
Mathematical Programming
https://doi.org/10.1007/s10107-025-02222-3

FULL LENGTH PAPER

Series B

A parametric approach for solving convex quadratic
optimization with indicators over trees

Aaresh Bhathena1 · Salar Fattahi1 · Andrés Gómez2 ·
Simge Küçükyavuz3

Received: 11 April 2024 / Accepted: 10 March 2025
© The Author(s) 2025

Abstract
This paper investigates convex quadratic optimization problems involving n indicator
variables, each associated with a continuous variable, particularly focusing on scenar-
ios where the matrix Q defining the quadratic term is positive definite and its sparsity
pattern corresponds to the adjacencymatrix of a tree graph.We introduce a graph-based
dynamic programming algorithm that solves this problem in time and memory com-
plexity of O(n2). Central to our algorithm is a precise parametric characterization of
the cost function across various nodes of the graph corresponding to distinct variables.
Our computational experiments conducted on both synthetic and real-world datasets
demonstrate the superior performance of our proposed algorithm compared to exist-
ing algorithms and state-of-the-art mixed-integer optimization solvers. An important
application of our algorithm is in the real-time inference of Gaussian hidden Markov
models fromdata affected by outlier noise. Using a real on-body accelerometer dataset,
we solve instances of this problem with over 30,000 variables in under a minute, and
its online variant within milliseconds on a standard computer. A Python implemen-
tation of our algorithm is available at https://github.com/aareshfb/Tree-Parametric-
Algorithm.git.
This research is supported, in part, by NSF grants 2006762, 2007814, 2152776, 2152777, 2337776, ONR
grant N00014-22-1-2127, N00014-22-1-2602 and AFOSR grant FA9550-22-1-0369.

B Salar Fattahi
fattahi@umich.edu

Aaresh Bhathena
aareshfb@umich.edu

Andrés Gómez
gomezand@usc.edu

Simge Küçükyavuz
simge@northwestern.edu

1 Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA

2 Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern
California, Los Angeles, CA, USA

3 Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, IL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-025-02222-3&domain=pdf
http://orcid.org/0009-0002-7350-0295
http://orcid.org/0000-0001-7986-3148
http://orcid.org/0000-0003-3668-0653
http://orcid.org/0000-0001-6548-9378
https://github.com/aareshfb/Tree-Parametric-Algorithm.git
https://github.com/aareshfb/Tree-Parametric-Algorithm.git

A. Bhathena et al.

Keywords Quadratic optimization · Indicator variables · Sparsity · Dynamic
programming · Hidden Markov models · Trees

Mathematics Subject Classification 90C11 (Mixed integer programming) ·
90C25 (Convex programming) · 90C27 (Combinatorial optimization)

1 Introduction

Given a symmetric and positive definite matrix Q ∈ IRn×n and vectors λ, c ∈ IRn , we
study the following mixed-integer quadratic optimization (MIQP) problem:

min
x∈IRn ,z∈{0,1}n

1

2
x�Qx + c�x + λ�z (1a)

s.t. xi (1 − zi) = 0 i = 1, 2, . . . , n (1b)

Specifically, we assume that the sparsity pattern of Q ∈ IRn×n is the adjacency matrix
of a connected tree. The binary vector z ∈ {0, 1}n is used to model the support of the
vector x ∈ IRn and λ ∈ IRn is a regularization parameter on the sparsity of x . If zi = 0,
then from constraint (1b), we obtain xi = 0. On the other hand, if zi = 1 then xi is
unconstrained. Without loss of generality, we assume that the diagonal elements of Q
are equal to 1. This can be ensured by replacing xi ← xi/

√
Qi,i for all i = 1, . . . , n.

We also assume λi > 0 for every i ∈ {1, 2, . . . , n}, as any λi ≤ 0 implies zi = 1
at optimality. The regularizer λ can model the sparsity of the solution, which makes
the above problem useful in network inference [22, 44], sparse regression [6, 19], and
probabilistic graphical models [37, 40, 41], to name a few.

1.1 Gaussian hiddenMarkovmodels

An important application of Problem (1) is in the inference ofGaussian hiddenMarkov
models (GHMM) [3, 22],where the goal is to estimate hidden states {xt }Tt=1 of a random

process from Kt observations {yk,t }Kt
k=1 at each time t . We consider the Besag model

[8, 9], where the hidden states are assumed to be jointly Gaussian:

p(x1, . . . , xT) ∝ exp

(

− 1

2σ1
x21 −

T∑

t=2

1

2σ 2
t

(xt − xt−1)
2

)

. (2)

Each hidden state xt is indirectly observed via noisy observations yk,t = xt + εk,t +
δk,t , k = 1, . . . , Kt , where εk,t is a dense, but light-tailed noise drawn fromN (0, ν2t),
whereas δk,t is an outlier noise that corrupts only a small subset of the observations.
An example of a GHMM is given in Fig. 1.

One of the earliest applications of GHMMs can be traced back to signal processing,
aimed at predicting the evolution of a random signal over time by effectively filtering
out observational noise [10, 35]. A more contemporary application of GHMMs lies

123

Quadratic optimization with indicators over trees

Fig. 1 An illustration of a GHMM. At every time t , observations {yk,t }Kt
k=1 of the hidden state xt are

collected, some of which may be corrupted with outlier noise (shown in red). The goal is to infer the hidden
states {xt }Tt=1 from these corrupted observations (color figure online)

in activity recognition utilizing on-body wearable accelerometers [36, 47]. In such
contexts, additional consideration may involve assuming sparsity in the underlying
hidden state {xt }Tt=1, which corresponds to the inactive state of the body. Under such
settings, it is natural to consider the maximum a posteriori estimate of the hidden
states with �0 regularization to promote the sparsity prior on the outliers as well as the
underlying hidden states. This problem can be formulated as follows:

min
x,z,w,s

T∑

t=1

Kt∑

k=1

1

ν2t

(
yk,t−xt−wk,t

)2 + 1

σ 2
1

x21+
T∑

t=2

1

σ 2
t

(xt−xt−1)
2

+
T∑

t=1

Kt∑

k=1

λk,t zk,t+
T∑

t=1

γt st (3a)

s.t. wk,t (1 − zt,k) = 0 t = 1, 2 . . . T ; k = 1, . . . Kt (3b)

xt (1 − st) = 0 t = 1, 2 . . . T (3c)

w·,t ∈ IRKt , z·,t ∈ {0, 1}Kt t = 1, 2 . . . T (3d)

x ∈ IRT , s ∈ {0, 1}T . (3e)

In the optimization problem (3), the binary variables {zk,t } capture the presence of
outlier noise in observations {yk,t }. Specifically, zk,t = 1 indicates that yk,t is likely
to be tainted with noise. This can be understood by noting that when zk,t = 1, the
continuous variable wk,t takes the value yk,t − xt at optimality, thereby nullifying the
impact of the observation yk,t on the estimated state xt . Conversely, zk,t = 0 implies
wk,t = 0, indicating that the observation yk,t is devoid of outlier noise. Moreover, the
binary variables {st } capture the support of the hidden state {xt }, enforcing xt = 0 if
and only if st = 0. The above optimization problem is a special case of Problem (1),
where the matrix Q is positive definite and its support is the adjacency matrix of a tree
graph (as can be seen in Fig. 1). An important variant of problem (3), arising in real-
timemonitoring and detection of events, is the online variant where observations {yk,t }
become available over time [53]. In such scenarios, where rapid action is necessary

123

A. Bhathena et al.

upon detecting anomalous events, re-optimization of Problem (3) must be performed
within milliseconds.

In most cases, Problem (3) is rarely tackled in the literature directly. Indeed,
mixed-integer nonlinear optimization problems are typically regarded as intractable.
Moreover, big-M relaxations of (3) result in poor relaxationswith trivial lower bounds,
thus simply resorting to off-the-shelf solvers may prove ineffective. Thus, practition-
ers often resort to simpler approximations, consisting of either using �1-norm penalty
to induce sparsity on variables x and w [53], or using iterative procedures and heuris-
tics to remove outliers [15, 48]. Naturally, such approximations admit fast algorithms,
but the solution quality can be negatively affected. Recently, there has been a renewed
interest in developing improvedmixed-integer optimization formulations for problems
with sparsity and outliers [22, 23, 29, 34]. The results indicate that exact methods can
indeed deliver substantially better solutions, especially when outliers are clustered.
Typical runtimes of mixed-integer optimization methods with strong formulations is
measured inminutes for problemswith T in the hundreds, which is adequate for small-
sized offline versions for (3), but far from practical for online problems. In this paper,
we propose a method that solves the online problem to optimality within milliseconds
on a standard computer.

1.2 Related work

For general densematrix Q, Problem (1) is NP-hard [16, 33]. Earliermethods based on
mixed-integer programming using big-M formulation [6, 7, 18] work reliably for small
instances, but exhibit poor scalability [31, 32]. Since then, there has been a significant
improvement in solving these problems over large instances. One key contributionwas
the perspective-reformulation technique that obtains high-quality convex relaxations
of the feasible region. Initially introduced in [46], perspective reformulations have
served as the cornerstone for numerous methods aimed at solving Problem (1) with
general Q, either exactly or approximately [5, 24, 27, 28, 49–51].

Due to the NP-hardness of Problem (1) with a general Q, recent endeavors have
shifted focus towards cases where Q possesses a special structure. When Q exhibits a
diagonal structure, it has been demonstrated that a perspective reformulation already
yields the ideal convex hull characterization of Problem (1) [13]. Moreover, if the
matrix Q can be factorized as Q = Q�

0 Q0, where Q0 is sparse, the problem can be
solved in polynomial time under appropriate conditions [19]. In [17], a cardinality-
constrained version of Problem (1) is explored, where Q corresponds to a tree with
a maximum degree d, and all coefficients λi are identical. The authors propose a
dynamic programming algorithm that operates in O(n3d) time. Consequently, this
leads to a O(n4) algorithm for the regularized version discussed in this paper, with
the additional restriction that all coefficients λi are identical.

Perhaps most closely related to our work are two lines of research that investi-
gate Problem (1) when Q possesses either a path or Stieltjes structure. When Q is
a Stieltjes matrix, it is recently shown that Problem (1) can be converted into a sub-
modular minimization problem and thus solved in polynomial time [2, 30]. Any Q
that has a tree structure can be turned into a Stieltjes matrix with a simple change

123

Quadratic optimization with indicators over trees

of variables. Therefore, Problem (1) can be solved in polynomial time. An applica-
tion of the state-of-the-art submodular minimization algorithm leads to a runtime of
O(n5EO), where EO is the complexity of solving a certain quadratic program [43].
Although this complexity is expected to be improved with more recent algorithms
such as those introduced in [14, 39], they remain inefficient in medium to large-scale
instances. When Q takes the form of a tridiagonal matrix, the works [20, 21, 40] have
introduced dynamic programming (DP) algorithms capable of solving Problem (1) in
O(n2). However, in Sect. 2, we provide a detailed discussion on why these dynamic
programming algorithms cannot be readily extended to the more general case of tree
structures for Q.

1.3 Preliminaries and notations

Given a matrix Q ∈ IRn×n and index sets I and J , we denote by QI ,J the sub-matrix
of Q whose rows and columns correspond to I and J , respectively. Similarly, given a
vector c ∈ IRn , we denote by cJ a sub-vector of c with indices corresponding to J . For
integers k < l, we define [k : l] = [k, k + 1, . . . , l]. We use 1lx to denote the indicator
function defined over IR that returns 0 for x = 0 and returns 1 for all x �= 0. The
notations f 	 and (x	, z) are used to denote the optimal objective value and optimal
solution of Problem (1) respectively.

Definition 1 Given a symmetric matrix Q ∈ IRn×n , the support graph of Q, denoted
by supp(Q), is an undirected graphG = (N , E), where N = {1, . . . , n} and (i, j) ∈ E
if and only if Qi, j �= 0 for i �= j .

Note that the diagonal entries of Q do not affect the construction of supp(Q).
In this paper, we consider problems where supp(Q) is a tree. Without loss of

generality, we assume that supp(Q) is connected and rooted. Moreover, we assume
that the edges have a natural orientation toward the root node.1 We use child(u) to
denote the child node of u in the rooted tree supp(Q). Similarly, we use par(u) to
denote the set of parent nodes of u. We assume a topological ordering for the nodes
in supp(Q). More specifically, we assume u < child(u) for every node in supp(Q).
Therefore, node n is always the root node. Since supp(Q) is a tree, its topological
labeling always exists and can be obtained in O(n) time and memory [1, Algorithm
3.8]. Moreover, due to the considered directions, each node can only have a single
child, but potentially multiple parents. Figure2 illustrates the topological ordering of
an exemplary tree. The degree of each node u in supp(Q) is defined as the number of
edges connected to u, which is equal to the total number of its parent and child nodes,
and is denoted as deg(u). If deg(u) ≥ 3, we say u is a branch. Trees with only one
branch are referred to as extended star trees.

Given any node u, suppu(Q) denotes the largest connected sub-tree of supp(Q)

comprised of u and its ancestors, that is, any node v ≤ u that has a path to u. The
symbol nu denotes the number of nodes in suppu(Q). Given a node u, we define
Q[u] as the sub-matrix of Q with rows and columns corresponding to the nodes in

1 Recall that supp(Q) is undirected; the natural orientation assumption is only to streamline the presentation
of our algorithm.

123

A. Bhathena et al.

Fig. 2 An example of the
topological labeling of nodes of
a tree. In this example,
child(4) = 5 and par(4) = {2, 3}

suppu(Q). It follows that suppu(Q) = supp(Q[u]). Similarly, we define c[u] and λ[u]
as the sub-vectors of c and λ with indices corresponding to the nodes of supp(Q[u]).

We refer to fu(α) as the parametric cost at node u, defined as:

fu(α) := min
x∈IRnu ,z∈{0,1}nu

1

2
x�Q[u]x + c�[u]x + λ�[u]z (4a)

s.t. xi (1 − zi) = 0 i = 1, 2 . . . , nu (4b)

xnu = α. (4c)

In simpler terms, fu(α) represents the optimal cost of the sub-problem defined over
the sub-tree suppu(Q) when the root node variable xnu is set to α. We define f 	

u =
minα fu(α). Indeed, we have f 	 = f 	

n .
Our next lemma shows that fu(α) can be written as the sum of an indicator function

and the minimum of at most 2nu−1 quadratic and strongly convex functions, pu,s(·),
where s is a binary vector of dimension nu − 1 that indicates which variables in the
subtree are nonzero. For each configuration of s, the resulting optimization problem
can be shown to be strongly convex quadratic. The proof of this lemma is presented
in Appendix A.

Lemma 1 Suppose that Q is positive definite and supp(Q) is a tree. For any 1 ≤ u ≤ n,
fu(α) can be written as:

fu(α) = min
s∈{0,1}nu−1

{pu,s(α)} + λu1lα,

123

Quadratic optimization with indicators over trees

where, for every s ∈ {0, 1}nu−1, pu,s(α) is quadratic and strongly convex. In particular,
let Js = {i : i ∈ J , si = 1}, where J is the set of nodes in suppu(Q), excluding u.
Then pu,s(α) is given by:

pu,s(α) =1

2

(
1 − Qu,Js

(
QJs ,Js

)−1
Q�

u,Js

)
α2 +

(
cu − cTJs

(
QJs ,Js

)−1
Q�

u,Js

)
α

+
⎛

⎝−1

2
c�
Js (QJs ,Js)

−1cJs +
∑

i∈Js

λi

⎞

⎠ .

This paper extensively uses conjugate functions. Recall that, given a function f :
IR → IR, its Fenchel conjugate is defined as

f ∗(β) = sup
α

{αβ − f (α)}.

A fundamental property of f ∗(β) is that it is convex, even if f (α) is not. Moreover,
f (α) + f ∗(β) ≥ βα, for every α, β ∈ IR. Geometrically, − f ∗(β) corresponds to the
intercept of a tangent to f with slope β.

2 Dynamic programming over trees

When supp(Q) is a path graph, Problem (1) reduces to the following optimization
problem:

min
x∈IRn ,z∈{0,1}n

(
1

2

n∑

i=1

x2i +
n∑

i=2

Qi,i−1xi xi−1

)

+ c�x + λ�z (5a)

s.t. xi (1 − zi) = 0 i = 1, 2 . . . , n. (5b)

Liu et al. [40] introduced a DP approach for solving the above problem. To explain
this method, let q	[k:l] denote the optimal cost of (5) with additional constraints zi = 1
for every k ≤ i ≤ l and zi = 0 otherwise. A simple calculation reveals that

q	[k:l] =
⎧
⎨

⎩
−1

2
c�[k:l]

(
Q[k:l],[k:l]

)−1
c[k:l] +∑l

i=k λi 1 ≤ k ≤ l ≤ n

0 k > l.

Let s be the largest index such that z	s = 0. Upon setting zs = 0 in (5), the problem
decomposes into two sub-problems: one defined over nodes {1, . . . , s − 1} and the
other over nodes {s + 1, . . . , n} with the additional constraint that zi = 1 for every
i > s. This decomposition implies that f 	 = q	[s+1:n] + f 	

s−1. More generally, one
can write:

f 	
i = min

0≤s≤i

{
q	[s+1:i] + f 	

s−1

}
, f 	

u = 0 for u ≤ 0. (6)

123

A. Bhathena et al.

Fig. 3 Simple tree with one
branch at its root. A possible
choice of s is highlighted in red
(color figure online)

The values of {q[k:l]}k≤l can be computed in O(n2) according to [40, Proposition
2]. Given the values of {q[k:l]}k≤l , the values of f 	

1 , f 	
2 , . . . , f 	

n can be obtained via
the recursive equation (6) in O(n2). Consequently, an overall O(n2) algorithm for
solving (5) emerges. The corresponding optimal solution can also be recovered with
a negligible overhead (see [40] for more details).

A similar DP approach can be extended to trees beyond paths. This extension is par-
ticularly viable due to trees inheriting a similar decomposability property:when zs = 0
for some node s in the tree, Problem (1) decomposes into smaller sub-problems defined
over the sub-trees, each rooted at one of the parents of s, along with a simple quadratic
program over the remaining nodes of the tree. Unfortunately, our next example illus-
trates that this decomposability property is not enough to guarantee the efficiency of
the corresponding DP, especially when the tree possesses multiple branches.

Example 1 (Extended star trees) Consider an extended star tree with only one branch
located at the root. Let B denote the number of branches in the tree, each composed of
L nodes.We define a vector s ∈ {0, . . . , L}B , where each sb is either 0 or it corresponds
to the sb-th node in branch b, with the indices increasing away from the leaf node.
If sb = 0, then the vector s excludes any node from branch b. Figure3 depicts the
structure of this graph.

For any s ∈ {0, . . . , L}B and b ∈ {1, . . . , B}, let f 	
sb,b

denote the optimal cost of the
sub-problemdefined over the sub-tree rooted at node sb within branch b. Since this sub-
tree is a path, the corresponding f 	

sb,b
can be obtained efficiently via the aforementioned

DP algorithm. We set f 	
u,b = 0 for every u ≤ 0. Let s ∈ {0, . . . , L}B denote the set

of nodes with the largest indices in each branch such that z	s = 0. Accordingly, let q	
s

denote the optimal cost of Problem (1) with additional constraints that zi = 0 for all
nodes i within the sub-tree rooted at node sb for branches b = 1, . . . , B, and zi = 1

123

Quadratic optimization with indicators over trees

otherwise. The optimal cost f 	 can be written as:

f 	 = min
s∈{0,...,L}B

{

q	
s +

B∑

b=1

f 	
sb−1,b

}

. (7)

The aforementioned equation implies that, even if f 	
sb−1,b and q	

s can be obtained

efficiently, one needs to perform up to (L+1)B comparisons to determine the optimal
cost f 	, a process that becomes inefficient with the increasing number of branches.

To address the inefficiency inherent in the direct DP approach when applied to gen-
eral tree structures, we introduce a parametric characterization of the optimal cost for
Problem (1). Through this characterization, we demonstrate a significant reduction in
the search space of the DP approach, without sacrificing the optimality of the obtained
solution. Toward this goal, in Sect. 3.1, we revisit Problem (1) for path graphs. Here,
we present a parametric algorithm for this problem with runtime and memory com-
plexities ofO(n2), matching the worst-case complexity of the DP approach proposed
in [40], but significantly outperforming it in practice. Building upon our parametric
algorithm for path graphs, in the remainder of Sect. 3, we extend our approach to gen-
eral tree structures, showing that it can solve these problems in a similar O(n2) time
and memory. In Sect. 4, we discuss an important practical consideration regarding our
algorithm. Finally, in Sect. 5, we assess the performance of our proposed approach
across various case studies. Surprisingly, while its worst-case complexity is O(n2),
we observe that the practical runtime of our proposed algorithm is close to linear in
our computations on synthetic and real-world accelerometer datasets.

3 Parametric algorithm

We first provide a high-level intuition of the proposed algorithm. Recall the definition
of f (α), which we repeat for convenience:

fu(α) := min
x∈IRnu ,z∈{0,1}nu

1

2
x�Q[u]x + c�[u]x + λ�[u]z (8a)

s.t. xi (1 − zi) = 0 i = 1, 2 . . . , nu (8b)

xnu = α. (8c)

Note that, as the value function of a mixed-integer problem, the parametric cost fu is
not convex. Nonetheless, a key observation is that, since the support graph is a tree,
once the value of xnu is fixed, the problem decomposes into independent subproblems,
one for each parent of u. More specifically, Problem (8) reduces to

fu(α) =1

2
Qu,uα

2 + cuα + λu1lα +
∑

v∈par(u)

min
ξ∈IR { fv(ξ) + Quvξα}

123

A. Bhathena et al.

=1

2
Qu,uα

2 + cuα + λu1lα −
∑

v∈par(u)

f ∗
v (−Quvα). (9)

Since the parametric cost fu can be characterized merely based on the conjugate of
the parametric cost of its parents, we can imagine an algorithm that traverses the graph
in topological order, and recursively computes and stores in each node u either the
parametric cost fu or its conjugate f ∗

u . These functions turn out to be piece-wise
quadratic, as elaborated in the following definition.

Definition 2 A continuous function f : IR → IR is termed piece-wise quadratic with
N pieces if there exist scalars −∞ = τ0 < τ1 < · · · < τN = +∞ (also referred to
as breakpoints) and quadratic functions (also referred to as pieces) p1, . . . , pN such
that f (α) = pk(α) for τk−1 ≤ α ≤ τk , where k = 1, . . . , N and pk(α) �= pk+1(α)

for some α ∈ IR.

Upon assuming pk(α) = γk,1α
2 + γk,2α + γk,3; k = 1, . . . , N , the condition

pk(α) �= pk+1(α) for someα ∈ IR is equivalent to γk,i �= γk+1,i for some i ∈ {1, 2, 3}.
Moreover, to store and represent a piece-wise quadratic function with N pieces, it
suffices to store an ordered list of the breakpoints, along with the coefficients of their
corresponding quadratic pieces [(τk, γk,1, γk,2, γk,3)]Nk=1.

Equation (9) involves sums of value functions, thus the next lemma is critical to
our analysis. The proof of this lemma is provided in Appendix B.

Lemma 2 Consider L piece-wise quadratic functions { fl}Ll=1, each with a sorted list

of breakpoints Γl . The function g = ∑L
l=1 fl is a piece-wise quadratic function with

breakpoints belonging to
⋃L

l=1 Γl . Moreover, given { fl}Ll=1 and {Γl}Ll=1, g can be

characterized in O (LN) time and memory, where N = |⋃L
l=1 Γl |.

In order to design an efficient algorithm, recursive equations of the form (9) need
to be obtained efficiently. A property that will allow us to do so is the notion of
consistency, defined next.

Definition 3 A piece-wise quadratic function f with N pieces p1, . . . , pN is called
consistent if:

1. p1, . . . , pN are strongly convex;
2. f (α) = min1≤k≤N {pk(α)} for all α ∈ IR,
3. pk(α) �= pk+1(α) for some α ∈ IR.

Figure4 depicts two instances of piece-wise quadratic functions, with only one
being consistent.

From recursion (9) we see that the algorithm requires the computation of conjugate
functions of piece-wise quadratic functions with an indicator variable. Naturally, the
overall complexity of the algorithm depends on the number of pieces required to
represent the conjugate functions. The next proposition, whose proof we defer to
Sect. 3.3, shows that the number of pieces can increase by at most 2.

123

Quadratic optimization with indicators over trees

Fig. 4 Both functions are piece-wise quadratic. The left figure is consistent, while the right figure is not
consistent as it violates the second condition outlined in Definition 3

Proposition 1 Consider f = f̃ +λ1lα , where λ > 0 and f̃ is consistent with N pieces.
There exist an integer M and scalars −∞ = τ0 < τ1 < · · · < τM = +∞2 such that
the conjugate function f ∗ can be written as

f ∗(β) = qk(β), for τk−1 ≤ β ≤ τk; k = 1, . . . , M, (10)

where

1. q1, . . . , qM are quadratic and convex;
2. qk(β) �= qk+1(β) for some β, for k = 1, . . . , M − 1;
3. f ∗(β) = max

1≤k≤M
{qk(β)} for all β ∈ IR;

4. M ≤ N + 2.

We note that the first three properties in Proposition 1 follow directly from the
definition of consistent functions and their conjugates. The primary contribution of
this proposition lies in establishing that the number of pieces of f ∗(β) is upper bounded
by N + 2. While the second property may initially appear redundant, it is ultimately
crucial for proving this result. To streamline the presentation, we include a high-level
sketch of the proof here and defer the complete proof to Sect. 3.3.

At a high level, Proposition 1 follows from the geometric interpretation of conjugate
functions. For simplicity, let us assume that λ = 0. Recall that for any strongly convex
and quadratic function pk , its conjugate p∗

k is likewise strongly convex and quadratic.
Moreover, −p∗

k (β) corresponds to the intercept of a tangent to pk with slope β. For
any β ∈ IR, let I (β) denote the minimum index of the piece at which a tangent to
f with slope β intersects f . The proof of the above proposition relies on two key
points: (1) f ∗(β) = p∗

I (β)(β) for every β ∈ IR; and (2) I (β) is a non-decreasing
function of β. The first observation implies that f ∗ is also piece-wise quadratic. The
second observation suggests that I (β) can have at most N changes, or equivalently,
f ∗ can possess at most N pieces (the additional two pieces in Proposition 1 arise only
if λ > 0). Figure5 depicts this intuition on a simple consistent function.

A few observations are in order based on the above proposition. First, the conjugate
function f ∗ is not guaranteed to be consistent, even if f is consistent (a property
that holds when λ = 0). Second, the number of pieces of the conjugate can, in fact,
decrease. Intuitively, by computing the conjugate, we implicitly compute the closed

2 We use the same notation for breakpoints as in Definition 2 to emphasize that the conjugate function f ∗
is indeed piece-wise quadratic.

123

A. Bhathena et al.

Fig. 5 A consistent function f (α) with four strongly convex quadratic pieces. For this function, we have
f ∗(β) = p∗

1(β) for β ≤ β1, f ∗(β) = p∗
2(β) for every β1 ≤ β < β2, and f ∗(β) = p∗

4(β) for every
β2 ≤ β. As a result, f ∗(β) has three pieces

convex envelope of the function f , that is, we compute and only store the informa-
tion relevant for optimization instead of the complete function. In general, computing
convex envelopes is notoriously challenging. A common approach involves approxi-
mating them using an outer linearization of the form f ∗

Y (β) = supα∈Y {αβ − f (α)},
where Y ⊆ IR (often a finite set) [4]. Clearly, f ∗

Y (β) ≤ f ∗(β) for all β ∈ IR, pro-
viding an outer approximation of the convex envelope. However, our next proposition
shows that the convex envelope of consistent functions can be computed exactly and
efficiently.

Proposition 2 Given f = f̃ + λ1lα , where λ > 0 and f̃ is consistent with N pieces,
the conjugate function f ∗ can be obtained in O(N) time and memory.

The proof of Proposition 2 is presented in Sect. 3.4. Equipped with these results, we
are now ready to present our parametric algorithm for path graphs.

3.1 Path graphs

Assume supp(Q) is a path graph. The following lemma is a direct consequence of
Propositions 1 and 2. It characterizes the parametric cost at every node u based on the
parametric cost of its parent node u − 1.

Lemma 3 Suppose that supp(Q) is a path graph.Moreover, given any node u, suppose
that fu−1 = f̃u−1 + λu−11lα , where f̃u−1 is consistent with N pieces. Then, we can
express fu = f̃u +λu1lα , where f̃u is consistent with at most N + 2 pieces. Moreover,
given fu−1, fu can be found in O(N) time and memory.

Proof Since f̃u−1 is consistent with N pieces, due to Proposition 1, there exist an
integer M ≤ N +2 and scalars −∞ = τu−1,0 < τu−1,1 < · · · < τu−1,M = +∞ such
that the conjugate function f ∗

u−1 can be written as:

f ∗
u−1(β) = qu−1,k(β), for τu−1,k−1 < β ≤ τu−1,k; k = 1, . . . , M,

where

123

Quadratic optimization with indicators over trees

1. qu−1,1, . . . , qu−1,M are quadratic and convex;
2. qu−1,k(β) �= qu−1,k+1(β) for some β, for k = 1, . . . , M − 1;
3. f ∗

u−1(β) = max
1≤k≤M

{qu−1,k(β)} for all β ∈ IR.

Combined with (9), this implies that fu = f̃u + λu1lα , where

f̃u(α) = 1

2
α2 + cuα − qu−1,k(−Qu,u−1α)
︸ ︷︷ ︸

:=pu,k (α)

,

for − τu−1,k

Qu,u−1︸ ︷︷ ︸
:=τu,k−1

< α ≤ −τu−1,k−1

Qu,u−1︸ ︷︷ ︸
:=τu,k

; k = 1, . . . , M, (11)

wherewe used Qu,u−1 �= 0 since supp(Q) is assumed to be connected. Next, we estab-
lish that f̃u is indeed consistent. First, the strong convexity of pu,k for k = 1, . . . , M
directly follows from Lemma 1. Second, we observe that pu,k(α) �= pu,k+1(α) for
some α since qu−1,k(β) �= qu−1,k+1(β) for some β. Third, we have

f̃u(α) = 1

2
α2 + cuα − f ∗

u−1(−Qu,u−1α)

= 1

2
α2 + cuα − max

1≤k≤M
{qu−1,k(−Qu,u−1α)}

= min
1≤k≤M

{
1

2
α2 + cuα − qu−1,k(−Qu,u−1α)

}

= min
1≤k≤M

{pu,k(α)}.

Finally, due to Proposition 2, f ∗
u−1 can be obtained inO(N) time and memory. Com-

binedwith (11), this indicates that fu can also be computed inO(N) time andmemory.

�

Due to (9), the parametric cost f1 at the leaf node 1 is the sum of an indicator function
and a consistent function with N = 1 piece. Therefore, Lemma 3 implies that f2 is the
sum of an indicator function and a consistent function with N ≤ 3 pieces. Moreover,
it can be computed in O(1) time. Repeating this process until reaching the root node
proves that fn can be expressed as the sum of an indicator function and a consistent
function with N ≤ 2n pieces, and it can be computed in O(1 + 3 + 5 + · · · + 2n) =
O(n2). Once fn is determined, the optimal cost f 	 can be derived by minimizing fn
over at most 2n strongly convex and quadratic pieces. The details of this procedure
are delineated in Algorithm 1.

Theorem 1 Algorithm 1 solves Problem (5) in O(n2) time and memory.

Proof Due to (9), the parametric cost at the leaf node 1 can be written as f1 =
f̃1 + λ11lα , where f̃1 is consistent with N = 1 piece. Consequently, by inductively

123

A. Bhathena et al.

Algorithm 1 Parametric algorithm for path graphs
Input: c, λ ∈ IRn , Q ∈ IRn×n , where Q is positive definite and supp(Q) is a path graph
Output: The optimal solution x	 and optimal cost f 	

1: for u = 1, . . . , n do
2: Obtain fu based on f ∗

u−1 via Equation (9)
3: Obtain f ∗

u based on fu via the breakpoint algorithm (Algorithm 4)
4: u ← child(u)

5: end for
6: Obtain f 	 = min

α
fn(α) and x	

n = argmin
α

fn(α)

7: for u = n − 1, . . . , 1 do
8: Set x	

u = argmin
α

{ fu(α) + Qu+1,u x
	
u+1 · α}

9: end for
10: return f 	 and x	

applying Lemma 3 from the leaf to the root node, the correctness of Algorithm 1 is
established.

To show its runtime, we consider the operations within the loops. Since f ∗
u−1 has

at most 2n pieces, the first operation inside the loop (Line 3) can be executed in O(n)

time. Moreover, the second operation inside the first loop (Line 3) can be executed
in O(N) = O(n) time due to Proposition 2. Hence, the first loop can be executed in
O(n2) time. On the other hand, according to Lemma 3, fn = f̃n + λn1lα , where f̃n
is consistent with at most 2n pieces. Therefore, Line 6 can be executed in O(n) time
by minimizing at most 2n strongly convex and quadratic functions. Similarly, each
operation inside the second loop can be executed in O(n) time, resulting in O(n2)
time and memory for the second loop.
�

3.2 Tree graphs

In this section, we extend our parametric algorithm to the general tree structures.
Toward this goal, we first revisit Example 1 to elucidate the key ideas behind this
extension.

Example 1 (Continued) To obtain the optimal cost, akin to the path graphs, it suffices
to derive the parametric cost fn . This can be achieved by noting that:

fn(α) = 1

2
α2 + cnα + λn1lα +

∑

v∈par(n)

min
ξ

{
Qn,vα · ξ + fv(ξ)

}

= 1

2
α2 + cnα + λn1lα −

∑

v∈par(n)

max
ξ

{−Qn,vα · ξ − fv(ξ)
}

= 1

2
α2 + cnα + λn1lα −

∑

v∈par(n)

f ∗
v

(−Qn,vα
)
.

For every v ∈ par(n), suppv(Q) is a path. Therefore, according to our discussion
in the previous section, each f ∗

v is consistent with at most 2L + 2 pieces, and can

123

Quadratic optimization with indicators over trees

be obtained in O(L2) time via Algorithm 1. On the other hand, invoking Lemma 2
implies that

∑
v∈par(n) f ∗

v

(−Qn,vα
)
is a piece-wise quadratic function with at most

B(2L+2) pieces, and can be obtained inO(B2L). Therefore, the optimal cost f 	 can
be obtained byminimizing different pieces of fn inO(BL). This brings the complexity
of the parametric algorithm toO(BL2+B2L). This is a significant improvement upon
the direct DP approach, which runs in O ((L + 1)B

)
.

Motivated by the above example, we next present the analog of Lemma 3 for tree
graphs.

Lemma 4 Suppose that supp(Q) is a tree graph. Moreover, given any node u, suppose
that fv = f̃v +λv1lα for every v ∈ par(u), where f̃v is consistent with Nv pieces. Then,
we can express fu = f̃u+λu1lα , where f̃u is consistent with at most

∑
v∈par(u)(Nv +2)

pieces. Moreover, given { fv}v∈par(u), fu can be found in O
(
deg(u)

(∑
v∈par(u) Nv

))

time and memory.

Proof Since for every v ∈ par(u), f̃v is consistent with Nv pieces, Proposition 1
implies the existence of an integer Mv ≤ Nv + 2 and scalars −∞ = τv,0 < τv,1 <

· · · < τv,Mv = +∞ such that f ∗
v can be written as:

f ∗
v (β) = qv,k(β), for τv,k−1 < β ≤ τv,k; k = 1, . . . , Mv,

where

1. qv,1, . . . , qv,M are quadratic and convex;
2. qv,k(β) �= qv,k+1(β) for some β, for k = 1, . . . , Mv − 1;
3. f ∗

v (β) = max
1≤k≤Mv

{qv,k(β)} for all β ∈ IR.

Let Γv be the ordered list of the breakpoints of f ∗
v (−Qu,vα) defined as Γv =

{−τv,k/Qu,v}Mv

k=1. Consider gu(α) =∑v∈par(u) f ∗
v (−Qu,vα). According to Lemma 2,

gu is piece-wise quadratic with a set of breakpoints
⋃

v∈par(u) Γv that has a car-
dinality of Nu ≤ 1 + ∑

v∈par(u)(Nv + 2). Given the ordered lists {Γv}v∈par(v),
⋃

v∈par(u) Γv can be ordered and stored in O
(∑

v∈par(u) Nv

)
time and memory. Let

−∞ = τu,0 < τu,1 < · · · < τu,Nu = +∞ be the ordered elements of
⋃

v∈par(u) Γv .
One can write

gu(α) =
∑

v∈par(u)

qv,iv(k)(−Qu,vα)

︸ ︷︷ ︸
:=q̃u,k (α)

, for τu,k−1 < α ≤ τu,k; k = 1, . . . , Nu,

(12)

where iv(k) is the index for which [τu,k−1, τu,k] ⊆
[
− τv,iv(k)

Qu,v
,− τv,iv(k)−1

Qu,v

]
if Qu,v > 0

and [τu,k−1, τu,k] ⊆
[
− τv,iv(k)−1

Qu,v
,− τv,iv(k)

Qu,v

]
if Qu,v < 0. The above equation combined

123

A. Bhathena et al.

with (9) implies that fu = f̃u + λu1lα , where

f̃u(α) = 1

2
α2 + cuα − q̃u,k(α)
︸ ︷︷ ︸

:=pu,k (α)

, for τu,k−1 < α ≤ τu,k; k = 1, . . . , Nu . (13)

Next, we prove that f̃u is consistent. First, if pu,k and pu,k+1 are identical for some
1 ≤ k ≤ Nu , one can remove the (k + 1)-th piece and set τu,k ← τu,k+1 and
Nu ← Nu −1. This process can be repeated until pu,k and pu,k+1 are not identical for
all 1 ≤ k ≤ Nu − 1. Second, the strong convexity of pu,k for k = 1, . . . , Nu directly
follows from Lemma 1. Third, note that

gu(α) =
∑

v∈par(u)

f ∗
v (−Qu,vα)

=
∑

v∈par(u)

max
1≤k≤Nv

{
qv,k(−Qu,vα)

}

≥ max
1≤k≤Nu

⎧
⎨

⎩

∑

v∈par(u)

qv,iv(k)(−Qu,vα)

⎫
⎬

⎭

= max
1≤k≤Nu

{
q̃u,k(α)

}

≥ gu(α),

where the last inequality follows from (12). Therefore, we have gu(α) =
max1≤k≤Nu

{
q̃u,k(α)

}
. This leads to

f̃u(α) = 1

2
α2 + cuα − gu(α)

= 1

2
α2 + cuα − max

1≤k≤Nu

{
q̃u,k(α)

}

= min
1≤k≤Nu

{
1

2
α2 + cuα − q̃u,k(α)

}

= min
1≤k≤M

{pu,k(α)}.

This completes the proof of the consistency of f̃u . Finally, due to Proposition 2,
each f ∗

v can be obtained in O (Nv) time and memory. Therefore, gu(α) =
∑

v∈par(u) f ∗
v (−Qu,vα) can be obtained in O

(
deg(u)

(∑
v∈par(u) Nv

))
time and

memory, according to Lemma 2. Combined with fu(α) = (1/2)α2 + cuα + λu1lα −
gu(α), this indicates that fu can also be computed inO

(
deg(u)

(∑
v∈par(u) Nv

))
time

and memory.
�

123

Quadratic optimization with indicators over trees

With Lemma 4 in place, we are prepared to present an overview of our parametric
algorithm for general tree graphs. The algorithm starts with node 1. Since node 1
represents a leaf node, its parametric cost f1 can be readily determined based on the
recursion (9).Moreover, its conjugate f ∗

1 can be obtained inO(1) due to Proposition 2.
Assuming that the parametric costs fv and their conjugates f ∗

v are available for every
node v < u, the parametric cost fu , can be obtained based on Lemma 4. Notably, due
to the topological ordering of nodes, all v ∈ par(u) satisfy v < u, ensuring that their
conjugate parametric costs f ∗

v needed to characterize fu are known. By repeating this
process iteratively, the algorithm efficiently computes the parametric costs following
the increasing topological ordering.

Algorithm 2 formalizes the aforementioned intuition and presents the proposed
parametric algorithm for trees with greater detail.

Algorithm 2 Parametric algorithm over general trees
Input: c, λ ∈ IRn , Q ∈ IRn×n , where Q is positive definite and supp(Q) has a tree structure
Output: The optimal solution x	 and optimal cost f 	

1: Label the nodes supp(Q) according to their topological ordering
2: for u = 1, . . . , n do
3: Obtain fu based on { f ∗

v }v∈par(u) via Equation (9)
4: Obtain f ∗

u from fu via Algorithm 4
5: end for
6: Obtain f 	 = min

α
fn(α) and x	

n = argmin
α

fn(α)

7: J ← par(n)

8: while J �= {} do
9: Choose u ∈ J
10: Set x	

u = argmin
α

{ fu(α) + Qchild(u),u x
	
child(u)

α}
11: J ← J\{u}
12: J ← J ∪ par(u)

13: end while
14: return f 	 and x	

Theorem 2 Under the assumption that supp(Q) is a tree, Algorithm 2 solves Prob-
lem (1) in O(n2) time and memory.

Proof The proof is analogous to that of Theorem 1, and proceeds inductively using
Equation (9) and Lemma 4. For brevity, we omit the specific details.
�

3.3 Properties of consistent functions

In this section, we present the proof of Proposition 1. To this goal, we first introduce
the fundamental properties of consistent functions and their conjugates.

For a piece-wise quadratic function g with N strongly convex pieces p1, . . . , pN ,
we define its indexing function Ig : IR → {1, . . . , N } as:

Ig(β) = min

{
k : τk−1 ≤ α	 ≤ τk, α

	 ∈ argmax
α

{βα − g(α)}
}

, (14)

123

A. Bhathena et al.

Fig. 6 A consistent function
f (α) with three strongly convex
quadratic pieces. In this
example, p1 and p3 are defined
from the same quadratic
equation

where {τk}Nk=0 are the breakpoints of g. Intuitively, the indexing function Ig returns
the piece with the minimum index where a line with slope β is tangent to g. As
an example, the indexing function for f depicted in Fig. 5 can be characterized as
I f (β) = 1 for all β ≤ β1, I f (β) = 2 for all β1 < β ≤ β2, and I f (β) = 4 for all
β2 < β. As another example, consider the indexing function for f depicted in Fig. 6.
Here, I f (β) = 1 for all β ≤ β1, I f (β) = 2 for all β1 < β ≤ β2, and I f (β) = 3 for
all β2 < β.

Due to the definition of the indexing function, there exists a solution α	 ∈
argmaxα{βα − g(α)} such that τIg(β)−1 ≤ α	 ≤ τIg(β). Therefore, we have

g∗(β) = βα	 − g(α) = βα	 − pIg(β)(α
) = max

α
{βα − pIg(β)(α)} = p∗

Ig(β)(β).

(15)

Let the image of Ig be denoted as Image(Ig) = {k : k = Ig(β) for some β ∈ IR}.
For every k ∈ Image(Ig), its inverse image is defined as I−1

g (k) = {β : Ig(β) = k}.
Revisiting Fig. 5, the indexing function of f satisfies Image(I f) = {1, 2, 4} with
inverse images I−1

f (1) = (−∞, β1], I−1
f (2) = (β1, β2], and I−1

f (4) = (β2,+∞).
Recall the intuition behind Proposition 1: In order to control the number of pieces

of g∗, it suffices to control the number of changes in the indexing function Ig . This
can be achieved by showing that Ig is non-decreasing. Our next lemma establishes
this important property for consistent functions.

Lemma 5 Any consistent function has a non-decreasing indexing function.

To prove the above lemma, we first present the following intermediate result.

Lemma 6 Suppose that g is consistent with pieces p1, . . . , pN and breakpoints−∞ =
τ0 < τ1 < · · · < τN = +∞. For any β ∈ IR and k ∈ {1, . . . , N }, define the linear
function �k;β(α) = βα − p∗

k (β). Moreover, define α	(β) ∈ argmaxα{βα − g(α)}. Let
k∗ be such that τk∗−1 ≤ α	(β) ≤ τk∗ . The following statements hold:

1. We have α	(β) /∈ {τk∗−1, τk∗}.
2. We have �k∗;β(α	(β)) = g(α	(β)), and �k∗;β(α) ≤ g(α) for every α ∈ IR.

Proof To prove the first statement, suppose, by contradiction, that α	(β) = τk for
some k ∈ {k∗ − 1, k∗}. Note that g(α) − βα = pk(α) − βα for every τk−1 ≤ α ≤ τk

123

Quadratic optimization with indicators over trees

and g(α) − βα = pk+1(α) − βα for every τk ≤ α ≤ τk+1. Since α	(β) = τk , we
must have p′

k(α
	(β)) ≤ 0 and p′

k+1(α
	(β)) ≥ 0. Since βα − g(α) is a continuous

function of α, we must have pk(α	(β)) = pk+1(α
	(β)). We consider three cases:

1. Suppose p′
k(α

	(β)) = p′
k+1(α

	(β)) = 0. Since pk and pk+1 are not identical,
we must have p′′

k (α
	(β)) �= p′′

k+1(α
	(β)). If p′′

k (α
	(β)) < p′′

k+1(α
	(β)), then

pk(α	(β) + ε) < pk+1(α
	(β) + ε) for every ε > 0, which is a contradiction.

Similarly, if p′′
k (α

	(β)) > p′′
k+1(α

	(β)), then pk(α	(β) − ε) > pk+1(α
	(β) − ε)

for every ε > 0, which is again a contradiction.
2. Suppose p′

k(α
	(β)) < 0. Therefore, there exists ε̄ > 0 such that, for every ε ∈

(0, ε̄], we have

pk(α
	(β) + ε) < pk(α

	(β)) = pk+1(α
	(β)) ≤ pk+1(α

	(β) + ε),

which is a contradiction.
3. Suppose p′

k+1(α
	(β)) > 0. Following the same reasoning as the previous case,

we arrive at a contradiction.

To prove the second statement, recall that βα−g(α) = βα− pk∗(α) for every τk∗−1 ≤
α ≤ τk∗ . Therefore, since α	(β) ∈ argmaxα{βα − g(α)} and α	(β) ∈ (τk∗−1, τk∗),
we must have α	(β) ∈ argminα∈(τk∗−1,τk∗){pk∗(α) − βα}. Since pk∗(α) − βα is a
strongly convex function of α, this implies that α	(β) = argminα{pk∗(α) − βα} =
argmaxα{βα − pk∗(α)}. Therefore,

βα	(β) − pk∗(α	(β)) = p∗
k∗(β)

⇐⇒ βα	(β) − p∗
k∗(β) = pk∗(α	(β))

⇐⇒ �k∗;β(α	(β)) = g(α	(β)).

Finally, since maxα{βα − g(α)} = maxα{βα − pk∗(α)}, one can write

�k∗;β(α) = βα − p∗
k∗(β)

= βα − max
ξ

{βξ − pk∗(ξ)}
= βα + min

ξ
{−βξ + pk∗(ξ)}

= βα + min
ξ

{−βξ + g(ξ)}
= min

ξ
{βα − βξ + g(ξ)}

≤ βα − βα + g(α)

= g(α).

This completes the proof.
�
Proof of Lemma 5. Suppose that g is consistent with pieces p1, . . . , pN and break-
points −∞ = τ0 < τ1 < · · · < τN = +∞. To show Ig(β) is non-decreasing, it
suffices to show that if k < Ig(β) for some β ∈ IR, then k �= Ig(β ′), for any β ′ > β.

123

A. Bhathena et al.

By contradiction, suppose there exist β < β ′ such that k < Ig(β) and k = Ig(β ′). Let
l = Ig(β). Due to the definition of the indexing function, there exist α	

l , α
	
k ∈ IR such

that

α	
l ∈ argmax

α
{βα − g(α)}, and τl−1 ≤ α	

l ≤ τl ,

α	
k ∈ argmax

α
{β ′α − g(α)}, and τk−1 ≤ α	

k ≤ τk .

Due to the first statement of Lemma 6, we must have τl−1 < α	
l < τl and τk−1 <

α	
k < τk . This implies that

α	
k < τk ≤ τl−1 < α	

l �⇒ α	
k < α	

l . (16)

On the other hand, the second statement of Lemma 6 implies that

�l;β(α	
l) = g(α	

l) and �l;β(α) ≤ g(α); ∀α

�k;β ′(α	
k) = g(α	

k) and �k;β ′(α) ≤ g(α); ∀α.

Combining the above two inequalities, we have

�l;β(α	
k) ≤ g(α	

k) = �k;β ′(α	
k) �⇒ βα	

k − p∗
l (β) ≤ β ′α	

k − p∗
k (β

′)
�k;β ′(α	

l) ≤ g(α	
l) = �l;β(α	

l) �⇒ β ′α	
l − p∗

k (β
′) ≤ βα	

l − p∗
l (β).

The above two inequalities yield

βα	
k − p∗

l (β) + β ′α	
l − p∗

k (β
′) ≤ β ′α	

k − p∗
k (β

′) + βα	
l − p∗

l (β)

⇐⇒ (β ′ − β)α	
l ≤ (β ′ − β)α	

k

⇐⇒ α	
l ≤ α	

k ,

which contradicts (16). This completes the proof.
�
Our next lemma provides a key property of the conjugate of a piece-wise quadratic

function with a non-decreasing indexing function.

Lemma 7 Suppose that g is a piece-wise quadratic function with N strongly convex
pieces p1, . . . , pN and a non-decreasing indexing function Ig. There exist an integer
N ′ ≤ N, scalars −∞ = τ0 < τ1 < · · · < τN ′ = +∞, and a strictly increasing
function π : {1, . . . , N ′} → {1, . . . , N } such that

g∗(β) = p∗
π(k)(β), for τk−1 ≤ β ≤ τk; k = 1, . . . , N ′, (17)

where

1. p∗
1, . . . , p

∗
N are quadratic and strongly convex;

2. p∗
π(k)(β) �= p∗

π(k+1)(β) for some β, for k = 1, . . . , N ′ − 1.

123

Quadratic optimization with indicators over trees

Proof Let j1 < j2 < · · · < jN ′ be the ordered elements of Image(Ig). We have N ′ ≤
N since Image(Ig) ⊆ {1, . . . , N }. Moreover, we have

⋃N ′
k=1 I

−1
g (jk) = IR. Since Ig

is assumed to be non-decreasing, I−1
g (jk) is a convex set for every k = 1, . . . , N ′.

Therefore, there exist −∞ = τ0 < τ1 ≤ · · · ≤ τN ′−1 < τN ′ = +∞ such that, for
every k = 1, . . . , N ′, I−1

g (jk) can be characterized as:

I−1
g (jk) = [τk−1, τk] , (τk−1, τk) , [τk−1, τk), or (τk−1, τk]. (18)

Upon defining π(k) = jk for every 1 ≤ k ≤ N ′, we have

g∗(β) = p∗
jk (β) if β ∈ I−1

g (jk)

⇐⇒ g∗(β) = p∗
π(k)(β) if β ∈ I−1

g (jk)

⇐⇒ g∗(β) = p∗
π(k)(β) if τk−1 ≤ β ≤ τk; k = 1, . . . , N ′,

where the first equality is a direct consequence of (15), the second equality is due to the
definition of the function π , and the third equality is due to (18) and the fact that g∗ is
continuous. This completes the proof of (17). Next, we proceed to prove the properties
delineated in Lemma 7. To prove the first property, recall that pk is strongly convex
and quadratic for every k = 1, . . . , N . Therefore, p∗

k (β) = maxα{βα− pk(α)}} is also
strongly convex and quadratic. Moreover, the second property follows since, if p∗

π(k)
and p∗

π(k+1) are identical for some 1 ≤ k ≤ N ′, one can remove the (k + 1)-th piece
and set τk ← τk+1 and N ′ ← N ′ −1. This process can be repeated until p∗

π(k)(β) and
p∗
π(k+1)(β) are not identical for all k = 1, . . . , N ′ − 1.
�
We are now ready to present the proof of Proposition 1.

Proof of Proposition 1 One can write

f ∗(β) = max
α

{βα − f (α)}

= max

{
− f (0),max

α �=0

{
βα − f̃ (α) − λ

}}

= max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− f (0),max
α

{
βα − f̃ (α)

}

︸ ︷︷ ︸
:= f̃ ∗(β)

−λ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(19)

Next, note that

f̃ ∗(β) = max
α

{
βα − f̃ (α)

}

= max
α

{
βα − min

1≤k≤N
{pk(α)}

}

= max
α

{
max

1≤k≤N
{βα − pk(α)}

}

123

A. Bhathena et al.

= max
1≤k≤N

{
max

α
{βα − pk(α)}

}

= max
1≤k≤N

{p∗
k (β)}. (20)

Since each p∗
k is strongly convex, f̃

∗ is also strongly convex. Therefore, the equation
f̃ ∗(β) − λ = − f (0) can have at most two solutions. Moreover, f̃ ∗(0) = − f (0)
which implies f̃ ∗(0) − λ < − f (0). Hence, f̃ ∗(β) − λ = − f (0) has exactly two
solutions. Let β1 < β2 be these solutions. Based on (19), f ∗ can be characterized as

f ∗(β) =
{

− f (0) β1 ≤ β ≤ β2

f̃ ∗(β) − λ otherwise.
(21)

Since f̃ is consistent, it must have a non-decreasing indexing function due to Lemma 5.
Combined with Lemma 7, this implies that f̃ has at most N ′ ≤ N pieces. Therefore,
f ∗ emerges as a piece-wise quadratic function with at most M pieces, where M ≤
N ′ + 2 ≤ N + 2. Let these pieces be denoted as {qk}Mk=1. For every 1 ≤ k ≤ M , we
either have qk(β) = p∗

k′(β) − λ for some 1 ≤ k′ ≤ N , or qk(β) = − f (0). Therefore,
q1, . . . , qM are quadratic and convex. Moreover, it is easy to verify that qk and qk+1
are not identical for all k = 1, . . . , M − 1. Finally, note that

f̃ ∗(β) = max
1≤k≤N

{p∗
k (β)} ≥ max

1≤k≤N ′{p∗
π(k)(β)} ≥ p∗

I f̃ (β)(β) = f̃ ∗(β),

where the first equality follows from (20). The above inequality implies that f̃ ∗(β) =
max1≤k≤N ′ {p∗

π(k)(β)}. Therefore, according to (19), we have

f ∗(β) = max{− f (0), f̃ ∗(β) − λ} = max
1≤k≤M

{qk(β)}.

This completes the proof.
�

3.4 Breakpoint algorithm

Our next goal is to characterize f ∗ efficiently. Indeed, the function f ∗ can be expressed
as

f ∗(β)=max{− f (0), f̃ ∗(β) − λ} =max

⎧
⎪⎨

⎪⎩
− f (0)
︸ ︷︷ ︸
p̃0(β)

, max
1≤k≤N

{p∗
k (β) − λ
︸ ︷︷ ︸

p̃k (β)

}

⎫
⎪⎬

⎪⎭

= max
0≤k≤N

{ p̃k(β)}.

A direct method for characterizing f ∗ is to identify the intersections of p̃k and p̃l
for all possible pairs 0 ≤ k < l ≤ N , sort these intersections, and then determine
the minimum piece within every pair of adjacent intersections. This method correctly

123

Quadratic optimization with indicators over trees

Fig. 7 A semi-consistent
function with two pieces. The
function is not consistent since it
violates the second property of
Definition 3

characterizes f ∗ and operates inO(N 2). However, we demonstrate that this complex-
ity can be improved toO(N). To explain our method, we start by introducing the class
of semi-consistent functions.

Definition 4 A piece-wise quadratic function g with breakpoints −∞ = τ0 < τ1 <

· · · < τN = +∞ and pieces p1, . . . , pN is called semi-consistent if it satisfies the
following properties:

– p1, . . . , pN are strongly convex;
– We have pk(α) ≤ min{pk−1(α), pk+1(α)} for all α ∈ [τk−1, τk] and 2 ≤ k ≤

N − 1.
– For all k ≤ N , the indexing function Igk is non-decreasing, where gk : IR → IR is
defined as:

gk(α) =
{
g(α) α ≤ τk

pk(α) α > τk .
(22)

The first property mirrors that of consistent functions. The second property is a local
variant of the second property of the consistent functions: Within the local interval
bounded by two adjacent breakpoints τk−1 and τk , the function g is the minimum
of the adjacent pieces pk−1, pk , and pk+1. Moreover, the function gk is obtained by
restricting the function g to its first k pieces, with the final piece extended to +∞.
Indeed, gk is piece-wise quadratic with k strongly convex pieces. However, it may not
be consistent. It is also evident that gN = g.

Not every semi-consistent function is consistent. An example is depicted in Fig. 7.
However, our next lemma shows that every consistent function is semi-consistent.

Lemma 8 Any consistent quadratic function is semi-consistent.

Proof Suppose that g is consistent with N pieces. The first property of semi-consistent
functions is trivially satisfied for g. Since g(α) = min1≤k≤N {pk(α)}, the function g
also satisfies the second property. To prove the last property, we can follow the same
steps as the proof of Lemma 5. The first step is to show that Lemma 6 holds for gk .
The second step is to prove the non-decreasing property of Igk based on the statements
of Lemma 6. The details of the proof are omitted since they are identical to those of
Lemma 5.
�

Since every consistent function is semi-consistent, to prove Proposition 2, it suffices
to provide an efficient algorithm for obtaining the conjugate of the functions expressed
as g + λ1lα , where g is semi-consistent.

123

A. Bhathena et al.

Recall the geometric interpretation of a conjugate function: Given any convex func-
tion pk , the negative of its conjugate −p∗

k is the intercept of a tangent to pk with slope
β.

Definition 5 For any 1 ≤ k < l ≤ N , we define a feasible common tangent skl
to pieces l and k as the slope of a line that is tangent to pk and pl at some points
τk−1 ≤ αk ≤ τk and τl−1 ≤ αl ≤ τl , respectively.

Observe that since functions pk and pl are strictly convex, any tangent line is an
underestimator of the function. Moreover, any two different lines in IR2 intersect in at
most one point. If the intersection occurs in interval [τk−1, τk], then one line is strictly
“above” the other in interval [τl−1, τl] and they cannot both be tangents of pl . Cases
where the intersection occurs in a different interval or where the lines are parallel can
be handled identically. We formally prove this result next.

Lemma 9 For any 1 ≤ k < l ≤ N, the pieces k and l can have at most one feasible
common tangent.

Proof Since a feasible common tangent skl must satisfy−p∗
l (skl) = −p∗

k (skl) andboth
p∗
l and p∗

k are quadratic, the pieces pl and pk can have at most two feasible common
tangents. By contradiction, suppose they have exactly two common tangents, given
by �1kl(α) := s1klα + b1kl and �2kl(α) := s2klα + b2kl . Without loss of generality, suppose
s2kl > s1kl . Let α

1
k and α2

k be the points at which the lines �1kl(α) and �2kl(α) are tangent
to pk , respectively. Define α1

l and α2
l in a similar fashion. Since pk and pl are strongly

convex and s1kl < s2kl , we must have α1
k < α2

k and α1
l < α2

l . Therefore,

τk−1 ≤ α1
k < α2

k ≤ τk ≤ τl−1 ≤ α1
l < α2

l ≤ τl �⇒ α2
k ≤ α1

l . (23)

On the other hand, due to the strong convexity of pk , we have

�1kl(α
1
k) = pk(α

1
k) and �1kl(α) < pk(α); ∀α �= α1

k

�2kl(α
2
k) = pk(α

2
k) and �2kl(α) < pk(α); ∀α �= α2

k .

Combining the above two inequalities, we have �1kl(α
2
k) < �2kl(α

2
k), which implies that

b1kl − b2kl < (s2kl − s1kl)α
2
k . Similarly, one can show that �2kl(α

1
l) < �1kl(α

1
l), which

implies that (s2kl − s1kl)α
1
l < b1kl − b2kl . Therefore, we have

{
b1kl − b2kl < (s2kl − s1kl)α

2
k

(s2kl − s1kl)α
1
l < b1kl − b2kl

�⇒ α1
l < α2

k .

This contradicts (23), thereby completing the proof.
�
Our next algorithm (Algorithm 3) obtains the value of skl .
A few observations are in order regardingAlgorithm 3. First, note that the conjugate

functions p∗
k and p∗

l in Line 1 can be obtained in O(1) time and memory. Moreover,
without loss of generality, we assume that −p∗

k (β) = −p∗
l (β) has two roots β1

kl and

123

Quadratic optimization with indicators over trees

Algorithm 3 Feasible common tangent: SLOPE(pk, τk−1, τk, pl , τl−1, τl)

Input: {pk , τk−1, τk } and {pl , τl−1, τl }
Output: The slope of the feasible common tangent skl
1: Obtain the conjugate functions p∗

k and p∗
l

2: Obtain the roots β1
kl and β2

kl of −p∗
k (β) = −p∗

l (β)

3: Obtain α1k = argmaxα{β1
klα − pk (α)} and α1l = argmaxα{β1

klα − pl (α)}
4: Obtain α2k = argmaxα{β2

klα − pk (α)} and α2l = argmaxα{β2
klα − pl (α)}

5: if α1k ∈ [τk−1, τk] and α1l ∈ [τl−1, τl] then
6: return skl = β1

kl
7: else if α2k ∈ [τk−1, τk] and α2l ∈ [τl−1, τl] then
8: return skl = β2

kl
9: else if α1l /∈ [τl−1, τl] and α2l /∈ [τl−1, τl] then
10: return skl = +∞
11: else
12: return skl = −∞
13: end if

β2
kl ; indeed, the later steps of the algorithm can be modified accordingly if −p∗

k (β) =
−p∗

l (β) has fewer than two roots. It is also easy to see that {α1
k , α

1
l , α

2
k , α

2
l } in Lines 3

and 4 can be obtained in O(1) time and memory. Finally, the algorithm assigns +∞
or −∞ to skl if a feasible common tangent does not exist.

We next show that the breakpoints of g∗ coincide with certain feasible common
tangents that satisfy a breakpoint condition.

Definition 6 We say pieces k < l satisfy the breakpoint condition if:

– −∞ < skl < +∞;
– I−

g (skl) = limε→0+ Ig(skl − ε) = Ig(skl) = k;
– I+

g (skl) = limε→0+ Ig(skl + ε) = l.

We refer the reader back to Fig. 5 for intuition. Both lines with slopes β1 and β2 are
tangent to pieces satisfying the breakpoint condition. Alternatively, imagine the line
tangent to pieces p2 and p3. Such a line would cut into the epigraph of piece p4. In this
scenario, I+

g (s23) = 4, violating the last condition. Intuitively, tangent lines between
pieces satisfying the breakpoint condition are the lines required to describe the convex
envelope of the piece-wise quadratic function g. More formally, as we show next, the
slopes of such lines are required to describe the conjugate function.

Lemma 10 The pieces k < l satisfy the breakpoint condition if and only if their feasible
common tangent skl is a breakpoint for g∗.

Proof Suppose that the pieces k < l satisfy the breakpoint condition. Therefore, we
have I−

g (skl) = Ig(skl) = k, which implies that there exists some ε > 0 such that for
all ε ∈ [0, ε) we have Ig(skl − ε) = k. From the definition of the indexing function, it
follows that there exists α	

k ∈ argmax{(skl − ε)α − g(α)} such that τk−1 ≤ α	
k ≤ τk .

Therefore, we have

g∗(skl − ε) = (skl − ε)α	
k − g(α	

k)

123

A. Bhathena et al.

Fig. 8 The first row corresponds to the ADD step of Algorithm 4. The second row corresponds to the
DELETE step, wherein piece p2 is discarded by the algorithm

= (skl − ε)α	
k − pk(α

	
k)

= max
α

{(skl − ε)α − pk(α)}
= p∗

k (skl − ε).

Similarly, since I+
g (skl) = l, there exists some ε > 0 such that for all ε ∈ (0, ε) we

have g∗(skl + ε) = p∗
l (skl + ε). The above two equations imply that skl is indeed a

breakpoint of g∗.
Conversely, suppose that a point τ is a breakpoint for g∗. Since τ is a breakpoint,

we must have I−
g (τ) �= I+

g (τ). This together with the non-decreasing property of
Ig implies that I−

g (τ) < I+
g (τ). Let k = I−

g (τ) and l = I+
g (τ) for some k < l. We

proceed toprove that τ is indeed the feasible common tangent to the pieces k and l. First,
it is easy to verify that pk and pl cannot be identical.Defineα	

k = argmaxα{τα−pk(α)}
and α	

l = argmaxα{τα − pl(α)}. Due to the definition of the indexing function, we
have τk−1 ≤ α	

k ≤ τk and τl−1 ≤ α	
l ≤ τl . Consider the lines �τ,k(α) = τα − p∗

k (τ)

and �τ,l(α) = τα − p∗
l (τ). Indeed, these two lines are tangent to pieces k and l at

points α	
k and α	

l , respectively. Moreover, they coincide since p∗
k (τ) = p∗

l (τ) due to
the continuity of g∗. Therefore, τ is the feasible common tangent to the pieces k and
l.
�

According to Lemma 10, it suffices to identify every pair of pieces k < l that satisfy
the breakpoint condition. This can be naturally achieved by verifying the condition
for all

(n
2

)
pairs of pieces. Our proposed Algorithm 4, which we call the breakpoint

algorithm, achieves this goal in linear time. It keeps track of two ordered lists Γ and
Π . The list Γ collects the set of candidate breakpoints, whereas the list Π records
the pieces that satisfy the breakpoint condition. In other words, upon termination, the
piecesΠ(j) andΠ(j+1) satisfy the breakpoint condition for any j = 1, . . . , |Π |−1.
The initial values of these lists are set as Γ = [−∞] and Π = [1].

At every iteration, the algorithm takes one of the following steps:

123

Quadratic optimization with indicators over trees

Algorithm 4 Breakpoint algorithm
Input: g + λ1lα , where g is semi-consistent
Output: The conjugate of the input function
1: Γ ← [−∞] � Ordered list of candidate breakpoints of g∗
2: Π ← [1] � Ordered indices satisfying the breakpoint condition
3: j ← 2
4: while j ≤ N do
5: i ← end(Π) � Return the last (maximum) element of Π

6: si j ← SLOPE(pi , τi−1, τi , p j , τ j−1, τ j) � Obtain the feasible common tangent
7: if si j > end(Γ) then � ADD
8: Γ ← append(Γ , si j) � Append si j to Γ as a new breakpoint
9: Π ← append(Π, j) � Append j to Π

10: j ← j + 1
11: else if si j ≤ end(Γ) then � DELETE
12: Γ ← delete(Γ ,end(Γ)) � Delete the last breakpoint from Γ

13: Π ← delete(Π,end(Π)) � Delete the last index from Π

14: end if
15: end while
16: Γ ← append(Γ ,+∞)

17: Define g∗(β) = p∗
Π(k)(β), for Γ (k) ≤ β ≤ Γ (k + 1); k = 1, . . . , M .

18: Find the roots β1 < β2 of −g(0) = g∗(β) − λ

19: return the conjugate of g(α) + λ1lα as

{
−g(0) β1 ≤ β ≤ β2

g∗(β) − λ otherwise

Fig. 9 The auxiliary function g̃
defined by removing piece
N − 1 from g, and extending the
pieces N − 2 and N to substitute
piece N − 1

– ADD (Line 7 of Algorithm 4): When a common tangent between the piece j and
the highest index i in Π is greater than the largest discovered breakpoint in Γ ,
the algorithm adds the index j and the common tangent si j to the lists Π and Γ ,
respectively. This scenario is depicted in the first row of Fig. 8. Note that, at this
step, it is possible for the algorithm to add an infeasible common tangent with
si j = +∞ to Γ (see Fig. 8, top right figure). However, both si j and j will be
discarded in the DELETE step, as we explain next.

– DELETE (Line 11 of Algorithm 4):When the slope of a common tangent between
the piece j and the piece with the highest index i in Π is less than or equal to
the largest discovered breakpoint τ in Γ , the algorithm deletes the last elements
of the lists Γ and Π . Intuitively, this condition implies that the last piece of Π

cannot satisfy the breakpoint condition when paired with any other piece. As
another interpretation, this piece does not play a role in characterizing the convex

123

A. Bhathena et al.

envelope of g since it lies in the interior of its epigraph. This scenario is also
depicted in the second row of Fig. 8.

Our next theorem shows that the breakpoint algorithm returns the conjugate of any
function g(α) + λ1lα , provided that g is semi-consistent.

Theorem 3 Let g be semi-consistent with N pieces. The breakpoint algorithm (Algo-
rithm 4) correctly computes the conjugate of g + λ1lα for any λ > 0 in O(N) time
and memory.

Before presenting the proof of the above theorem, we show how it can be used to
complete the proof of Proposition 2.

Proof of Proposition 2 According to Lemma 8, f̃ is semi-consistent. Therefore, the
proof readily follows upon choosing g = f̃ in Theorem 3.
�

Next, we present the main idea behind the correctness proof of the breakpoint
algorithm. Our proof is based on induction on the number of pieces in g. Suppose
the breakpoint algorithm returns the conjugate of any semi-consistent function with
at most N − 1 pieces. Our goal is to use this assumption to prove that the algorithm
returns the conjugate of gN with N pieces. Note that, when running the breakpoint
algorithm on gN , the algorithm first processes the first N − 1 pieces of gN , which are
identical to gN−1. Due to Definition 4, gN−1 is semi-consistent with N −1. Therefore,
relying on our induction hypothesis, the breakpoint algorithm correctly identifies the
breakpoints and pieces of g∗

N−1. Let si,N−1 and N − 1 denote the last breakpoint
and piece added to Γ and Π respectively until the algorithm reaches piece N . Upon
processing piece N , two potential scenarios emerge:

– Case 1: si,N−1 < sN−1,N . In this case, the algorithm “adds” the breakpoint sN−1,N
and the piece N to Γ and Π , then returns these sets as the set of breakpoints and
pieces of g∗

N . We prove that these sets coincide with the true sets of breakpoints
and pieces of g∗

N .
– Case 2: si,N−1 ≥ sN−1,N . In this scenario, the algorithm “deletes” the breakpoint
si,N−1 and the piece N −1 from Γ andΠ respectively. Here, we establish that the
piece N − 1 does not contribute to the characterization of g∗

N . In this scenario, g
∗
N

is the same as the conjugate of an auxiliary function g̃N−1, obtained by removing
piece N−1 from gN , and subsequently, extending pieces N−2 and N to substitute
piece N − 1. Figure9 illustrates this function. We show that the constructed g̃N−1
is semi-consistent and has N − 1 pieces. Therefore, by induction hypothesis, the
algorithm correctly recovers its conjugate.

The rest of this section is devoted to formalizing the above intuition.

Proof of Theorem 3 We begin by presenting the proof of correctness, followed by the
proof of its runtime. Suppose that Line 17 correctly recovers g∗. Upon finding the
roots β1 < β2 of −g(0) = g∗(β) − λ, Equation (21) can be invoked to show that
Line 19 returns the conjugate of g + λ1lα . Therefore, to prove the correctness of the
algorithm, it suffices to show that Line 17 correctly recovers g∗. To this goal, we
prove that the ordered lists Γ and Π coincide with the correct breakpoints and pieces

123

Quadratic optimization with indicators over trees

of g∗, respectively. Our proof is by induction on the number of pieces N of g. Recall
that g = gN as defined Definition 4. To streamline the presentation, we keep the
dependency of g on N explicit throughout the proof.

Base caseSuppose N = 1. Indeed, both gN and g∗
N have one piecewith no breakpoints.

Since theWhile loop inLine 4 starts onlywhen g hasmore thanonepiece, the algorithm
correctly returns the initial values of Π = [1] and Γ = [−∞,+∞]. Thus, the base
case of the induction hypothesis is true.

Induction step Suppose that the breakpoint algorithm correctly recovers Γ and Π

for any semi-consistent function gN−1 with at most N − 1 pieces. Our goal is to
prove that the algorithm correctly recovers the correct breakpoints and pieces for any
semi-consistent function gN with N pieces.

We use (Γ 	
N ,Π	

N) and (ΓN ,ΠN) to denote the true set of breakpoints and pieces of
g∗
N , and those returned by the algorithm, respectively. Similarly, (Γ 	

N−1,Π
	
N−1) and

(ΓN−1,ΠN−1) are the true breakpoints and pieces, and those returned by the algorithm
for g∗

N−1, respectively. From our induction hypothesis, we have Γ 	
N−1 = ΓN−1 and

Π	
N−1 = ΠN−1. When we apply the algorithm to gN , the algorithm first processes

the first N − 1 pieces of gN . Let (Γ̃N−1, Π̃N−1) denote the set of breakpoints and
pieces returned by the algorithm at this point. For gN−1, the piece N − 1 is defined
over the domain [τN−2,∞). Therefore, we have lim

β→∞ IgN−1(β) = N − 1. Suppose i

is the piece for which the pair i and N −1 satisfies the breakpoint condition for gN−1.
This implies that

1. I−
gN−1

(si,N−1) = IgN−1(si,N−1) = i ,
2. I+

gN−1
(si,N−1) = N − 1.

Due to the non-decreasing property of IgN−1 , we have si,N−1 = max{Γ 	
N−1}. We

consider two cases:
Case 1: si,N−1 < sN−1,N In this case, the algorithm proceeds with the ADD step and
returns ΓN = Γ̃N−1 ∪ {sN−1,N } and ΠN = Π̃N−1 ∪ {N }. We show that these sets
coincide with (Γ 	

N ,Π	
N).

Claim 1 Γ̃N−1 = Γ 	
N−1 and Π̃N−1 = Π	

N−1.

To prove this claim, we first observe that the algorithm runs identically over the
first N −2 pieces of gN−1 and g, since these functions are identical over (−∞, τN−1].
Therefore, it follows that Γ̃N−1 matches Γ 	

N−1 entirely, except for a potential dis-
tinction in their final elements. This distinction occurs only if si,N−1 = −∞ or
si,N−1 = +∞. Since si,N−1 ∈ Γ 	

N−1, we have −∞ < si,N−1. Moreover, since
τN = +∞, we have sN−1,N < +∞ according to Algorithm 3. This implies that
−∞ < si,N−1 < sN−1,N < +∞. Therefore, both si,N−1 and sN−1,N are finite and
Γ̃N−1 = Γ 	

N−1. The proof of Π̃N−1 = Π	
N−1 follows similarly.

Based on the above claim, it suffices to show that Γ 	
N = Γ 	

N−1 ∪ {sN−1,N } and
Π	

N = Π	
N−1 ∪ {N }. To this goal, we rely on two crucial claims.

Claim 2 g	
N−1(β) = max

α≤τN−1
{αβ − gN−1(α)} for every β < sN−1,N .

123

A. Bhathena et al.

To prove the above claim, it suffices to show that, for every β < sN−1,N , there
exists some α	(β) ∈ {argmaxα{αβ − gN−1(α)}} such that α	(β) < τN−1. First
consider the case β ≤ si,N−1. In this case, IgN−1(β) ≤ i , which in turn implies
α	(β) < τi < τN−1. When si,N−1 < β ≤ sN−1,N , from the non-decreasing property
of the indexing function, we have IgN−1(β) = N − 1. Thus, maxα{αβ − gN−1(α)} =
maxα{αβ − pN−1(α)} for every si,N−1 < β ≤ sN−1,N . Since pN−1 is strongly
convex, α	(β) is an increasing function of β for every si,N−1 < β ≤ sN−1,N . On the
other hand, α	(sN−1,N) = argmaxα{αsN−1,N − pN−1(α)} < τN−1, where the last
inequality follows from the fact that sN−1,N is finite and is the feasible common tangent
to pieces N − 1 and N . Therefore, we have α	(β) < τN−1 for every β < sN−1,N .

Claim 3 g∗
N−1(β) > αβ − pN (α) for every β < sN−1,N and α > τN−1.

To prove this claim, define the line �β(α) = αβ − g∗
N−1(β). It is easy to see that

�sN−1,N (α) > �β(α), for every β < sN−1,N and α > τN−1. (24)

Since IgN−1(sN−1,N) = N − 1, it follows that g∗
N−1(sN−1,N) = p∗

N−1(sN−1,N) =
p∗
N (sN−1,N). Thus,

�sN−1,N (α) = sN−1,Nα − g∗
N−1(sN−1,N) = sN−1,Nα − p∗

N (sN−1,N).

On the other hand, due to the property of conjugate functions, for all α ∈ IR,

pN (α) ≥ sN−1,Nα − p∗
N (sN−1,N) = �sN−1,N (α).

The above inequality together with (24) implies that

pN (α) > �β(α), for every β < sN−1,N and α > τN−1

⇐⇒ pN (α) > βα − g∗
N−1(β), for every β < sN−1,N and α > τN−1

⇐⇒ g∗
N−1(β) > βα − pN (α), for every β < sN−1,N and α > τN−1,

which completes the proof of this claim.
Equipped with Claims 2 and 3, we are ready to prove Γ 	

N = Γ 	
N−1 ∪ {sN−1,N } and

Π	
N = Π	

N−1 ∪ {N }. To this goal, it suffices to show that

g∗
N (β) =

{
g∗
N−1(β) β < sN−1,N

p∗
N (β) β ≥ sN−1,N .

Consider the case β < sN−1,N . From the definition of the conjugate function, we have

g	
N (β) = max

α∈IR {αβ − gN (α)}

= max

{
max

α≤τN−1
{αβ − gN (α)} , max

α>τN−1
{αβ − gN (α)}

}

123

Quadratic optimization with indicators over trees

= max

{
max

α≤τN−1
{αβ − gN−1(α)} , max

α>τN−1
{αβ − pN (α)}

}

= max

{
g∗
N−1(β), max

α>τN−1
{αβ − pN (α)}

}

= g∗
N−1(β),

where the second to last equality follows from Claim 2 and the last equality is due to
Claim 3. Using the fact that g∗

N (β) = g∗
N−1(β) for β < sN−1,N , we obtain IgN (β) =

IgN−1(β) = N − 1 for si,N−1 < β < sN−1,N . On the other hand, limβ→+∞ Ig(β) =
N . Therefore, sN−1,N ∈ Γ 	

N , which implies g	
N (β) = p∗

N (β) for β ≥ sN−1,N . This
completes the proof of the first case.

Case 2: si,N−1 ≥ sN−1,N In this case, the algorithm proceeds with the DELETE step
and discards si,N−1 and N − 1 from Γ̃N−1 and Π̃N−1, respectively. Our next claim
shows that both si,N−1 and N −1 are correctly deleted, as piece N −1 does not belong
to Image(IgN).

Claim 4 N − 1 /∈ Image(IgN).

To prove this claim, suppose, by contradiction, that N −1 ∈ Image(IgN). This implies
that there exists a piece k such that both pairs k, N − 1 and N − 1, N satisfy the
breakpoint condition for gN . Therefore, sk,N−1 < sN−1,N ≤ si,N−1. Due to the non-
decreasing property of IgN , we have IgN (β) ≤ N − 1 for every β ≤ sN−1,N . This
implies the existence of α	(β) ≤ τN−1 such that α	(β) ∈ argmaxα{αβ − gN−1(α)}
for every β ≤ sN−1,N . Therefore, we have g∗

N−1(β) = maxα{αβ − gN−1(α)} =
maxα≤τN−1{αβ − gN−1(α)} for every β ≤ sN−1,N . Similarly, we have IgN−1(β) ≤ i
for every β ≤ si,N−1, which leads to g∗

N (β) = maxα≤τN−1{αβ − gN (α)} for every
β ≤ si,N−1. Combining these two equalities, for every β ≤ sN−1,N ≤ si,N−1, we
have

g∗
N−1(β) = max

α≤τN−1
{αβ − gN−1(α)} = max

α≤τN−1
{αβ − gN (α)} = g∗

N (β).

The above equality implies that IgN−1(β) = IgN (β) = N − 1 for every sk,N−1 < β ≤
sN−1,N . On the other hand, recall that IgN−1(β) ≤ i for every β ≤ si,N−1, which leads
to IgN−1(β) < N − 1 for every sk,N−1 < β ≤ sN−1,N . This leads to a contradiction,
thereby proving the claim.

As the last step of the proof, we consider the following function:

g̃N−1(α) =
{
min{pN−2(α), pN (α)} τN−2 < α < τN−1,

g(α) otherwise.
(25)

The function g̃N−1 is obtained by removing piece N − 1 from g, and subsequently,
extending pN−2 and pN to substitute piece N − 1. Our final claim shows that g̃N−1
and gN have the same conjugates.

Claim 5 g̃∗
N−1 = g∗

N .

123

A. Bhathena et al.

To prove this claim, note that g̃N−1(α) and g(α) are identical except within the interval
[τN−2, τN−1]. Due to the second property of semi-consistent functions (Definition 4),
we have g̃N−1(α) ≥ g(α) within the interval [τN−2, τN−1]. This implies that

βα − g(α) ≥ βα − g̃N−1(α); ∀α, β ∈ IR

�⇒ max
α

{βα − g(α)} ≥ max
α

{βα − g̃N−1(α)}; ∀β ∈ IR

�⇒ g∗(β) ≥ g̃∗
N−1(β); ∀β ∈ IR.

On the other hand, due to Claim 4, we have N −1 /∈ Image(IgN). Therefore, for every
β ∈ IR, there exists α	(β) /∈ [τk−1, τk] such that α	(β) ∈ argmaxα{βα − g(α)}. This
implies that, for every β ∈ IR:

g∗(β) = max
α

{βα − g(α)}
= βα	(β) − g(α	(β))

= βα	(β) − g̃N−1(α
	(β))

≤ max
α

{βα − g̃N−1(α)} = g̃∗
N−1(β).

Combining the above two inequalities implies that g̃∗
N−1(β) = g∗

N (β), thereby proving
the claim.

After discarding piece N − 1, the algorithm operates identically on g̃N−1 and gN .
Indeed, g̃N−1 is semi-consistent since it satisfies the properties outlined inDefinition 4.
Given that g̃N−1 contains N − 1 pieces, by our induction hypothesis, the breakpoint
algorithm correctly identifies the breakpoints and pieces of g̃∗

N−1, which coincide with
those of g∗

N as asserted in the above claim. This completes the correctness proof of
the algorithm.

Finally, we analyze the runtime of the algorithm.We consider the operations within
the While loop of Algorithm 4. Every execution of Algorithm 3 can be completed in
O(1). To see this, note that the If conditions in Lines 5, 7, 9, and 11 of Algorithm 3
can be checked in O(1) time. The remaining operations of the While loop either
add or delete an element to a list, each taking O(1) time and memory. Thus a single
round of the While loop can be executed in O(1) time and memory. Next, we show
that the While loop executes at most O(N) rounds. Once a piece is deleted, it will
never be revisited. Since at most N pieces can be added and at most N pieces can be
deleted, the While loop can execute at most O(N) rounds. Finally, note that, since
Π and Γ have O(N) elements, computing g∗

N in Line 17 requires O(N) time and
memory. Similarly, it follows that Line 18 can be computed in O(N). Consequently,
we conclude that Algorithm 4 operates in O(N) time and memory.
�

4 Numerical stability of the parametric algorithm

The breakpoint algorithm (Algorithm 4) is prone to numerical instabilities for trees
with a large number of nodes. In this section,we explain the root cause of this numerical

123

Quadratic optimization with indicators over trees

issue and describe a correction step that averts this without any compromises to the
performance and accuracy of the algorithm.

Consider an arbitrary pair of nodes u, v where v = child(u) and v is not a branch.
Since fu(α) is consistent, it can be written as

fu(α) = min
1≤k≤Nu

{pu,k(α)} + λu1lα,

where {pu,k(α)}Nu
k=1 are strongly convex and quadratic. For every k = 1, . . . , Nu , let

pu,k(α) = γu,k,1α
2 + γu,k,2α + γu,k,3. Lemma 3 and Equation (9) imply that

fv(α) = min
1≤k≤Nv

{pv,k(α)} + λv1lα,

where

pv,k(α) = 1

2
α2 + cvα − p∗

u,k(−Qu,vα) (26)

=
(
1

2
− Q2

u,v

4γu,k,1

)

︸ ︷︷ ︸
:=γv,k,1

α2 +
(
cv − γu,k,2Qu,v

2γu,k,1

)

︸ ︷︷ ︸
:=γv,k,2

α +
(

γu,k,3 − γ 2
u,k,2

4γu,k,1

)

︸ ︷︷ ︸
:=γv,k,3

.

(27)

Suppose, for some arbitrary indices k, l, we obtain γv,k,1, γv,l,1 from γu,k,1, γu,l,1
based on the equation above. Taking ε = ∣∣γu,k,1 − γu,l,1

∣∣, we obtain

∣∣γv,k,1 − γv,l,1
∣∣ =

∣∣∣∣∣
Q2

u,v

4γu,k,1γu,l,1

∣∣∣∣∣
︸ ︷︷ ︸

ρ

·ε.

When γu,k,1, γu,l,1 > Qu,v/2, we observe that ρ < 1, resulting in a decrease in the
discrepancy of the quadratic terms. This scenario is likely to occur in practice, as
|Qu,v| < 1 due to the positive definiteness of Q, and the quadratic coefficients remain
close to 1/2 due to (26). The shrinking effect of the update rule is exacerbated in
situations where multiple neighboring nodes satisfy ρ < 1, thereby leading to fast
decay in ε. As ε approaches machine precision, the breakpoint algorithm would suffer
from numerical instabilities.

To address this challenge, we note that, since the slope of the common tangent
skl is proportional to ε−1, such errors arise only at breakpoints with significantly
large absolute values. Our subsequent lemma demonstrates that these breakpoints
correspond to suboptimal pieces, and thus can be easily excluded from consideration.

Lemma 11 Let x	 be the optimal solution of Problem (1). We have ‖x	‖∞ ≤ ‖c‖2
λmin(Q)

,
where λmin(Q) denotes the smallest eigenvalue of Q.

123

A. Bhathena et al.

Proof Suppose J corresponds to the set of row indices over which x	 is non-zero. We
have x	 = −Q−1

J ,J cJ , which implies

‖x	‖∞ ≤ ‖x	‖2 =
∥∥∥(QJ ,J)

−1cJ
∥∥∥
2

≤ ‖(QJ ,J)
−1‖2‖c‖2 ≤ ‖c‖2

λmin(QJ ,J)
.

Since J ⊂ N , we have

λmin(QJ ,J) = min‖x‖2=1
x�QJ ,J x = min‖x‖2=1,

xJ=0

x�Qx ≥ min‖x‖2=1
x�Qx ≥ λmin(Q).

This completes the proof.
�
According to the above lemma, it suffices to characterize the parametric cost at any

node u within the range
[
− ‖c‖2

λmin(Q)
,

‖c‖2
λmin(Q)

]
. Therefore, the aforementioned numerical

issue can be mitigated by first obtaining ‖c‖2
λmin(Q)

and then discarding the breakpoints

falling outside the range
[
− ‖c‖2

λmin(Q)
,

‖c‖2
λmin(Q)

]
.

5 Experiments

In this section, we assess the performance of our algorithm across various synthetic
and real-world case studies. All experiments were run on a computer with 16 cores
of 3.0 GHz Xeon Gold 6154 processors and 8 GB memory per core. Specifically, we
compare the proposed parametric algorithm with Gurobi v10.0.2. For Gurobi, a time
limit of 1h was set, and the algorithm was terminated whenever the optimality gap fell
below 0.01%. If Gurobi failed to achieve an optimality gap of 0.01% or less within
this time limit, we reported the best optimality gap attained. We also note that Gurobi,
from version 10 onwards, uses a branch-and-bound method based on a perspective
reformulation to solve Problem (1); these reformulations are known to outperform the
classical big-M reformulations (see, e.g., [52]) and are considered state-of-the-art.3

The Python implementation of our algorithm as well as the presented case studies are
available at https://github.com/aareshfb/Tree-Parametric-Algorithm.git.

5.1 Case study on synthetic dataset

For our first set of experiments, we construct supp(Q) as a randomly generated con-
nected tree. The nonzero off-diagonal elements are selected fromauniformdistribution
within the range [−1, 0]. Each diagonal element Qi,i is set to 1 +∑ j �=i |Qi, j |. This
ensures that Q is positive definite. Similarly, elements of vector c were generated

3 We also attempted to manually hard-code the perspective reformulation in Gurobi. However, our obser-
vations indicate that Gurobi’s default setting implements the perspective reformulation more effectively
than our manual approach. While we did not include this comparison in the paper, the results are available
in our GitHub repository.

123

https://github.com/aareshfb/Tree-Parametric-Algorithm.git

Quadratic optimization with indicators over trees

Fig. 10 The runtime of the parametric algorithm (Algorithm 2) for different values of n. The reported results
are averaged over 5 trials

from a uniform distribution within the interval (−10, 10). Unless explicitly stated
otherwise, the default regularizing parameter was set to λi = 7.5 for all i . This value
approximately corresponds to 50% non-zero elements in the optimal solution for the
selected Q and c.

First, we examine the performance of the parametric algorithm for problems with
varying size n. The results are presented in Table 1.

It can be seen that Gurobi is unable to solve instances with sizes exceeding n = 200
within 1h. In contrast, our proposed parametric algorithm can solve instances with
n = 5000 in less than 6s, significantly outperforming Gurobi. As a sanity check, we
also report the optimal objective values of both methods. To provide further insight
into the efficiency of the parametric algorithm, we plot its runtime across a broader
range of n in Fig. 10. Notably, the parametric algorithm can solve instances of size
n = 50,000 within 2min.

Moreover, while the theoretical complexity of the parametric algorithm can be as
high asO(n2), in practice, we observe a complexity that is closer to linearO(n1.1156).
This improved complexity can be attributed to the fact that, while the parametric cost
at the root node fn(α) may have up to 2n pieces, in practice, the number of pieces
is expected to be significantly smaller. More specifically, recall that Nu denotes the
number of pieces in the parametric cost fu(x). We have shown that the runtime of
Algorithm 2 is O (∑n

u=1 Nu
) = O (nN̄), where N̄ denotes the average number of

pieces. While this leads to a quadratic runtime when N̄ = O(n), it becomes linear if
N̄ = O(1).

Figure11 illustrates the average number of pieces generated by the parametric
algorithm for different values of n. It is evident that as n increases from 1000 to
20,000, the average number of pieces ranges from 20 to 35. This observation supports
our hypothesis that, in practice, the average number of pieces grows only sublinearly
with respect to n.

123

A. Bhathena et al.

Ta
bl
e
1

Pe
rf
or
m
an
ce

fo
r
va
ry
in
g
si
ze
s

M
et
ri
c

M
et
ho
d

n
=

20
0

n
=

50
0

n
=

10
00

n
=

20
00

n
=

50
00

T
im

e
(s
)

Pa
ra
m
et
ri
c

0.
17

0.
47

0.
99

2.
14

5.
99

G
ur
ob

i
68

.5
0

T
L

T
L

T
L

T
L

O
bj
ec
tiv

e
va
lu
e

Pa
ra
m
et
ri
c

−9
70

.7
5

−2
56

8.
81

−5
16

2.
32

−1
0,
43

7.
16

−2
56

14
.3
7

G
ur
ob

i
−9

70
.7
5

−2
56

8.
77

−5
16

2.
20

−1
0,
43

5.
72

−2
5,
60

6.
82

B
&
B
no

de
s

G
ur
ob

i
64

3,
41

3
12

,8
83

,8
89

6,
32

9,
91

3
2,
86

5,
99

3
69

7,
02

0

O
pt
.g

ap
(%

)
0.
00

1.
02

1.
55

1.
91

2.
19

B
ou

nd
–

79
.8
8

12
8.
44

18
2.
77

25
9.
63

40
8.
44

T
L
:T

im
e
L
im

it
(1
h)
.T

he
re
po
rt
ed

re
su
lts

ar
e
av
er
ag
ed

ov
er

5
tr
ia
ls
.“
Pa
ra
m
et
ri
c”

re
fe
rs
to

th
e
pa
ra
m
et
ri
c
al
go
ri
th
m

(A
lg
or
ith

m
2)
.“
B
ou

nd
”
re
fe
rs
to

th
e
va
lu
e
of

th
e
te
rm

‖c
‖ 2

/
λ
m
in

(Q
)
de
ri
ve
d
fo
r
th
e
nu

m
er
ic
al
st
ab
ili
ty

of
A
lg
or
ith

m
4
in

L
em

m
a
11

123

Quadratic optimization with indicators over trees

Fig. 11 The values of N̄ (denoted as “Mean”), maxu{Nu} (denoted as “Max”), and N1 (denoted as “Root
Node”) for different values of n. Note that the maxu{Nu} does not necessarily coincide with N1. The
reported results are averaged over 10 trials

Next, we let n = 1000 and compare the performance of the parametric algorithm
and Gurobi for different regularization parameters λ. Given any index i , the parameter
λi is sampled randomly from a uniform distribution within the range [0.75λ̄, 1.25λ̄].
The results are summarized in Table 2. It is observed that while the performance of the
parametric algorithm remains almost independent of λ̄, the optimality gap obtained
by Gurobi remains large, except for the extreme values of λ̄ that correspond to nearly
fully dense or fully sparse solutions.

Finally, we focus on the special case of path graphs. Specifically, we compare our
parametric algorithm (Algorithm 1) to the direct DP approach proposed in [40]. As
discussed in Sect. 2, the direct DP approach solves instances with path structure in
O(n2) time complexity. While this runtime matches the theoretical complexity of
our parametric algorithm, Fig. 12 illustrates that their practical performance differs.
In particular, while the direct DP approach outperforms the parametric algorithm
for n ≤ 2000, its runtime scales almost quadratically with n. On the other hand,
the practical performance of the parametric algorithm scales almost linearly with n,
enabling it to outperform the direct DP approach for larger instances n > 2000.

5.2 Case study on accelerometer dataset

In this case study, we highlight the performance of the parametric algorithm for solving
the robust inference of GHMM, as detailed in Sect. 1.1. Specifically, we focus on the
task of recognizing physical activities for a participant using data collected from a
single chest-mounted accelerometer.We consider the dataset from [11, 12]. To enhance
the representation of these activities, [3] proposed using the mean absolute value of 10
successive signal differences from this dataset. The pre-processed data can be accessed
online at https://sites.google.com/usc.edu/gomez/data.

123

https://sites.google.com/usc.edu/gomez/data

A. Bhathena et al.

Ta
bl
e
2

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
fo
r
va
ry
in
g
re
gu

la
ri
za
tio

n

M
et
ri
c

M
et
ho
d

λ̄
=

0.
2

λ̄
=

2
λ̄

=
5

λ̄
=

13
λ̄

=
25

λ̄
=

50
N
Z

≈
91

%
N
Z

≈
73

%
N
Z

≈
59

%
N
Z

≈
34

%
N
Z

≈
10

%
N
Z

≈
0%

T
im

e(
s)

Pa
ra
m
et
ri
c

1.
14

1.
06

1.
04

0.
98

0.
95

0.
91

G
ur
ob

i
16

.1
2

T
L

T
L

T
L

T
L

7.
63

B
&
B
no

de
s

G
ur
ob

i
27

78
.8

5,
47

1,
54

7
5,
65

5,
58

0
6,
57

7,
23

5
8,
35

0,
99

2
99

.4

O
pt
.g

ap
(%

)
0.
01

0.
10

0.
60

7.
11

42
.8
4

0.
00

T
L
:T

im
e
L
im

it
(1
h)
,N

Z
:p

er
ce
nt
ag
e
of

no
n-
ze
ro

el
em

en
ts
in

th
e
op
tim

al
so
lu
tio

n
x	
.T

he
re
po
rt
ed

re
su
lts

ar
e
av
er
ag
ed

ov
er

5
tr
ia
ls

123

Quadratic optimization with indicators over trees

Fig. 12 The runtime of the parametric algorithm (Algorithm 1) and the direct DP approach of [40] for
instances with path structure. The reported results are averaged over 5 trials

We utilize the same dataset in our study. The signal comprises 13,800 readings
indicating changes in “x acceleration” for a participant. The participant’s activity
sequence is as follows: they were “working at a computer” until timestamp 4,415; then
engaged in “standing up, walking, and going upstairs” until timestamp 4,735; followed
by “standing” from timestamp 4,735 to 5,854, from 8,072 to 9,044, and again from
9,045 to 9,720. Subsequently, they were “walking” from timestamp 5,854 to 8,072;
involved in “going up or down stairs” from timestamp 9,044 to 9,435; “walking and
talking with someone” from timestamp 9,720 to 10,430; and “talking while standing”
from timestamp 10,457 to 13,800 (with the status between timestamps 10,430 and
10,457 being unknown).

This problem can be formulated as an instance of Problem (3), where the hidden
state xt represents the activity level of the participant. Specifically, intervals charac-
terized by minimal or absent physical activity naturally correspond to time stamps t
where xt = 0. Furthermore, we segment the signal into windows of magnitude K and
regard each segment t as the observation set for the hidden state xt . More precisely,
we treat y(t−1)K+1, . . . , ytK as the observations corresponding to the hidden state xt .

Additionally, we assume that a subset of the observations is corrupted with outlier
noise. As discussed in Sect. 1.1, the inference of a GHMM with outliers (referred to
as robust inference hereafter) can be addressed by solving Problem (3). Since this
problem has a tree structure, it can be solved via the parametric algorithm. In this
context, the scale of the problems being addressed exceeds n = 30,000. At such
scales, Gurobi fails to yield a reliable solution. Alternatively, in scenarios where the
observations are assumed to be free of outliers, the variables w and z in Problem (3)
can be set to zero. This transformation simplifies the problem into one defined over
a path graph, which can be solved using the parametric algorithm over path graphs
(Algorithm 1) or the direct DP approach proposed in [40].

Figure 13 depicts the robust and non-robust inference of the hidden signal for K =
10. It is evident that the original signal is corrupted with outlier noise, with the most

123

A. Bhathena et al.

Fig. 13 Robust and non-robust inference of the hidden signal. In the figure on the left, the outliers removed
from the signal are circled in red. The parameters in this experiment are set to γt = 400, λk,t = 100, σ 2

t = 2,
and νt = 1 (color figure online)

Fig. 14 The recovered signal forλk,t ∈ {50, 100, 150, 600}. The other parameters are set to γt = 400, σ 2
t =

2, νt = 1, and K = 10

significant outlier appearing at timestamp 250. While the robustly recovered signal
successfully filters out the outliers, its non-robust counterpart fails to remove them.
In these experiments, our parametric algorithm solves the robust inference problem
within 46.4 s, whereas the non-robust inference is solved within 1.2 s. This disparity in
runtimes is not surprising, given that the robust inference problem is nearly 11 times
larger.

Figure 14 depicts the impact of the regularization parameter λk,t on the recovered
signal. A small value of λk,t results in a fully dense w, effectively treating the entire

123

Quadratic optimization with indicators over trees

Fig. 15 The recovered signal for three values of K . The parameters are set to γt = 250, λk,t = 100, σ 2
t = 2,

and νt = 1

Fig. 16 The recovered signal obtained using three methods: L1 relaxation, wavelet denoising, and the
low-pass filter

observations as corrupted by outlier noise. Conversely, a larger λk,t enforces sparser
w, indicating that most observations are assumed to be free of outlier noise.

Finally, Fig. 15 illustrates the impact of varying values of the partition size K on the
recovered signal. Recall that K represents the number of observations for each hidden
state. As a result, a larger K typically improves the smoothness of the recovered signal
but could potentially obscure finer changes. This phenomenon is shown in Fig. 15.

As previously mentioned, the optimization problem for inferring GHMMs in (3)
is nonconvex due to the combinatorial nature of the sparsity-promoting regularizer,
which is commonly referred to as the L0 penalty. To handle this nonconvexity, a
standard approach is to relax the L0 penalty to its convex L1 surrogate [54]. Figure16a
demonstrates the performance of the L1 relaxation, with regularization parameters
determined through a grid search over λk,t and γt . As shown, while the L1 relaxation
imposes sparsity, it does not effectively eliminate outliers and results in substantial
shrinkage of the non-zero values.

Additionally, we compare our method to two commonly used algorithms for human
activity recognition: signal denoising using the wavelet transform and low-pass filters
[26, 38]. These methods were implemented using the Signal Processing Toolbox [45]

123

A. Bhathena et al.

Fig. 17 The update time of the 5 most recent hidden states after the arrival of K = 10 observations. The
other parameters are set to γt = 250, λk,t = 100, σ 2

t = 2, νt = 1

and Wavelet Toolbox [42] in MATLAB 2020b. As shown in Fig. 16b, c, the results
indicate that these techniques are ineffective at removing outliers.
Online setting Finally, we consider the online setting, where the goal is to infer the
values of the hidden state xt , as the new collected data from the accelerometer arrives
“on-the-go”. More specifically, at each new timestep t = 1, . . . , T , K new observa-
tions are revealed, and the goal is to infer the value of xt , and possibly update the
values of S most recent values xt−1, . . . , xt−S based on the newly observed data.
Note that new observations at current time t not only help with the inference of the
current hidden state xt , but also can potentially change the optimal value of the past
hidden states xt−1, . . . , x1. Consequently, the optimal inference of the hidden state
necessitates resolving a sequence of optimization problems with the new incoming
data.

Thanks to our parametric approach, we achieve this goal in milliseconds. To see
this, note that our parametric algorithm performs inference by sequentially obtaining
fx1 , . . . , fxt−1 corresponding to the parametric costs at the hidden states x1, . . . , xt−1,
along with their conjugates (refer to Fig. 1 for an illustration of the associated graph).
Therefore, according to the recursive equation (9), the parametric cost fxt at the new
time t can be efficiently characterized merely based on the conjugate functions f ∗

xt−1

(which is already computed and available) and { f ∗
yk,t }Kk=1, thus circumventing the

need to resolve Problem (3) from scratch. Once the parametric cost fxt is obtained,
the hidden states xt , . . . xt−S can be updated in O(S), according to Algorithm 2.
Figure17 illustrates the runtime of this online version of our algorithm. At any given
time t , the optimal cost, along with the updated values of xt , . . . , xt−4 are obtained
based on K = 10 new observations within at most 45 ms.

123

Quadratic optimization with indicators over trees

6 Conclusions

In this paper, we consider mixed-integer quadratic programs with indicators where the
matrix defining the quadratic term, Q, has a tree structure. While for general Q the
problem is NP-hard, we propose a highly efficient algorithm for the tree-structured Q.
Our algorithm has a time and memory complexity of O(n2) that maintains the same
complexity as the simpler path-structured problem studied earlier. Our computational
results show that the practical complexity of the algorithm on our test instances is
almost linear. Our algorithm can be leveraged in problems where the Q matrix can be
decomposed into trees in a similar procedure proposed in [40].

Appendix A: Proof of Lemma 1

Let J be the set of nodes in suppu(Q), excluding u. Let us define pu,s(α):

pu,s(α) = min
x∈IRnu−1

1

2
α2 + cuα +

(
1

2
x�QJ ,J x + αQ�

u,J x + c�
J x + λ�

J s

)

s.t. xi (1 − si) = 0 i = 1, 2 . . . nu − 1.

It is easy to verify that fu(α) = mins∈{0,1}nu−1{pu,s(α)} + λu1lα . Therefore, it
remains to show that for every s ∈ {0, 1}nu−1, pu,s(α) is strongly convex and quadratic.
To establish this, we use the Karush-Kuhn-Tucker (KKT) conditions to calculate the
solution of the optimization problem. First, let Js = {i : i ∈ J and si = 1}. Since
the constraints in the definition of pu,s(α) sets some of the coordinates of x to 0, the
optimization problem can be simplified as follows

pu,s(α) = min
x∈IR|Js |

1

2
α2 + cuα +

⎛

⎝1

2
x�QJs ,Js x + αQ�

u,Js x + c�
Js x +

∑

i∈Js

λi

⎞

⎠ .

From KKT conditions it follows that

pu,s(α) =1

2

(
1 − Qu,Js

(
QJs ,Js

)−1
Q�

u,Js

)
α2 +

(
cu − cTJs

(
QJs ,Js

)−1
Q�

u,Js

)
α

+
⎛

⎝−1

2
c�
Js (QJs ,Js)

−1cJs +
∑

i∈Js

λi

⎞

⎠ .

Note that
(
1 − Qu,Js

(
QJs ,Js

)−1
Q�

u,Js

)
is the Schur complement of

QJs∪{u},Js∪{u}, which, owing to the positive definiteness of Q, is positive definite.

123

A. Bhathena et al.

Therefore,
(
1 − Qu,Js

(
QJs ,Js

)−1
Q�

u,Js

)
> 0, implying that pu,s(α) is strongly con-

vex. This completes the proof.
�

Appendix B: Proof of Lemma 2

Let −∞ = τ0 < τ1 < · · · < τN = +∞ be the ordered elements of
⋃L

l=1 Γl . The
proof follows by noting that none of { fl}Ll=1 contain any breakpoints within the interval
(τk−1, τk); k = 1, . . . , N . Therefore, the set of breakpoints of g can only belong to
{τ0, . . . , τN }. It follows that g is a piece-wise quadratic functionwith at most N pieces.

Next, we discuss the complexity of obtaining g. First, we combine the sorted lists
{Γl}Ll=1 and represent them in a single sorted list, which can be done in O(N log L)

using L-way Merge algorithm [25, Theorem 1]. Second, for each interval, g can be
constructed by summing the corresponding pieces of the functions { fl}Ll=1. This leads

to the overall complexity of O(NL), where N = |⋃L
l=1 Γl |.
�

Acknowledgements We thank the AE and the two referees whose comments improved this paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows (1988)
2. Atamtürk, A., Gómez, A.: Strong formulations for quadratic optimization with M-matrices and indi-

cator variables. Math. Program. 170(1), 141–176 (2018)
3. Atamtürk, A., Gómez, A., Han, S.: Sparse and smooth signal estimation: convexification of �0-

formulations. J. Mach. Learn. Res. 22(1), 2370–2412 (2021)
4. Bertsekas, D.P., Yu, H.: A unifying polyhedral approximation framework for convex optimization.

SIAM J. Optim. 21(1), 333–360 (2011)
5. Bertsimas, D., Cory-Wright, R., Pauphilet, J.: A new perspective on low-rank optimization. Math.

Program. 202, 47–92 (2023)
6. Bertsimas, D., King, A., Mazumder, R.: Best subset selection via a modern optimization lens. Ann.

Stat. 44(2), 813–852 (2016)
7. Bertsimas, D., Parys, B.V.: Sparse high-dimensional regression: exact scalable algorithms and phase

transitions. Ann. Stat. 48(1), 300–323 (2020)
8. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc.: Ser. B

(Methodol.) 36(2), 192–225 (1974)
9. Besag, J., Kooperberg, C.: On conditional and intrinsic autoregressions. Biometrika 82(4), 733–746

(1995)
10. Brown, R.G., Hwang, P.Y.: Introduction to Random Signals and Applied Kalman Filtering, vol. 3.

Wiley, New York (1992)
11. Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using a wearable

device. In: Pattern Recognition and Image Analysis: 5th Iberian Conference, IbPRIA 2011, Las Palmas
de Gran Canaria, Spain, June 8-10, 2011. Proceedings 5. pp. 289–296. Springer (2011)

123

http://creativecommons.org/licenses/by/4.0/

Quadratic optimization with indicators over trees

12. Casale, P., Pujol, O., Radeva, P.: Personalization and user verification in wearable systems using
biometric walking patterns. Pers. Ubiquit. Comput. 16, 563–580 (2012)

13. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86,
595–614 (1999)

14. Chakrabarty, D., Lee, Y.T., Sidford, A., Wong, S.C.W.: Subquadratic submodular function minimiza-
tion. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. pp.
1220–1231 (2017)

15. Chang, I., Tiao, G.C., Chen, C.: Estimation of time series parameters in the presence of outliers.
Technometrics 30(2), 193–204 (1988)

16. Chen, X., Ge, D.,Wang, Z., Ye, Y.: Complexity of unconstrainedminimization.Math. Program. 143(1–
2), 371–383 (2014)

17. Das, A., Kempe, D.: Algorithms for subset selection in linear regression. In: Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing. pp. 45–54 (2008)

18. Dedieu, A., Hazimeh, H., Mazumder, R.: Learning sparse classifiers: continuous and mixed integer
optimization perspectives. J. Mach. Learn. Res. 22(1), 6008–6054 (2021)

19. Del Pia, A., Dey, S.S., Weismantel, R.: Subset selection in sparse matrices. SIAM J. Optim. 30(2),
1173–1190 (2020)

20. Fattahi, S., Gomez, A.: Scalable inference of sparsely-changing gaussian Markov random fields. Adv.
Neural. Inf. Process. Syst. 34, 6529–6541 (2021)

21. Fattahi, S., Gómez, A.: Solution path of time-varying Markov random fields with discrete regulariza-
tion. arXiv preprint arXiv:2307.13750 (2023)

22. Gómez, A.: Outlier detection in time series via mixed-integer conic quadratic optimization. SIAM J.
Optim. 31(3), 1897–1925 (2021)

23. Gómez, A., Neto, J.: Outlier detection in regression: conic quadratic formulations. arXiv preprint
arXiv:2307.05975 (2023)

24. Gómez, A., Xie, W.: A note on quadratic constraints with indicator variables: convex hull description
and perspective relaxation. Oper. Res. Lett. 52, 107059 (2024)

25. Greene, W.A.: k-way merging and k-ary sorts. In: ACM Southeast Conference, pp. 127–135 (1993)
26. Gu, F., Chung, M.H., Chignell, M., Valaee, S., Zhou, B., Liu, X.: A survey on deep learning for human

activity recognition. ACM Comput. Surv. 54(8), 1–34 (2021)
27. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indi-

cator variables. Math. Program. 124, 183–205 (2010)
28. Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Mixed Integer Nonlinear

Programming, pp. 61–89. Springer (2011)
29. Han, S., Gómez, A.: Compact extended formulations for low-rank functions with indicator variables.

Math. Oper. Res. (2024), to appear. arXiv preprint arXiv:2110.14884
30. Han, S., Gómez, A., Pang, J.S.: On polynomial-time solvability of combinatorial Markov random

fields. arXiv preprint arXiv:2209.13161 (2022)
31. Hastie, T., Tibshirani, R., Tibshirani, R.J.: Extended comparisons of best subset selection, forward

stepwise selection, and the lasso. arXiv preprint arXiv:1707.08692 (2017)
32. Hazimeh, H., Mazumder, R., Saab, A.: Sparse regression at scale: branch-and-bound rooted in first-

order optimization. Math. Program. 196(1–2), 347–388 (2022)
33. Huo, X., Chen, J.: Complexity of penalized likelihood estimation. J. Stat. Comput. Simul. 80(7),

747–759 (2010)
34. Insolia, L., Kenney,A., Chiaromonte, F., Felici, G.: Simultaneous feature selection and outlier detection

with optimality guarantees. Biometrics 78(4), 1592–1603 (2022)
35. Kalman, R.E.: A new approach to linear filtering and prediction problems (1960)
36. Kim, Y.J., Kang, B.N., Kim, D.: Hidden Markov model ensemble for activity recognition using tri-

axis accelerometer. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp.
3036–3041. IEEE (2015)

37. Küçükyavuz, S., Shojaie, A., Manzour, H., Wei, L., Wu, H.H.: Consistent second-order conic integer
programming for learning Bayesian networks. J. Mach. Learn. Res. 24(322), 1–38 (2023)

38. Kumar, P., Chauhan, S., Awasthi, L.K.: Human activity recognition (har) using deep learning: review,
methodologies, progress and future research directions. Arch. Comput. Methods Eng. 31(1), 179–219
(2024)

123

http://arxiv.org/abs/2307.13750
http://arxiv.org/abs/2307.05975
http://arxiv.org/abs/2110.14884
http://arxiv.org/abs/2209.13161
http://arxiv.org/abs/1707.08692

A. Bhathena et al.

39. Lee, Y.T., Sidford, A., Wong, S.C.W.: A faster cutting plane method and its implications for combina-
torial and convex optimization. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pp. 1049–1065. IEEE (2015)

40. Liu, P., Fattahi, S., Gómez, A., Küçükyavuz, S.: A graph-based decomposition method for convex
quadratic optimization with indicators. Math. Program. 200(2), 669–701 (2023)

41. Manzour,H.,Küçükyavuz, S.,Wu,H.H., Shojaie,A.: Integer programming for learning directed acyclic
graphs from continuous data. INFORMS J. Optimiz. 3(1), 46–73 (2021)

42. Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.M.: Wavelet Toolbox. The MathWorks Inc., Natick,
MA 15, 21 (1996)

43. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math.
Program. 118(2), 237–251 (2009)

44. Ravikumar, V., Xu, T., Al-Holou, W.N., Fattahi, S., Rao, A.: Efficient inference of spatially-varying
Gaussian Markov random fields with applications in gene regulatory networks. IEEE/ACM Trans.
Comput. Biol. Bioinform. (2023)

45. Stearns, S.D., David, R.A.: Signal Processing Algorithms in Matlab. Prentice-Hall, Inc (1996)
46. Stubbs, R.A.: Branch-and-CutMethods forMixed 0–1Convex Programming.NorthwesternUniversity

(1996)
47. Trabelsi, D., Mohammed, S., Chamroukhi, F., Oukhellou, L., Amirat, Y.: An unsupervised approach

for automatic activity recognition based on hiddenMarkov model regression. IEEE Trans. Autom. Sci.
Eng. 10(3), 829–835 (2013)

48. Tsay, R.S.: Time series model specification in the presence of outliers. J. Am. Stat. Assoc. 81(393),
132–141 (1986)

49. Wei, L.,Atamtürk,A.,Gómez,A.,Küçükyavuz, S.:On the convexhull of convexquadratic optimization
problems with indicators. Math. Program. 204(1–2), 703–737 (2024)

50. Wei, L., Gómez, A., Küçükyavuz, S.: Ideal formulations for constrained convex optimization problems
with indicator variables. Math. Program. 192(1–2), 57–88 (2022)

51. Wei, L., Gómez, A., Küçükyavuz, S.: On the convexification of constrained quadratic optimization
problems with indicator variables. In: International Conference on Integer Programming and Combi-
natorial Optimization. pp. 433–447. Springer (2020)

52. Xie, W., Deng, X.: Scalable algorithms for the sparse ridge regression. SIAM J. Optim. 30, 3359–3386
(2020)

53. Yan, H., Grasso, M., Paynabar, K., Colosimo, B.M.: Real-time detection of clustered events in video-
imaging data with applications to additive manufacturing. IISE Trans. 54(5), 464–480 (2022)

54. Zhang, C.H., Huang, J.: The sparsity and bias of the lasso selection in high-dimensional linear regres-
sion. Ann. Stat. 36(4), 1567–1594 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A parametric approach for solving convex quadratic optimization with indicators over trees
	Abstract
	1 Introduction
	1.1 Gaussian hidden Markov models
	1.2 Related work
	1.3 Preliminaries and notations

	2 Dynamic programming over trees
	3 Parametric algorithm
	3.1 Path graphs
	3.2 Tree graphs
	3.3 Properties of consistent functions
	3.4 Breakpoint algorithm

	4 Numerical stability of the parametric algorithm
	5 Experiments
	5.1 Case study on synthetic dataset
	5.2 Case study on accelerometer dataset

	6 Conclusions
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Acknowledgements
	References

