12a) as the source-POMDP and (12b) and (12c) as the respective
target-POMDPs. Similarly, the Hammer-Light and Hammer-Color experiments consider (12d) as source-POMDP and (12e)
and (12f) as the respective target-POMDPs, while the Pen-Light and Pen-Color experiments consider (12g) as source-POMDP
and (12h) and (12i) as the respective target-POMDPs.
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Fig. 13: PCA and t-SNE visualizations for the Light experiment in Table II.
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Fig. 14: PCA and t-SNE for the Full experiment in Table II. Fig. 14a and Fig. 14b denote the source environment for the
Full experiment (left figures in Fig. 14). Fig. 14c and Fig. 14d denote the source environment for the Full-unseen experiment
(right figures in Fig. 14).
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