Mathematical Programming
https://doi.org/10.1007/s10107-025-02222-3

FULL LENGTH PAPER

Series B q

Check for
updates

A parametric approach for solving convex quadratic
optimization with indicators over trees

Aaresh Bhathena'® - Salar Fattahi'® - Andrés Gomez2( -
Simge Kiigiikyavuz3

Received: 11 April 2024 / Accepted: 10 March 2025
© The Author(s) 2025

Abstract

This paper investigates convex quadratic optimization problems involving n indicator
variables, each associated with a continuous variable, particularly focusing on scenar-
ios where the matrix Q defining the quadratic term is positive definite and its sparsity
pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based
dynamic programming algorithm that solves this problem in time and memory com-
plexity of O(n?). Central to our algorithm is a precise parametric characterization of
the cost function across various nodes of the graph corresponding to distinct variables.
Our computational experiments conducted on both synthetic and real-world datasets
demonstrate the superior performance of our proposed algorithm compared to exist-
ing algorithms and state-of-the-art mixed-integer optimization solvers. An important
application of our algorithm is in the real-time inference of Gaussian hidden Markov
models from data affected by outlier noise. Using areal on-body accelerometer dataset,
we solve instances of this problem with over 30,000 variables in under a minute, and
its online variant within milliseconds on a standard computer. A Python implemen-
tation of our algorithm is available at https://github.com/aareshfb/Tree-Parametric-
Algorithm.git.

This research is supported, in part, by NSF grants 2006762, 2007814, 2152776, 2152777, 2337776, ONR
grant N00014-22-1-2127, N00014-22-1-2602 and AFOSR grant FA9550-22-1-0369.

B Salar Fattahi
fattahi @umich.edu

Aaresh Bhathena
aareshfb@umich.edu

Andrés Gémez
gomezand @usc.edu

Simge Kiiglikyavuz
simge @northwestern.edu
1 Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA

Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern
California, Los Angeles, CA, USA

Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, IL, USA

Published online: 02 May 2025 €\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-025-02222-3&domain=pdf
http://orcid.org/0009-0002-7350-0295
http://orcid.org/0000-0001-7986-3148
http://orcid.org/0000-0003-3668-0653
http://orcid.org/0000-0001-6548-9378
https://github.com/aareshfb/Tree-Parametric-Algorithm.git
https://github.com/aareshfb/Tree-Parametric-Algorithm.git

A.Bhathena et al.

Keywords Quadratic optimization - Indicator variables - Sparsity - Dynamic
programming - Hidden Markov models - Trees

Mathematics Subject Classification 90C11 (Mixed integer programming) -
90C25 (Convex programming) - 90C27 (Combinatorial optimization)

1 Introduction

Given a symmetric and positive definite matrix Q € R"*" and vectors A, ¢ € R", we
study the following mixed-integer quadratic optimization (MIQP) problem:

1
min —xT Ox + c'x+1Tz (1a)
xeR",ze{0,1}" 2

st. x;(1—2z;)=0 i=1,2,...,n (1b)

Specifically, we assume that the sparsity pattern of Q € R"*" is the adjacency matrix
of a connected tree. The binary vector z € {0, 1}" is used to model the support of the
vectorx € R" and A € IR” is aregularization parameter on the sparsity of x. If z; = 0,
then from constraint (1b), we obtain x; = 0. On the other hand, if z; = 1 then x; is
unconstrained. Without loss of generality, we assume that the diagonal elements of Q
are equal to 1. This can be ensured by replacing x; < x;/,/Q;; foralli =1,..., n.
We also assume A; > O for every i € {1,2,...,n}, as any A; < O implies z; = 1
at optimality. The regularizer A can model the sparsity of the solution, which makes
the above problem useful in network inference [22, 44], sparse regression [6, 19], and
probabilistic graphical models [37, 40, 41], to name a few.

1.1 Gaussian hidden Markov models

An important application of Problem (1) is in the inference of Gaussian hidden Markov
models (GHMM) [3, 22], where the goal is to estimate hidden states {x; } th | of arandom

process from K; observations {y, ,}f;l at each time #. We consider the Besag model
[8, 9], where the hidden states are assumed to be jointly Gaussian:

T

1 2 1 2
X1, ...,XT) oxexp| ——x7 — — (X — x4— . 2
p(x1 T) P( 20,1 E 20t2(t t l)) (2)

=2

Each hidden state x; is indirectly observed via noisy observations yx ; = x; + €k ; +
Skt k=1,..., K;, where ¢ ; is a dense, but light-tailed noise drawn from N (0, v,z),
whereas 8k ; is an outlier noise that corrupts only a small subset of the observations.
An example of a GHMM is given in Fig. 1.

One of the earliest applications of GHMMs can be traced back to signal processing,
aimed at predicting the evolution of a random signal over time by effectively filtering
out observational noise [10, 35]. A more contemporary application of GHMMSs lies

@ Springer



Quadratic optimization with indicators over trees

Y11 Y1,3 Y2,3 Y1,

o \ \ /\/ yur

\13} XYyl g

Y3,1 Y1,2 Y3, T Y2, 17

Fig. 1 An illustration of a GHMM. At every time ¢, observations {Yk,z}liil of the hidden state x; are

collected, some of which may be corrupted with outlier noise (shown in red). The goal is to infer the hidden
states {x; }thl from these corrupted observations (color figure online)

in activity recognition utilizing on-body wearable accelerometers [36, 47]. In such
contexts, additional consideration may involve assuming sparsity in the underlying
hidden state {xt}t_l, which corresponds to the inactive state of the body. Under such
settings, it is natural to consider the maximum a posteriori estimate of the hidden
states with £g regularization to promote the sparsity prior on the outliers as well as the
underlying hidden states. This problem can be formulated as follows:

T K

2 1

ZZ (Vhr =X —wr )" + x1+Z 2(xz xi-1)?
=1 k=1 " of =2 7

T K;
+ZZ)»I¢ tZkt+Z)/tSt (3a)

t=1 k=1

st. we,(1—z4)=0 t=1,2...T;k=1,...K, (3b)

x(1—s)=0 t=1,2...T (3c)
w., e RE 7, e {0, 1% r=1,2...T (3d)
xeRT se{o0,1}7. (3e)

In the optimization problem (3), the binary variables {zx ;} capture the presence of
outlier noise in observations {yx ;}. Specifically, zx ; = 1 indicates that yj , is likely
to be tainted with noise. This can be understood by noting that when zx; = 1, the
continuous variable wg,, takes the value yi,; — x; at optimality, thereby nullifying the
impact of the observation yx ; on the estimated state x;. Conversely, zx ; = 0 implies
wg,; = 0, indicating that the observation yy ; is devoid of outlier noise. Moreover, the
binary variables {s;} capture the support of the hidden state {x;}, enforcing x; = 0 if
and only if s, = 0. The above optimization problem is a special case of Problem (1),
where the matrix Q is positive definite and its support is the adjacency matrix of a tree
graph (as can be seen in Fig. 1). An important variant of problem (3), arising in real-
time monitoring and detection of events, is the online variant where observations {y ;}
become available over time [53]. In such scenarios, where rapid action is necessary

@ Springer



A.Bhathena et al.

upon detecting anomalous events, re-optimization of Problem (3) must be performed
within milliseconds.

In most cases, Problem (3) is rarely tackled in the literature directly. Indeed,
mixed-integer nonlinear optimization problems are typically regarded as intractable.
Moreover, big-M relaxations of (3) result in poor relaxations with trivial lower bounds,
thus simply resorting to off-the-shelf solvers may prove ineffective. Thus, practition-
ers often resort to simpler approximations, consisting of either using £1-norm penalty
to induce sparsity on variables x and w [53], or using iterative procedures and heuris-
tics to remove outliers [15, 48]. Naturally, such approximations admit fast algorithms,
but the solution quality can be negatively affected. Recently, there has been a renewed
interest in developing improved mixed-integer optimization formulations for problems
with sparsity and outliers [22, 23, 29, 34]. The results indicate that exact methods can
indeed deliver substantially better solutions, especially when outliers are clustered.
Typical runtimes of mixed-integer optimization methods with strong formulations is
measured in minutes for problems with 7 in the hundreds, which is adequate for small-
sized offline versions for (3), but far from practical for online problems. In this paper,
we propose a method that solves the online problem to optimality within milliseconds
on a standard computer.

1.2 Related work

For general dense matrix Q, Problem (1) is NP-hard [16, 33]. Earlier methods based on
mixed-integer programming using big-M formulation [6, 7, 18] work reliably for small
instances, but exhibit poor scalability [31, 32]. Since then, there has been a significant
improvement in solving these problems over large instances. One key contribution was
the perspective-reformulation technique that obtains high-quality convex relaxations
of the feasible region. Initially introduced in [46], perspective reformulations have
served as the cornerstone for numerous methods aimed at solving Problem (1) with
general Q, either exactly or approximately [5, 24, 27, 28, 49-51].

Due to the NP-hardness of Problem (1) with a general Q, recent endeavors have
shifted focus towards cases where Q possesses a special structure. When Q exhibits a
diagonal structure, it has been demonstrated that a perspective reformulation already
yields the ideal convex hull characterization of Problem (1) [13]. Moreover, if the
matrix Q can be factorized as Q = Qg Qo, where Qy is sparse, the problem can be
solved in polynomial time under appropriate conditions [19]. In [17], a cardinality-
constrained version of Problem (1) is explored, where Q corresponds to a tree with
a maximum degree d, and all coefficients ); are identical. The authors propose a
dynamic programming algorithm that operates in O(n3d) time. Consequently, this
leads to a O(n*) algorithm for the regularized version discussed in this paper, with
the additional restriction that all coefficients X; are identical.

Perhaps most closely related to our work are two lines of research that investi-
gate Problem (1) when Q possesses either a path or Stieltjes structure. When Q is
a Stieltjes matrix, it is recently shown that Problem (1) can be converted into a sub-
modular minimization problem and thus solved in polynomial time [2, 30]. Any Q
that has a tree structure can be turned into a Stieltjes matrix with a simple change

@ Springer



Quadratic optimization with indicators over trees

of variables. Therefore, Problem (1) can be solved in polynomial time. An applica-
tion of the state-of-the-art submodular minimization algorithm leads to a runtime of
O(n’E0), where EO is the complexity of solving a certain quadratic program [43].
Although this complexity is expected to be improved with more recent algorithms
such as those introduced in [14, 39], they remain inefficient in medium to large-scale
instances. When Q takes the form of a tridiagonal matrix, the works [20, 21, 40] have
introduced dynamic programming (DP) algorithms capable of solving Problem (1) in
O(n?). However, in Sect.2, we provide a detailed discussion on why these dynamic
programming algorithms cannot be readily extended to the more general case of tree
structures for Q.

1.3 Preliminaries and notations

Given a matrix Q € R"*" and index sets I and J, we denote by Q7. ; the sub-matrix
of O whose rows and columns correspond to I and J, respectively. Similarly, given a
vector ¢ € R", we denote by ¢ a sub-vector of ¢ with indices corresponding to J. For
integers k < [, wedefine [k : [] = [k, k+1,...,1]. We use 1, to denote the indicator
function defined over R that returns O for x = 0 and returns 1 for all x # 0. The
notations f* and (x*, z*) are used to denote the optimal objective value and optimal
solution of Problem (1) respectively.

Definition 1 Given a symmetric matrix Q € IR"*", the support graph of Q, denoted
by supp(Q), is anundirected graph G = (N, E),where N = {1, ...,n}and (i, j) € E
if and only if Q; ; # O fori # j.

Note that the diagonal entries of O do not affect the construction of supp(Q).

In this paper, we consider problems where supp(Q) is a tree. Without loss of
generality, we assume that supp(Q) is connected and rooted. Moreover, we assume
that the edges have a natural orientation toward the root node.! We use child() to
denote the child node of u in the rooted tree supp(Q). Similarly, we use par(u) to
denote the set of parent nodes of #. We assume a topological ordering for the nodes
in supp(Q). More specifically, we assume u < child(u) for every node in supp(Q).
Therefore, node n is always the root node. Since supp(Q) is a tree, its topological
labeling always exists and can be obtained in O(n) time and memory [1, Algorithm
3.8]. Moreover, due to the considered directions, each node can only have a single
child, but potentially multiple parents. Figure 2 illustrates the topological ordering of
an exemplary tree. The degree of each node u in supp(Q) is defined as the number of
edges connected to u, which is equal to the total number of its parent and child nodes,
and is denoted as deg(u). If deg(u) > 3, we say u is a branch. Trees with only one
branch are referred to as extended star trees.

Given any node u, supp, (Q) denotes the largest connected sub-tree of supp(Q)
comprised of u# and its ancestors, that is, any node v < u that has a path to u. The
symbol n, denotes the number of nodes in supp, (Q). Given a node u, we define
Q\u] as the sub-matrix of Q with rows and columns corresponding to the nodes in

1 Recall that supp( Q) is undirected; the natural orientation assumption is only to streamline the presentation
of our algorithm.

@ Springer



A.Bhathena et al.

Fig.2 An example of the

topological labeling of nodes of @
a tree. In this example,

child(4) = 5 and par(4) = {2, 3}

supp,, (Q). It follows that supp, (Q) = supp(Qy,]). Similarly, we define c[,] and A,
as the sub-vectors of ¢ and A with indices corresponding to the nodes of supp(Q[,).
We refer to f, («) as the parametric cost at node u, defined as:

~ 1 7 T T
o) = min —X X +cp X+ A 4a
fu@) = I e 2% QlaX F X F Ay (4a)
st. xi(1—2z)=0 i=1,2...,ny (4b)
Xp, = Q. (4¢)

In simpler terms, f, (o) represents the optimal cost of the sub-problem defined over
the sub-tree supp, (Q) when the root node variable x,, is set to «. We define f; =
ming fy (). Indeed, we have f* = f.

Our next lemma shows that f, (o) can be written as the sum of an indicator function
and the minimum of at most 2"*~! quadratic and strongly convex functions, py_s(-),
where s is a binary vector of dimension n,, — 1 that indicates which variables in the
subtree are nonzero. For each configuration of s, the resulting optimization problem
can be shown to be strongly convex quadratic. The proof of this lemma is presented
in Appendix A.

Lemma 1 Suppose that Q is positive definite and supp(Q) is atree. Forany 1 <u <n,
fu(@) can be written as:

Sful@) = min _l{pu,s(a)}‘f‘)huﬂa,

s€{0,1}u

@ Springer



Quadratic optimization with indicators over trees

where, foreverys € {0, 1y~ 1, Du.s (o) is quadratic and strongly convex. In particular,
let Jy ={i :i € J,s; = 1}, where J is the set of nodes in supp,(Q), excluding u.
Then p, s(a) is given by:

(1 = Qu,J, (QJS,JS)_I QI,JS) o’ + (Cu - Ci (QJst)_l Q;l—nlx) o

N =

Pu,s (Ol) =

lr -1
| =56 (@) CJS+ZM

iels

This paper extensively uses conjugate functions. Recall that, given a function f :
R — R, its Fenchel conjugate is defined as

J(B) = suplap — f(e)}.

A fundamental property of f*(8) is that it is convex, even if f(«) is not. Moreover,
f(a)+ f*(B) = Ba, for every «, B € R. Geometrically, — f*(8) corresponds to the
intercept of a tangent to f with slope .

2 Dynamic programming over trees

When supp(Q) is a path graph, Problem (1) reduces to the following optimization
problem:

1 ) n ] ]
min - X; XX Txta sa
xeR" ze{0,1}" (2 Z i+ Z Ql,l 1Xixi—1 ) + + z (52)

i=1 i=2
st. x(1—-z)=0 i=12...,n (5b)

Liu et al. [40] introduced a DP approach for solving the above problem. To explain
this method, let q[’}{: 0 denote the optimal cost of (5) with additional constraints z; = 1
for every k <i <[ and z; = 0 otherwise. A simple calculation reveals that
T -1 l
qu'l] _ _Ec[k:l] (Q[k:l],[k:l]) Clk:1] + Zi:k A 1<k<l=<n
' 0

k> 1.

Let s be the largest index such that z; = 0. Upon setting z; = 0 in (5), the problem
decomposes into two sub-problems: one defined over nodes {1, ...,s — 1} and the
other over nodes {s + 1, ..., n} with the additional constraint that z; = 1 for every
i > s. This decomposition implies that f* = ¢{; .., + f;_|. More generally, one
can write:

fr= min {qfi 1+ f). fi =0foru <0. (©)

0<s<i

@ Springer



A.Bhathena et al.

Fig.3 Simple tree with one
branch at its root. A possible

choice of s is highlighted in red
(color figure online)

S1

The values of {g[«.;1}k</ can be computed in (’)(nz) according to [40, Proposition
2]. Given the values of {g[x.;)}x<, the values of f}', f5, ..., f; can be obtained via
the recursive equation (6) in On?). Consequently, an overall On?) algorithm for
solving (5) emerges. The corresponding optimal solution can also be recovered with
a negligible overhead (see [40] for more details).

A similar DP approach can be extended to trees beyond paths. This extension is par-
ticularly viable due to trees inheriting a similar decomposability property: when z; = 0
for some node s in the tree, Problem (1) decomposes into smaller sub-problems defined
over the sub-trees, each rooted at one of the parents of s, along with a simple quadratic
program over the remaining nodes of the tree. Unfortunately, our next example illus-
trates that this decomposability property is not enough to guarantee the efficiency of
the corresponding DP, especially when the tree possesses multiple branches.

Example 1 (Extended star trees) Consider an extended star tree with only one branch
located at the root. Let B denote the number of branches in the tree, each composed of
L nodes. We define a vector s € {0, ..., L}B, where each s, is either O or it corresponds
to the sp-th node in branch b, with the indices increasing away from the leaf node.
If s, = 0, then the vector s excludes any node from branch b. Figure3 depicts the
structure of this graph.

Foranys € {0, ..., L}B andb € {1, ..., B}, let f;;)b denote the optimal cost of the
sub-problem defined over the sub-tree rooted at node s;, within branch b. Since this sub-
tree is a path, the corresponding f;ﬁ ;, can be obtained efficiently via the aforementioned
DP algorithm. We set fu*,h =0 foreveryu <0.Lets € {0,..., L}B denote the set
of nodes with the largest indices in each branch such that z} = 0. Accordingly, let g
denote the optimal cost of Problem (1) with additional constraints that z; = 0 for all
nodes i within the sub-tree rooted at node s;, for branches b = 1,...,B,and z; = 1

@ Springer



Quadratic optimization with indicators over trees

otherwise. The optimal cost f* can be written as:

sef0,...,L}B

B
f*=min {45 + Zf;,—l,b} : )
b=1

*

The aforementioned equation implies that, even if f, 1b and ¢} can be obtained

S,
efficiently, one needs to perform up to (L 4+ 1)? comparisons to determine the optimal
cost f*, a process that becomes inefficient with the increasing number of branches.

To address the inefficiency inherent in the direct DP approach when applied to gen-
eral tree structures, we introduce a parametric characterization of the optimal cost for
Problem (1). Through this characterization, we demonstrate a significant reduction in
the search space of the DP approach, without sacrificing the optimality of the obtained
solution. Toward this goal, in Sect. 3.1, we revisit Problem (1) for path graphs. Here,
we present a parametric algorithm for this problem with runtime and memory com-
plexities of O (n?), matching the worst-case complexity of the DP approach proposed
in [40], but significantly outperforming it in practice. Building upon our parametric
algorithm for path graphs, in the remainder of Sect. 3, we extend our approach to gen-
eral tree structures, showing that it can solve these problems in a similar O(n?) time
and memory. In Sect. 4, we discuss an important practical consideration regarding our
algorithm. Finally, in Sect.5, we assess the performance of our proposed approach
across various case studies. Surprisingly, while its worst-case complexity is O(n?),
we observe that the practical runtime of our proposed algorithm is close to linear in
our computations on synthetic and real-world accelerometer datasets.

3 Parametric algorithm

We first provide a high-level intuition of the proposed algorithm. Recall the definition
of f(a), which we repeat for convenience:

- I T T
L, N AL @)
st. xi(1—2z)=0 i=1,2...,ny (8b)
Xp, = C. (8¢c)

Note that, as the value function of a mixed-integer problem, the parametric cost f; is
not convex. Nonetheless, a key observation is that, since the support graph is a tree,
once the value of x,,, is fixed, the problem decomposes into independent subproblems,
one for each parent of u. More specifically, Problem (8) reduces to

1 .
Su(o) =§Qu,ua2 + ey + Ay 1l + Z ?éllg {fv &)+ Oupéa)

vepar(u)

@ Springer



A.Bhathena et al.

=S 0w e hle— 3 (- Que). ©)

vepar(u)

Since the parametric cost f;, can be characterized merely based on the conjugate of
the parametric cost of its parents, we can imagine an algorithm that traverses the graph
in topological order, and recursively computes and stores in each node u either the
parametric cost f, or its conjugate f,*. These functions turn out to be piece-wise
quadratic, as elaborated in the following definition.

Definition 2 A continuous function f : R — IR is termed piece-wise quadratic with
N pieces if there exist scalars —oo = 79 < 1] < --- < Ty = 400 (also referred to
as breakpoints) and quadratic functions (also referred to as pieces) py, ..., py such
that f(a) = pi(a) for p—) < a < 7, where k = 1, ..., N and pr(o) # pi+1(e)
for some « € RR.

Upon assuming py(e) = yr1a® + koo + vz k = 1,..., N, the condition
Pr(a) # pis1(o) forsomea € RRisequivalentto yx ; # yk+1,; forsomei € {1, 2, 3}.
Moreover, to store and represent a piece-wise quadratic function with N pieces, it
suffices to store an ordered list of the breakpoints, along with the coefficients of their
corresponding quadratic pieces [(Tk, Vk.1, Vk.2+ yk’3)],1(V: I

Equation (9) involves sums of value functions, thus the next lemma is critical to
our analysis. The proof of this lemma is provided in Appendix B.

Lemma 2 Consider L piece-wise quadratic functions { fl}lep each with a sorted list
of breakpoints I. The function g = ZIL:I f1 is a piece-wise quadratic function with
breakpoints belonging to U1L=1 I;. Moreover, given {fl}lL:1 and {Fl}le, g can be
characterized in O (LN) time and memory, where N = | UIL:1 I

In order to design an efficient algorithm, recursive equations of the form (9) need
to be obtained efficiently. A property that will allow us to do so is the notion of
consistency, defined next.

Definition 3 A piece-wise quadratic function f with N pieces py, ..., py is called
consistent if:

1. p1,..., py are strongly convex;
2. f(e) = minj<x<n{pr (o)} forall « € R,
3. pr(@) # pr+1(a) for some o € R.

Figure4 depicts two instances of piece-wise quadratic functions, with only one
being consistent.

From recursion (9) we see that the algorithm requires the computation of conjugate
functions of piece-wise quadratic functions with an indicator variable. Naturally, the
overall complexity of the algorithm depends on the number of pieces required to
represent the conjugate functions. The next proposition, whose proof we defer to
Sect. 3.3, shows that the number of pieces can increase by at most 2.

@ Springer



Quadratic optimization with indicators over trees

Fig. 4 Both functions are piece-wise quadratic. The left figure is consistent, while the right figure is not
consistent as it violates the second condition outlined in Definition 3

Proposition 1 Consider f = f~|—)\ 1y, where ). > Oandfis consistent with N pieces.
There exist an integer M and scalars —00 =179 < 7] < -+ < Ty = +002 such that
the conjugate function f* can be written as

fB=qB), for ue1<p=<u;k=1....M, (10)

where

1. q1,...,qm are quadratic and convex;
2. qk(B) # qi+1(B) for some B, fork =1,...., M —1;
3. fXB) = 12{1’;4{4k(ﬂ)}f0"a”ﬂ eR;

4. M <N+2.

We note that the first three properties in Proposition 1 follow directly from the
definition of consistent functions and their conjugates. The primary contribution of
this proposition lies in establishing that the number of pieces of f*(8) is upper bounded
by N + 2. While the second property may initially appear redundant, it is ultimately
crucial for proving this result. To streamline the presentation, we include a high-level
sketch of the proof here and defer the complete proof to Sect.3.3.

Atahighlevel, Proposition 1 follows from the geometric interpretation of conjugate
functions. For simplicity, let us assume that A = 0. Recall that for any strongly convex
and quadratic function py, its conjugate p; is likewise strongly convex and quadratic.
Moreover, — p; (B) corresponds to the intercept of a tangent to p; with slope 8. For
any B € R, let 1(8) denote the minimum index of the piece at which a tangent to
f with slope g intersects f. The proof of the above proposition relies on two key
points: (1) f*(8) = p;(ﬂ) (B) for every B € RR; and (2) I(B) is a non-decreasing
function of 8. The first observation implies that f* is also piece-wise quadratic. The
second observation suggests that /(8) can have at most N changes, or equivalently,
f* can possess at most N pieces (the additional two pieces in Proposition 1 arise only
if 2 > 0). Figure 5 depicts this intuition on a simple consistent function.

A few observations are in order based on the above proposition. First, the conjugate
function f* is not guaranteed to be consistent, even if f is consistent (a property
that holds when A = 0). Second, the number of pieces of the conjugate can, in fact,
decrease. Intuitively, by computing the conjugate, we implicitly compute the closed

2 We use the same notation for breakpoints as in Definition 2 to emphasize that the conjugate function f*
is indeed piece-wise quadratic.

@ Springer



A.Bhathena et al.

T, T, T3 a

Fig. 5 A consistent function f(«) with four strongly convex quadratic pieces. For this function, we have

F*(B) = pi(B) for B < 1, f*(B) = p5(B) forevery B < B < P, and f*(B) = pj(B) for every
Br < B. As aresult, f*(B) has three pieces

convex envelope of the function f, that is, we compute and only store the informa-
tion relevant for optimization instead of the complete function. In general, computing
convex envelopes is notoriously challenging. A common approach involves approxi-
mating them using an outer linearization of the form fy(B) = sup,cy{ap — f(a)},
where Y C IR (often a finite set) [4]. Clearly, f;(8) < f*(B) forall 8 € R, pro-
viding an outer approximation of the convex envelope. However, our next proposition
shows that the convex envelope of consistent functions can be computed exactly and
efficiently.

Proposition 2 Given f = f + Ally, where A > 0 and f is consistent with N pieces,
the conjugate function f* can be obtained in O(N) time and memory.

The proof of Proposition 2 is presented in Sect.3.4. Equipped with these results, we
are now ready to present our parametric algorithm for path graphs.

3.1 Path graphs

Assume supp(Q) is a path graph. The following lemma is a direct consequence of
Propositions 1 and 2. It characterizes the parametric cost at every node u based on the
parametric cost of its parent node u — 1.

Lemma 3 Suppose that supp(Q) is a path graph. Moreover, given any node u, suppose
that f,—1 = fu_l + Ay—11,, where fu_l is consistent with N pieces. Then, we can
express fu = fu~+ tully, where fy is consistent with at most N + 2 pieces. Moreover,
given f,_1, fu can be found in O(N) time and memory.

Proof Since fu,l is consistent with N pieces, due to Proposition 1, there exist an
integer M < N +2 and scalars —00 = 7,—1,0 < Ty—1,1 < -+ < Ty—1,M = +00 such

that the conjugate function f;* ; can be written as:

faiB) = qu-1x(B), for i1 <B<tu—1k; k=1,....M,

where

@ Springer



Quadratic optimization with indicators over trees

1. qu-1.1,---,qu—1,m are quadratic and convex;
2. qu-1k(B) # qu—1.k+1(B) forsome B, fork =1,...,. M — 1;
3. i (B) = (max {gu—1.k(B))} forall f € R.

Combined with (9), this implies that f, = fu + A, 1y, where

fule) = —a +cu — qu_1,k (= Quu—10),

=pu k()
Ty— T

— a <
Qu,u—l Qu u—1
——— \—/_/

=Tuk—1 =Tuk

for Lt N T BURN VG B )

where we used Q,, ,—1 7 0 since supp(Q) is assumed to be connected. Next, we estab-
lish that fu is indeed consistent. First, the strong convexity of p, x fork=1,..., M
directly follows from Lemma 1. Second, we observe that p, x (o) # py k+1(e) for
some « since q,—1.x(B) # qu—1.k+1(B) for some B. Third, we have

fu(a) —Ol + cuo _f;_l(_Qu,u—la)

l
= Ea + ey — lgiﬁl{QM—l,k(_Qu,u—la)}

. 1
IgI:lan {50[2 +cua — QMl,k(_Qu‘ula)}

min .
lfkiM{Pu,k(a)}

Finally, due to Proposition 2, f* ;| can be obtained in O(N) time and memory. Com-
bined with (11), this indicates that f;, can also be computed in O(N) time and memory.
]

Due to (9), the parametric cost f; at the leaf node 1 is the sum of an indicator function
and a consistent function with N = 1 piece. Therefore, Lemma 3 implies that f; is the
sum of an indicator function and a consistent function with N < 3 pieces. Moreover,
it can be computed in O (1) time. Repeating this process until reaching the root node
proves that f; can be expressed as the sum of an indicator function and a consistent
function with N < 2n pieces, and it can be computed in O(1 +3 +5+--- 4+ 2n) =
O(n?). Once f,, is determined, the optimal cost f* can be derived by minimizing f,
over at most 2n strongly convex and quadratic pieces. The details of this procedure
are delineated in Algorithm 1.

Theorem 1 Algorithm 1 solves Problem (5) in O(n?) time and memory.

Proof Due to (9), the parametric cost at the leaf node 1 can be written as f; =
f1 + A1 1lly, where f] is consistent with N = 1 piece. Consequently, by inductively

@ Springer



A.Bhathena et al.

Algorithm 1 Parametric algorithm for path graphs

Input: ¢, A € R", Q € R"*", where Q is positive definite and supp(Q) is a path graph
Output: The optimal solution x* and optimal cost f*
l:foru=1,...,ndo
2:  Obtain f; based on f:ﬁl via Equation (9)
3:  Obtain f,* based on f, via the breakpoint algorithm (Algorithm 4)
4:  u <« child(u)
5: end for
6: Obtain f* = min fu() and x;; = argmin f;, ()
o

7. foru=n— , 1do

8  Setx; = argmln {fula) + Q”_,_l’”x;_H o}
o

9: end for

10: return f* and x*

applying Lemma 3 from the leaf to the root node, the correctness of Algorithm 1 is
established.

To show its runtime, we consider the operations within the loops. Since f;* ; has
at most 2n pieces, the first operation inside the loop (Line 3) can be executed in O (n)
time. Moreover, the second operation inside the first loop (Line 3) can be executed
in O(N) = O(n) time due to Proposition 2. Hence, the first loop can be executed in
O (n?) time. On the other hand, according to Lemma 3, f,, = fn + A, 1, where f,,
is consistent with at most 2n pieces. Therefore, Line 6 can be executed in O (n) time
by minimizing at most 2n strongly convex and quadratic functions. Similarly, each
operation inside the second loop can be executed in O(n) time, resulting in O (n?)
time and memory for the second loop. O

3.2 Tree graphs

In this section, we extend our parametric algorithm to the general tree structures.
Toward this goal, we first revisit Example 1 to elucidate the key ideas behind this
extension.

Example 1 (Continued) To obtain the optimal cost, akin to the path graphs, it suffices
to derive the parametric cost f,. This can be achieved by noting that:

ﬁz(a>=%a2+cna+ma+ > min { Qe - § + fu(6)}

vepar(n)
1
=5 e tiale= ) max{-0u &~ f©)
vepar(n)
1
= Eaz +cpa + Ay lly — Z fo (—Qn,va) .
vepar(n)

For every v € par(n), supp,(Q) is a path. Therefore, according to our discussion
in the previous section, each f," is consistent with at most 2L + 2 pieces, and can

@ Springer



Quadratic optimization with indicators over trees

be obtained in O(L?) time via Algorithm 1. On the other hand, invoking Lemma 2
implies that Zvepar(n) 1 (—Qn’va) is a piece-wise quadratic function with at most
B(2L +?2) pieces, and can be obtained in O(BZ%L). Therefore, the optimal cost f* can
be obtained by minimizing different pieces of f;, in O(BL). This brings the complexity
of the parametric algorithm to O(BL? + B*L). This is a significant improvement upon
the direct DP approach, which runs in O ((L + 1)3).

Motivated by the above example, we next present the analog of Lemma 3 for tree
graphs.

Lemma 4 Suppose that supp(Q) is a tree graph. Moreover, given any node u, suppose
that f, = fv + Ay 1y for everyv € par(u) where fU is consistent with N, pieces. Then,
we can express f,, = fu + Ay lly, where fu is consistent with at most Zv epar(u) (Ny+2)

pieces. Moreover, given { fy}vepar(u), fu can be found in O (deg(u) (Zvepar(u) NU>)
time and memory.

Proof Since for every v € par(u), f, is consistent with N, pieces, Proposition 1
implies the existence of an integer M, < N, + 2 and scalars —00 = 7,0 < Ty,1 <
- < Ty,m, = +oo such that f* can be written as:

5B =quiB), for typ_1<B=<rtoi; k=1,...,M,,

where

1. gv.1, ..., gy m are quadratic and convex;
2. quik(B) # qu.i+1(B) for some B, fork =1,..., M, — 1;
3. 5B = | x| {qv.k(B)} for all B € R.

Let I3, be the ordered list of the breakpoints of f,(—Q, y«) defined as I, =

{—tv,k/Qu‘v},flz“l.Considergu(oz) = Zvepar(u) fF(—Qy,v2). According to Lemma 2,
gu is piece-wise quadratic with a set of breakpoints (J, cpar(y) Iv that has a car-
dinality of N, < 1 + Zvepar(u)(NU + 2). Given the ordered lists {17 }yepar(v),

Uvepm(u) I, can be ordered and stored in O (Z

—00 = Ty < Ty,1 < -+ < Ty,N, = +00 be the ordered elements of |
One can write

vepar(u) NU) time and memory. Let

vepar(u) FU .

gu@) = > quity(—Quae), for T 1< <t k=1,..., Ny,

vepar(u)

22614,1< ()
(12)

where i, (k) is the index for which [ty x—1, Ty k] € [—M, —M] if Quy >0

v v

Ty.i — Tv.i . . .
and [ty k-1, Tux] S [—M, —”Q’—"(k)] if 0,., < 0. The above equation combined

u,v u,v

@ Springer



A.Bhathena et al.

with (9) implies that f, = f, + A, Iy, where

- 1 5
fula) = 50(2 + e — Guila), for T4 1 <a <ty k=1,...,N, (13)

=pu k(@)

Next, we prove that fu is consistent. First, if p, x and p, x+1 are identical for some
1 < k < N,, one can remove the (k 4+ 1)-th piece and set 7, x < T, k+1 and
N, < N, — 1. This process can be repeated until p, x and p, (41 are not identical for
all1 <k < N, — 1. Second, the strong convexity of p, x fork =1, ..., N, directly
follows from Lemma 1. Third, note that

gu@)= Y fi(=Qu.)

vepar(u)

= 2 m ek Qu)
vepar(u)

21;113251)/(\/“ Z CIU,iU(k)(_Qu,va)

vepar(u)

= max 1{g,r(a
(max {quk)}

> gu(a),

where the last inequality follows from (12). Therefore, we have g,(a) =
maxj k<N, {Gux(e)}. This leads to

~ 1
fula) = zaz + cu — gu(@)

1, 3
=3¢ T — max {Gur(@)}

. I, ~
= min = —
lfkiNu{ ot qu’k(a)}

min .
Jmin (pu (@)

This completes the proof of the consistency of f,. Finally, due to Proposition 2,
each fJ can be obtained in O(N,) time and memory. Therefore, g,(o) =

> vepar(u) fo (—Quve) can be obtained in O (deg(u) (Zvepar(u) Nv)) time and
memory, according to Lemma 2. Combined with f,,(a) = (1 /2y 4 cua 4+ Ay lly —
gu(a), this indicates that f,, can also be computed in O (deg(u) (Zv epar() Nv)) time
and memory. O

@ Springer



Quadratic optimization with indicators over trees

With Lemma 4 in place, we are prepared to present an overview of our parametric
algorithm for general tree graphs. The algorithm starts with node 1. Since node 1
represents a leaf node, its parametric cost f] can be readily determined based on the
recursion (9). Moreover, its conjugate f;" can be obtained in O (1) due to Proposition 2.
Assuming that the parametric costs f, and their conjugates f," are available for every
node v < u, the parametric cost f;,, can be obtained based on Lemma 4. Notably, due
to the topological ordering of nodes, all v € par(u) satisfy v < u, ensuring that their
conjugate parametric costs f,’ needed to characterize f,, are known. By repeating this
process iteratively, the algorithm efficiently computes the parametric costs following
the increasing topological ordering.

Algorithm 2 formalizes the aforementioned intuition and presents the proposed
parametric algorithm for trees with greater detail.

Algorithm 2 Parametric algorithm over general trees

Input: ¢, 2 € R", 0 € R"*", where Q is positive definite and supp(Q) has a tree structure
Output: The optimal solution x* and optimal cost f™*

1: Label the nodes supp(Q) according to their topological ordering

2:foru=1,...,ndo

3:  Obtain f, based on { f,jk}vepar(u) via Equation (9)
4:  Obtain ff from f, via Algorithm 4
5: end for
6: Obtain f* = ngn fn(a) and x;; = argmin f, (o)
o
7: J < par(n)
8: while J # {} do
9:  Chooseu € J
10:  Set x;; = argmin{ f, («) + QChild(M)th:hild(u)a}

o
11: J <« J\{u}
12: J < J Upar(u)
13: end while
14: return f* and x*

Theorem 2 Under the assumption that supp(Q) is a tree, Algorithm 2 solves Prob-
lem (1) in O(n®) time and memory.

Proof The proof is analogous to that of Theorem 1, and proceeds inductively using
Equation (9) and Lemma 4. For brevity, we omit the specific details. O

3.3 Properties of consistent functions

In this section, we present the proof of Proposition 1. To this goal, we first introduce
the fundamental properties of consistent functions and their conjugates.

For a piece-wise quadratic function g with N strongly convex pieces p1, ..., pn,
we define its indexing function I, : R — {1, ..., N} as:
I4(B) = min {k DTh—] < a@f < 1, o € argmax {Ba — g(oz)}} , (14)
o

@ Springer



A.Bhathena et al.

Fig.6 A consistent function

f () with three strongly convex
quadratic pieces. In this
example, p; and p3 are defined
from the same quadratic
equation

T1 (%) a

where {Tk}11¢v=o are the breakpoints of g. Intuitively, the indexing function /, returns
the piece with the minimum index where a line with slope S is tangent to g. As
an example, the indexing function for f depicted in Fig.5 can be characterized as
Ip(B) = 1forall B < By, I7(B) = 2forall By < B < Bz, and Iy(B) = 4 for all
B2 < B. As another example, consider the indexing function for f depicted in Fig. 6.
Here, I7(B) = 1forall B < B, Iy(B) =2 forall B1 < B < B2, and I7(B) = 3 for
all B < B.

Due to the definition of the indexing function, there exists a solution o* €
argmax, {Ba — g(a)} such that T, (B)—1 = o* < T1,(B)- Therefore, we have

g5 (B) = Ba” — g(o") = a” — pr,p)(@”) = max{Ba — pr ) (@)} = p], ) (B)-
(15)

Let the image of I, be denoted as Image(/;) = {k : k = I;(B) for some B € R}.
For every k € Image(/y), its inverse image is defined as Ig_l(k) ={B: I;(B) = k}.
Revisiting Fig.5, the indexing function of f satisfies Image(/f) = {I, 2,4} with
inverse images 1;1(1) = (—o00, i1, 1/:1(2) = (B1, P21, and 1.;.1(4) = (B2, +0).

Recall the intuition behind Proposition 1: In order to control the number of pieces
of g*, it suffices to control the number of changes in the indexing function I,. This
can be achieved by showing that I, is non-decreasing. Our next lemma establishes
this important property for consistent functions.

Lemma 5 Any consistent function has a non-decreasing indexing function.
To prove the above lemma, we first present the following intermediate result.

Lemma 6 Suppose that g is consistent with pieces p1, ..., py and breakpoints —o0 =
<717 <--<1y=+400. Forany B € Randk € {1, ..., N}, define the linear
function £y, g(a) = B — pi(B). Moreover, define a*(B) € argmax,{Bo — g(«)}. Let
k* be such that t«—1 < a*(B) < tx*. The following statements hold:

1. We have a*(B) & {tr+—1, Ta*}.
2. We have L. g(a*(B)) = g(@*(B)), and Ly, g(a) < g(a) for every a € R.

Proof To prove the first statement, suppose, by contradiction, that «*(8) = t; for
some k € {k* — 1, k*}. Note that g(«) — Ba = pr(a) — Ba forevery 1y <« < 7

@ Springer



Quadratic optimization with indicators over trees

and g(a) — o = pry1(a) — Ba for every 7 < @ < Tg41. Since a*(B) = 1, we
must have p; (¢*(B)) < 0 and p;_,(a*(B)) = 0. Since Ba — g(a) is a continuous
function of &, we must have py(a*(8)) = pix+1(a*(8)). We consider three cases:

1. Suppose p;(a*(B)) = pj,,(@*(B)) = 0. Since py and pyy are not identical,

we must have p{(@*(8) # pi,i @ (B)). If p{(@*(B) < p{, (@ (B), then
pr(@*(B) + €) < pr+1(a*(B) + €) for every € > 0, which is a contradiction.

Similarly, if p}/(o*(8)) > pjl,,(@"(B)), then px(a*(B) — €) > pry1(a*(B) — €)
for every € > 0, which is again a contradiction.

2. Suppose p,/c(oe*(,B)) < 0. Therefore, there exists € > 0 such that, for every € €
(0, €], we have

Pe(@*(B) +€) < pr(@*(B) = prt1(@*(B)) < prs1(a@™(B) +€),

which is a contradiction.
3. Suppose p; +1(@*(B)) > 0. Following the same reasoning as the previous case,
we arrive at a contradiction.

To prove the second statement, recall that Ba — g (o) = o — pi+ (o) forevery Tpx_1 <
a < t+. Therefore, since a*(f) € argmax,{fa — g(x)} and «*(B) € (Tk*—1, Tk+),
we must have a*(8) € argminae(rk*il’rk*){pk* (@) — Ba}. Since py+(a) — B is a
strongly convex function of ¢, this implies that «*(8) = argmin, {py+ (o) — Ba} =
argmax, {Bo — pi+(a)}. Therefore,

Ba*(B) — pr=(a*(B)) = pi«(B)
= Ba*(B) — pi(B) = pr+(@*(B))
= L p@(B) = g@*(B)).

Finally, since maxy {Ba — g(«)} = max,{Bo — pi+(cr)}, one can write

s p(e) = o — pre(B)
= pa — msax{ﬁé — pi+(§)}

= pa + mgin{—ﬂ%' + i+ (6)}
= pa+ Irgn{—ﬂé +8(8)}
= mgin{ﬁa — BE +g(8)}

< fa — pa +g(a)

= g(a).
This completes the proof. O
Proof of Lemma 5. Suppose that g is consistent with pieces pi, ..., py and break-
points —00 =179 < 7] < --- < Ty = +00. To show I,(B) is non-decreasing, it

suffices to show that if k < I,(B) for some B € IR, then k # I,(B’), for any B’ > B.

@ Springer



A.Bhathena et al.

By contradiction, suppose there exist 8 < B’ such thatk < I,(B) and k = I,(B'). Let
I = I;(B). Due to the definition of the indexing function, there exist i}, o € R such
that

o € argmax{Bo — g(a)}, and 71— < o} < 1,
o
of € argmax{f'a — g(e)}, and 74— < of < 7.
o
Due to the first statement of Lemma 6, we must have 7,1 < o < 77 and 74— <
ay < tx. This implies that
o < ST <o = o <aj. (16)
On the other hand, the second statement of Lemma 6 implies that
L.p(af) = g(a)) and £1.5(x) < g(a); Yo
Ciepr (o) = g(ef) and Ly (o) < g(@); Ve,
Combining the above two inequalities, we have
brplo) < glag) = brp (o) = Bog — pi(B) < B'ap — pi(B)
bep () < gla)) = Lipla)) = Blof — pi(B) < Baj — p[(B).

The above two inequalities yield

Bag — pi(B) + B'a; — pi(B) < B'ag — pi(B") + Baf — p[(B)
= (B =P = (B — B
— o] <,
which contradicts (16). This completes the proof. O

Our next lemma provides a key property of the conjugate of a piece-wise quadratic
function with a non-decreasing indexing function.

Lemma 7 Suppose that g is a piece-wise quadratic function with N strongly convex
pieces pi, ..., pn and a non-decreasing indexing function I,. There exist an integer
N’ < N, scalars —o00 = 19 < 7] < -+ < Tyr = +00, and a strictly increasing
function : {1,...,N'} — {1, ..., N} such that

§B) = pigyB).  for noi<B<mik=1.. N (17)

where

1. pi...., py are quadratic and strongly convex;
2. Py (B) # Prsr)(B) for some B, fork =1,..., N — 1.

@ Springer



Quadratic optimization with indicators over trees

Proof Let ji < jo <--- < jyr be the ordered elements of Image(/,). We have N <
N since Image(/y) C {1, ..., N}. Moreover, we have U;{V:/I Ig_l(jk) = IR. Since I,

is assumed to be non-decreasing, Ig_l(jk) is a convex set for every k = 1,..., N'.
Therefore, there exist —co = 19 < 71 < --- < Ty/—1 < Ty’ = +00 such that, for
everyk=1,...,N’, Ig_1 (jx) can be characterized as:
1,
I, () = [te—1, ol (=1, ™) 5 [Th—1, T, or (Te—1, k] (18)

Upon defining 7w (k) = ji forevery 1 <k < N’, we have

gBY =pi B it el G
=g B =rip® if  Bel'(Go
SEB =P i naspsuk=1...,N,
where the first equality is a direct consequence of (15), the second equality is due to the
definition of the function 7z, and the third equality is due to (18) and the fact that g* is
continuous. This completes the proof of (17). Next, we proceed to prove the properties
delineated in Lemma 7. To prove the first property, recall that py is strongly convex
and quadratic forevery k = 1, ..., N. Therefore, p; (8) = max,{Ba — pr(a)}}isalso
strongly convex and quadratic. Moreover, the second property follows since, if p *)
and p;; (k1) are identical for some 1 < k < N’, one can remove the (k + 1)-th piece
and set Ty < 1441 and N’ <= N’ — 1. This process can be repeated until p;';(k) (B) and
p;(kﬂ)(ﬂ) are not identical forallk =1,..., N' — 1. O

We are now ready to present the proof of Proposition 1.
Proof of Proposition 1 One can write
F4(B) = max {Ba — f (@)
= max { — f(0), max {ﬂa — f(oz) — )»}
a#0
19)

= max —f(O),m;lx{,ch — f(a)} —A

=/*()
Next, note that
F*(B) = max {ﬂa - f(a)]
= max {ﬁa - lg]l(i;lN{Pk(Ol)}}

= max {1I<1}ca<xN{'Ba - Pk(a)}}

@ Springer



A.Bhathena et al.

1rSI}(anN {mgx{ﬁa - pk(a)}}

= max [p{(B)). (20)

Since each pj is strongly convex, f* is also strongly convex. Therefore, the equation

f *B) — A = —f(0) can have at most two solutions. Moreover, £50) = —f(0)
which implies f*(0) — A < — f(0). Hence, f*(8) — A = —f(0) has exactly two
solutions. Let 81 < B, be these solutions. Based on (19), f* can be characterized as

—f0) Bi<B=<ph

f*(ﬂ) — A otherwise. 2n

B =

Since f is consistent, it must have a non-decreasing indexing function due to Lemma 5.
Combined with Lemma 7, this implies that f has at most N’ < N pieces. Therefore,
f* emerges as a piece-wise quadratic function with at most M pieces, where M <
N’ +2 < N + 2. Let these pieces be denoted as {qk},i"lzl. Forevery | <k < M, we
either have gx(B) = p,(B) — A for some 1 < k' < N, or qr(B) = — f(0). Therefore,
q1, - - -, gy are quadratic and convex. Moreover, it is easy to verify that gz and gz
are not identical for all k = 1, ..., M — 1. Finally, note that

7B = max (p{B) = max (D (D) = P (B) = F*(B).

where the first equality follows from (20). The above inequality implies that /*(8) =
maxlSkSN/{p;;(k) (B)}. Therefore, according to (19), we have

F*(B) = max(—£(0), f*(B) — i) = max {q(B)).
This completes the proof. O

3.4 Breakpoint algorithm

Our next goal is to characterize f* efficiently. Indeed, the function f* can be expressed
as

[*(By=max{—[(0), f*(B) — 1} =max | —f(0), max {p{(p) — 1}
— 2 <k<N
Po(B) Pr(B)
=01§1}(f;xN{pk(ﬁ)}-
A direct method for characterizing f™* is to identify the intersections of py and p;

for all possible pairs 0 < k < [ < N, sort these intersections, and then determine
the minimum piece within every pair of adjacent intersections. This method correctly

@ Springer



Quadratic optimization with indicators over trees

Fig.7 A semi-consistent
function with two pieces. The
function is not consistent since it
violates the second property of
Definition 3

p1 (@)

p2(@)

characterizes f* and operates in O(N?2). However, we demonstrate that this complex-
ity can be improved to O(N). To explain our method, we start by introducing the class
of semi-consistent functions.

Definition 4 A piece-wise quadratic function g with breakpoints —co = 19 < 71 <
- < vy = 400 and pieces py, ..., py is called semi-consistent if it satisfies the
following properties:

- pi, ..., pN are strongly convex;

— We have py(@) < min{pi—1(a), pr+1(a)} forall o € [tp—1, el and 2 < k <
N —1.

— Forall k < N, the indexing function /,, is non-decreasing, where g¢ : R — IR is
defined as:

gy = 8@ *=m 22)
@) @ >

The first property mirrors that of consistent functions. The second property is a local
variant of the second property of the consistent functions: Within the local interval
bounded by two adjacent breakpoints 7z_; and 7%, the function g is the minimum
of the adjacent pieces pr_1, pk, and pi+1. Moreover, the function gi is obtained by
restricting the function g to its first k pieces, with the final piece extended to +oo.
Indeed, g is piece-wise quadratic with k strongly convex pieces. However, it may not
be consistent. It is also evident that gy = g.

Not every semi-consistent function is consistent. An example is depicted in Fig. 7.
However, our next lemma shows that every consistent function is semi-consistent.

Lemma 8 Any consistent quadratic function is semi-consistent.

Proof Suppose that g is consistent with N pieces. The first property of semi-consistent
functions is trivially satisfied for g. Since g() = min;<x<y{pk (@)}, the function g
also satisfies the second property. To prove the last property, we can follow the same
steps as the proof of Lemma 5. The first step is to show that Lemma 6 holds for gy.
The second step is to prove the non-decreasing property of I, based on the statements
of Lemma 6. The details of the proof are omitted since they are identical to those of
Lemma 5. O

Since every consistent function is semi-consistent, to prove Proposition 2, it suffices
to provide an efficient algorithm for obtaining the conjugate of the functions expressed
as g + Ally, where g is semi-consistent.

@ Springer



A.Bhathena et al.

Recall the geometric interpretation of a conjugate function: Given any convex func-
tion py, the negative of its conjugate — p;’ is the intercept of a tangent to py with slope

B.

Definition5 For any 1 < k < [ < N, we define a feasible common tangent si;
to pieces [ and k as the slope of a line that is tangent to p; and p; at some points
Tr—1 <oy <trand 771 < oy < 7y, respectively.

Observe that since functions p; and p; are strictly convex, any tangent line is an
underestimator of the function. Moreover, any two different lines in IR? intersect in at
most one point. If the intersection occurs in interval [tx—1, 7], then one line is strictly
“above” the other in interval [t;_1, 7;] and they cannot both be tangents of p;. Cases
where the intersection occurs in a different interval or where the lines are parallel can
be handled identically. We formally prove this result next.

Lemma9 Forany 1l <k <1 < N, the pieces k and | can have at most one feasible
common tangent.

Proof Since a feasible common tangent sg; must satisfy — p;(sx;) = — pj; (sx;) and both
p} and p; are quadratic, the pieces p; and py can have at most two feasible common
tangents. By contradiction, suppose they have exactly two common tangents, given
by E}d (o) := s,:loz + b,ll and E,%l (o) := s,floz + b,%l. Without loss of generality, suppose
s,%l > sél. Let a,l and Ol,% be the points at which the lines E,ld (o) and 51%1 (ov) are tangent
to py, respectively. Define oell and af in a similar fashion. Since py and p; are strongly
convex and 5111 < s,fl, we must have a,l < a,% and ozll < ozlz. Therefore,

Tl < a,l < a,% <t <171 < ozll < ozlz <7y — oa,% < ozll. (23)
On the other hand, due to the strong convexity of pi, we have

Gy(af) = prley) and €4(@) < pr(@); Yo # o
Gy = pr@) and € (@) < pr(@); Vo # of.
Combining the above two inequalities, we have £ ,1( " (Ol]%) < 6,%1 (a,%), which implies that

by, — b}, < (s — sipei. Similarly, one can show that £7,(e)}) < £},(e}), which
implies that (s,fl — s,!l)ozll < b,il — b,%l. Therefore, we have

bl —b? < (s3 — s} )a?
ké kll | klb1 kl bzk SN all < O[]%.
(sig = se)ey < by — by
This contradicts (23), thereby completing the proof. O

Our next algorithm (Algorithm 3) obtains the value of sg;.

A few observations are in order regarding Algorithm 3. First, note that the conjugate
functions p; and p; in Line 1 can be obtained in O(1) time and memory. Moreover,
without loss of generality, we assume that —p;(8) = —p/(B) has two roots 51!1 and

@ Springer



Quadratic optimization with indicators over trees

Algorithm 3 Feasible common tangent: SLOPE(pk, Tk—1, Tk, PI> Ti—1, T1)

Input: {py, 75—y, %} and {p;, 7y—1, 7}
Output: The slope of the feasible common tangent sy;

1: Obtain the conjugate functions p and p;
: Obtain the roots B}, and B of —p}(B) = —p;(B)
: Obtain oz,l = argmaxa{ﬂ,lla — pr(a)} and al] = argmaxa{ﬁllla — pi(a@)}
: Obtain cx}% = argmaxa{ﬁlgloz — pr(a)} and alz = argmaxa{ﬂglcx — pi(@)}

return sy; = ,8111

2

3

4

5:if a,i € [t4—1, %] and ozll € [rj—1, 77] then

6

7: else if oz,% € [tx—1, ©x] and c{lz € [tj—1, 77] then
8

return si; = ;31?]

o bt

selseif o ¢ [1_1.7]ando? ¢ [/_1. 7] then
10:  return sg; = +00

11: else

12:  return sg; = —o0

13: end if

,B,fl; indeed, the later steps of the algorithm can be modified accordingly if —p;(8) =
—pl* (B) has fewer than two roots. It is also easy to see that {a,l, all , oe,%, ozlz} in Lines 3
and 4 can be obtained in O(1) time and memory. Finally, the algorithm assigns 4+oco
or —oo to sy, if a feasible common tangent does not exist.

We next show that the breakpoints of g* coincide with certain feasible common
tangents that satisfy a breakpoint condition.

Definition 6 We say pieces k < [ satisfy the breakpoint condition if:

- —00 < Sk < +00;
= Iy (sw) = lime, ot To(si — €) = T(sx) = k3
= I (si) = lim_, o+ Io (s +€) = L.

We refer the reader back to Fig. 5 for intuition. Both lines with slopes 81 and 8, are
tangent to pieces satisfying the breakpoint condition. Alternatively, imagine the line
tangent to pieces p» and p3. Such a line would cut into the epigraph of piece p4. In this
scenario, I ; (s23) = 4, violating the last condition. Intuitively, tangent lines between
pieces satisfying the breakpoint condition are the lines required to describe the convex
envelope of the piece-wise quadratic function g. More formally, as we show next, the
slopes of such lines are required to describe the conjugate function.

Lemma 10 The pieces k < [ satisfy the breakpoint condition if and only if their feasible
common tangent sy is a breakpoint for g*.

Proof Suppose that the pieces k < [ satisfy the breakpoint condition. Therefore, we
have I < (sx1) = Ig(skr) = k, which implies that there exists some € > 0 such that for
all € € [0, €) we have I, (s — €) = k. From the definition of the indexing function, it
follows that there exists o € argmax{(sy; — €)a — g(e)} such that 7z < of < 7.
Therefore, we have

8 sk —€) = (s — )y — glerg)

@ Springer



A.Bhathena et al.

P2

\

P1 P3

S12 = +®

P2

P1

S12

Fig. 8 The first row corresponds to the ADD step of Algorithm 4. The second row corresponds to the
DELETE step, wherein piece p» is discarded by the algorithm

= (s — E)Ol;: - Pk(Ol]:)
= mo?x{(skl —e)a — pr(a)}

= pi(sk — €).

Similarly, since I; (sg1) = L, there exists some € > 0 such that for all € € (0, €) we
have g*(sy; + €) = pf (sx1 + €). The above two equations imply that sg; is indeed a
breakpoint of g*.

Conversely, suppose that a point 7 is a breakpoint for g*. Since 7 is a breakpoint,
we must have I, (t) # I ;‘ (7). This together with the non-decreasing property of
Ig implies that I, (v) < I, (r). Letk = I, (t) and [ = I/ (z) for some k < I. We
proceed to prove that 7 is indeed the feasible common tangent to the pieces k and /. First,
itis easy to verify that py and p; cannot be identical. Define o = argmax, {ro— pi ()}
and o = argmax,{ta — p;(a)}. Due to the definition of the indexing function, we
have 7y < af < 7 and 7| < af < 7. Consider the lines £,y (o) = ta — p{(7)
and £ (o) = ta — p; (7). Indeed, these two lines are tangent to pieces k and [ at
points a; and o, respectively. Moreover, they coincide since p;(t) = p;(7) due to
the continuity of g*. Therefore, 7 is the feasible common tangent to the pieces k and
[ O

According to Lemma 10, it suffices to identify every pair of pieces k < [ that satisfy
the breakpoint condition. This can be naturally achieved by verifying the condition
for all () pairs of pieces. Our proposed Algorithm 4, which we call the breakpoint
algorithm, achieves this goal in linear time. It keeps track of two ordered lists I" and
I1. The list I" collects the set of candidate breakpoints, whereas the list [T records
the pieces that satisfy the breakpoint condition. In other words, upon termination, the
pieces I1(j) and I1(j + 1) satisfy the breakpoint condition forany j = 1, ..., |[[T|—1.
The initial values of these lists are set as I = [—oo] and IT = [1].

At every iteration, the algorithm takes one of the following steps:

@ Springer



Quadratic optimization with indicators over trees

Algorithm 4 Breakpoint algorithm

Input: g + A1y, where g is semi-consistent
Output: The conjugate of the input function

1: I < [—o0] > Ordered list of candidate breakpoints of g*
2: 1T < [1] > Ordered indices satisfying the breakpoint condition
30 j«2

4: while j < N do

5: i <« end(]) > Return the last (maximum) element of /7
6:  s5ij < SLOPE(P;, Ti—1, Tjs Pjs Tj—1, Tj) > Obtain the feasible common tangent
7. if 5;; > end(I') then > ADD
8: I' < append(l, s;;) > Append s;; to I" as a new breakpoint
9: IT < append(11, j) > Append j to IT
10: j<—j+1

11: else if sij < end(I") then > DELETE
12: I' < delete(l’,end(I)) > Delete the last breakpoint from I”
13: IT1 < delete(ll, end(I1)) > Delete the last index from IT
14:  endif

15: end while

16: I' < append(I", +00)

17: Define g*(B) = p;‘ﬂk)(ﬂ), forl'k)y<p<r'k+1);k=1,....M.
18: Find the roots B < By of —g(0) = g*(B) — A

19: return the conjugate of g(«) + Ally as

—g(0) BL=B=h
g*(B) — 1 otherwise

Fig.9 The auxiliary function g
defined by removing piece

N — 1 from g, and extending the
pieces N —2 and N to substitute
piece N — 1

— ADD (Line 7 of Algorithm 4): When a common tangent between the piece j and
the highest index i in IT is greater than the largest discovered breakpoint in I,
the algorithm adds the index j and the common tangent s;; to the lists I7 and I",
respectively. This scenario is depicted in the first row of Fig. 8. Note that, at this
step, it is possible for the algorithm to add an infeasible common tangent with
sij = +oo to I' (see Fig.8, top right figure). However, both s;; and j will be
discarded in the DELETE step, as we explain next.

— DELETE (Line 11 of Algorithm 4): When the slope of a common tangent between
the piece j and the piece with the highest index i in [T is less than or equal to
the largest discovered breakpoint 7 in I, the algorithm deletes the last elements
of the lists I" and I1. Intuitively, this condition implies that the last piece of IT
cannot satisfy the breakpoint condition when paired with any other piece. As
another interpretation, this piece does not play a role in characterizing the convex

@ Springer



A.Bhathena et al.

envelope of g since it lies in the interior of its epigraph. This scenario is also
depicted in the second row of Fig. 8.

Our next theorem shows that the breakpoint algorithm returns the conjugate of any
function g(«) 4+ Ally, provided that g is semi-consistent.

Theorem 3 Let g be semi-consistent with N pieces. The breakpoint algorithm (Algo-
rithm 4) correctly computes the conjugate of g + M, for any & > 0 in O(N) time
and memory.

Before presenting the proof of the above theorem, we show how it can be used to
complete the proof of Proposition 2.

Proof of Proposition 2 According to Lemma 8, f is semi-consistent. Therefore, the
proof readily follows upon choosing g = f in Theorem 3. O

Next, we present the main idea behind the correctness proof of the breakpoint
algorithm. Our proof is based on induction on the number of pieces in g. Suppose
the breakpoint algorithm returns the conjugate of any semi-consistent function with
at most N — 1 pieces. Our goal is to use this assumption to prove that the algorithm
returns the conjugate of gy with N pieces. Note that, when running the breakpoint
algorithm on gy, the algorithm first processes the first N — 1 pieces of gy, which are
identical to gy —1. Due to Definition 4, gy —1 is semi-consistent with N — 1. Therefore,
relying on our induction hypothesis, the breakpoint algorithm correctly identifies the
breakpoints and pieces of gf\,_l. Let s; y—1 and N — 1 denote the last breakpoint
and piece added to I" and [T respectively until the algorithm reaches piece N. Upon
processing piece N, two potential scenarios emerge:

— Case 1: 5; N—1 < sy—1,n.Inthis case, the algorithm “adds” the breakpoint sy _1, ¥
and the piece N to I and I1, then returns these sets as the set of breakpoints and
pieces of gy,. We prove that these sets coincide with the true sets of breakpoints
and pieces of gy .

— Case 2: 5; N—1 = sny—1,n- In this scenario, the algorithm “deletes” the breakpoint
s;,n—1 and the piece N — 1 from I" and IT respectively. Here, we establish that the
piece N — 1 does not contribute to the characterization of g3,. In this scenario, g},
is the same as the conjugate of an auxiliary function gy _1, obtained by removing
piece N — 1 from gy, and subsequently, extending pieces N —2 and N to substitute
piece N — 1. Figure9 illustrates this function. We show that the constructed gy _
is semi-consistent and has N — 1 pieces. Therefore, by induction hypothesis, the
algorithm correctly recovers its conjugate.

The rest of this section is devoted to formalizing the above intuition.

Proof of Theorem 3 We begin by presenting the proof of correctness, followed by the
proof of its runtime. Suppose that Line 17 correctly recovers g*. Upon finding the
roots B1 < B of —g(0) = g*(B) — A, Equation (21) can be invoked to show that
Line 19 returns the conjugate of g + A ll,. Therefore, to prove the correctness of the
algorithm, it suffices to show that Line 17 correctly recovers g*. To this goal, we
prove that the ordered lists 1" and IT coincide with the correct breakpoints and pieces

@ Springer



Quadratic optimization with indicators over trees

of g*, respectively. Our proof is by induction on the number of pieces N of g. Recall
that g = gy as defined Definition 4. To streamline the presentation, we keep the
dependency of g on N explicit throughout the proof.

Base case Suppose N = 1.Indeed, both gy and g3, have one piece with no breakpoints.
Since the While loop in Line 4 starts only when g has more than one piece, the algorithm
correctly returns the initial values of IT = [1] and I" = [—o0, +00]. Thus, the base
case of the induction hypothesis is true.

Induction step Suppose that the breakpoint algorithm correctly recovers I" and IT
for any semi-consistent function gy_; with at most N — 1 pieces. Our goal is to
prove that the algorithm correctly recovers the correct breakpoints and pieces for any
semi-consistent function gy with N pieces.

We use (I'y;, ITy) and (I'y, ITy) to denote the true set of breakpoints and pieces of
gy and those returned by the algorithm, respectively. Similarly, (I'y,_,, ITy_,) and
(I'nv—1, ITy—1) are the true breakpoints and pieces, and those returned by the algorithm
for g;,_l, respectively. From our induction hypothesis, we have I'y,_; = I'v_1 and
ITy,_, = Iy_1. When we apply the algorithm to gy, the algorithm first processes

the first N — 1 pieces of gy. Let (fN_l, Vo ~N—1) denote the set of breakpoints and

pieces returned by the algorithm at this point. For gn_1, the piece N — 1 is defined

over the domain [ty_3, o0). Therefore, we have ﬁlim Igy_,(B) = N — 1. Suppose i
— 00

is the piece for which the pair i and N — 1 satisfies the breakpoint condition for gy _1.
This implies that

Lo dg,  (Gin—1) = Tgy_, (Sin—1) =1,
2. IF, (sin-1)=N~—1

Due to the non-decreasing property of I,
consider two cases:

Case 1:s; n—1 < sn—1,n In this case, the algorithm proceeds with the ADD step and
returns [y = fN_l U{sy—1n}and [Ty = I:IN_l U {N}. We show that these sets
coincide with (I'y, ITy;).

v_1» We have s; y—1 = max{ly_,}. We

Claim1 [y_y = I'y_, and [Iy— = IT}_,.

To prove this claim, we first observe that the algorithm runs identically over the
first N — 2 pieces of gy—_1 and g, since these functions are identical over (—oo, Ty—_1].
Therefore, it follows that y_; matches I'y;_, entirely, except for a potential dis-
tinction in their final elements. This distinction occurs only if s; y—1 = —o0 or
si,N—1 = ~+oo. Since s; y_1 € I'y_,, we have —oo < s; y_1. Moreover, since
Ty = +o00, we have sy_1, y < 400 according to Algorithm 3. This implies that
—00 < §j, N—1 < SN—1,N < +o0o. Therefore, both s; y_1 and sy_1 y are finite and
Iy = I’} _,. The proof of MIy_1 = IT},_, follows similarly.

Based on the above claim, it suffices to show that I'y = I'y_; U {sy—1,n} and
ITy, = I}, _; U {N}. To this goal, we rely on two crucial claims.

Claim2 gy _,(B) = LK {af — gn—1(a)} for every B < sy—i1 n.

@ Springer



A.Bhathena et al.

To prove the above claim, it suffices to show that, for every B < sy—_1 n, there
exists some o*(B) € {argmax,{af — gn—1(a)}} such that «*(B) < tny_1. First
consider the case 8 < s; y—1. In this case, I;y_,(B) =< i, which in turn implies
a*(B) <t < ty—1. Whens; y—1 < B < sn—1,n, from the non-decreasing property
of the indexing function, we have I, ,(8) = N — 1. Thus, max,{af — gy —1(@)} =
maxq{ef — pn—1(a)} for every s; y—1 < B < sy—1,n. Since py_1 is strongly
convex, a*(B) is an increasing function of g for every s; n—1 < 8 < sy—1,n. On the
other hand, o*(sy—1,5) = argmax,{osy—1,y — pn—1()} < Ty_1, Where the last
inequality follows from the fact that sy _1  is finite and is the feasible common tangent
to pieces N — 1 and N. Therefore, we have o* () < ty_1 forevery B < sy_1.n-

Claim 3 g}k\,il(ﬂ) > aff — pn(a) forevery B < sy_1 Ny and o > TN_1.

To prove this claim, define the line £g(a) = aff — g}“\,_l (B). It is easy to see that
Loy_i n (@) > Lg(a), forevery B < sy—_1yanda > ty_1. (24)

Since IgN,l(SN—l,N) = N — 1, it follows that g;t,_l(SN_LN) = p}k\/_l(sN—l,N) =
Py (n—1,n). Thus,

Loy_n(@) =sn_1,NX — gn_1(SN—1,N) = SN—1,NX — PN (SN_1,N)-
On the other hand, due to the property of conjugate functions, for all @ € R,
pn (@) = sy Nt — PN (SN—1,N) = Lsy_, v (@).

The above inequality together with (24) implies that

pn(a) > Lg(a), forevery B < sy—1yanda > Ty
< pn(a) > Ba —gn_1(B), forevery B <sy_inando > Ty_)
> gnv_1(B) > Ba — py (@), forevery B < sy_1 v and o > TN_1,

which completes the proof of this claim.
Equipped with Claims 2 and 3, we are ready to prove I'y, = I'y_; U {sy—1,n} and
ITy, = Iy_, U {N}. To this goal, it suffices to show that

gnv_1(B) B <sn-1n

s = [Pﬁ,(ﬂ) B = SN-1.N-

Consider the case § < sy—1,n. From the definition of the conjugate function, we have
gy (B) = max {af — gy ()}
aeR

= max {ozgll%/X| {ap — gn(a)}, max {aB — gzv(a)}}

@ Springer



Quadratic optimization with indicators over trees

= max {ag‘}f(_. {af — gn—1(a)}, ety {ap — pN(a)}}

= max {gﬁ_l(ﬂ), ey {af — PN(Ol)}}
=gn_1(B),

where the second to last equality follows from Claim 2 and the last equality is due to
Claim 3. Using the fact that g}, (8) = gx_,(B) for B < sy_1,n, we obtain I, (B) =
Igy_(B) =N —1fors; n—-1 < B < sy—1,5. On the other hand, limg_, 1 o0 I;(8) =
N. Therefore, sy—1,n € I'y, which implies g} (B) = pj(B) for B > sy—1,n. This
completes the proof of the first case.

Case 2: s; N—1 > sn—1,n In this case, the algonthm proceeds with the DELETE step
and discards s; y—1 and N — 1 from FN 1 and 1 N—1, respectively. Our next claim
shows that both s; y_; and N — 1 are correctly deleted, as piece N — 1 does not belong
to Image(/g, ).

Claim4 N — 1 ¢ Image(/g,).

To prove this claim, suppose, by contradiction, that N — 1 € Image(Ig, ). This implies
that there exists a piece k such that both pairs kK, N — 1 and N — 1, N satisfy the
breakpoint condition for gy . Therefore, sy n—1 < sSny—1. 8 < 8i N—1. Due to the non-
decreasing property of I,,, we have I, () < N — 1 forevery B < sy_1,n. This
implies the existence of «*(8) < tnx—1 such that «*(8) € argmax,{of — gn—1(a)}
for every B < sy_1,n. Therefore, we have g3, _,(B) = maxq{af — gn—1(a)} =
maxy<gy_, (B — gn—1(a)} for every B < sy_1, n. Similarly, we have I, _,(8) <1
for every B < s; y—1, wWhich leads to g?ﬁ,(ﬂ) = MaXg<ry_ {@B — gn ()} for every
B < si.n—1. Combining these two equalities, for every § < sy_1.v < Si N—1, WE
have

gv_1(B) = agy_l{aﬂ —gn-1(@)} = agl;;{l{aﬂ —gnv (@)} =gy (B).

The above equality implies that Iy, (8) = Iy (B) = N —1forevery sg y—1 < B <
sN—1,N- On the other hand, recall that I, _, (8) < i forevery B < s; y_1, which leads
to Igy_(B) < N —1forevery sy n~1 < B < sy—1,n. This leads to a contradiction,
thereby proving the claim.

As the last step of the proof, we consider the following function:

min{py_2(a), py(@)} N2 <a < TN_I,

. (25)
g() otherwise.

gn-1(a) = i

The function gy—_; is obtained by removing piece N — 1 from g, and subsequently,
extending py_; and py to substitute piece N — 1. Our final claim shows that gy _
and gy have the same conjugates.

Claim5 gy _, =gx-

@ Springer



A.Bhathena et al.

To prove this claim, note that gx_1 () and g (o) are identical except within the interval
[ty—2, Ty —1]. Due to the second property of semi-consistent functions (Definition 4),
we have gy—1 (o) > g(«) within the interval [ty_2, Ty—1]. This implies that

Ba —g(a) > Ba — gn-1(a); Va,BeR
= max{fa — g(@)} = max{fo — gn-1(@}; VYBeR

= ¢*(B) = gn_1(B); VB € R.

On the other hand, due to Claim 4, we have N —1 ¢ Image(/g, ). Therefore, for every
B € R, there exists a*(8) ¢ [tk—1, T«] such that «*(B) € argmax,{Bo — g(«)}. This
implies that, for every 8 € IR:

g* (B = max{fa — g(a)}

= pa’*(B) — g(@" (B))
= B (B) — n-1(@" (B))
< max (e — gn-1@)} = Z_1 (B).

Combining the above two inequalities implies that gx,_, (8) = gy (B). thereby proving
the claim.

After discarding piece N — 1, the algorithm operates identically on gy_1 and gy .
Indeed, gy —1 is semi-consistent since it satisfies the properties outlined in Definition 4.
Given that gy_; contains N — 1 pieces, by our induction hypothesis, the breakpoint
algorithm correctly identifies the breakpoints and pieces of gy, _, which coincide with
those of gy as asserted in the above claim. This completes the correctness proof of
the algorithm.

Finally, we analyze the runtime of the algorithm. We consider the operations within
the While loop of Algorithm 4. Every execution of Algorithm 3 can be completed in
O(1). To see this, note that the If conditions in Lines 5, 7, 9, and 11 of Algorithm 3
can be checked in O(1) time. The remaining operations of the While loop either
add or delete an element to a list, each taking O(1) time and memory. Thus a single
round of the While loop can be executed in O(1) time and memory. Next, we show
that the While loop executes at most O(N) rounds. Once a piece is deleted, it will
never be revisited. Since at most N pieces can be added and at most N pieces can be
deleted, the While loop can execute at most O(N) rounds. Finally, note that, since
IT and I" have O(N) elements, computing g in Line 17 requires O(N) time and
memory. Similarly, it follows that Line 18 can be computed in O(N). Consequently,
we conclude that Algorithm 4 operates in O(N) time and memory. O

4 Numerical stability of the parametric algorithm

The breakpoint algorithm (Algorithm 4) is prone to numerical instabilities for trees
with alarge number of nodes. In this section, we explain the root cause of this numerical

@ Springer



Quadratic optimization with indicators over trees

issue and describe a correction step that averts this without any compromises to the
performance and accuracy of the algorithm.

Consider an arbitrary pair of nodes u, v where v = child(«) and v is not a branch.
Since f; («) is consistent, it can be written as

fu(a) = 1;2;%u{pu,k(a)} + A1y,

where { pu,k(oz)}livi1 are strongly convex and quadratic. For every k = 1, ..., N,, let
Pui() = yu’k,lotz + Yu.k 20 + Vu k3. Lemma 3 and Equation (9) imply that

Sola) = 151}<ligr}vv{pv’k(a)} + Ay,

where
1 2 *
Poi(@) = 7o e = Puk(—Quv@) (26)
1 2 2
_(L_ Qu,v Ol2 + <Cv _ yu,k,2Qu,v> a4 (yurs - Yuk,2 .
2 Ayuka 2Yu k1 Ay k1
———
=Yookl =Yvk2 =Yook
27

Suppose, for some arbitrary indices k, [, we obtain yy k.1, yp.1,1 from v, k.1, Vu.i1

based on the equation above. Taking € = ]yu,k,l — Yu.1,1|, we obtain
2
Qv
Yokt — o] = |————|-
AV k1Y 0,1
—
P

When y, k.1, Yui.1 > Ou.v/2, we observe that p < 1, resulting in a decrease in the
discrepancy of the quadratic terms. This scenario is likely to occur in practice, as
|Qu.v| < 1due to the positive definiteness of O, and the quadratic coefficients remain
close to 1/2 due to (26). The shrinking effect of the update rule is exacerbated in
situations where multiple neighboring nodes satisfy p < 1, thereby leading to fast
decay in €. As € approaches machine precision, the breakpoint algorithm would suffer
from numerical instabilities.

To address this challenge, we note that, since the slope of the common tangent
sk is proportional to € !, such errors arise only at breakpoints with significantly
large absolute values. Our subsequent lemma demonstrates that these breakpoints
correspond to suboptimal pieces, and thus can be easily excluded from consideration.

llicll2
Amin(Q)’

Lemma 11 Let x* be the optimal solution of Problem (1). We have ||x*||oo <
where Amin(Q) denotes the smallest eigenvalue of Q.

@ Springer



A.Bhathena et al.

Proof Suppose J corresponds to the set of row indices over which x* is non-zero. We
have x* = —Q;ljcj, which implies

llcll2

15 loo = 1%z = | Qs 'es || = 1@ allells = 2.
= 2 ' Amin(Q171.7)

Since J C N, we have

Amin(Qy.7) = min x'Qy x= min x'Qx > min x' 0x > Amin(Q).
[lx]l2=1 [lxll2=1, [lxll2=1
XJ=!

This completes the proof. O

According to the above lemma, it suffices to characterize the parametric cost at any
llell2 llell2

Amin(Q) > Amin(Q)
issue can be mitigated by first obtaining )\nlll:,;H(ZQ) and then discarding the breakpoints

node u within the range [— ] . Therefore, the aforementioned numerical

falling outside the range [— A,E;H(ZQ) , M{'}‘;‘EZQ) ]

5 Experiments

In this section, we assess the performance of our algorithm across various synthetic
and real-world case studies. All experiments were run on a computer with 16 cores
of 3.0 GHz Xeon Gold 6154 processors and 8 GB memory per core. Specifically, we
compare the proposed parametric algorithm with Gurobi v10.0.2. For Gurobi, a time
limit of 1 h was set, and the algorithm was terminated whenever the optimality gap fell
below 0.01%. If Gurobi failed to achieve an optimality gap of 0.01% or less within
this time limit, we reported the best optimality gap attained. We also note that Gurobi,
from version 10 onwards, uses a branch-and-bound method based on a perspective
reformulation to solve Problem (1); these reformulations are known to outperform the
classical big-M reformulations (see, e.g., [52]) and are considered state-of-the-art.>
The Python implementation of our algorithm as well as the presented case studies are
available at https://github.com/aareshfb/Tree-Parametric- Algorithm.git.

5.1 Case study on synthetic dataset

For our first set of experiments, we construct supp(Q) as a randomly generated con-
nected tree. The nonzero off-diagonal elements are selected from a uniform distribution
within the range [—1, 0]. Each diagonal element Q; ; is set to 1 + Z#i |Qi, ] This
ensures that Q is positive definite. Similarly, elements of vector ¢ were generated

3 We also attempted to manually hard-code the perspective reformulation in Gurobi. However, our obser-
vations indicate that Gurobi’s default setting implements the perspective reformulation more effectively
than our manual approach. While we did not include this comparison in the paper, the results are available
in our GitHub repository.

@ Springer


https://github.com/aareshfb/Tree-Parametric-Algorithm.git

Quadratic optimization with indicators over trees

102§ ——- Pparametric .
I’/
-
///‘
.
10! 4 slope=1.1156//‘
.
-®
o ,’,
E a
= L4
/,’
10° -
L’
.
e
/,,
/’.
1011 ¢
v
102 103 104

n

Fig. 10 The runtime of the parametric algorithm (Algorithm 2) for different values of n. The reported results
are averaged over 5 trials

from a uniform distribution within the interval (—10, 10). Unless explicitly stated
otherwise, the default regularizing parameter was set to A; = 7.5 for all i. This value
approximately corresponds to 50% non-zero elements in the optimal solution for the
selected Q and c.

First, we examine the performance of the parametric algorithm for problems with
varying size n. The results are presented in Table 1.

It can be seen that Gurobi is unable to solve instances with sizes exceeding n = 200
within 1h. In contrast, our proposed parametric algorithm can solve instances with
n = 5000 in less than 6, significantly outperforming Gurobi. As a sanity check, we
also report the optimal objective values of both methods. To provide further insight
into the efficiency of the parametric algorithm, we plot its runtime across a broader
range of n in Fig. 10. Notably, the parametric algorithm can solve instances of size
n = 50,000 within 2 min.

Moreover, while the theoretical complexity of the parametric algorithm can be as
high as O®m?),in practice, we observe a complexity that is closer to linear O(nl-1156y,
This improved complexity can be attributed to the fact that, while the parametric cost
at the root node f, () may have up to 2n pieces, in practice, the number of pieces
is expected to be significantly smaller. More specifically, recall that N, denotes the
number of pieces in the parametric cost f;,(x). We have shown that the runtime of
Algorithm 2 is O (35_; N,) = O (nN), where N denotes the average number of
pieces. While this leads to a quadratic runtime when N = O(n), it becomes linear if
N = 0.

Figure 11 illustrates the average number of pieces generated by the parametric
algorithm for different values of n. It is evident that as n increases from 1000 to
20,000, the average number of pieces ranges from 20 to 35. This observation supports
our hypothesis that, in practice, the average number of pieces grows only sublinearly
with respect to n.

@ Springer



A.Bhathena et al.

1] BWWT U 4 WILOSY JO AIIqels [edLdawnu ay) 10§ PIALIdP (§) "y /|2 ]|
ULI3) 9Y) JO dN[BA Y} O} SIJal , punog,, ‘(7 Wwyos[y) wyjrode suawered ay) 0} SI9JaI , LAUWRIRJ,, "S[BLI] G JOA0 PISLIoAE aIe s)nsal pajtodar oy, (Y [) W Wiy, 1,

¥°80% £9'6SC LL'T81 v 8C1 88°6L - punog

61°C 16'1 SS'l 01 000 (%) de3 1do

020°L69 £66°598°C €16°67€'9 688°¢88°CI €I Er9 1mo sopou g g
78'909°67— TLSEF 01— 0T'T91S— LL'89ST— SL'OL6— 1qonn

LEP19ST— 9I'LEFOT— TET9IS— 188967~ SL'OL6— oLoweredq anfea 2An2(q0
1L 1L 1L 1L 05’89 1qoIng

66'S 144 66°0 L¥0 LT0 RISERUALR (s) oury,

000§ = u 000T = 0001 = 00§ =u 00 =1u POYION ORI

S9ZIS SuIkIeA 10 Q0UBULIONS] | d]qel

pringer

As



Quadratic optimization with indicators over trees

N Root Node
. Max
go-{ MM Mean

s
£

g 60
R
o
<
Fe
-
=]

© 40 1
Qo
S
3
z

20 A

0 B

1000 2000 5000 10000 20000

n

Fig. 11 The values of N (denoted as “Mean”), max, {N,} (denoted as “Max”), and N; (denoted as “Root
Node”) for different values of n. Note that the max, {N,} does not necessarily coincide with Nj. The
reported results are averaged over 10 trials

Next, we let n = 1000 and compare the performance of the parametric algorithm
and Gurobi for different regularization parameters 1. Given any index i, the parameter
A; is sampled randomly from a uniform distribution within the range [0.75A, 1.251].
The results are summarized in Table 2. It is observed that while the performance of the
parametric algorithm remains almost independent of %, the optimality gap obtained
by Gurobi remains large, except for the extreme values of A that correspond to nearly
fully dense or fully sparse solutions.

Finally, we focus on the special case of path graphs. Specifically, we compare our
parametric algorithm (Algorithm 1) to the direct DP approach proposed in [40]. As
discussed in Sect. 2, the direct DP approach solves instances with path structure in
O(n?) time complexity. While this runtime matches the theoretical complexity of
our parametric algorithm, Fig. 12 illustrates that their practical performance differs.
In particular, while the direct DP approach outperforms the parametric algorithm
for n < 2000, its runtime scales almost quadratically with n. On the other hand,
the practical performance of the parametric algorithm scales almost linearly with n,
enabling it to outperform the direct DP approach for larger instances n > 2000.

5.2 Case study on accelerometer dataset

In this case study, we highlight the performance of the parametric algorithm for solving
the robust inference of GHMM, as detailed in Sect. 1.1. Specifically, we focus on the
task of recognizing physical activities for a participant using data collected from a
single chest-mounted accelerometer. We consider the dataset from [11, 12]. To enhance
the representation of these activities, [3] proposed using the mean absolute value of 10
successive signal differences from this dataset. The pre-processed data can be accessed
online at https://sites.google.com/usc.edu/gomez/data.

@ Springer


https://sites.google.com/usc.edu/gomez/data

A.Bhathena et al.

S[eLI) G JOAO PASeIdAR aIv s)[nsal pajtodal oy [, *, X uonnjos [ewndo oy} Ul SJUSWA[d 0I9Z-Uou Jo a3eiuadiad :ZN (Y [) W swl], I,

000 8T 1L 090 01°0 100 (%) des 1do
¥'66 766°0S€°8 SET'LLS'9 085°659°S LYSILY'S 8°8LLT 1qoIngn sopou g29d
€9°L 1L 1L 1L 1L 191 1qoIny
160 S6°0 86°0 70'1 90'1 148! RISl LA (s)ouury,
%0 ~ ZN %01 ~ ZN %YE ~ ZN %6S ~ ZN %EL ~ ZN %16 ~ ZN
0S=7Y st=¥ Er=Y S=Y =Y T0=Y POy RSB

uonezue[n3ar Suikrea 1oy uostreduwod oourwLIONd g d|qel

pringer

As



Quadratic optimization with indicators over trees

" | i Direct DP .
10° 3 ——- parametric o
S
4."’
10° 4 slope=1.074 /,”‘,-"'
o A&
o -7
.E_ "’f -
(= ”—
- A" slope=1.9682
1071{ ¢-~
A
1029 .
A
102 103

n

Fig. 12 The runtime of the parametric algorithm (Algorithm 1) and the direct DP approach of [40] for
instances with path structure. The reported results are averaged over 5 trials

We utilize the same dataset in our study. The signal comprises 13,800 readings
indicating changes in “x acceleration” for a participant. The participant’s activity
sequence is as follows: they were “working at a computer” until timestamp 4,415; then
engaged in “standing up, walking, and going upstairs” until timestamp 4,735; followed
by “standing” from timestamp 4,735 to 5,854, from 8,072 to 9,044, and again from
9,045 to 9,720. Subsequently, they were “walking” from timestamp 5,854 to 8,072;
involved in “going up or down stairs” from timestamp 9,044 to 9,435; “walking and
talking with someone” from timestamp 9,720 to 10,430; and “talking while standing”
from timestamp 10,457 to 13,800 (with the status between timestamps 10,430 and
10,457 being unknown).

This problem can be formulated as an instance of Problem (3), where the hidden
state x; represents the activity level of the participant. Specifically, intervals charac-
terized by minimal or absent physical activity naturally correspond to time stamps ¢
where x; = 0. Furthermore, we segment the signal into windows of magnitude K and
regard each segment ¢ as the observation set for the hidden state x;. More precisely,
we treat y;—1)K+1, - - - » sk as the observations corresponding to the hidden state x;.

Additionally, we assume that a subset of the observations is corrupted with outlier
noise. As discussed in Sect. 1.1, the inference of a GHMM with outliers (referred to
as robust inference hereafter) can be addressed by solving Problem (3). Since this
problem has a tree structure, it can be solved via the parametric algorithm. In this
context, the scale of the problems being addressed exceeds n = 30,000. At such
scales, Gurobi fails to yield a reliable solution. Alternatively, in scenarios where the
observations are assumed to be free of outliers, the variables w and z in Problem (3)
can be set to zero. This transformation simplifies the problem into one defined over
a path graph, which can be solved using the parametric algorithm over path graphs
(Algorithm 1) or the direct DP approach proposed in [40].

Figure 13 depicts the robust and non-robust inference of the hidden signal for K =
10. It is evident that the original signal is corrupted with outlier noise, with the most

@ Springer



A.Bhathena et al.

178 Q --=-- Original Signal asd 1 e original Signal
—— Robust Setting —— Non-Robust Setting
150 150
» 125 » 125
] ]
2 2
£ 100 £ 100
3 3
= =
RN T 75
= =
@ fo) @
50 50
25 25
0 0 .
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

Time Time

Fig. 13 Robust and non-robust inference of the hidden signal. In the figure on the left, the outliers removed

from the signal are circled in red. The parameters in this experiment are setto y; = 400, A; , = 100, atz =2,
and v; = 1 (color figure online)

57 -+ original Signal -~ - Original signal
— Me=50 — Mr=100
150 150
o 125 » 125
3 3
2 2
£ 100 € 100
H 3
2 H
RS T 75
& &
@ @
50 50
25 25
o e 0
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Time Nime
- -+ Original Signal i - Original Signal
— Ae=150 — =600
150 150
o 125 o 125
3 3
2 2
€ 100 € 100
32 3
H 2
3 s 3 75
5 &
@ @
50
25
)

6000
Time

6000 8000 10000 12000 14000

Time

0 2000 8000 10000 12000 14000 o

Fig.14 Therecovered signal forA; , € {50, 100, 150, 600}. The other parameters are setto y; = 400, 0,2 =
2,vs =1,and K =10

significant outlier appearing at timestamp 250. While the robustly recovered signal
successfully filters out the outliers, its non-robust counterpart fails to remove them.
In these experiments, our parametric algorithm solves the robust inference problem
within 46.4 s, whereas the non-robust inference is solved within 1.2 s. This disparity in
runtimes is not surprising, given that the robust inference problem is nearly 11 times
larger.

Figure 14 depicts the impact of the regularization parameter A ; on the recovered
signal. A small value of Ay, results in a fully dense w, effectively treating the entire

@ Springer



Quadratic optimization with indicators over trees

..... K=
175 P :o
— K=50
150
125 -
@V
°
2
£ 100 A
)
=
S 75
(=
A
50
25 1
04

0 2000 4000 6000 8000 10000 12000 14000
Time

Fig.15 Therecovered signal for three values of K. The parameters are set to y; = 250, A ; = 100, Utz =2,
andv; =1

original Signal original Signal Original signal
— L1 relaxation — Wavelet denising — Low pass fiter

s ot
(a) L1 relaxation (b) Wavelet denoising (¢) Low-pass filter

Fig. 16 The recovered signal obtained using three methods: L relaxation, wavelet denoising, and the
low-pass filter

observations as corrupted by outlier noise. Conversely, a larger A ; enforces sparser
w, indicating that most observations are assumed to be free of outlier noise.

Finally, Fig. 15 illustrates the impact of varying values of the partition size K on the
recovered signal. Recall that K represents the number of observations for each hidden
state. As aresult, a larger K typically improves the smoothness of the recovered signal
but could potentially obscure finer changes. This phenomenon is shown in Fig. 15.

As previously mentioned, the optimization problem for inferring GHMMs in (3)
is nonconvex due to the combinatorial nature of the sparsity-promoting regularizer,
which is commonly referred to as the Lg penalty. To handle this nonconvexity, a
standard approach is to relax the L penalty to its convex L surrogate [54]. Figure 16a
demonstrates the performance of the L; relaxation, with regularization parameters
determined through a grid search over Ay ; and y;. As shown, while the L relaxation
imposes sparsity, it does not effectively eliminate outliers and results in substantial
shrinkage of the non-zero values.

Additionally, we compare our method to two commonly used algorithms for human
activity recognition: signal denoising using the wavelet transform and low-pass filters
[26, 38]. These methods were implemented using the Signal Processing Toolbox [45]

@ Springer



A.Bhathena et al.

—— Time (ms)
40

35

30

25

Time (ms)

201

15 1

10 1

0 200 400 600 800 1000 1200 1400
t

Fig. 17 The update time of the 5 most recent hidden states after the arrival of K = 10 observations. The
other parameters are set to y; = 250, A ; = 100, atz =2,y =1

and Wavelet Toolbox [42] in MATLAB 2020b. As shown in Fig. 16b, c, the results
indicate that these techniques are ineffective at removing outliers.

Online setting Finally, we consider the online setting, where the goal is to infer the
values of the hidden state x;, as the new collected data from the accelerometer arrives
“on-the-go”. More specifically, at each new timestepr = 1, ..., T, K new observa-
tions are revealed, and the goal is to infer the value of x;, and possibly update the
values of S most recent values x;_p, ..., x;—s based on the newly observed data.
Note that new observations at current time ¢ not only help with the inference of the
current hidden state x;, but also can potentially change the optimal value of the past
hidden states x;_1, ..., x;. Consequently, the optimal inference of the hidden state
necessitates resolving a sequence of optimization problems with the new incoming
data.

Thanks to our parametric approach, we achieve this goal in milliseconds. To see
this, note that our parametric algorithm performs inference by sequentially obtaining
fxi»--+» fx,_, corresponding to the parametric costs at the hidden states xy, ..., x;—1,
along with their conjugates (refer to Fig. 1 for an illustration of the associated graph).
Therefore, according to the recursive equation (9), the parametric cost fy, at the new
time 7 can be efficiently characterized merely based on the conjugate functions f7 |
(which is already computed and available) and { fy’jm}f:l, thus circumventing the
need to resolve Problem (3) from scratch. Once the parametric cost fy, is obtained,
the hidden states x;, ...x;_g can be updated in O(S), according to Algorithm 2.
Figure 17 illustrates the runtime of this online version of our algorithm. At any given
time ¢, the optimal cost, along with the updated values of x;, ..., x;—4 are obtained
based on K = 10 new observations within at most 45 ms.

@ Springer



Quadratic optimization with indicators over trees

6 Conclusions

In this paper, we consider mixed-integer quadratic programs with indicators where the
matrix defining the quadratic term, Q, has a tree structure. While for general Q the
problem is NP-hard, we propose a highly efficient algorithm for the tree-structured Q.
Our algorithm has a time and memory complexity of O(n?) that maintains the same
complexity as the simpler path-structured problem studied earlier. Our computational
results show that the practical complexity of the algorithm on our test instances is
almost linear. Our algorithm can be leveraged in problems where the Q matrix can be
decomposed into trees in a similar procedure proposed in [40].

Appendix A: Proof of Lemma 1

Let J be the set of nodes in supp, (Q), excluding u. Let us define p,, s (cr):

1 1
Pus(a) = G%}lnil Eaz +c a + (5){'_ Qsyx+ anJx + c}rx + )Js)
X u

st.xi(l—s)=0 i=12...n,— L.

It is easy to verify that f,(«) = mingggg ym—1{pu.s(@)} + Ay lly. Therefore, it
remains to show that forevery s € {0, 1 }”rl , Pu.s (t) is strongly convex and quadratic.
To establish this, we use the Karush-Kuhn-Tucker (KKT) conditions to calculate the
solution of the optimization problem. First, let J; = {i : i € J ands; = 1}. Since
the constraints in the definition of p, s(«) sets some of the coordinates of x to 0, the
optimization problem can be simplified as follows

.1 1
Pu,s(@) = min §a2+cu0l+ EXTQJS,JSXJFQQIJKX+c;sx+2)»i

1Js|
x€R ied,

From KKT conditions it follows that

Pus@) =3 (1= 0w (€5.0) ™ @1 ) o+ (cu = % (24.0) ™ 0Ly )@

17 -1
+ —ECJS(QJ.Y,J.Y) CJ.Hr;M
ieJds

Note that (1 — Qu.J, (ij,jx)_l QMT’JS) is the Schur complement of
0 J,Ufu}, J;Ufu}» Which, owing to the positive definiteness of Q, is positive definite.

@ Springer



A.Bhathena et al.

Therefore, (1 — QOu,J, (QJSJS)_1 Q;'—Jr) > 0, implying that p, (@) is strongly con-
vex. This completes the proof. O

Appendix B: Proof of Lemma 2

Let —oo =19 < 11 < --- < Ty = +00 be the ordered elements of U1L=1 I;. The
proof follows by noting that none of { f7} lL:1 contain any breakpoints within the interval
(tk—1, ); k = 1, ..., N. Therefore, the set of breakpoints of g can only belong to
{70, ..., Tn}. Itfollows that g is a piece-wise quadratic function with at most N pieces.

Next, we discuss the complexity of obtaining g. First, we combine the sorted lists
{Fl}lL: | and represent them in a single sorted list, which can be done in O(N log L)
using L-way Merge algorithm [25, Theorem 1]. Second, for each interval, g can be
constructed by summing the corresponding pieces of the functions { fl};"zl. This leads

to the overall complexity of O(N L), where N = | U1L=1 1. O
Acknowledgements We thank the AE and the two referees whose comments improved this paper.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows (1988)
. Atamtiirk, A., Gémez, A.: Strong formulations for quadratic optimization with M-matrices and indi-
cator variables. Math. Program. 170(1), 141-176 (2018)
3. Atamtiirk, A., Gémez, A., Han, S.: Sparse and smooth signal estimation: convexification of £q-
formulations. J. Mach. Learn. Res. 22(1), 2370-2412 (2021)
4. Bertsekas, D.P., Yu, H.: A unifying polyhedral approximation framework for convex optimization.
SIAM J. Optim. 21(1), 333-360 (2011)
5. Bertsimas, D., Cory-Wright, R., Pauphilet, J.: A new perspective on low-rank optimization. Math.
Program. 202, 47-92 (2023)
6. Bertsimas, D., King, A., Mazumder, R.: Best subset selection via a modern optimization lens. Ann.
Stat. 44(2), 813-852 (2016)
7. Bertsimas, D., Parys, B.V.: Sparse high-dimensional regression: exact scalable algorithms and phase
transitions. Ann. Stat. 48(1), 300-323 (2020)
8. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc.: Ser. B
(Methodol.) 36(2), 192-225 (1974)
9. Besag, J., Kooperberg, C.: On conditional and intrinsic autoregressions. Biometrika 82(4), 733-746
(1995)
10. Brown, R.G., Hwang, P.Y.: Introduction to Random Signals and Applied Kalman Filtering, vol. 3.
Wiley, New York (1992)
11. Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using a wearable
device. In: Pattern Recognition and Image Analysis: Sth Iberian Conference, IbPRIA 2011, Las Palmas
de Gran Canaria, Spain, June 8-10, 2011. Proceedings 5. pp. 289-296. Springer (2011)

o —

@ Springer


http://creativecommons.org/licenses/by/4.0/

Quadratic optimization with indicators over trees

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Casale, P., Pujol, O., Radeva, P.: Personalization and user verification in wearable systems using
biometric walking patterns. Pers. Ubiquit. Comput. 16, 563-580 (2012)

Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86,
595-614 (1999)

Chakrabarty, D., Lee, Y.T., Sidford, A., Wong, S.C.W.: Subquadratic submodular function minimiza-
tion. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. pp.
1220-1231 (2017)

Chang, 1., Tiao, G.C., Chen, C.: Estimation of time series parameters in the presence of outliers.
Technometrics 30(2), 193-204 (1988)

Chen, X., Ge, D., Wang, Z., Ye, Y.: Complexity of unconstrained minimization. Math. Program. 143(1—
2), 371-383 (2014)

. Das, A, Kempe, D.: Algorithms for subset selection in linear regression. In: Proceedings of the Fortieth

Annual ACM Symposium on Theory of Computing. pp. 45-54 (2008)

Dedieu, A., Hazimeh, H., Mazumder, R.: Learning sparse classifiers: continuous and mixed integer
optimization perspectives. J. Mach. Learn. Res. 22(1), 6008-6054 (2021)

Del Pia, A., Dey, S.S., Weismantel, R.: Subset selection in sparse matrices. SIAM J. Optim. 30(2),
1173-1190 (2020)

Fattahi, S., Gomez, A.: Scalable inference of sparsely-changing gaussian Markov random fields. Adv.
Neural. Inf. Process. Syst. 34, 6529-6541 (2021)

Fattahi, S., Gémez, A.: Solution path of time-varying Markov random fields with discrete regulariza-
tion. arXiv preprint arXiv:2307.13750 (2023)

Goémez, A.: Outlier detection in time series via mixed-integer conic quadratic optimization. SIAM J.
Optim. 31(3), 1897-1925 (2021)

Goémez, A., Neto, J.: Outlier detection in regression: conic quadratic formulations. arXiv preprint
arXiv:2307.05975 (2023)

Gomez, A., Xie, W.: A note on quadratic constraints with indicator variables: convex hull description
and perspective relaxation. Oper. Res. Lett. 52, 107059 (2024)

Greene, W.A.: k-way merging and k-ary sorts. In: ACM Southeast Conference, pp. 127-135 (1993)
Gu, F.,, Chung, M.H., Chignell, M., Valaee, S., Zhou, B., Liu, X.: A survey on deep learning for human
activity recognition. ACM Comput. Surv. 54(8), 1-34 (2021)

Giinliik, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indi-
cator variables. Math. Program. 124, 183-205 (2010)

Giinliik, O., Linderoth, J.: Perspective reformulation and applications. In: Mixed Integer Nonlinear
Programming, pp. 61-89. Springer (2011)

Han, S., Gémez, A.: Compact extended formulations for low-rank functions with indicator variables.
Math. Oper. Res. (2024), to appear. arXiv preprint arXiv:2110.14884

Han, S., Gémez, A., Pang, J.S.: On polynomial-time solvability of combinatorial Markov random
fields. arXiv preprint arXiv:2209.13161 (2022)

Hastie, T., Tibshirani, R., Tibshirani, R.J.: Extended comparisons of best subset selection, forward
stepwise selection, and the lasso. arXiv preprint arXiv:1707.08692 (2017)

Hazimeh, H., Mazumder, R., Saab, A.: Sparse regression at scale: branch-and-bound rooted in first-
order optimization. Math. Program. 196(1-2), 347-388 (2022)

Huo, X., Chen, J.: Complexity of penalized likelihood estimation. J. Stat. Comput. Simul. 80(7),
747-759 (2010)

Insolia, L., Kenney, A., Chiaromonte, F., Felici, G.: Simultaneous feature selection and outlier detection
with optimality guarantees. Biometrics 78(4), 1592-1603 (2022)

Kalman, R.E.: A new approach to linear filtering and prediction problems (1960)

Kim, Y.J., Kang, B.N., Kim, D.: Hidden Markov model ensemble for activity recognition using tri-
axis accelerometer. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp.
3036-3041. IEEE (2015)

Kiiciikyavuz, S., Shojaie, A., Manzour, H., Wei, L., Wu, H.H.: Consistent second-order conic integer
programming for learning Bayesian networks. J. Mach. Learn. Res. 24(322), 1-38 (2023)

Kumar, P., Chauhan, S., Awasthi, L.K.: Human activity recognition (har) using deep learning: review,
methodologies, progress and future research directions. Arch. Comput. Methods Eng. 31(1), 179-219
(2024)

@ Springer


http://arxiv.org/abs/2307.13750
http://arxiv.org/abs/2307.05975
http://arxiv.org/abs/2110.14884
http://arxiv.org/abs/2209.13161
http://arxiv.org/abs/1707.08692

A.Bhathena et al.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

Lee, Y.T., Sidford, A., Wong, S.C.W.: A faster cutting plane method and its implications for combina-
torial and convex optimization. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pp. 1049-1065. IEEE (2015)

Liu, P, Fattahi, S., Gémez, A., Kiiciikyavuz, S.: A graph-based decomposition method for convex
quadratic optimization with indicators. Math. Program. 200(2), 669-701 (2023)

Manzour, H., Kiiciikyavuz, S., Wu, H.H., Shojaie, A.: Integer programming for learning directed acyclic
graphs from continuous data. INFORMS J. Optimiz. 3(1), 46-73 (2021)

Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.M.: Wavelet Toolbox. The MathWorks Inc., Natick,
MA 15, 21 (1996)

Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math.
Program. 118(2), 237-251 (2009)

Ravikumar, V., Xu, T., Al-Holou, W.N., Fattahi, S., Rao, A.: Efficient inference of spatially-varying
Gaussian Markov random fields with applications in gene regulatory networks. IEEE/ACM Trans.
Comput. Biol. Bioinform. (2023)

Stearns, S.D., David, R.A.: Signal Processing Algorithms in Matlab. Prentice-Hall, Inc (1996)
Stubbs, R.A.: Branch-and-Cut Methods for Mixed 0—1 Convex Programming. Northwestern University
(1996)

Trabelsi, D., Mohammed, S., Chamroukhi, F., Oukhellou, L., Amirat, Y.: An unsupervised approach
for automatic activity recognition based on hidden Markov model regression. IEEE Trans. Autom. Sci.
Eng. 10(3), 829-835 (2013)

Tsay, R.S.: Time series model specification in the presence of outliers. J. Am. Stat. Assoc. 81(393),
132-141 (1986)

Wei, L., Atamtiirk, A., Gémez, A., Kii¢iikyavuz, S.: On the convex hull of convex quadratic optimization
problems with indicators. Math. Program. 204(1-2), 703-737 (2024)

Wei, L., Gémez, A., Kiiciikyavuz, S.: Ideal formulations for constrained convex optimization problems
with indicator variables. Math. Program. 192(1-2), 57-88 (2022)

Wei, L., Gémez, A., Kiiciikyavuz, S.: On the convexification of constrained quadratic optimization
problems with indicator variables. In: International Conference on Integer Programming and Combi-
natorial Optimization. pp. 433—447. Springer (2020)

Xie, W., Deng, X.: Scalable algorithms for the sparse ridge regression. SIAM J. Optim. 30, 3359-3386
(2020)

Yan, H., Grasso, M., Paynabar, K., Colosimo, B.M.: Real-time detection of clustered events in video-
imaging data with applications to additive manufacturing. IISE Trans. 54(5), 464-480 (2022)

Zhang, C.H., Huang, J.: The sparsity and bias of the lasso selection in high-dimensional linear regres-
sion. Ann. Stat. 36(4), 1567-1594 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	A parametric approach for solving convex quadratic optimization with indicators over trees
	Abstract
	1 Introduction
	1.1 Gaussian hidden Markov models
	1.2 Related work
	1.3 Preliminaries and notations

	2 Dynamic programming over trees
	3 Parametric algorithm
	3.1 Path graphs
	3.2 Tree graphs
	3.3 Properties of consistent functions
	3.4 Breakpoint algorithm

	4 Numerical stability of the parametric algorithm
	5 Experiments
	5.1 Case study on synthetic dataset
	5.2 Case study on accelerometer dataset

	6 Conclusions
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Acknowledgements
	References


