
DF2: Distribution-Free Decision-Focused Learning

Lingkai Kong1,2 Wenhao Mu2 Jiaming Cui2,3 Yuchen Zhuang2 B. Aditya Prakash2 Bo Dai2 Chao Zhang2

1Harvard University, Cambridge, Massachusetts, USA
2Georgia Institute of Technology, Atlanta, Georgia, USA

3Virginia Tech, Blacksburg, Virginia, USA

Abstract

Decision-focused learning (DFL), which differen-
tiates through the KKT conditions, has recently
emerged as a powerful approach for predict-then-
optimize problems. However, under probabilistic
settings, DFL faces three major bottlenecks: model
mismatch error, sample average approximation er-
ror, and gradient approximation error. Model mis-
match error stems from the misalignment between
the model’s parameterized predictive distribution
and the true probability distribution. Sample av-
erage approximation error arises when using fi-
nite samples to approximate the expected optimiza-
tion objective. Gradient approximation error oc-
curs when the objectives are non-convex and KKT
conditions cannot be directly applied. In this pa-
per, we present DF2 —the first distribution-free
decision-focused learning method designed to mit-
igate these three bottlenecks. Rather than depend-
ing on a task-specific forecaster that requires pre-
cise model assumptions, our method directly learns
the expected optimization function during training.
To efficiently learn the function in a data-driven
manner, we devise an attention-based model ar-
chitecture inspired by the distribution-based pa-
rameterization of the expected objective. We eval-
uate DF2 on two synthetic problems and three
real-world problems, demonstrating the effective-
ness of DF2. Our code can be found at: https:
//github.com/Lingkai-Kong/DF2.

1 INTRODUCTION

Many decision-making problems are fundamentally opti-
mization problems that require the minimization of a cost
function, which often depends on parameters that are both
unknown and context-dependent. Typically, these param-
eters are estimated using observed features. For instance,

hedge funds regularly recalibrate their portfolios to maxi-
mize expected returns, which involves predicting the future
return rates of various stocks. Similarly, in personalized
medicine, the selection of treatments for individual patients
must predict unique responses to ensure optimal outcomes.

Given the growing capacity to train powerful deep learning
models, a common strategy for this problem is the two-stage
pipeline. This approach first learns a predictive model for
unknown parameters using a generic loss function (e.g., neg-
ative log-likelihood) during the prediction stage, and then
applies the model’s outputs in a downstream optimization
problem. Despite its widespread use, this pipeline implic-
itly assumes that better predictive accuracy—measured by
the prediction loss—translates to better optimization per-
formance. However, this assumption often breaks down, as
prediction errors can have non-uniform effects on the opti-
mization objective. To address this issue, Decision-Focused
Learning (DFL) [Donti et al., 2017, Wilder et al., 2019,
Wang et al., 2020b, Sun et al., 2023, Yan et al., 2021,
Rodriguez-Diaz et al., 2024] integrates the prediction and
optimization stages into a single end-to-end model. A promi-
nent line of work leverages the implicit function theorem
and the KKT conditions to differentiate through the opti-
mization layer [Donti et al., 2017], enabling the learning
process to align predictive outputs directly with decision
quality. This results in models that are trained explicitly for
decision-making, often framed as regret minimization.

Despite its promising results, DFL via differentiation
through KKT conditions faces several critical bottlenecks in
the probabilistic setting, where the predictive model outputs
a distribution rather than a point estimate: (1) Model mis-
match error: real-world applications often operate in highly
uncertain environments and involve complex, multimodal
probability distributions. In contrast, DFL by differentiat-
ing through KKT conditions requires simple parameterized
distribution models for computational feasibility, leading
to a mismatch. (2) Sample average approximation error:
When there is no closed-form expression for the expected
optimization objective, we typically draw a finite number

https://github.com/Lingkai-Kong/DF2
https://github.com/Lingkai-Kong/DF2

x

Prediction Distribution Stochastic Program Optimization LossFeatures

Backpropagation Backpropagation

p(y|x; !)

(a) (b)

a
! = argmina2CEp(y|x;!)[f(y, a)] l = E(x,y)!D[f(y, a

"(x; !))]

(c)

Figure 1: Decision-focused learning [Donti et al., 2017] directly optimizes the task loss and leads to better decision regret.
However, it suffers from three significant bottlenecks. More illustrations are in Section 2.

of samples from the distribution for averaging, which will
introduce extra statistical errors. (3) Gradient approxima-
tion error: the KKT condition is only a sufficient condition
for optimal solution of convex problem, which is unable
to characterize the optimal solution in non-convex setting,
and thus, will lead to inaccuracies that cumulatively result
in lower decision quality. Recent works [Kong et al., 2022,
Shah et al., 2022, 2023] have proposed surrogate objectives
to bypass the challenges of gradient computation. However,
these approaches are still model-based and suffer from the
other two bottlenecks. While SPO [Elmachtoub and Grigas,
2022] generally converges to a decision with optimal ex-
pected costs regardless of the distribution, it is restricted to
linear objectives.

We propose DF2, the first distribution-free decision-focused
learning method, to mitigate the three bottlenecks and han-
dle complex objectives beyond the linear class. Instead of
relying on a task-specific forecaster that necessitates precise
model assumptions, we propose to learn directly the expec-
tation of the optimization objective function from the data.
Upon learning, we can obtain the optimal decision by max-
imizing the learned expected function within the feasible
space. In order to ensure that the network architecture lies
within the true model class and minimize bias error, we have
developed an attention-based network architecture that emu-
lates the distribution-based parameterization of the expected
objective. This attention architecture also preserves the con-
vexity of the original optimization objective. In contrast to
the two-stage model, DF2 is decision-aware. Compared to
DFL methods, DF2 avoids model mismatch error, gradi-
ent approximation error, and sample average approximation
error at test time.

Our main contributions can be summarized as follows: (1)
We propose a distribution-free training objective for DFL. It
mitigates the three bottlenecks of existing methods under the

probabilistic setting. (2) We propose an attention-based net-
work architecture inspired by the distribution-based param-
eterization to ensure the network architecture is within the
true model class. (3) Experiments on two synthetic datasets
and three real-world datasets show that our method can
achieve better performance than existing DFL methods.

2 PRELIMINARIES

2.1 DECISION-FOCUSED LEARNING BY
DIFFERENTIATING THROUGH KKT
CONDITIONS

In the predict-then-optimize problem, a predictor Mω inputs
features x and outputs a point estimate ŷ. This estimate pa-
rameterizes the optimization problem argmina→C f(y,a),
where f is the cost function, a is the decision variable, and
C is the feasible space.

However, point estimations fail to capture the uncertainty
inherent in model predictions [Abdar et al., 2021] and
the stochastic nature of the problem parameters [Schnei-
der and Kirkpatrick, 2007]. To address this, we focus on
a probabilistic framework, wherein the predictor’s output
is a probability distribution pω(y|x), rather than a mere
point estimate. This allows us to engage in stochastic op-
timization, where the objective is to find the optimal ac-
tion a↑(x; ω) that minimizes the expected cost, formalized
as argmina→C Epω(y|x)[f(y,a)]. This method more effec-
tively accounts for the uncertainties and variabilities present
in the parameters.

Predictions are then evaluated based on the decision loss
they generate, essentially the cost function’s value using the
true parameters y. For a dataset D = {xi,yi}

N
i=1, the goal

is to train a model Mω to minimize the decision loss:

ω↑ = argminω
1
N

∑N
i=1 f(yi,a↑(xi; ω)). (1)

By directly optimizing the decision loss, the gradient of the
model parameters can be calculated using the chain rule:
df(y,a→(x;ω))

dω = df(y,a→(x;ω))
da→(x;ω)

da→(x;ω)
dω . To compute the Ja-

cobian da→(x;ω)
dω for backpropagation, OptNet [Amos and

Kolter, 2017] assumes quadratic optimization objectives
and differentiates through the KKT conditions using the im-
plicit function theorem. Later, cvxpylayers [Agrawal et al.,
2019] extends it to more general cases of convex optimiza-
tion using disciplined parameterized programming (DPP)
grammar.

2.2 BOTTLENECKS UNDER THE
PROBABILISTIC SETTING

Although DFL by differentiating through KKT condition
can achieve better decisions compared to the two-stage learn-
ing, they have three significant bottlenecks under the proba-
bilistic setting.

Bottleneck 1: Model Mismatch Error. Real-world appli-
cations often involve complex and multi-modal probability
distributions p(y|x) [Kong et al., 2023]. One prominent
example is the wind power forecasting task, where the envi-
ronment exhibits high uncertainty due to the dynamic and
stochastic nature of wind patterns. Factors such as changing
weather conditions, terrain, and turbulence can significantly
affect the true distribution of wind power, making it highly
intricate and challenging to model accurately.

However, existing approaches [Donti et al., 2017, Kong
et al., 2022] tend to assume simple distributions, e.g.,
isotropic Gaussian distribution, for computational feasibility.
However, this assumption can lead to considerable misalign-
ment between the model’s parameterized distribution and
the true underlying distribution in tasks with high uncer-
tainty. This mismatch results in poor approximations and
reduced decision-focused learning performance. Fig. 1(a)
illustrates this issue using a ground-truth distribution com-
posed of a mixture of three Gaussians. As we can see, the
performances of DFL approaches suffer due to the model
mismatch error, which is particularly pronounced in tasks
with highly uncertain environments.

Bottleneck 2: Sample Average Approximation Error. In
complex optimization problems, closed-form expressions
for expectations might be unavailable, necessitating the use
of sample average approximation [Kim et al., 2015, Ver-
weij et al., 2003, Kleywegt et al., 2002]. Although adopting
a more expressive distribution, such as a mixture density
network, could potentially improve performance, doing so
introduces another issue—sample approximation error. As
shown in Fig. 1(b), when dealing with intricate distributions,
increasing the sample size reduces the gradient variance
slowly but demands substantially higher computational re-
sources and longer running times.

Bottleneck 3: Gradient Approximation Error. The KKT
condition can only be applied to convex objectives. How-

ever, many real-world applications involve complicated non-
convex objectives. Though Perrault et al. [2020], Wang et al.
[2020a] propose to approximate the non-convex objectives
by a quadratic function around a local minimum to approx-
imate da→

dω (Fig. 1(c)), the inaccurate gradients may be ag-
gregated during the training iterations and thus lead to poor
decisions.

The first two errors occur during both training and testing,
whereas gradient approximation errors occur only during
training. Recently, several methods [Kong et al., 2022, Shah
et al., 2022, 2023] have proposed surrogate losses for DFL
to avoid differentiating through KKT conditions. However,
they still suffer from the first two bottlenecks.

It should be noted that when the objective function is linear,
the expectation of a linear function has a closed-form expres-
sion and only requires estimating the mean of a distribution.
Therefore, the model does not suffer from these bottlenecks.
As a result, SPO [Elmachtoub and Grigas, 2022] proves
that it converges to a decision with optimal expected costs
regardless of the distribution. In our paper, we consider a
more complex setting where estimating the expected cost
requires the entire predictive distribution.

3 DISTRIBUTION-FREE
DECISION-FOCUSED LEARNING

In this section, we introduce DF2 which mitigates all the
three bottlenecks within a single model. We first intro-
duce the distribution-free training objective which trans-
forms DFL into a function approximation problem. Then,
we design an attention-based architecture inspired by the
distribution-based parameterization to reduce the bias er-
ror. Finally, we discuss how to obtain the optimal decision
during inference.

3.1 DISTRIBUTION-FREE TRAINING
OBJECTIVE

Existing DFL methods primarily rely on a distribution-based
approach. These techniques learn a forecaster that outputs
probability distribution p(y|x) based on various model as-
sumptions. However, a more straightforward approach is to
estimate the expected cost function Ep(y|x)[f(y,a)] directly
from the training data D = {xi,yi}

N
i=1.

The cornerstone of our method is the observation that the
expected cost objective is only a function of a and x, which
is represented as g(x,a) = Ep(y|x)[f(y,a)]. We propose
a direct approach to learn a neural network with parame-
ters ω to match the expected cost function Ep(y|x)[f(y,a)].
Our objective is to minimize the mean square error (MSE)
between the fitted function g(x,a) and the cost function
f(y,a) sampled from p(x,y):

g↑(x,a) = argming E(x,y)Ea[g(x,a)→ f(y,a)]2. (2)

、

Value Embedding

Query Embedding

Key Embedding

、

E
ncoder

Attention Map

Figure 2: The proposed attention-based network architecture of DF2. The network contains an encoder and a set of learnable
attention points {ks,vs}

S
s+1. Given an input feature x, the encoder first project it to query embedding space and then

compute the attention weights by its dot product with the key embeddings. The final function value g(x,a) is a weighted
combination of f(v,a). The designed network architecture can effectively reduce the bias error in Proposition 1.

The proposed training objective can be efficiently optimized
using stochastic gradient-based methods such as ADAM
[Kingma and Ba, 2015b].

In the ideal case, when we have infinite training data
and model capacity, the optimal solution g↑ of Eq. 2 is
the ground-truth conditional expectation Ep(y|x)[f(y,a)].
Upon learning the optimal function, the optimal ac-
tion can be derived by maximizing the fitted function
a↑ = argmina→C gω(x,a). However, in practical situations
where training data and model capacity are limited, we
obtain the expected error on the test set as the following
proposition.

Proposition 1. The expected MSE of the optimal solution
g↑ on the test set is:

MSEtest = ED↑

[(
g↑D↑(x,a)→ Ep(y|x)[f(y,a)]

)2]

︸ ︷︷ ︸
Bias

+ ED↑

[
(g↑D↑(x,a)→ ED↑ [g↑D↑(x,a)])

2
]

︸ ︷︷ ︸
Variance

,

where D
↓ denotes the training dataset augmented with the

sampled actions a, and g↑D↑(x,a) denotes the function fitted
on the dataset D↓.

Proof. See Appendix D for a detailed proof.

Sampling Action from the Constrained Space. In prac-
tice, it’s unnecessary to fit the true objective across the entire
Euclidean space. Instead, we only need to sample from the
constrained space C. There are several strategies for this.
One simple approach is to sample from a relaxed version
of the constrained space,such as an outer bounding box that
encloses C. This allows us to sample each dimension of a
independently from a uniform distribution. Moreover, many
predict-then-optimize problems are resource allocation prob-

lems where the decision variable a is a simplex; for a sim-
plex, we can directly sample from the Dirichlet distribution.
Appendix B provides more illustrations on the relaxed con-
strained sampling. Alternatively, we can employ Markov
chain Monte Carlo (MCMC) methods to uniformly sample
within C, such as Ball Walk [Lovász and Simonovits, 1990]
and the hit-and-run algorithm [Bélisle et al., 1993, Lovász,
1999]. However, these methods typically incur higher com-
putational costs.

In contrast to traditional DFL, our framework effectively
transforms decision-focused learning into a function approx-
imation problem, circumventing the complexities of solving
and differentiating through the optimization problem. This
approach avoids both model mismatch error and gradient
approximation error. While we do not claim to fully address
the sample average approximation error during training, as
we still rely on finite data to estimate the expected cost
function, we can avoid this error at inference time, see Sec-
tion 3.3.

As we can see from Proposition 1, the test MSE consists
of the bias and variance terms. The variance term will be
reduced by sampling more data. To ensure that the bias error
term approaches zero with more training data, it is crucial
to keep the network architecture within the model class.
To tackle this challenge, we introduce an attention-based
network architecture in the following subsection.

3.2 DISTRIBUTION-BASED
PARAMETERIZATION

The key of our architecture design is to mimic the
distribution-based parameterization of the expected cost
function. Since our training objective bypass the need of
solving and differentiating through the stochastic optimiza-
tion problem, we can adopt an expressive non-parametric
distribution with kernel conditional mean embedding (CME)

Variable x y
Domain X Y
Kernel Rx(x,x

→) Ry(y,y
→)

Feature map Rx(x, ·) Ry(y, ·)
RKHS G F

Table 1: Table of Notations

to parameterize our model. The proposed network architec-
ture can lead to zero bias error in Proposition 1

CME [Song et al., 2009, 2013] is a powerful tool to com-
pute the expectation of a function in the reproducing kernel
Hilbert space (RKHS), without the curse of dimensionality.
Let F be a RKHS over the domain of y with kernel func-
tion Ry(y,y↓) and inner product ↑·, ·↓F . For a particular
a, we denote the corresponding function as fa(y). CME
projects the conditional distribution to its expected feature
map µy|x ↭ Ep(y|x)[Ry(y, ·)] and evaluates the conditional
expectation of any RKHS function, fa ↔ F , as an inner
product in F using the reproducing property:

Ep(y|x)[fa] =

∫
p(y|x)↑Ry(y, ·), fa↓Fdy

=

〈∫
p(y|x)Ry(y, ·)dy, fa

〉

F
= ↑µy|x, fa↓F .

Assume that for all fa ↔ F , the conditional expectation
Ep(y|x)[fa(y)] is an element of the RKHS over the domain
of x, the conditional embedding can be estimated with a fi-
nite dataset {xs,ys}

S
s=1 as µ̂y|x =

∑S
s=1 εs(x)Ry(ys, ·),

where εs is a real-valued weight and can be computed with
matrix calculation (see more details about this computation
in Appendix C).

One advantage of CME is that µ̂y|x can converge to µy|x in
the RKHS norm at an overall rate of O(S↔ 1

2) [Song et al.,
2009], which is independent of the input dimensions. This
property let CME works well in the high-dimensional space.
With the estimated CME, the conditional expectation can be
computed by the reproducing property:

Ep(y|x)[fa(y)] = ↑µ̂y|x, fa↓F =

〈
S∑

s=1

εs(x)Ry(ys, ·), fa

〉

F

=
S∑

s=1

εs(x)fa(ys). (3)

As shown in Eq. 3, the formulation is essentially a weighted
combination of fa(ys), where the weights are conditioned
on the input features x. This observation inspires us to lever-
age attention-based parameterization to represent the func-
tion g(x,a). The attention mechanism forms the foundation
of the transformer architecture [Vaswani et al., 2017] and
has been successfully utilized across various deep learning
applications [Kenton and Toutanova, 2019, Brown et al.,
2020, Dosovitskiy et al., 2021].

Inspired by this, we introduce a set of learnable attention
points {ks,vs}

S
s=1, where k is the key embedding and v

is the corresponding value embedding. For an input x, the
encoder first maps it to the query embedding space q and
compute the attention weights by its product with the key
embeddings. We set the value function as f(vs,a) and,
consequently, reformulate the function g(x,a) using the
softmax attention mechanism [Vaswani et al., 2017]:

g(x,a) =Softmax


q(x)↗k1
↗
d

, · · · ,
q(x)↗kS

↗
d

↗

[f(v1,a), · · · , f(vS ,a)], (4)

where d is the dimension size of the key embeddings and
value embeddings.

Proposition 2. It holds for any x and a, the func-
tion g(x,a) defined by the softmax attention in Eq. 4
Ep̂R(y|x)[f(y,a)] = g(x,a). Here, p̂R(y|x) is a param-
eterization restriction of p(y|x).

Proof. See Appendix E for a detailed proof.

From Proposition 2, it is evident that with the attention-
based network architecture, we can guarantee that our
learned expected function resides within the true model
class. To speed up the training procedure, one can initialize
the value embeddings of the attention points with randomly
selected labels from the training dataset. This approach pro-
vides a reasonable starting point for the model and reduces
the time it takes for the model to converge to a solution. The
training procedure of DF2 is given in Algorithm 1.

Remark. Our proposed attention-based network architec-
ture represents a parameterization of p(y|x), drawing simi-
larities with the two-stage model and DFL. Compared with
the two-stage model, we learn the expected cost function to
make DF2 decision-aware. Compared with DFL, we do not
have to solve the stochastic optimization problem during
learning. As a result, we can adopt an expressive nonpara-
metric distribution with CME to parameterize p(y|x) to
avoid the model mismatch error.

3.3 MODEL INFERENCE

At test time, we can obtain the optimal decision by maxi-
mizing the learned expected cost argmina→C g(x,a). The
final representation of g(x,a) is a weighted combination of
f(vs,a) with different value embeddings. Another benefit
of the proposed attention-based network architecture is that
it can preserve the convex property of the cost function.

Proposition 3. As long as f(y,a) is a convex function with
respect to a, g(x,a) is a convex function with respect to a.

Proof: This is a direct consequence of the theorem that a
convex combination of convex functions remains a convex
function

When the original objective is convex, we can use any ex-
isting black-box convex solver [Diamond and Boyd, 2016,
Agrawal et al., 2018, Gurobi Optimization, LLC, 2023]. For
non-convex problem, we can use projected gradient descent.

Although Eq. 2 involves sampling x,y during training, this
introduces generalization error due to the finite size of the
training dataset. Crucially, this generalization error is dis-
tinct from the SAA error, which arises in existing methods
that require sampling from a predicted distribution (e.g., a
Gaussian with learned parameters) to estimate an expected
objective. In such cases, the generalization error in the pre-
dictive model is further compounded by the additional vari-
ance introduced through sampling, resulting in compounded
inaccuracies.

In contrast, our method learns the expected objective g(x,a)
directly and does not require sampling at inference time,
thereby eliminating the additional SAA error. Nonetheless,
like all learning-based methods, it remains subject to gener-
alization error stemming from limited training data.

4 ADDITIONAL RELATED WORK

SO-EBM [Kong et al., 2022] proposes a surrogate learn-
ing objective by maximizing the likelihood of the pre-
computed optimal decision within an energy-based proba-
bility parameterization. LODL [Shah et al., 2022, 2023] and
LANCER [Zharmagambetov et al., 2023] approximate the
decision-focused loss with a quadratic function or a neural
network. DF2 is different from them: (1) They assume a
deterministic setting while we assume the problem param-
eter y is a probability distribution. (2) They approximate
the decision loss which is a function of the problem param-
eter y. In contrast, DF2 directly learns the expected cost
function which remains independent of y. (3) They still
relies on initially learning a forecaster to infer y from x.
Consequently, they remain susceptible to both model mis-
match error and sample average approximation error in our
probabilistic setting. Recently, Bansal et al. [2023] proposes
TaskMet with the motivation to simultaneously optimize
predictive loss and decision loss, rather than addressing the
three bottlenecks.

Several other works have focused on linear objectives, where
DFL through KKT condition may encounter singular value
issues. To address this, the SPO+ loss [Elmachtoub and Gri-
gas, 2022] evaluates prediction errors relative to optimiza-
tion objectives using the subgradient method. The approach
by Wilder et al. [2019] incorporates a quadratic regular-
ization term for smoothing. Meanwhile, Mandi and Guns
[2020] introduces a log barrier regularizer and differentiates
through the homogeneous self-dual embedding. In contrast,
our method is crafted for a broader range of objectives.

When the optimization problem is discrete, differentiating
through the optimization layer is even more challenging
since the gradient is ill-defined in the discrete domain. Var-

ious solutions have been proposed, such as tackling the
discrete challenge via interpolation [Pogančić et al., 2019],
perturbation [Niepert et al., 2021, Berthet et al., 2020], sub-
gradient methods [Mandi et al., 2020], and cutting planes
[Ferber et al., 2020]. Our method is directly applicable to
the discrete setting and we leave it for future exploration.

5 EXPERIMENTS

In this section, we empirically evaluate DF2 and conduct
experiments in both synthetic and real-world scenarios. Fi-
nally, we perform ablation studies to show the effect of each
model design in DF2.

5.1 SYNTHETIC PROBLEMS

To highlight the ability to learn the true expected objective,
we first validate our method on a synthetic dataset where the
true underlying model is known to us. To simulate the multi-
modal scenario in the real world, we generate 5000 feature-
parameter pairs using a Gaussian mixture model with three
components (3 GMM). We consider both convex and non-
convex objectives. The details of the data generation process
and the objectives are provided in the Appendix F.2.

Experimental Setup.

Since we know the true underlying data generation process
for this synthetic setting, we compute the lower bound of
the decision regret and use the gap of the model’s deci-
sion regret from this lower bound as the evaluation metric.
We compare with the following baselines: (1) A two-stage
model trained with negative log-likelihood. (2) DFL [Donti
et al., 2017]. (3) SO-EBM [Kong et al., 2022]: It uses the
energy-based model as a surrogate objective to speed up
DFL. (4) Policy-net: It directly maps from the input fea-
tures to the decision variables by minimizing the task loss
using supervised learning. (5) LODL [Shah et al., 2022]: it
approximates the decision loss with a surrogate function.

For the two-stage model, DFL, SO-EBM and LODL, the
forecasters use GMM with a different number of compo-
nents and use 100 samples to estimate the expectation of
the objective as we found that more samples bring limited
performance gain but lead to longer training time. We also
evaluate scenarios where the forecaster provides only a point
estimate of the problem parameter, with the exception of
SO-EBM, which is originally used in the probabilistic set-
ting. For a fair comparison, we use the same backbone for
the encoder of DF2 and the forecaster of the baselines and
1000 attention points for both the convex and non-convex
objectives. For the two-stage model, DFL and SO-EBM,
the forecasters use GMM with a different number of com-
ponents and use 100 samples to estimate the expectation
of the objective as we found that more samples bring little
performance gain. For a fair comparison, we use the same
backbone for the encoder of DF2 and the forecaster of the
baselines and 1000 attention points for both the convex and

(a) Convex objective (b) Non-convex objective

Figure 3: The gap of the model’s decision regret from the lower bound of the decision regret on the synthetic data for both
the convex and non-convex objectives. ‘PE’ denotes that the forecaster only produces a point estimate for the problem
parameter.

Epoch 0 Epoch 20 Ground truth Epoch 0 Epoch 20 Ground Truth

Convex objective Non-convex objective

Figure 4: Randomly initialized landscape, DF2 recovered landscape and the ground-truth landscape on the synthetic data.
The landscape is conditioned on an input feature sampled from the test set.

non-convex objectives. Appendix F provides more details
of the experimental setup and model parameters.

Results. Fig. 3 shows the results on both the convex and
non-convex objective for all the methods. As we can see,
DF2 can outperform all the baselines. The improvement
of DF2 against the baselines becomes more significant on
the non-convex objective. Specifically, DF2 reduces the gap
from the performance bound by 56.5% compared with the
strongest baseline LODL. When the baseline methods uti-
lized GMMs with a different number of components, their
performance deteriorated, indicating that they suffer from
model mismatch errors. In contrast, our method consistently
outperformed the baselines, regardless of the number of
components they used. This consistency is evidence that
our approach can effectively mitigate model mismatch er-
rors. Even when the baseline methods were aligned with
the ground-truth model class, our method still outperformed
them since we can also avoid the sampling average approxi-
mation error at test time.

It’s important to note that when the forecaster yields only
a point estimate, both existing DFL frameworks and the
two-stage method show the worst performance for this im-
balanced cost function. This underscores the importance
of quantifying uncertainty in the forecaster’s predictions,
especially in risk-sensitive domains.

Fig. 4 visualizes the learned expected function and the

ground truth expectation on a test sample for both objectives.
We found that the DF2 can effectively recover the landscape
of the ground truth expected cost.

5.2 REAL-WORLD PROBLEMS

Next, we delve into three real-world problems encompassing
both convex and non-convex objectives.

5.2.1 Experimental Setup.

Wind Power Bidding. In this task, a wind power firm en-
gages in both energy and reserve markets, given the gen-
erated wind power x ↔ R24 in the last 24 hours. The firm
needs to decide the energy quantity aE ↔ R12 to bid and
quantity aR ↔ R12 to reserve over the next 12-24 hours in
advance, based on the forecasted wind power y ↔ R12. The
optimization objective is a piecewise function consisting of
three segments [Sanayha and Vateekul, 2022a, Cao et al.,
2020a], which is to maximize the revenue of the energy sales
while minimizing the penalties for decision inaccuracies of
overbidding and underbidding.

Inventory Optimization. In this task, a department store is
tasked with predicting the sales y ↔ R7 for the upcoming
7th-14th days based on the past 14 days’ sales data x ↔ R14

for a specific product, and accordingly, determining the
best replenishment strategy a ↔ R7 for each day. The opti-
mization objective is a combination of an under-purchasing
penalty, an over-purchasing penalty, and a squared loss be-

Decision Regret

Method Power Bidding Inventory Opt. Vaccine Dist.

Policy-net 489.01 ±12.39 3.96 ±0.28 604 ±12.30
Two-stage PE 518.19 ±14.84 3.97 ±0.15 573 ±10.26
Two-stage 1-GMM 69.36 ±4.33 3.32 ±0.10 538 ±9.30
Two-stage 3-GMM 69.89 ±1.50 3.27 ±0.08 534 ±8.40
Two-stage 10-GMM 70.51 ±2.29 3.29 ±0.05 533 ±7.95
Two-stage 500-GMM 66.84 ±1.43 3.24 ±0.07 524 ±7.95
Two-stage 1000-GMM 65.83 ±1.70 3.27 ±0.05 527 ±7.65
SO-EBM 1-GMM 67.32 ±1.97 3.37 ±0.02 512 ±8.55
SO-EBM 10-GMM 66.93 ±2.45 3.26 ±0.03 513 ±7.95
SO-EBM 500-GMM 67.02 ±2.16 3.37 ±0.05 513 ±8.70
SO-EBM 1000-GMM 66.40 ±2.23 3.21 ±0.07 516 ±9.45
DFL PE 69.46 ±1.21 3.35 ±0.03 519 ±7.37
DFL 1-GMM 66.85 ±1.47 3.36 ±0.02 515 ±8.25
DFL 3-GMM 66.60 ±3.23 3.36 ±0.05 513 ±7.05
DFL 10-GMM 66.45 ±2.32 3.31 ±0.01 513 ±7.65
DFL 500-GMM 65.06 ±0.88 3.24 ±0.09 507 ±6.60
DFL 1000-GMM 64.65 ±3.70 3.21 ±0.07 513 ±7.35
LODL PE 67.92 ±1.49 3.36 ±0.06 512 ±7.01
LODL 1-GMM 66.87 ±1.36 3.34 ±0.01 508 ±6.23
LODL 3-GMM 65.75 ±1.86 3.31 ±0.06 506 ±6.84
LODL 10-GMM 65.29 ±1.23 3.26 ±0.02 504 ±6.38
LODL 500-GMM 64.24 ±1.45 3.22 ±0.05 502 ±7.02
LODL 1000-GMM 64.13 ±2.47 3.24 ±0.04 503 ±7.01
Ours 60.90 ±0.60 3.09 ±0.09 492 ±7.05

Table 2: Decision regret of each method – lower is better.
‘PE’ denotes point estimate for the parameter.

tween supplies and demands.

Vaccine Distribution for COVID-19. During the COVID-
19 pandemic, computing a vaccine distribution strategy is
one of the most challenging problems for epidemiologists
and policymakers. In practice, meta-population Ordinary
Differential Equations (ODEs) based epidemiological mod-
els [Pei et al., 2020a] are widely used to predict and evalu-
ate the outcomes of different vaccine distribution strategies.
These models rely on people mobility data, such as Origin-
Destination (OD) matrices, to capture the pandemic spread
dynamics across diverse locations [Li et al., 2020a]. In this
task, given the OD matrices x ↔ R47↘47↘7 of last week,
i.e., x[i, j, t] represents the number of people move from
region i to j on day t, we need to decide the vaccine distri-
bution a ↔ R47 across the 47 regions in Japan with a budget
constraint (a[i] is the number of vaccines distributed to the
region i). The optimization objective is to minimize the total
number of infected people over the ODE-drived dynamics,
based on the forecasted OD matrices y ↔ R47↘47↘7 for the
next week. This task is a challenging non-convex optimiza-
tion problem due to the nonlinear simulation model.

Due to space limit, we provide more details of the experi-
mental setup and the optimization objectives in Appendix F.

5.2.2 Results.

Table 2 presents the decision regret across three real-world
problems, demonstrating that our method consistently out-
performs all baselines. Specifically, DF2 improves decision
regret by {5.0%, 3.7%, 2.0%} compared to the strongest
baseline. These three forecasting tasks are characterized

by high uncertainty, making it challenging to formulate a
precise model assumption. In such scenarios, it is more ef-
fective to derive the expected cost function directly from the
data, eliminating the need for any parametric distribution
assumptions. Moreover, it is clear that simply increasing
the number of components in the GMM does not signifi-
cantly enhance DFL’s performance due to increased sample
approximation errors. Finally, the probabilistic approach
generally exhibits higher and more reliable performance
than methods that rely solely on learning a point estimate
forecaster.

5.3 ABLATION STUDY

In this subsection, we investigate each component of DF2

via ablation studies on the wind power bidding.

Impact of attention-based architecture. Without the
attention-based network architecture, we see a significant
performance drop in Fig. 5(a). This is because, without the
attention architecture, the network architecture may not be
within the true model class and thus suffer from high bias
error in Proposition 1.

Impact of number of attention points. Our model perfor-
mance can be improved with more attention points as in
Fig.5(b). We also plot the decision regret and training time
of DFL. We find that when the number of attention points is
over 200, DF2 can outperform DFL in terms of the decision
regret while being orders of magnitude faster.

Impact of training data size. Our method outperforms base-
lines constantly with different ratios of training data as
shown in Fig. 5(c). The superior performance is because
we use attention-based network architecture to mimic the
distribution-based parameterization. Compared with the two-
stage model, we are decision-aware; compared with DFL
methods, we mitigate the three bottlenecks.

DF2 vs DFL with different number of samples. The number
of samples used to estimate the expected objective in DFL is
an important hyperparameter. To investigate its impact, we
compare the decision regret and training time of DF2 with
DFL using different numbers of samples. We use GMM with
1000 components in the DFL forecaster as it achieves the
best performance shown in Section 5.2. As shown in Fig. 6,
when the number of samples for DFL exceeds 100, the per-
formance improvement becomes very marginal (64.52 with
100 samples vs. 64.07 with 200 samples). However, the
training time increases significantly (1878 seconds/epoch
with 100 samples vs. 5251 seconds/epoch with 200 sam-
ples). In contrast, DF2 achieves significantly better decision
regret (58.41) while being orders of magnitude faster (2.17
seconds/epoch).

Impact of learnable value embeddings. In DF2, the value
embeddings are initialized with randomly sampled labels
from the training set and then updated during the training
process. An alternative is to directly use these randomly

(a) (b) (c)

Figure 5: Ablation study on the impact of attention-based architecture, number of attention points, and training data size on
the wind power bidding problem.

Figure 6: DF2 vs. DFL with different numbers of samples:
the left figure shows decision regret, while the right figure
displays training time.

(a) (b)

Figure 7: Impact of learnable value embeddings and number
of action samples.

selected labels and keep the value embeddings fixed during
the training process. We examine whether making the value
embeddings learnable improves the performance. The re-
sults are shown in Fig. 7(a). As we can see, with learnable
value embeddings, the decision regret of DF2 decreases
significantly compared with the fixed value embeddings.

Impact of number of action samples. In DF2, we need to
sample actions for each (x,y) pair at each training iteration
to fit the function. In this study, we investigate the influence
of the number of action samples on the performance. As
shown in Fig.7(b), the decision regret remains stable even
for a sample size of 5. Notably, as the number of action
samples increases, the variance of the decision regret across
different random seeds decreases, indicating improved sta-
bility in the results.

6 CONCLUSION AND LIMITATIONS

We focus on mitigating the three bottlenecks of DFL by dif-
ferentiating through KKT conditions under the probabilistic
setting: (1) model mismatch error, (2) sample average ap-
proximation error, and (3) gradient approximation error. To
this end, we propose DF2– the first distribution-free DFL
method which does not require any model assumption. DF2

adopts a distribution-free training objective that directly
learns the expected cost function from the data. To reduce
the bias error, we design an attention-based network ar-
chitecture, drawing inspiration from the distribution-based
parameterization of the expected cost function. Empirically,
we demonstrate that DF2 is effective in a wide range of
stochastic optimization problems with either convex or non-
convex objectives.

Limitations. In our work, we focus on the probabilistic set-
ting where the predictive distribution of the forecasting task
has high uncertainty. In this setting, both model mismatch
error and sample average approximation error are significant.
However, if the forecasting task is relatively straightforward,
a simple Gaussian distribution might suffice. For certain
objective functions, the expectation under a Gaussian distri-
bution has a closed-form expression. In such cases, existing
model-based DFL methods may still be a better choice.

When the number of attention points is large, scalability
may become an issue at inference time. This challenge can
potentially be alleviated by employing fast attention mecha-
nisms, such as sparse attention (e.g., Longformer; [Beltagy
et al., 2020]) or low-rank approximations (e.g., Linformer;
[Wang et al., 2020c]).

ACKNOWLEDGMENTS

This work was supported in part by the following grants and
awards:

• NSF IIS-2008334, IIS-2106961, IIS-2403240, CA-
REER IIS-2028586, CAREER IIS-2144338, RAPID
IIS-2027862, Medium IIS-1955883, Medium IIS-
2106961, Medium IIS-2403240, Expeditions CCF-

1918770, PIPP CCF-2200269, ECCS-2401391

• ONR N000142512173

• Centers for Disease Control and Prevention Modeling
Infectious Diseases In Healthcare program

• Dolby faculty research award

• Meta faculty gift, and funds/computing resources from
Georgia Tech and GTRI.

• PPP DA 2025 Flash Funding.

REFERENCES

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana
Rezazadegan, Li Liu, Mohammad Ghavamzadeh, Paul
Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra
Acharya, et al. A review of uncertainty quantification in
deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021.

Akshay Agrawal, Robin Verschueren, Steven Diamond, and
Stephen Boyd. A rewriting system for convex optimiza-
tion problems. Journal of Control and Decision, 5(1):
42–60, 2018.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen
Boyd, Steven Diamond, and J Zico Kolter. Differentiable
convex optimization layers. Advances in neural informa-
tion processing systems, 32, 2019.

Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In Interna-
tional Conference on Machine Learning, pages 136–145.
PMLR, 2017.

Dishank Bansal, Ricky TQ Chen, Mustafa Mukadam, and
Brandon Amos. Taskmet: Task-driven metric learning for
model learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear
projected subgradient methods for convex optimization.
Operations Research Letters, 31(3):167–175, 2003.

Claude JP Bélisle, H Edwin Romeijn, and Robert L Smith.
Hit-and-run algorithms for generating multivariate dis-
tributions. Mathematics of Operations Research, 18(2):
255–266, 1993.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco
Cuturi, Jean-Philippe Vert, and Francis Bach. Learning
with differentiable pertubed optimizers. Advances in
neural information processing systems, 33:9508–9519,
2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Di Cao, Weihao Hu, Xiao Xu, Tomislav Dragicevic,
Qi Huang, Zhou Liu, Zhe Chen, and Frede Blaabjerg.
Bidding strategy for trading wind energy and purchasing
reserve of wind power producer – a drl based approach.
International Journal of Electrical Power & Energy Sys-
tems, 117:105648, 2020a.

Di Cao, Weihao Hu, Xiao Xu, Tomislav Dragicevic,
Qi Huang, Zhou Liu, Zhe Chen, and Frede Blaabjerg.
Bidding strategy for trading wind energy and purchasing
reserve of wind power producer – a drl based approach.
International Journal of Electrical Power & Energy Sys-
tems, 117:105648, 2020b.

Steven Diamond and Stephen Boyd. CVXPY: A Python-
embedded modeling language for convex optimization.
Journal of Machine Learning Research, 17(83):1–5,
2016.

Priya Donti, Brandon Amos, and J Zico Kolter. Task-based
end-to-end model learning in stochastic optimization.
Advances in neural information processing systems, 30,
2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An im-
age is worth 16x16 words: Transformers for image recog-
nition at scale. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then
optimize”. Management Science, 68(1):9–26, 2022.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind
Tambe. Mipaal: Mixed integer program as a layer. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 1504–1511, 2020.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categori-
cal reparameterization with gumbel-softmax. In In-
ternational Conference on Learning Representations,

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://www.gurobi.com

2017. URL https://openreview.net/forum?
id=rkE3y85ee.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
NAACL-HLT, pages 4171–4186, 2019.

Sujin Kim, Raghu Pasupathy, and Shane G Henderson. A
guide to sample average approximation. Handbook of
simulation optimization, pages 207–243, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on
Representation Learning, 2015a.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Representation Learning, 2015b.

Anton J Kleywegt, Alexander Shapiro, and Tito Homem-
de Mello. The sample average approximation method
for stochastic discrete optimization. SIAM Journal on
Optimization, 12(2):479–502, 2002.

Lingkai Kong, Jiaming Cui, Yuchen Zhuang, Rui Feng,
B Aditya Prakash, and Chao Zhang. End-to-end stochas-
tic optimization with energy-based model. In Advances
in Neural Information Processing Systems, 2022.

Lingkai Kong, Harshavardhan Kamarthi, Peng Chen,
B Aditya Prakash, and Chao Zhang. Uncertainty quantifi-
cation in deep learning. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 5809–5810, 2023.

Ruiyun Li, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang,
Wan Yang, and Jeffrey Shaman. Substantial undocu-
mented infection facilitates the rapid dissemination of
novel coronavirus (sars-cov-2). Science, 368(6490):489–
493, 2020a.

Ruiyun Li, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang,
Wan Yang, and Jeffrey Shaman. Substantial undocu-
mented infection facilitates the rapid dissemination of
novel coronavirus (sars-cov-2). Science, 368(6490):489–
493, 2020b.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Dif-
fusion convolutional recurrent neural network: Data-
driven traffic forecasting. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=SJiHXGWAZ.

László Lovász. Hit-and-run mixes fast. Mathematical pro-
gramming, 86:443–461, 1999.

László Lovász and Miklós Simonovits. The mixing rate
of markov chains, an isoperimetric inequality, and com-
puting the volume. In Proceedings [1990] 31st annual

symposium on foundations of computer science, pages
346–354. IEEE, 1990.

Jayanta Mandi and Tias Guns. Interior point solving for
lp-based prediction+ optimisation. Advances in Neural
Information Processing Systems, 33:7272–7282, 2020.

Jayanta Mandi, Peter J Stuckey, Tias Guns, et al. Smart
predict-and-optimize for hard combinatorial optimization
problems. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 34, pages 1603–1610, 2020.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi.
Implicit mle: backpropagating through discrete exponen-
tial family distributions. Advances in Neural Information
Processing Systems, 34:14567–14579, 2021.

Sen Pei, Sasikiran Kandula, and Jeffrey Shaman. Differ-
ential effects of intervention timing on covid-19 spread
in the united states. Science advances, 6(49):eabd6370,
2020a.

Sen Pei, Sasikiran Kandula, and Jeffrey Shaman. Differ-
ential effects of intervention timing on covid-19 spread
in the united states. Science advances, 6(49):eabd6370,
2020b.

Andrew Perrault, Bryan Wilder, Eric Ewing, Aditya Mate,
Bistra Dilkina, and Milind Tambe. End-to-end game-
focused learning of adversary behavior in security games.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 34, pages 1378–1386, 2020.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil,
Georg Martius, and Michal Rolinek. Differentiation of
blackbox combinatorial solvers. In International Confer-
ence on Learning Representations, 2019.

Paula Rodriguez-Diaz, Lingkai Kong, Kai Wang, David
Alvarez-Melis, and Milind Tambe. What is the right
notion of distance between predict-then-optimize tasks?
arXiv preprint arXiv:2409.06997, 2024.

Manassakan Sanayha and Peerapon Vateekul. Model-based
deep reinforcement learning for wind energy bidding.
International Journal of Electrical Power & Energy Sys-
tems, 136:107625, 2022a.

Manassakan Sanayha and Peerapon Vateekul. Model-based
deep reinforcement learning for wind energy bidding.
International Journal of Electrical Power & Energy Sys-
tems, 136:107625, 2022b.

Johannes Schneider and Scott Kirkpatrick. Stochastic opti-
mization. Springer Science & Business Media, 2007.

Sanket Shah, Bryan Wilder, Andrew Perrault, and Milind
Tambe. Learning (local) surrogate loss functions for
predict-then-optimize problems. Advances in Neural In-
formation Processing Systems, 2022.

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=SJiHXGWAZ

Sanket Shah, Andrew Perrault, Bryan Wilder, and Milind
Tambe. Leaving the nest: Going beyond local loss
functions for predict-then-optimize. arXiv preprint
arXiv:2305.16830, 2023.

Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu.
Hilbert space embeddings of conditional distributions
with applications to dynamical systems. In Proceedings
of the 26th Annual International Conference on Machine
Learning, pages 961–968, 2009.

Le Song, Kenji Fukumizu, and Arthur Gretton. Kernel em-
beddings of conditional distributions: A unified kernel
framework for nonparametric inference in graphical mod-
els. IEEE Signal Processing Magazine, 30(4):98–111,
2013.

Haixiang Sun, Ye Shi, Jingya Wang, Hoang Duong Tuan,
H. Vincent Poor, and Dacheng Tao. Alternating dif-
ferentiation for optimization layers. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=KKBMz-EL4tD.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, !ukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Bram Verweij, Shabbir Ahmed, Anton J Kleywegt, George
Nemhauser, and Alexander Shapiro. The sample average
approximation method applied to stochastic routing prob-
lems: a computational study. Computational optimization
and applications, 24(2):289–333, 2003.

Kai Wang, Andrew Perrault, Aditya Mate, and Milind
Tambe. Scalable game-focused learning of adversary
models: Data-to-decisions in network security games. In
AAMAS, pages 1449–1457, 2020a.

Kai Wang, Bryan Wilder, Andrew Perrault, and Milind
Tambe. Automatically learning compact quality-aware
surrogates for optimization problems. Advances in Neural
Information Processing Systems, 33:9586–9596, 2020b.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020c.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding
the data-decisions pipeline: Decision-focused learning for
combinatorial optimization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
1658–1665, 2019.

Kai Yan, Jie Yan, Chuan Luo, Liting Chen, Qingwei Lin, and
Dongmei Zhang. A surrogate objective framework for
prediction+ programming with soft constraints. Advances
in Neural Information Processing Systems, 34:21520–
21532, 2021.

Arman Zharmagambetov, Brandon Amos, Aaron M Fer-
ber, Taoan Huang, Bistra Dilkina, and Yuandong Tian.
Landscape surrogate: Learning decision losses for mathe-
matical optimization under partial information. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=qyEm4tF2p1.

https://openreview.net/forum?id=KKBMz-EL4tD
https://openreview.net/forum?id=KKBMz-EL4tD
https://openreview.net/forum?id=qyEm4tF2p1
https://openreview.net/forum?id=qyEm4tF2p1

Appendix for DF2: Distribution-Free Decision-Focused Learning

Lingkai Kong1,2 Wenhao Mu2 Jiaming Cui2,3 Yuchen Zhuang2 B. Aditya Prakash2 Bo Dai2 Chao Zhang2

1Harvard University, Cambridge, Massachusetts, USA
2Georgia Institute of Technology, Atlanta, Georgia, USA

3Virginia Tech, Blacksburg, Virginia, USA

A Training Algorithm 13

B Constrained Sampling 14

C Additional Background on Conditional Mean Embedding 15

D Proof of Proposition 1 16

E Proof of Proposition 2 17

F Experimental Details 17

F.1 Computing Infrastructure . 17

F.2 Synthetic Data . 18

F.3 Wind Power Bidding . 18

F.4 COVID-19 Vaccine Distribution . 19

F.5 Inventory Optimization . 21

A TRAINING ALGORITHM

The full training procedure of DF2 is given in Algorithm 1.

Figure 8: Relaxed constrained sampling. We can sample from the encompassing outer box of the original constrained space.

Algorithm 1 Training Procedure of DF2

Require: Objective function f , feasible set C, training dataset D
Ensure: Learned encoder, value embeddings, and key embeddings

1: Initialize encoder, value embeddings, and key embeddings
2: for t = 1 to T do
3: Sample a mini-batch B = {(xi,yi)}

|B|
i=1 from D

4: for each (xi,yi) in B do
5: Sample actions {aji}

J
j=1 from the feasible set C

6: Compute g(xi,a
j
i) for all j, as defined in Eq. 4.

7: Compute the MSE loss for the i-th sample:

Li =
1

J

J∑

j=1


f(xi,yi)→ g(xi,a

j
i)
2

8: end for
9: Update encoder, value embeddings, and key embeddings using the aggregated loss

∑
i Li

10: end for

B CONSTRAINED SAMPLING

In practice, it’s unnecessary to fit the true objective across the entire Euclidean space. Instead, we only need to sample
from the constrained space C. There are several strategies for this. First, we can employ Markov chain Monte Carlo
(MCMC) methods to uniformly sample within C, such as Ball Walk Lovász and Simonovits [1990] and the hit-and-run
algorithm Bélisle et al. [1993], Lovász [1999]. Alternatively. we can sample from a relaxed constrained space, such as the
encompassing outer box of the original constrained space. This allows us to sample each dimension of a independently from
a uniform distribution. Figure 8 gives an illustration.

Consider the following convex constraints:

Aa = b, Ga ↘ h. (5)

In particular, instead of directly sampling the full-dimensional decision vector a, we initially output a subset of the variables
a1, · · · , ad, and then deduce the remaining variables by resolving the given set of equations.

To sample from the relaxed constraint space, we initially determine the maximum and minimum values for a1, · · · , ad,
guided by the given inequality constraints. These boundary points can be effortlessly acquired utilizing the Python SciPy
package. Following this, we execute uniform sampling between these extremal values for each variable in the set a1, · · · , ad.
Essentially, we transform the polyhedron into a box, simplifying the uniform sampling process.

Furthermore, many predict-then-optimize problems manifest as resource allocation issues wherein the decision variable a
embodies a simplex; in such cases, we can directly sample from the Dirichlet distribution.

Variable x y
Domain X Y

Kernel Rx(x,x↓) Ry(y,y↓)
Feature map ϑ(x)/Rx(x, ·) ϖ(y)/Ry(y, ·)

Feature matrix ! = (ϑ(x1), · · · ,ϑ(xs)) ” = (ϖ(y1), · · · ,ϖ(ys))
Kernel matrix K = !↗! L = ”↗”

RKHS G F

Table 3: Table of Notations

C ADDITIONAL BACKGROUND ON CONDITIONAL MEAN EMBEDDING

We provide more details about how to compute conditional mean embedding (CME) in this subsection. Table 3 presents the
notations related to CME.

Let F be a reproducing kernel Hilbert space (RKHS) over the domain of y with kernel function Ry(y,y↓) and inner product
↑·, ·↓F . Its inner product ↑·, ·↓F satisfies the reproducing property:

↑f(·),Ry(y, ·)↓F = f(y),

meaning that we can view the evaluation of a function f ↔ F at any point y as an inner product and the linear evaluation
operator is given by Ry(y, ·), i.e., the kernel function. Alternatively, Ry(y, ·) can also be viewed as a feature map ϖ(y)
where Ry(y,y↓) = ↑ϖ(y),ϖ(y↓)↓F . Similarly, we can define the RKHS G over the domain of x with kernel function
Rx(x,x↓).

For a particular a, we denote the corresponding function with respect to y as fa(y). CME projects the conditional distribution
to its expected feature map µy|x ↭ Ep(y|x)[Ry(y, ·)] and evaluates the conditional expectation of any RKHS function,
fa ↔ F , as an inner product in F using the reproducing property:

Ep(y|x)[fa] =

∫
p(y|x)↑Ry(y, ·), fa↓Fdy

=

〈∫
p(y|x)Ry(y, ·)dy, fa

〉

F

= ↑µy|x, fa↓F . (6)

Assume that for all fa ↔ F , the conditional expectation Ep(y|x)[fa(y)] is an element of G, the conditional embedding can
be estimated with a finite dataset {xs,ys}

S
s=1 as Song et al. [2013, 2009]:

µ̂y|x = ”(K+ ϱI)↔1!↗ϑ(x) =
S∑

s=1

εs(x)Ry(ys, ·), (7)

where ” = (Ry(y1, ·), · · · ,Ry(yS , ·)) is the feature matrix; K = !↗! is the Gram matrix for samples from variable
x with ! = (Rx(x1, ·), · · · ,Rx(xS , ·)); ϱ is the additional regularization parameter to avoid overfitting. Though the
assumption Ep(y|x)[fa(y)] ↔ G is not necessarily true for continuous domains, existing works treat the expression as an
approximation Song et al. [2009] and works well in practice.

One advantage of CME is that µ̂y|x can converge to µy|x in the RKHS norm at an overall rate of O(S↔ 1
2) Song et al. [2009],

which is independent of the input dimensions. This property let CME works well in the high-dimensional space.

As we can see from Eq. 7, the empirical estimator of CME, µ̂y|x, applies non-uniform weights, εs, on observations which
are, in turn, determined by the conditioning variable x.

D PROOF OF PROPOSITION 1
Proposition 1. The expected MSE of the optimal solution g↑ on the test set is:

MSEtest = ED↑

[(
g↑D↑(x,a)→ Ep(y|x)[f(y,a)]

)2]

︸ ︷︷ ︸
Bias

+ED↑

[
(g↑D↑(x,a)→ ED↑ [g↑D↑(x,a)])

2
]

︸ ︷︷ ︸
Variance

,

where D
↓ denotes the training dataset augmented with the sampled actions a.

Proof. The training set consists of the given D = {xi,yi}
N
i=1 augmented with the sampled actions a. We denote the

augmented dataset as D↓. We assume the fitted function is in a hypothesis g↑(x,a). Let g↑D↑(x,a) denote the function fitted
on the dataset D↓. The expectation of the mean squared error (MSE) for a given unseen test sample, over all possible learning
sets, is:

ED↑ [(Ep(y|x)[f(y,a)]→ g↑D↑(x,a))2]

= ED↑ [(Ep(y|x→)[f(y,a)]→ ED↑ [g↑D↑(x,a)]
︸ ︷︷ ︸

a

+ ED↑ [g↑D↑(x,a)]→ g↑D↑(x,a)︸ ︷︷ ︸
b

)2]

= ED↑ [(a+ b)2]

= ED↑ [a2] + ED↑ [b2] + ED↑ [2ab]

The first two terms represent the bias and variance errors respectively:

ED↑ [a2] = ED↑

[(
g↑D↑(x,a)→ Ep(y|x)[f(y,a)]

)2]
= Bias2(g↑).

ED↑ [b2] = ED↑

[
(g↑D↑(x,a)→ ED↑ [g↑D↑(x,a)])

2
]
= Variance(g↑),

Next, we prove the cross-term ED↑ [2ab] = 0. To simplify the notation, let g denote ED↑ [g↑D↑(x,a)]; g denote g↑D↑(x,a); f̃
denote Ep(y|x)[f(y,a)]. Then we can obtain:

ED↑

[
2 (g → g)


g → f̃

]

= 2 · ED↑ [g · g → g · f̃ → g · g + g · f̃]

= 2 · ED↑ [g] · g → 2 · ED↑ [g] · f̃ → 2 · ED↑ [g2] + 2 · f̃ · ED↑ [g]

= 2 · g2 → 2 · g · f̃ → 2 · g2 + 2 · f̃ · g

= 0

Hence, the expectation of the MSE for a given test sample x↑ is expressed as:

MSEtest = ED↑ [(Ep(y|x)[f(y,a)]→ g↑D↑(x,a))2]

= ED↑

[(
g↑D↑(x,a)→ Ep(y|x)[f(y,a)]

)2]

︸ ︷︷ ︸
Bias

+ ED↑

[
(g↑D↑(x,a)→ ED↑ [g↑D↑(x,a)])

2
]

︸ ︷︷ ︸
Variance

(8)

Since the training dataset consists of x,y,a, and each y corresponds to a specific x from D, we can replace the expectation
ED↑ [·] in Eq. 8 with Ex,a[·] and recover Proposition 1.

E PROOF OF PROPOSITION 2

Proposition 2. It holds for any x and a, the function g(x,a) defined by the softmax attention in Eq. 4 Ep̂R(y|x)[f(y,a)] =
g(x,a). Here, p̂R(y|x) is a parameterization restriction of p(y|x).

Proof. In order to ensure that p̂R(y|x) is a valid parameterization of p(y|x), we define it as a conditional kernel density
estimator (KDE) as follows,

p̂R(y|x) =

∑S
s=1 Rx(ks,q(x))Ry(ys,y)∑S

s=1 Rx(ks,q(x))
, (9)

Then, we can obtain

Ep̂R(y|x)[f(y,a)] =

∫ ∑S
s=1 Rx(ks,q(x))Ry(ys,y)∑S

s=1 Rx(ks,q(x))
f(y,a)dy

=

∑S
s=1 Rx(ks,q)


Ry(ys,y)f(y,a)dy∑S

s=1 Rx(ks,q(x))

=

∑S
s=1 Rx(ks,q)


Rz(f(ys,a), z)zdz∑S

s=1 Rx(ks,q(x))

=

∑S
s=1 Rx(ks,q)f(ys,a)∑S

s=1 Rx(ks,q(x))
(10)

The second last equation comes from the result of the change of variable by setting z = f(y,a). The last equation comes
from the assumption that Rz(zs, z) is symmetric.

When Rx(k,q) is an exponential kernel. i.e., Rx(k,q) = exp(q
↓k≃
d
), we can obtain

Ep̂R(y|x)[f(y,a)] =

∑S
s=1 Rx(ks,q(x))f(ys,a)∑S

s=1 Rx(ks,q(x))

=

∑S
s=1 exp


q(x)↓ks≃

d


f(ys,a)

∑S
s=1 exp


q(x)↓ks≃

d



= Softmax


q(x)↗k1
↗
d

, · · · ,
q(x)↗kS

↗
d

↗

[f(v1,a), · · · , f(vS ,a)]

= g(x,a). (11)

The second last equation comes from the definition of the softmax function and replacing the notation y with v which is
commonly used in the existing literature.

F EXPERIMENTAL DETAILS

F.1 COMPUTING INFRASTRUCTURE

System: Ubuntu 18.04.6 LTS; Python 3.9; Pytorch 1.11. CPU: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz. GPU:
GeForce GTX 2080 Ti.

F.2 SYNTHETIC DATA

Data generation process: We generate the synthetic dataset following a mixture of three Gaussians:

x ≃ U
2[→1, 1],

y ≃ 0.3N (A1x, 0.1 · I) + 0.3N (A2x, 0.1 · I) + 0.4N (A3x, 0.1 · I), (12)

where the elements of A1,A2,A3 ↔ R2↘2 are uniformly sampled from U [0, 1].

We generate 5000 (x,y) pairs, randomly dividing them into a training set (70%, 3500 pairs), and equal validation and
testing sets (15% each, 750 pairs).

Optimization objective: We consider both the convex and non-convex objectives.

Convex objective:

minimizea→R2Ep(y|x)


2∑

i=1

(
5(y[i]→ a[i])+ + 20(a[i]→ y[i])+ + 0.5(y[i]→ a[i])2+ + 0.2(a[i]→ y[i])2+

)


subject to → 1 ⇐ a[i] ⇐ 1, ⇒i.

Non-convex objective:

minimizea→R2Ep(y|x)

2∑

i=1


10(y[i]→ a[i])2+ + 2(a[i]→ y[i])2+ + 4a[i]3



subject to → 2 ⇐ a[i] ⇐ 2, ⇒i,

where (v)+ denote max{v, 0}.

Solver at test time: At test time, for a fair comparison, we use the same optimization solver for all the methods. Specifically,
we use projected gradient descent and the gradient update step adopts the Adam Kingma and Ba [2015a] optimizer. The
learning rate is 0.01 and we repeat 500 iterations. We empirically found that this solver solves this optimization problem
very well.

Model Hyperparameters: For the two-stage model, DFL, LODL and SO-EBM, the forecaster uses GMM with a different
number of components and use 100 samples to estimate the expectation of the objective as we found that more samples
bring little performance gain. The forecaster uses a neural network with one hidden layer as the feature extractor which
is further stacked by a linear layer. This network has a hidden size of 128, employing ReLU as the nonlinear activation
function. The forecaster outputs the mean, log variance, and weight for each GMM component. During training, we sample
from the GMM using the Gumbel softmax trick Jang et al. [2017] to make the sampling process differentiable. SO-EBM
draws 512 samples from the proposal distribution to estimate the gradient of the model parameters. The proposal distribution
is a mixture of Gaussians with 3 components where the variances are {0.01, 0.02, 0.05}.

For a fair comparison, DF2 uses the same feature extractor for the encoder. The attention architecture uses 1000 attention
points for both the convex and non-convex objectives. During training, DF2 samples 100 actions a uniformly from the
constrained space, i.e., the box, for each (x,y) pair at each iteration for function fitting.

Model Optimization: We use the Adam Kingma and Ba [2015a] algorithm for model optimization. The number of training
epochs is 50. The learning rate for all the methods is 10↔3. DFL, LODL and SO-EBM use the two-stage model as the
pre-trained model for faster training convergence.

F.3 WIND POWER BIDDING

Optimization objective: In this task, a wind power firm engages in both energy and reserve markets, given the generated
wind power x ↔ R24 in the last 24 hours. The firm needs to decide the energy quantity aE ↔ R12 to bid and quantity
aR ↔ R12 to reserve over the upcoming 12th-24th hours in advance, based on the forecasted wind power y ↔ R12. The
optimization objective is to maximize the profit which is a piecewise function consisting of three segments Cao et al. [2020b],

Sanayha and Vateekul [2022b]:

maximizeaE↑R12,aR↑R12Ep(y|x)

12∑

i=1

Py[i]→ ωaR[i]

+






→!Pup,1(aE [i]→ aR[i]→ y[i])→!Pup,2(aE [i]→ aR[i]→ y[i])2

→µaR[i]→ F, if y[i] < aE [i]→ aR[i]

→µ(aE [i]→ y[i]), if aE [i]→ aR[i] ↑ y[i] ↑ aE [i]

→!Pdown(y[i]→ aE [i]), if y[i] > aE [i]

subject to Emin ⇐ aE [i] ⇐ Emax, Rmin ⇐ aR[i] ⇐ Rmax, ⇒i.

P is the regular price of the wind energy sold, y[i] is the energy generated during period i, aE [i] and aR[i] are the bid and
up reserve energy volumes for period i, respectively. ς corresponds to the opportunity cost when the company participates in
the reserve markets, and µ is the deploy price of the reserved energy. This structure encapsulates three market participation
scenarios. In the scenario where y[i] < aE [i]→ aR[i], the company overbids, consequently deploying all reserved energy
and facing a linear overbidding penalty, a quadratic overbidding penalty and a constant penalty determined by coefficients
#Pup,1, #Pup,2, and F . If aE [i]→ aR[i] ⇐ y[i] ⇐ aE [i], the company meets its bid by deploying reserve market energy,
thereby avoiding penalties. In this case, the company only needs to pay the deployment fee for the reserved energy. However,
when y[i] > aE [i], the company underbids, resulting in the selling of surplus electricity at a discount and incurring losses
defined by the coefficient #Pdown. We set P as 100, according to the average bidding price obtained from Nord Pool,
a European power exchange. ς and µ are 20 and 110 respectively, as a general setting Cao et al. [2020b], Sanayha and
Vateekul [2022b]. The value of #Pup,1, #Pup,2, #Pdown and F are set to 200, 100, 20 and 10, to ensure an effective
penalty. Emin = 0, Rmin = 0.15, and Emax = Rmax = 4.

According to the optimality condition, the optimal aR[i] is always equal to Rmin for all i. Therefore, we only need to
determine the decision variable aE .

We use the wind power generation dataset of the German energy company TenneT during 08/23/2019 to 09/22/2020 1. The
split ratio of the training dataset, validation dataset, and test datset are 64%, 16%, 20%, respectively.

Solver at test time: At test time, for a fair comparison, we use the same optimization solver for all the methods. Specifically,
we use projected gradient descent and the gradient update step adopts the Adam Kingma and Ba [2015b] optimizer. The
learning rate is 0.1 and we repeat 500 iterations. We empirically found that this solver solves this optimization problem very
well.

Model Hyperparameters: For the two-stage model, DFL and SO-EBM, the forecaster uses GMM with a different number
of components and use 100 samples to estimate the expectation of the objective as we found that more samples bring little
performance gain. The forecaster uses a two-layer long short-term memory network (LSTM) as the feature extractor which
is further stacked by a linear layer. The network has a hidden size of 256. It takes the historical wind power in the last
24 hours as input features and outputs the forecasted wind power for the 12th to 24th hours in the future. The forecaster
outputs the mean, log variance, and weight for each GMM component. During training, we sample from the GMM using the
Gumbel softmax trick Jang et al. [2016] to make the sampling process differentiable. SO-EBM draws 512 samples from the
proposal distribution to estimate the gradient of the model parameters. The proposal distribution is a mixture of Gaussians
with 3 components where the variances are {0.02, 0.05, 0.1}.

For a fair comparison, DF2 uses the same LSTM architecture as the encoder and 500 attention points. During training, we
sample 100 actions a uniformly from the constrained space for each (x,y) pair at each iteration.

Model Optimization: We use the Adam Kingma and Ba [2015b] algorithm for model optimization. The number of training
epochs is 200. The learning rate for all the methods is 10↔3. DFL and SO-EBM use the two-stage model as the pre-trained
model for faster training convergence.

F.4 COVID-19 VACCINE DISTRIBUTION

Optimization objective: In this task, given the OD matrices x ↔ R47↘47↘7 of last week, i.e., x[i, j, t] represents the
number of people move from region i to j on day t, we need to decide the vaccine distribution a ↔ R47 across the 47 regions
in Japan with a budget constraint (a[i] is the number of vaccines distributed to the region i). The optimization objective

1The dataset is available at: https://www.kaggle.com/datasets/jorgesandoval/wind-power-generation?
select=TransnetBW.csv

https://www.kaggle.com/datasets/jorgesandoval/wind-power-generation?select=TransnetBW.csv
https://www.kaggle.com/datasets/jorgesandoval/wind-power-generation?select=TransnetBW.csv

is to minimize the total number of infected people over the ODE-drived dynamics, based on the forecasted OD matrices
y ↔ R47↘47↘7 for the next week.

We want to distribute the vaccine over each county to minimize the number of infected cases. The number of infected cases
is given by a metapopulation SEIRV model Li et al. [2020b], Pei et al. [2020b], denoted by Simulator(·, ·):

argmina→R47 Ep(y|x)[Simulator(y,a)],

Subject to
∑

i

a[i] ⇐ Budget,a[i] ⇑ 0.

We use the OD matrices dataset of Japan 2 during 04/01/2020 to 02/28/2021. The split ratio of the training dataset, validation
dataset, and test datset are 64%, 16%, 20%, respectively. We set the budget as 5⇓ 106.

Details of the simulator: The SEIRV model is an epidemiological model used to predict and understand the spread of
infectious diseases. It divides the population into five compartments: Susceptible (S), Exposed (E), Infectious (I), Recovered
(R) and Vaccined (V). The model is defined by a set of differential equations that describe the transitions between these
compartments. There are four hyperparameters in the SEIRV model:

• ε - Transmission rate: Represents the average number of contacts per person per unit of time multiplied by the
probability of disease transmission in a contact between a susceptible and an infectious individual.

• φ - Latent rate (or the inverse of the incubation period): The rate at which exposed individuals progress to the infectious
state. The incubation period is the time it takes for an individual to become infectious after exposure.

• ↼ - Recovery rate (or the inverse of the infectious period): The rate at which infectious individuals recover or die and
transition to the recovered state. The infectious period is the time during which an infected individual can transmit the
disease.

• N - Total population: The sum of individuals in all compartments (S, E, I, R, V).

When considering mobility flow among different regions, we need to adapt the SEIRV model to account for the movement
of individuals between regions. In this case, the model becomes a spatially explicit, multi-region SEIRV model. Each region
will have its own SEIRV model, and the flow of individuals between regions will affect the dynamics of the compartments.
Specifically, for each region k = 1, · · · ,K, we have:

dS[k]

dt
= →ω[k]

S[k] · I[k]

N[k]
→

S[k]

S[k] +E[k]
·
a[k]

T

+
∑

i ⇐=k

ỹ[i, k, t] · S[i]→
∑

j ⇐=k

ỹ[k, j, t] · S[k],

dE[k]

dt
= ω[k]

S[k] · I[k]

N[k]
→ ε[k] ·E[k]→

E[k]

S[k] +E[k]
·
a[k]

T

+
∑

i ⇐=k

ỹ[i, k, t] ·E[i]→
∑

j ⇐=k

ỹ[k, j, t] ·E[k],

dI[k]

dt
= ε[k] ·E[k]→ ϑ[k] · I[k]

+
∑

i ⇐=k

ỹ[i, k, t] · I[i]→
∑

j ⇐=k

ỹ[k, j, t] · I[k],

dR[k]

dt
= ϑ[k] · I[k] +

∑

i ⇐=k

ỹ[i, k, t] ·R[i]→
∑

j ⇐=k

ỹ[k, j, t] ·R[k],

dV[k]

dt
=

a[k]

T
+
∑

i ⇐=k

ỹ[i, k, t] ·V[i]→
∑

j ⇐=k

ỹ[k, j, t] ·V[k], (13)

where ω[k], ϑ[k], and ε[k] are hyper-parameter for region k. These hyperparameters are fitted on the dataset using maximum
likelihood estimation. ỹ is the normalized OD matrix.

2The dataset is available at https://github.com/deepkashiwa20/ODCRN/tree/main/data

https://github.com/deepkashiwa20/ODCRN/tree/main/data

Finally, the simulator will output the total number of newly infected people across all the regions and we aim to minimize
this value.

Solver at test time: At test time, for a fair comparison, we use the same optimization solver for all the methods. Specifically,
we use mirror descent Beck and Teboulle [2003] so that the updated decision variable will still variable satisfy the constraints.
Specifically, the update rule takes the following form at t-th iteration:

at+1[i] = Budget ·
at[i] exp(→↼⇔if(at))∑n
j=1 at[i] exp(→↼⇔jf(at))

, (14)

where ↼ is the learning rate. We set the learning rate as 0.01 and repeat 500 iterations. We empirically found that this solver
solves this optimization problem very well.

Model Hyperparameters: For the two-stage model, DFL, LODL and SO-EBM, the forecaster uses GMM with a different
number of components and use 100 samples to estimate the expectation of the objective as we found that more samples
bring little performance gain. The forecaster is a DC-RNN Li et al. [2018] which adopts an encoder-decoder architecture.
The encoder and decoder both have two hidden layers with a hidden size of 128. The forecaster takes the OD matrices
of last week as input features and predicts the OD matrices of next week. The forecaster outputs the mean, log variance,
and weight for each GMM component. During training, we sample from the GMM using the Gumbel softmax trick Jang
et al. [2017] to make the sampling process differentiable. Since the decision variable is a simplex, we train SO-EBM with
projected Langevin dynamics. Specifically, at each iteration of the Langevin dynamics, we project the decision variable into
the simplex. The number of iterations of the Langevin dynamics is 100 and the step size is 0.05.

For a fair comparison, DF2 employs the same encoder as the DC-RNN architecture and uses 100 attention points. During
training, DF2 samples 100 actions a uniformly from the constrained space, i.e., the simplex, for each (x,y) pair at each
iteration for function fitting. To uniformly sample from the simplex, we sample from the Dirichlet distribution where all
parameters are 1.

Model Optimization: We use the Adam Kingma and Ba [2015a] algorithm for model optimization. The number of training
epochs is 50. The learning rate for all the methods is 10↔4. DFL, LODL and SO-EBM use the two-stage model as the
pre-trained model for faster training convergence.

F.5 INVENTORY OPTIMIZATION

Optimization objective In this task, a department store is tasked with predicting the sales y ↔ R7 for the upcoming
7th-14th days based on the past 14 days’ sales data x ↔ R14 for a specific product, and accordingly, determining the best
replenishment strategy a ↔ R7 for each day. The optimization objective is a combination of an under-purchasing penalty, an
over-purchasing penalty, and a squared loss between supplies and demands:

minimizea→R7Ep(y|x)

7∑

i=1

[20(y[i]→ a[i])+ + 5(a[i]→ y[i])+

+ (a[i]→ y[i])2]

subject to 0 ⇐ a[i] ⇐ 3, ⇒i,

where (v)+ denote max{v, 0}.

Solver at test time: At test time, for a fair comparison, we use the same optimization solver for all the methods. Specifically,
we use projected gradient descent and the gradient update step adopts the Adam Kingma and Ba [2015a] optimizer. The
learning rate is 0.1 and we repeat 500 iterations. We empirically found that this solver solves this optimization problem very
well.

Model Hyperparameters: The forecaster of the two-stage model, DFL, LODL and SO-EBM uses a two-layer long
short-term memory network (LSTM) Hochreiter and Schmidhuber [1997] as a feature extractor which is further stacked by a
linear layer. The forecaster takes the historical item sales in the last 14 days as input features and outputs the forecasted item
sales for the 7th to 14th days in the future. The network has a hidden size of 128. SO-EBM draws 512 samples from the
proposal distribution to estimate the gradient of the model parameters. The proposal distribution is a mixture of Gaussians
with 3 components where the variances are {0.05, 0.1, 0.2}.

For a fair comparison, DF2 uses the same LSTM architecture as the encoder and 230 attention points. During training, the
two-stage model, DFL, LODL and SO-EBM use 100 samples to estimate the expected objective as more samples provide
little performance gain.

Model Optimization: We use the Adam Kingma and Ba [2015a] algorithm for model optimization. The number of training
epochs is 200. The learning rate for all the methods is 10↔3. DFL, LODL and SO-EBM use the two-stage model as the
pre-trained model for faster training convergence.

	Introduction
	Preliminaries
	Decision-Focused Learning by Differentiating Through KKT Conditions
	Bottlenecks under the Probabilistic Setting

	Distribution-Free Decision-Focused Learning
	Distribution-Free Training Objective
	Distribution-Based Parameterization
	Model Inference

	Additional Related Work
	Experiments
	Synthetic Problems
	Real-World Problems
	Experimental Setup.
	Results.

	Ablation Study

	Conclusion and Limitations
	Training Algorithm
	Constrained Sampling
	Additional Background on Conditional Mean Embedding
	Proof of Proposition 1
	Proof of Proposition 2
	Experimental Details
	Computing Infrastructure
	Synthetic Data
	Wind Power Bidding
	COVID-19 Vaccine Distribution
	Inventory Optimization

