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Abstract— Label noise in medical image classification
datasets significantly hampers the training of supervised deep
learning methods, undermining their generalizability. The test
performance of a model tends to decrease as the label noise
rate increases. Over recent years, several methods have been
proposed to mitigate the impact of label noise in medical image
classification and enhance the robustness of the model. Predom-
inantly, these works have employed CNN-based architectures as
the backbone of their classifiers for feature extraction. However,
in recent years, Vision Transformer (ViT)-based backbones
have replaced CNNs, demonstrating improved performance
and a greater ability to learn more generalizable features,
especially when the dataset is large. Nevertheless, no prior work
has rigorously investigated how transformer-based backbones
handle the impact of label noise in medical image classification.
In this paper, we investigate the architectural robustness of
ViT against label noise and compare it to that of CNNs. We
use two medical image classification datasets—COVID-DU-Ex,
and NCT-CRC-HE-100K—both corrupted by injecting label
noise at various rates. Additionally, we show that pretraining
is crucial for ensuring ViT’s improved robustness against label
noise in supervised training.

I. INTRODUCTION

Label noise in medical classification datasets can arise

from several factors, including inter-observer variability dur-

ing annotation [20], the use of non-expert annotators to re-

duce costs [17], and the growing reliance on automated label-

ing algorithms [7]. It is well established that deep learning-

based supervised medical image classification requires ac-

curately annotated labels to effectively train classification

models. Supervised training with inaccurately annotated or

noisy labels can impair a model’s generalizability, resulting

in subpar test performance [13], [27], [11], [10].

In response, recent studies have focused on training

models to be robust against label noise in medical im-

age classification, encompassing a wide range of datasets,

including skin cancers, breast tumors, thoracic diseases,

chest infections, retinal diseases, and prostate cancers. These

approaches incorporate various techniques, such as label

smoothing [19], estimating a label noise transition matrix

to modify end layers [2], sample re-weighting [12], [25],
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consistency regularization [28], employing student-teacher

networks [26], or relying on self-supervised pretraining [9].

Each technique offers unique advantages, depending on the

nature of the noise and the characteristics of the dataset. A

common element in all these methods is the use of CNN-

based backbone networks, a trend also evident in state-of-

the-art Learning with Noisy Label (LNL) methods [4], [14],

[15].
Vision Transformers (ViTs) [3] have recently gained popu-

larity, outperforming CNNs in numerous benchmarks across

both computer vision and medical datasets [5], [22]. A key

feature of transformers is their inherent attention mecha-

nism, which adeptly captures long-range dependencies across

different spatial regions of an image, thereby providing

a comprehensive global context [3]. Transformers provide

greater flexibility in learning, in contrast to CNNs, which

primarily focus on local context. Despite these advantages,

to our knowledge, there has been no recent work on LNL

using ViT as the backbone for medical classification tasks

containing noisy training labels. This raises an important

question: How effective are ViTs in handling label noise in

medical image classification, and what is their robustness in

such scenarios?
In this study, we examine the resilience of ViT against

label noise in medical image classification. We use two

publicly available datasets for our investigation: i) COVID-

DU-Ex [23], a chest X-ray infection classification dataset,

and ii) NCT-CRC-HE-100K [8], a histopathology tissue clas-

sification dataset. We also explore the application of two self-

supervised pretraining techniques on ViTs for these datasets

to enhance robustness against label noise. Furthermore, to

assess the benefit of a ViT vs. a CNN backbone, we compare

the performance of a well-known LNL method—Co-teaching

[4], which typically trains robustly even with label noise,

by replacing its CNN backbone with a ViT. This allows

us to evaluate how the performance differs from the con-

ventional CNN-based system. Our study does not introduce

new methods; rather, it aims to shed light on the architectural

robustness of ViTs relative to CNNs, against label noise in

medical image classification, a topic that needs more in-depth

investigation.

II. METHODOLOGY

A. Label Noise

Let us consider a dataset D = {(xi, yi)}
n
i comprising n

samples, where xi ∈ R
d is an input and yi ∈ {1, 2, 3, ..., c}
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is its corresponding true label. To mimic a noisy real-world

dataset, we synthetically inject label noise into this clean

dataset by randomly flipping the true label yi, to an incorrect

label ŷi with a certain probability p, also referred to as label

noise rate. Here, ŷi can be any class label from the dataset,

except for the true label, i.e., ŷi
p
∼ {1, 2, 3, ..., c} \ {yi}.

B. Dataset

We experimented with two datasets. The COVID-DU-

Ex dataset [23] consists of 33, 920 chest X-ray images,

classified into COVID, non-COVID, and normal categories.

Out of these, 27, 132 images were used for training, and the

remaining 6, 788 images comprised the test set. The NCT-

CRC-HE-100K dataset [8] includes histopathology image

patches of nine different tissue types, with a total of 100, 000
images for training. It also has a separate test set comprising

7, 180 samples from the same nine categories. We maintained

the size of inputs to 224 × 224 for both datasets across all

the experiments.

C. Training with Noisy Labels

As described in Section II-A, we injected label noise at

various rates p = {0, 0.1, 0.2, 0.3, ..., 0.9} into both datasets.

Subsequently, we trained ViT for image classification task

using the noisy datasets (see Fig. 1). Unlike CNNs, ViTs

divides the input image into fixed-sized patches, which are

then flattened into vectors. The flattened vectors are concate-

nated with positional embeddings and fed into a transformer

encoder, followed by an MLP for class predictions.

We initially trained ViTs and a CNN-based model

(ResNet18) using standard cross-entropy loss, which lacks

inherent robustness against label noise. Then, we employed

Co-teaching, a LNL method, designed to mitigate the impact

of label noise. This method selects clean samples based

on training loss, thereby avoiding training on inaccurately

labeled samples. While Co-teaching traditionally uses CNNs

as the backbone, we also experimented by replacing the

backbone with ViT. To keep our investigation unbiased and

focus solely on understanding the inherent robustness of

transformers against label noise, we first trained all methods

from scratch, avoiding the influence of models pretrained on

large external natural-image datasets.

However, in the next phase, we pretrained the models

using self-supervised techniques on the respective datasets

to investigate whether pretraining improves the robustness of

ViT against label noise. It is well known that self-supervised

pretraining enhances robustness against label noise in CNN-

based models [9]. Since self-supervised learning does not

rely on given labels for training, it is not impacted by label

noise, thereby learning more robust feature representations.

To test this hypothesis with a ViT, we utilized two self-

supervised techniques, MAE [6] and SimMIM [24], to pre-

train on their respective datasets.

Both MAE and SimMIM rely on the reconstruction of

masked image patches to learn the representations in an un-

supervised manner. While MAE utilizes an encoder-decoder

framework with Mean Squared Error (MSE) to regress the

Fig. 1. A pipeline for training medical image classification task with label
noise, where the feature extractor backbone is a transformer.

pixel predictions, SimMIM is an encoder only framework

with a simple prediction head and utilizes L1 distance

to supervise the reconstruction. Consequently, we repeated

all cross-entropy and Co-teaching experiments using ViTs

pretrained with MAE and SimMIM.

D. Evaluation

We evaluate classification performance using balanced

accuracy, measuring both the best test accuracy across all

epochs (BEST) and the average test accuracy of the last

five epochs (LAST). The best test accuracy indicates the

maximum performance achieved by the model, while the

average of the last five epochs reflects whether the model

overfits the noisy labels in the training data [9].

III. IMPLEMENTAION DETAILS

We experimented with two ViT configurations: ViT Base

and ViT Small. ViT Base is larger with more parameters,

while ViT Small is more compact. Both models use 12 layers,

have an MLP ratio of 4, and employ 16 × 16 patches. The

ViT Small model has 6 heads and an encoder dimension

of 384, while the larger ViT Base model has 12 heads

with an encoder dimension of 768. For CNN, we selected

the ResNet18 architecture. In the following subsections, we

discuss details for supervised training with noisy datasets,

followed by self-supervised pretraining for the ViTs.

A. Supervised Training with Noisy labels

We use two approaches for supervised training with noisy

labels: the first uses standard cross-entropy loss without any

modifications, while the second uses Co-teaching, an LNL

method, for robust training with label noise.

1) Standard cross-entropy: We adopted the same training

settings for both the ViT Small and ViT Base models across

both datasets. The data augmentation was limited to basic

techniques, including random horizontal flips and rotations

up to 10�. We utilized the AdamW optimizer (β1 = 0.9,β2 =
0.95), with weight decay of 1e�4, an initial learning rate of

3e�5, and a Cosine Annealing learning rate scheduler. The

models were trained for 50 epochs using a batch size of 128,

a duration sufficient for the learning curve to saturate. For

the ResNet18 model, we followed a similar 50-epoch training
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regimen but with a batch size of 256. We employed an SGD

optimizer with a momentum of 0.9 and a weight decay of

1e�4. The initial learning rate was set to 0.01, while using

Cosine Annealing scheduler.

2) Co-teaching: We applied the same general training

settings as used in standard cross-entropy for both the ViT

models and ResNet18 across both datasets. For Co-teaching,

the warm-up epochs were set to 5 for ViT and 10 for

ResNet18. The method-specific hyperparameters [4] were

set as τ = p and c = 1, where p represents the label

noise rate. In our experiments, we tested label noise rates

of p = {0.4, 0.5, 0.6, 0.7} for the COVID-DU-Ex dataset

and p = {0.4, 0.5, 0.6, 0.7, 0.8} for the NCT-CRC-HE-100K

dataset, representing the typical range of high label noise.

Co-teaching cannot enhance performance beyond this range,

as the noise rate surpasses a critical tipping threshold (c−1/c,
where c is the number of classes) [18].

All the experiments were trained using PyTorch 12.1 in

Python 3.8, using A100 GPUs. Each experiment involving

training with noisy labels was repeated three times with

random seeds, and the results were averaged for evaluation.

B. Pretraining

For MAE, we set the mask ratio to 75% of the image

patches. The image decoder utilizes a 6-layer transformer

with an embedding dimension set to 512. For data augmen-

tation, we employed randomly resized crops with a scale

ranging from 0.2 to 1.0. We utilized the AdamW optimizer

[16] (β1 = 0.9,β2 = 0.95) along with a Cosine learning rate

scheduler, setting the learning rate to 1.5e − 4 and weight

decay to 0.05. The models were trained until convergence

using a batch size of 128. For COVID-DU-Ex, we trained

for up to 800 epochs for both ViT Base and ViT Small, while

for NCT-CRC-HE-100K, the training was done for up to 600
epochs. The same training configurations were used for both

datasets, except for the number of training epochs.

For SimMIM, 60% of the image patches were masked.

We used the AdamW optimizer (β1 = 0.9,β2 = 0.95) along

with a Cosine learning rate scheduler, a base learning rate

of 1e − 4, a weight decay of 0.05, and warm-up epochs of

10. The models were trained using batch sizes of 512 for

ViT Small and 256 for ViT Base, respectively, until the loss

converged. For COVID-DU-Ex, training was done for up to

800 epochs for both ViT Base and ViT Small. For NCT-CRC-

HE-100K, ViT Small was trained for up to 800 epochs, and

ViT Base for up to 400 epochs. We used the same training

configurations for both datasets, except for the number of

training epochs.

IV. RESULTS

A. Quantitative Results

In this section, we quantitatively evaluate supervised

training in both datasets at various noise rates. We first

compare ViTs to ResNet18 without pretraining, then assess

the impact of self-supervised pretraining, and finally compare

Co-teaching with ViTs as the backbone to ResNet18.

1) Architecture’s Role in Noisy Label Training: To assess

the tolerance of the architecture against label noise, we com-

pared ViTs and ResNet18 trained from scratch with standard

cross-entropy loss in Fig. 2. Both ViTs and ResNet18 exhibit

declining test accuracy as label noise rates increase in both

the COVID-DU-Ex and NCT-CRC-HE-100K datasets, with

a similar trend observed in both. While ViTs and ResNet18

perform similarly in the COVID-DU-Ex dataset, ResNet18

outperforms ViTs in the NCT-CRC-HE-100K dataset. We

also conducted a t-test using the BEST score to determine

whether ViT Small and ResNet18 performances are statis-

tically different. In the NCT-CRC-HE-100K, the difference

between ViT Small and ResNet18 is statistically significant

with a p-value < 0.05 for p = {0.5, 0.6, 0.7, 0.8}.1 In

contrast, for COVID-DU-Ex, the difference is statistically in-

significant with a p-value > 0.05, further validating the results

seen in the graph. Notably, ViT Base LAST’s performance

for NCT-CRC-HE-100K is worse than the corresponding

BEST performance, potentially due to ViT Base’s large

parameter size and greater flexibility, making it more prone

to overfitting noisy labels.

Fig. 2. Performance comparison of ViT Small, Vit Base and ResNet18
trained with label noise rates (p) across COVID-DU-Ex and NCT-CRC-HE-
100K dataset. BEST represents the peak test performance across all epochs
and LAST represents the average of test performance in the last five epochs.

2) Influence of Self-supervised Pretraining in ViTs: Super-

vised training with ViTs benefits from self-supervised pre-

training – which improves the learned representation. In Fig.

3, we compare the impact of two self-supervised pretraining

methods, MAE and SimMIM, on label-noise tolerance during

supervised training with standard cross-entropy. The results

indicate that pretraining improves performance for both

datasets, especially in the BEST performance metric, and this

1The p-value denotes statistical significance, whereas p represents label
noise rates.
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Fig. 3. Performance comparison of ViT Small, Vit Base at various noise
rates in COVID-DU-Ex and NCT-CRC-HE-100K dataset, without/with
pretraining using MAE and SimMIM.BEST represents the peak test per-
formance across all epochs and LAST represents the average of test
performance in the last five epochs.

improvement is consistent for both MAE and SimMIM. The

performance boost is more pronounced at high label noise

levels in NCT-CRC-HE-100K compared to COVID-DU-Ex.

However, we observe that even after pretraining, ViT Base

begins to overfit to noisy labels during training, as indicated

by the lower LAST performance, potentially due to it being

a large model and more susceptible to overfitting on label

noise.

3) Co-teaching with ViT: We also compared how ViTs

perform when used with the LNL method, such as Co-

teaching (see Fig. 4). Co-teaching does not perform well

with ViTs when trained from scratch. In comparison, the

performance of Co-teaching with ResNet-18 is not relatively

worse than that with ViT Base and ViT Small trained

from scratch. However, when transformers are pretrained,

both ViT Base and ViT Small show significant performance

improvements, as confirmed by the t-test results. Specifically,

MAE + ViT Small significantly surpasses ViT Small in

performance, with a p-value < 0.05 across all noise levels

(p) for NCT-CRC-HE-100K, and at p = {0.4, 0.5, 0.6} for

COVID-DU-Ex. These results suggest that when using ViT

as a backbone instead of CNN, pretraining is crucial for

achieving label-noise tolerance during training.

B. Qualitative Results

In this section, we present qualitative results by examining

attention maps and prediction outcomes for selected test sam-

ples from both COVID-DU-Ex and NCT-CRC-HE-100K.

First, we analyze the attention maps generated by the ViT

Small trained on noisy labels with standard cross-entropy

Fig. 4. Comparison of Co-teaching performance across various archi-
tectures at different noise rates in COVID-DU-Ex and NCT-CRC-HE-100K
dataset, without/with pretraining using MAE and SimMIM. BEST represents
the peak test performance across all epochs and LAST represents the average
of test performance in the last five epochs.

Fig. 5. Attention maps of ViT Small for COVID class in COVID-DU-
Ex dataset, featuring two randomly selected test samples. Rows represent
models trained with different label noise rates p = (0.1, 0.3, 0.6). Columns
1-2: No pretraining, Columns 3-4: MAE pretraining, Columns 5-6: SimMIM
pretraining before supervised training with standard cross-entropy loss on
noisy labels.

Fig. 6. Attention maps of ViT Small for Background (left) and Adipose
(right) classes in NCT-CRC-HE-100K dataset, featuring two randomly
selected test samples. Rows represent models trained with different label
noise rates p = (0.1, 0.3, 0.6). Columns 1-2: No pretraining, Columns 3-
4: MAE pretraining, Columns 5-6: SimMIM pretraining before supervised
training with standard cross-entropy loss on noisy labels.
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Fig. 7. Qualitative Results: Predictions on representative test samples from COVID-DU-Ex and NCT-CRC-HE-100K datasets using ResNet18 trained with
Co-teaching, ViT Small trained with Co-teaching (not pretrained and pretrained with MAE) with noisy labels at three noise rates (p). Red boxes indicate
incorrect predictions, and green boxes indicate correct predictions.

to investigate the potential impact. These attention maps are

computed using Attention Rollout [1], with attention weights

averaged across all heads and attention matrices multiplied

between layers to produce a single map per image.

Fig. 5 and Fig. 6 depict the attention map visualizations

for selected test samples from the COVID-DU-Ex and NCT-

CRC-HE-100K datasets, respectively. Notably, ViT Small,

when trained on noisy labels without pretraining, tends to

produce attention maps with greater noise and dispersion,

particularly evident in the COVID-DU-Ex samples. In con-

trast, ViT Small pretrained with MAE before supervised

training with noisy labels tends to generate cleaner maps

focused on the lung regions (Fig. 5). In the context of

the NCT-CRC-HE-100K dataset, employing both MAE and

SimMIM for pretraining enhances the quality of the attention

maps in ViT Small trained with noisy labels, as shown in Fig.

6. For example, the attention map for the Adipose class re-

veals that the model is correctly focusing on the cytoplasmic

membrane to distinguish the class. Interestingly, in the NCT-

CRC-HE-100K samples, attention maps from the ViT Small

without pretraining become increasingly noisier as training

label noise increases, while those from the pretrained ViT

remain relatively unchanged. However, we do not observe

a similar deterioration in the attention maps from the ViT

without pretraining in COVID-DU-Ex, as the training noise

increases.

In Fig. 7, we analyze the prediction outcome by the models

trained with Co-teaching on randomly selected representative

samples from both the COVID-DU-Ex and NCT-CRC-HE-

100K datasets. We compare the test performance of three

models: ResNet18, ViT Small (without pretraining), and ViT

Small (pretrained with MAE), trained at various label noise

rates. The pretrained ViT Small predicts samples correctly

even in the presence of high label noise, outperforming

ResNet18 and ViT Small without pretraining. However, at

a low noise rate of 0.4 for the NCT-CRC-HE-100K dataset,

all the backbones appear to consistently yield accurate pre-

dictions, whether pretrained or not.

V. CONCLUSION

In this study, we explored the relative robustness of ViTs

against label noise in medical image classification compared

to CNN-based architectures like ResNet18. Our results sug-

gest that ViTs are more susceptible to overfitting, particularly

with larger model sizes. Without pretraining, ViTs are less

effective than basic CNN-based architectures for LNL meth-

ods. However, if ViTs undergo proper pretraining using self-

supervised methods before being applied with LNL methods,

their robustness against label noise significantly improves.

Therefore, proper pretraining is crucial for employing ViT as

the backbone in LNL methods to enhance robustness against

label noise.
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