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Investigating the Robustness of Vision Transformers against Label
Noise in Medical Image Classification
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Abstract—Label noise in medical image classification
datasets significantly hampers the training of supervised deep
learning methods, undermining their generalizability. The test
performance of a model tends to decrease as the label noise
rate increases. Over recent years, several methods have been
proposed to mitigate the impact of label noise in medical image
classification and enhance the robustness of the model. Predom-
inantly, these works have employed CNN-based architectures as
the backbone of their classifiers for feature extraction. However,
in recent years, Vision Transformer (ViT)-based backbones
have replaced CNNs, demonstrating improved performance
and a greater ability to learn more generalizable features,
especially when the dataset is large. Nevertheless, no prior work
has rigorously investigated how transformer-based backbones
handle the impact of label noise in medical image classification.
In this paper, we investigate the architectural robustness of
ViT against label noise and compare it to that of CNNs. We
use two medical image classification datasets—COVID-DU-Ex,
and NCT-CRC-HE-100K—both corrupted by injecting label
noise at various rates. Additionally, we show that pretraining
is crucial for ensuring ViT’s improved robustness against label
noise in supervised training.

I. INTRODUCTION

Label noise in medical classification datasets can arise
from several factors, including inter-observer variability dur-
ing annotation [20], the use of non-expert annotators to re-
duce costs [17], and the growing reliance on automated label-
ing algorithms [7]. It is well established that deep learning-
based supervised medical image classification requires ac-
curately annotated labels to effectively train classification
models. Supervised training with inaccurately annotated or
noisy labels can impair a model’s generalizability, resulting
in subpar test performance [13], [27], [11], [10].

In response, recent studies have focused on training
models to be robust against label noise in medical im-
age classification, encompassing a wide range of datasets,
including skin cancers, breast tumors, thoracic diseases,
chest infections, retinal diseases, and prostate cancers. These
approaches incorporate various techniques, such as label
smoothing [19], estimating a label noise transition matrix
to modify end layers [2], sample re-weighting [12], [25],
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consistency regularization [28], employing student-teacher
networks [26], or relying on self-supervised pretraining [9].
Each technique offers unique advantages, depending on the
nature of the noise and the characteristics of the dataset. A
common element in all these methods is the use of CNN-
based backbone networks, a trend also evident in state-of-
the-art Learning with Noisy Label (LNL) methods [4], [14],
[15].

Vision Transformers (ViTs) [3] have recently gained popu-
larity, outperforming CNNs in numerous benchmarks across
both computer vision and medical datasets [5], [22]. A key
feature of transformers is their inherent attention mecha-
nism, which adeptly captures long-range dependencies across
different spatial regions of an image, thereby providing
a comprehensive global context [3]. Transformers provide
greater flexibility in learning, in contrast to CNNs, which
primarily focus on local context. Despite these advantages,
to our knowledge, there has been no recent work on LNL
using ViT as the backbone for medical classification tasks
containing noisy training labels. This raises an important
question: How effective are ViTs in handling label noise in
medical image classification, and what is their robustness in
such scenarios?

In this study, we examine the resilience of ViT against
label noise in medical image classification. We use two
publicly available datasets for our investigation: i) COVID-
DU-Ex [23], a chest X-ray infection classification dataset,
and ii) NCT-CRC-HE-100K [8], a histopathology tissue clas-
sification dataset. We also explore the application of two self-
supervised pretraining techniques on ViTs for these datasets
to enhance robustness against label noise. Furthermore, to
assess the benefit of a ViT vs. a CNN backbone, we compare
the performance of a well-known LNL method—Co-teaching
[4], which typically trains robustly even with label noise,
by replacing its CNN backbone with a ViT. This allows
us to evaluate how the performance differs from the con-
ventional CNN-based system. Our study does not introduce
new methods; rather, it aims to shed light on the architectural
robustness of ViTs relative to CNNs, against label noise in
medical image classification, a topic that needs more in-depth
investigation.

II. METHODOLOGY
A. Label Noise

Let us consider a dataset D = {(x;,y;)}? comprising n
samples, where z; € R? is an input and y; € {1,2,3,...,¢}
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is its corresponding true label. To mimic a noisy real-world
dataset, we synthetically inject label noise into this clean
dataset by randomly flipping the true label y;, to an incorrect
label g; with a certain probability p, also referred to as label
noise rate. Here, ¥; can be any class label from the dataset,
except for the true label, ie., i ~ {1,2,3,...,c¢} \ {yi}.

B. Dataset

We experimented with two datasets. The COVID-DU-
Ex dataset [23] consists of 33,920 chest X-ray images,
classified into COVID, non-COVID, and normal categories.
Out of these, 27, 132 images were used for training, and the
remaining 6, 788 images comprised the test set. The NCT-
CRC-HE-100K dataset [8] includes histopathology image
patches of nine different tissue types, with a total of 100, 000
images for training. It also has a separate test set comprising
7,180 samples from the same nine categories. We maintained
the size of inputs to 224 x 224 for both datasets across all
the experiments.

C. Training with Noisy Labels

As described in Section II-A, we injected label noise at
various rates p = {0,0.1,0.2,0.3,...,0.9} into both datasets.
Subsequently, we trained ViT for image classification task
using the noisy datasets (see Fig. 1). Unlike CNNs, ViTs
divides the input image into fixed-sized patches, which are
then flattened into vectors. The flattened vectors are concate-
nated with positional embeddings and fed into a transformer
encoder, followed by an MLP for class predictions.

We initially trained ViTs and a CNN-based model
(ResNet18) using standard cross-entropy loss, which lacks
inherent robustness against label noise. Then, we employed
Co-teaching, a LNL method, designed to mitigate the impact
of label noise. This method selects clean samples based
on training loss, thereby avoiding training on inaccurately
labeled samples. While Co-teaching traditionally uses CNNs
as the backbone, we also experimented by replacing the
backbone with ViT. To keep our investigation unbiased and
focus solely on understanding the inherent robustness of
transformers against label noise, we first trained all methods
from scratch, avoiding the influence of models pretrained on
large external natural-image datasets.

However, in the next phase, we pretrained the models
using self-supervised techniques on the respective datasets
to investigate whether pretraining improves the robustness of
ViT against label noise. It is well known that self-supervised
pretraining enhances robustness against label noise in CNN-
based models [9]. Since self-supervised learning does not
rely on given labels for training, it is not impacted by label
noise, thereby learning more robust feature representations.
To test this hypothesis with a ViT, we utilized two self-
supervised techniques, MAE [6] and SimMIM [24], to pre-
train on their respective datasets.

Both MAE and SimMIM rely on the reconstruction of
masked image patches to learn the representations in an un-
supervised manner. While MAE utilizes an encoder-decoder
framework with Mean Squared Error (MSE) to regress the
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Fig. 1. A pipeline for training medical image classification task with label
noise, where the feature extractor backbone is a transformer.

pixel predictions, SimMIM is an encoder only framework
with a simple prediction head and utilizes L; distance
to supervise the reconstruction. Consequently, we repeated
all cross-entropy and Co-teaching experiments using ViTs
pretrained with MAE and SimMIM.

D. Evaluation

We evaluate classification performance using balanced
accuracy, measuring both the best test accuracy across all
epochs (BEST) and the average test accuracy of the last
five epochs (LAST). The best test accuracy indicates the
maximum performance achieved by the model, while the
average of the last five epochs reflects whether the model
overfits the noisy labels in the training data [9].

III. IMPLEMENTAION DETAILS

We experimented with two ViT configurations: ViT Base
and ViT Small. ViT Base is larger with more parameters,
while ViT Small is more compact. Both models use 12 layers,
have an MLP ratio of 4, and employ 16 x 16 patches. The
ViT Small model has 6 heads and an encoder dimension
of 384, while the larger ViT Base model has 12 heads
with an encoder dimension of 768. For CNN, we selected
the ResNet18 architecture. In the following subsections, we
discuss details for supervised training with noisy datasets,
followed by self-supervised pretraining for the ViTs.

A. Supervised Training with Noisy labels

We use two approaches for supervised training with noisy
labels: the first uses standard cross-entropy loss without any
modifications, while the second uses Co-teaching, an LNL
method, for robust training with label noise.

1) Standard cross-entropy: We adopted the same training
settings for both the ViT Small and ViT Base models across
both datasets. The data augmentation was limited to basic
techniques, including random horizontal flips and rotations
up to 10°. We utilized the AdamW optimizer (5; = 0.9, 82 =
0.95), with weight decay of 1e~%, an initial learning rate of
3e75, and a Cosine Annealing learning rate scheduler. The
models were trained for 50 epochs using a batch size of 128,
a duration sufficient for the learning curve to saturate. For
the ResNet18 model, we followed a similar 50-epoch training
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regimen but with a batch size of 256. We employed an SGD
optimizer with a momentum of 0.9 and a weight decay of
le~*. The initial learning rate was set to 0.01, while using
Cosine Annealing scheduler.

2) Co-teaching: We applied the same general training
settings as used in standard cross-entropy for both the ViT
models and ResNet18 across both datasets. For Co-teaching,
the warm-up epochs were set to 5 for ViT and 10 for
ResNet18. The method-specific hyperparameters [4] were
set as 7 = p and ¢ = 1, where p represents the label
noise rate. In our experiments, we tested label noise rates
of p = {0.4,0.5,0.6,0.7} for the COVID-DU-Ex dataset
and p = {0.4,0.5,0.6,0.7,0.8} for the NCT-CRC-HE-100K
dataset, representing the typical range of high label noise.
Co-teaching cannot enhance performance beyond this range,
as the noise rate surpasses a critical tipping threshold (c—1/¢,
where ¢ is the number of classes) [18].

All the experiments were trained using PyTorch 12.1 in
Python 3.8, using A100 GPUs. Each experiment involving
training with noisy labels was repeated three times with
random seeds, and the results were averaged for evaluation.

B. Pretraining

For MAE, we set the mask ratio to 75% of the image
patches. The image decoder utilizes a 6-layer transformer
with an embedding dimension set to 512. For data augmen-
tation, we employed randomly resized crops with a scale
ranging from 0.2 to 1.0. We utilized the AdamW optimizer
[16] (51 = 0.9, B2 = 0.95) along with a Cosine learning rate
scheduler, setting the learning rate to 1.5e — 4 and weight
decay to 0.05. The models were trained until convergence
using a batch size of 128. For COVID-DU-Ex, we trained
for up to 800 epochs for both ViT Base and ViT Small, while
for NCT-CRC-HE-100K, the training was done for up to 600
epochs. The same training configurations were used for both
datasets, except for the number of training epochs.

For SimMIM, 60% of the image patches were masked.
We used the AdamW optimizer (8, = 0.9, B2 = 0.95) along
with a Cosine learning rate scheduler, a base learning rate
of le — 4, a weight decay of 0.05, and warm-up epochs of
10. The models were trained using batch sizes of 512 for
ViT Small and 256 for ViT Base, respectively, until the loss
converged. For COVID-DU-EX, training was done for up to
800 epochs for both ViT Base and ViT Small. For NCT-CRC-
HE-100K, ViT Small was trained for up to 800 epochs, and
ViT Base for up to 400 epochs. We used the same training
configurations for both datasets, except for the number of
training epochs.

IV. RESULTS
A. Quantitative Results

In this section, we quantitatively evaluate supervised
training in both datasets at various noise rates. We first
compare ViTs to ResNetl8 without pretraining, then assess
the impact of self-supervised pretraining, and finally compare
Co-teaching with ViTs as the backbone to ResNet18.

1) Architecture’s Role in Noisy Label Training: To assess
the tolerance of the architecture against label noise, we com-
pared ViTs and ResNet18 trained from scratch with standard
cross-entropy loss in Fig. 2. Both ViTs and ResNet18 exhibit
declining test accuracy as label noise rates increase in both
the COVID-DU-Ex and NCT-CRC-HE-100K datasets, with
a similar trend observed in both. While ViTs and ResNet18
perform similarly in the COVID-DU-Ex dataset, ResNet18
outperforms ViTs in the NCT-CRC-HE-100K dataset. We
also conducted a t-test using the BEST score to determine
whether ViT Small and ResNetl18 performances are statis-
tically different. In the NCT-CRC-HE-100K, the difference
between ViT Small and ResNetl8 is statistically significant
with a p-value < 0.05 for p = {0.5,0.6,0.7,0.8}.! In
contrast, for COVID-DU-EXx, the difference is statistically in-
significant with a p-value > 0.05, further validating the results
seen in the graph. Notably, ViT Base LAST’s performance
for NCT-CRC-HE-100K is worse than the corresponding
BEST performance, potentially due to ViT Base’s large
parameter size and greater flexibility, making it more prone
to overfitting noisy labels.
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Fig. 2. Performance comparison of ViT Small, Vit Base and ResNetl8

trained with label noise rates (p) across COVID-DU-Ex and NCT-CRC-HE-
100K dataset. BEST represents the peak test performance across all epochs
and LAST represents the average of test performance in the last five epochs.

2) Influence of Self-supervised Pretraining in ViTs: Super-
vised training with ViTs benefits from self-supervised pre-
training — which improves the learned representation. In Fig.
3, we compare the impact of two self-supervised pretraining
methods, MAE and SimMIM, on label-noise tolerance during
supervised training with standard cross-entropy. The results
indicate that pretraining improves performance for both
datasets, especially in the BEST performance metric, and this

IThe p-value denotes statistical significance, whereas p represents label
noise rates.
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Fig. 3. Performance comparison of ViT Small, Vit Base at various noise
rates in COVID-DU-Ex and NCT-CRC-HE-100K dataset, without/with
pretraining using MAE and SimMIM.BEST represents the peak test per-
formance across all epochs and LAST represents the average of test
performance in the last five epochs.

improvement is consistent for both MAE and SimMIM. The
performance boost is more pronounced at high label noise
levels in NCT-CRC-HE-100K compared to COVID-DU-Ex.
However, we observe that even after pretraining, ViT Base
begins to overfit to noisy labels during training, as indicated
by the lower LAST performance, potentially due to it being
a large model and more susceptible to overfitting on label
noise.

3) Co-teaching with ViT: We also compared how ViTs
perform when used with the LNL method, such as Co-
teaching (see Fig. 4). Co-teaching does not perform well
with ViTs when trained from scratch. In comparison, the
performance of Co-teaching with ResNet-18 is not relatively
worse than that with ViT Base and ViT Small trained
from scratch. However, when transformers are pretrained,
both ViT Base and ViT Small show significant performance
improvements, as confirmed by the t-test results. Specifically,
MAE + ViT Small significantly surpasses ViT Small in
performance, with a p-value < 0.05 across all noise levels
(p) for NCT-CRC-HE-100K, and at p = {0.4,0.5,0.6} for
COVID-DU-Ex. These results suggest that when using ViT
as a backbone instead of CNN, pretraining is crucial for
achieving label-noise tolerance during training.

B. Qualitative Results

In this section, we present qualitative results by examining
attention maps and prediction outcomes for selected test sam-
ples from both COVID-DU-Ex and NCT-CRC-HE-100K.

First, we analyze the attention maps generated by the ViT
Small trained on noisy labels with standard cross-entropy
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Fig. 4. Comparison of Co-teaching performance across various archi-

tectures at different noise rates in COVID-DU-Ex and NCT-CRC-HE-100K
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the peak test performance across all epochs and LAST represents the average
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Fig. 5. Attention maps of ViT Small for COVID class in COVID-DU-
Ex dataset, featuring two randomly selected test samples. Rows represent
models trained with different label noise rates p = (0.1, 0.3, 0.6). Columns
1-2: No pretraining, Columns 3-4: MAE pretraining, Columns 5-6: SimMIM
pretraining before supervised training with standard cross-entropy loss on
noisy labels.
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Fig. 6. Attention maps of ViT Small for Background (left) and Adipose
(right) classes in NCT-CRC-HE-100K dataset, featuring two randomly
selected test samples. Rows represent models trained with different label
noise rates p = (0.1,0.3,0.6). Columns 1-2: No pretraining, Columns 3-
4: MAE pretraining, Columns 5-6: SimMIM pretraining before supervised
training with standard cross-entropy loss on noisy labels.
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Fig. 7. Qualitative Results: Predictions on representative test samples from COVID-DU-Ex and NCT-CRC-HE-100K datasets using ResNet18 trained with
Co-teaching, ViT Small trained with Co-teaching (not pretrained and pretrained with MAE) with noisy labels at three noise rates (p). Red boxes indicate

incorrect predictions, and green boxes indicate correct predictions.

to investigate the potential impact. These attention maps are
computed using Attention Rollout [1], with attention weights
averaged across all heads and attention matrices multiplied
between layers to produce a single map per image.

Fig. 5 and Fig. 6 depict the attention map visualizations
for selected test samples from the COVID-DU-Ex and NCT-
CRC-HE-100K datasets, respectively. Notably, ViT Small,
when trained on noisy labels without pretraining, tends to
produce attention maps with greater noise and dispersion,
particularly evident in the COVID-DU-Ex samples. In con-
trast, ViT Small pretrained with MAE before supervised
training with noisy labels tends to generate cleaner maps
focused on the lung regions (Fig. 5). In the context of
the NCT-CRC-HE-100K dataset, employing both MAE and
SimMIM for pretraining enhances the quality of the attention
maps in ViT Small trained with noisy labels, as shown in Fig.
6. For example, the attention map for the Adipose class re-
veals that the model is correctly focusing on the cytoplasmic
membrane to distinguish the class. Interestingly, in the NCT-
CRC-HE-100K samples, attention maps from the ViT Small
without pretraining become increasingly noisier as training
label noise increases, while those from the pretrained ViT
remain relatively unchanged. However, we do not observe
a similar deterioration in the attention maps from the ViT
without pretraining in COVID-DU-Ex, as the training noise
increases.

In Fig. 7, we analyze the prediction outcome by the models

trained with Co-teaching on randomly selected representative
samples from both the COVID-DU-Ex and NCT-CRC-HE-

100K datasets. We compare the test performance of three
models: ResNet18, ViT Small (without pretraining), and ViT
Small (pretrained with MAE), trained at various label noise
rates. The pretrained ViT Small predicts samples correctly
even in the presence of high label noise, outperforming
ResNet18 and ViT Small without pretraining. However, at
a low noise rate of 0.4 for the NCT-CRC-HE-100K dataset,
all the backbones appear to consistently yield accurate pre-
dictions, whether pretrained or not.

V. CONCLUSION

In this study, we explored the relative robustness of ViTs
against label noise in medical image classification compared
to CNN-based architectures like ResNet18. Our results sug-
gest that ViTs are more susceptible to overfitting, particularly
with larger model sizes. Without pretraining, ViTs are less
effective than basic CNN-based architectures for LNL meth-
ods. However, if ViTs undergo proper pretraining using self-
supervised methods before being applied with LNL methods,
their robustness against label noise significantly improves.
Therefore, proper pretraining is crucial for employing ViT as
the backbone in LNL methods to enhance robustness against
label noise.
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