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ABSTRACT
Generativemodels based on latent variables, such as generative adversarial networks (GANs) and variational
auto-encoders (VAEs), have gained lots of interests due to their impressive performance in many fields.
However,manydata suchasnatural imagesusuallydonotpopulate theambient Euclidean spacebut instead
reside in a lower-dimensionalmanifold. Thus an inappropriate choice of the latent dimension fails to uncover
the structure of the data, possibly resulting in mismatch of latent representations and poor generative
qualities. Toward addressing these problems, we propose a novel framework called the latent Wasserstein
GAN (LWGAN) that fuses the Wasserstein auto-encoder and the Wasserstein GAN so that the intrinsic
dimension of the data manifold can be adaptively learned by a modified informative latent distribution. We
prove that there exist an encoder network andagenerator network in suchaway that the intrinsic dimension
of the learned encoding distribution is equal to the dimension of the data manifold. We theoretically
establish that our estimated intrinsic dimension is a consistent estimate of the true dimension of the data
manifold. Meanwhile, we provide an upper bound on the generalization error of LWGAN, implying that we
force the synthetic data distribution to be similar to the real data distribution from a population perspective.
Comprehensive empirical experiments verify our framework and show that LWGAN is able to identify the
correct intrinsic dimension under several scenarios, and simultaneously generate high-quality synthetic
data by sampling from the learned latent distribution. Supplementary materials for this article are available
online, including a standardized description of the materials available for reproducing the work.
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1. Introduction

Unsupervised generative models receive great attentions in the
machine learning community nowadays due to their impressive
performance in many fields (Kingma and Welling 2014; Good-
fellow et al. 2014; Li, Swersky, and Zemel 2015; Dinh, Sohl-
Dickstein, and Bengio 2016; Gao et al. 2020; Qiu and Wang
2021). Given a random sample from a p-dimensional random
vector X ∈ X ⊂ R

p with an unknown distribution PX , the goal
is to train a generative model that can produce synthetic data
that look similar to the observed samples from X. While there
are several ways of quantifying the similarity, the most common
approach is to directly employ some of the known divergence
measures, such as the Kullback–Leibler (KL) divergence and the
Wasserstein distance, between the real data distribution and the
synthetic data distribution.

There are two influential frameworks for generative models:
generative adversarial networks (GANs, Goodfellow et al. 2014)
and variational auto-encoders (VAEs, Kingma and Welling
2014). They are latent variable models through a latent variable
Z ∈ Z ⊂ R

d drawn from a simple and accessible prior distribu-
tion PZ , such as the standard multivariate normal distribution
PZ = N(0, Id). Then the synthetic data are generated by either

CONTACT Xiao Wang wangxiao@purdue.edu Department of Statistics, Purdue University, West Lafayette, IN 47907.
∗These authors contributed equally to this work.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

a deterministic transformation G : Z → X or a conditional
distribution p(x|z) of X given Z.

GAN and WGAN. Training GANs is like a two-player game,
where two networks, a generator and a discriminator, are simul-
taneously trained to allow the powerful discriminator to dis-
tinguish between real data and generated samples. As a result,
the generator is trying to maximize its probability of having its
outputs recognized as real. This leads to the following minimax
objective function,

inf
G∈G sup

f∈F
EX
[
log(f (X))

]+ EZ
[
log
(
1 − f (G(Z))

)]
, (1)

where f ∈ F is a discriminator and G ∈ G is a generator.
Optimizing (1) is equivalent tominimizing the Jensen–Shannon
divergence between the generation distribution and real data
distribution. GANs can generate visually realistic images, but
suffer from unstable training and mode collapsing.

TheWasserstein GAN (WGAN, Arjovsky, Chintala, and Bot-
tou 2017) is an extension to the vanilla GAN that improves
the stability of training by leveraging the 1-Wasserstein distance
between two probability measures. Denote by PG(Z) the genera-

© 2024 American Statistical Association
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tion distribution measure, and then the 1-Wasserstein distance
between PX and PG(Z) is defined as

W1(PX ,PG(Z)) = inf
π∈�(PX ,PZ)

E(X,Z)∼π ‖X − G(Z)‖ , (2)

where ‖ · ‖ represents the �2-norm and �(PX ,PZ) is the set
of all joint distributions of (X,Z) with marginal measures PX
and PZ , respectively. It is hard to find the optimal coupling π

through this constrained primal problem. However, thanks to
the Kantorovich–Rubinstein duality (Villani 2008), WGAN can
learn the generator G by minimizing a dual form of (2),

W1(PX ,PG(Z)) = sup
f∈F

{
EXf (X) − EZf (G(Z))

}
, (3)

where f is called the critic function, and F is the set of
all bounded 1-Lipschitz functions. Weight clipping (Arjovsky,
Chintala, and Bottou 2017) and gradient penalty (Gulrajani
et al. 2017) are two common strategies to maintain the Lipschitz
continuity of f . Weight clipping uses a tuning parameter c to
clamp eachweight parameter to a fixed interval [−c, c] after each
gradient update, but thismethod is very sensitive to the choice of
the parameter c. Instead, gradient penalty adds a regularization
term,EX̂

{
(‖∇xf (X̂)‖ − 1)2

}
, to the loss function to enforce the

1-Lipschitz condition, where X̂ is sampled uniformly along the
segment between pairs of points sampled from PX and PG(Z).
This is motivated by the fact that the optimal f has unit gradient
norm on the segment between optimally coupled points from
PX and PG(Z).

VAE and WAE. A VAE defines a “probabilistic decoder”
pθ (x|z) with the unknown parameter θ . Then the marginal
distribution of X is pθ (x) = ∫

pθ (x|z)pZ(z)dz, where pZ(·) is
the density of PZ . Due to the intractability of this integration,
the maximum likelihood estimation is prohibited. Instead, a
“probabilistic encoder” qφ(z|x) with the unknown parameter φ

is defined to approximate the posterior distribution pθ (z|x) =
pθ (x|z)pZ(z)/pθ (x). The objective of VAE is to maximize a
lower bound of the log-likelihood log pθ (x), which is called the
evidence lower bound (ELBO):

ELBO = Eqφ(z|x)
[
log pθ (x|z)

]− KL
(
qφ(z|x)‖pZ(z)

)
,

where the first term can be efficiently estimated by the Monte
Carlo sampling, and the second term has a closed-form expres-
sionwhen qφ is Gaussian. VAEs have strong theoretical justifica-
tions and typically can cover all modes of the data distribution.
However, they often produce blurry images due to the normal
approximation of the true posterior.

The Wasserstein auto-encoder (WAE, Tolstikhin et al. 2018)
makes twomodifications to VAE. It uses a deterministic encoder
Q : X → Z to approximate the conditional distribution
of Z given X, and a deterministic generator G : Z → X
to approximate the conditional distribution of X given Z. In
addition, WAE adopts the 1-Wasserstein distance between the
real data distribution PX and the generation distribution PG(Z),
rather than the KL divergence used in VAEs, to train the model.
Let PQ(X) denote the aggregated posterior distribution measure,
and then WAE minimizes the following reconstruction error
with respect to the generator G,

inf
Q∈QEX ‖X − G(Q(X))‖ + λD(PQ(X),PZ),

where D is any divergence measure between two distributions
PQ(X) and PZ , and λ > 0 is a regularization coefficient. The
regularization term forces the aggregated posterior PQ(X) to
match the prior distribution PZ .

There are several limitations for the generativemodels above.
It is a requirement for current approaches of training generative
models to pre-specify the dimension of the latent distribution
PZ and treat it as fixed during the training process. For example,
the latent dimensions for VAEs and GANs are pre-specified
by users. Another type of generative model called normalizing
flows (Dinh, Sohl-Dickstein, and Bengio 2016) keeps the latent
dimension the same as the dimension of the data. This is because
normalizing flows approximate the data distribution by a deter-
ministic invertiblemapping G such that X = G(Z). Since many
observed data such as natural images lie on a low-dimensional
manifold embedded in a higher-dimensional Euclidean space,
an inappropriate choice of the latent dimension could cause a
wrong latent representation that does not populate the full ambi-
ent space (Rubenstein, Schoelkopf, and Tolstikhin 2018). Hence,
thewrongly specified latent dimension fails to uncover the struc-
ture of the data, and the corresponding generative models may
suffer from mode collapsing, under-fitting, mismatch of repre-
sentation learning, and poor generation qualities. Furthermore,
although there are many interesting works taking advantages
of both VAEs and GANs (Larsen et al. 2016; Dumoulin et al.
2017; Donahue, Krähenbühl, and Darrell 2017; Chen, Gao, and
Wang 2021), it remains unclear what principles are underlying
the framework combining the best of WAEs andWGANs when
the latent dimension is unknown.

To handle the aforementioned drawbacks, we propose a novel
framework, called the latent Wasserstein GAN (LWGAN), to
identify the intrinsic dimension of a data distribution that lies
on a topological manifold, and then improve the quality of
generative modeling as well as representation learning. We have
performed two major modifications to the current GAN and
VAE frameworks. First, we change the latent distribution from
N(0, Id) to a generalized normal distribution N(0,A) with A
being a diagonal matrix with entries taking values 0 or 1. There-
fore, the rank of A allows us to characterize the intrinsic dimen-
sion of the latent space. This modification has been adopted
for the flow model to reduce the dimension of the latent space
(Zhang et al. 2023), but it has not been applied to GAN or VAE
models. Second, we combine WGAN and WAE in a principled
waymotivated by the primal-dual iterative algorithm.We utilize
a deterministic encoder Q : X → Z to learn an informative
prior distribution PZ ∼ N(0,A). On the other hand, a generator
G : Z → X is combinedwithQ to generate images that look like
the real ones using the latent code Z from PZ . We theoretically
guarantee the existence of such a generator G and an encoder
Q. To get rid of possible invalid divergences, we focus on the
1-Wasserstein distance to measure the similarities between two
distributions, which applies to any pair of distributions as long as
they can be sufficiently sampled. Note that the KL divergence is
not well-defined when the supports of two probability measures
do not overlap, which is very common for high-dimensional
data.

The rest of the article is organized as follows. Section 2 inves-
tigates the phenomenon of dimension mismatch between the
latent distribution and data distribution. Section 3 presents the
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new LWGAN framework that provides a feasible way to estimate
the encoder, generator, and intrinsic dimension. Theoretical
analyses are given in Section 4, including results on generaliza-
tion error bounds, estimation consistency, and intrinsic dimen-
sion consistency. Section 5 demonstrates extensive numerical
experiments under different settings to verify that the LWGAN
is able to detect the intrinsic dimensions for both simulated
examples and real image data. Finally, Section 6 concludes this
article. Proofs of theorems and additional numerical results are
provided in the supplementary materials.

2. Issues of Latent DimensionMismatch

Throughout this article we use X ⊂ R
p and Z ⊂ R

d to denote
the spaces of observed data points and latent variables, respec-
tively. To precisely describe the structure of high-dimensional
data with a low latent dimension, we first make the following
definition of a topological manifold.

Definition 1 (Topological manifold, Lee 2013). Suppose that M
is a topological space.M is a topological manifold of dimension
r ifM is a second-countable Hausdorff space, and for each x ∈
M, there exist an open subset U ⊂ M containing x, an open
subset V ⊂ R

r , and a homeomorphism ϕ between U and V . A
homeomorphism ϕ : U → V is a continuous bijective mapping
with a continuous inverse ϕ−1.

In this article, all manifolds are referred to as topological
manifolds unless otherwise noted. Typically, M is a subset of
some Euclidean space R

p, in which case the Hausdorff and
second-countability properties in Definition 1 are automati-
cally inherited from the Euclidean topology. To exclude overly
complicated cases, we moderately strengthen the qualification
of the homeomorphism ϕ in Definition 1 to make it a global
one:

Assumption 1. X is an r-dimensional manifold, and there exists
a homeomorphism ϕ between X and R

r .

In what follows, the symbol ϕ is used to denote one home-
omorphism between X and R

r . Then we can define a contin-
uous distribution supported on the manifold X that satisfies
Assumption 1.

Definition 2. A random vector X ∈ R
p is said to have a

continuous distribution PX supported on X , if its image ϕ(X)

follows a continuous distribution on R
r .

Let X ∈ X ⊂ R
p be the observed data with a continuous dis-

tribution PX supported on X , where X satisfies Assumption 1.
We define the intrinsic dimension of the data distribution PX as
the dimension of the manifold X , denoted by InDim(PX) = r,
and its ambient dimension as the dimension of the enclosing
Euclidean space, denoted by AmDim(PX) = p. By Theorem 1.2
of Lee (2013), InDim(PX) must be unique, and it cannot be
larger than AmDim(PX).

In most existing deep generative models, the latent variable
Z is selected as a d-dimensional standard normal distribution
N(0, Id), soInDim(PZ) = AmDim(PZ) = d. The dimension d is

typically predetermined to be a number that is smaller than p. In
GAN-based models, if the generatorG is a continuous function,
then the synthetic sample G(Z) will be supported on a mani-
fold of dimension at most InDim(PZ). When InDim(PZ) <

InDim(PX), forcing PG(Z) to be close to PX with unmatched
intrinsic dimensions is a challenging task. On the other hand,
in auto-encoder-based models, similar phenomenon of dimen-
sion mismatch occurs for the encoded distribution PQ(X). For
example, it is difficult to enforce PQ(X) to be close to PZ if
InDim(PX) < InDim(PZ), as filling a plane with a one-
dimensional curve is hard.

To highlight this phenomenon and to motivate our proposed
model, we first employ a toy example to provide intuitions for
the effects and consequences of different intrinsic dimensions of
the model and data distributions. Consider a 3D S-curve dataset
as shown in Figure 1(a), where each data point X = (X1,X2,X3)
is generated by

X1 = sin(3π(U − 0.5)), X2 = 2V ,
X3 = sign(3π(U − 0.5)) cos(3π(U − 0.5)),

for U ∼ Unif (0, 1) and V ∼ N(0, 1). This example results in
AmDim(PX) = 3 and InDim(PX) = 2. We first choose the
latent distribution PZ to be a one-dimensional normal distri-
bution N(0, 1), and then the generated sample from WGAN is
plotted in Figure 1(b). To minimize the 1-Wasserstein distance
between the real distribution PX and the generation distribution
PG(Z), WGAN learns an outer contour of the S-curve, but it
cannot fill points on the surface. Instead, if we choose a three-
dimensional standard normalN(0, I3) as the latent distribution,
then WAE is forced to reconstruct the images well, but at the
same time it tries to fill the three-dimensional latent space evenly
by a distribution supported on a two-dimensionalmanifold. The
only way to do this is by curling the manifold up in the latent
space as shown in Figure 1(d). This disparity between PZ and
PQ(X) in the latent space induces a poor generation of PG(Z) in
Figure 1(c).

3. The LatentWasserstein GAN

A natural solution to the mismatch problem described in Sec-
tion 2 is to select a latent distribution PZ whose intrinsic dimen-
sion is the same as that of the data distribution PX . However,
InDim(PX) is typically unknown, so one option is to learn
it from the data. When both the continuous generator G and
the continuous encoder Q are combined in an auto-encoder
generative model, PG(Z) = PX and PQ(X) = PZ cannot be
satisfied simultaneously unless InDim(PX) = InDim(PZ)

according to our previous discussion. Thismotivates us to search
for an encoder Q and a corresponding generator G, such that
Q(X) reflects the latent space supported on an r-dimensional
manifold, and generated samples using the latent variables are of
high quality. To be concrete, we need an auto-encoder generative
model that satisfies the following three goals at the same time:
(a) the latent distribution PZ is supported on an r-dimensional
manifold; (b) the distribution of G(Z) is similar to PX ; (c)
the difference between X and its reconstruction G(Q(X)) is
small.
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Figure 1. Illustrations of data generation with wrong latent dimensions in WGAN andWAE.

3.1. Existence of Optimal Encoder-Generator Pairs

Unlike conventional generative models that use a fixed standard
normal distribution as the latent distribution, we consider a
latent distribution whose intrinsic dimension could be less than
d, that is, the latent variable Z ∈ Z ⊂ R

d can have a distribution
supported on some manifold Z . This idea is realized by the
generalized definition of the normal distribution (Zhang et al.
2023). In particular, let As = diag(1, . . . , 1, 0, . . . , 0) be a diag-
onal matrix whose first s diagonal elements are one and whose
remaining (d − s) diagonal elements are zero, and Z0 be a ran-
dom vector following standardmultivariate normal distribution
N(0, Id). Then clearly, the random vectorZ = AsZ0 is supported
on an s-dimensional manifold Z , and its distribution PZ ≡
PAsZ0 has dimensions InDim(PZ) = s and AmDim(PZ) = d.
For convenience, we use the classic notation N(0,As) to denote
this distribution, although As is a degenerate covariance matrix.

Choosing PZ = N(0,As), where s is a parameter to esti-
mate, enables us to solve the dimension mismatch problem in
Section 2. If s = r, then the latent variable Z can be mapped
to G(Z) supported on an r-dimensional manifold, and mean-
while, PZ and the encoded distribution PQ(X) can have matched
intrinsic dimensions. Formally, Theorem 1 states that for any
data distribution PX defined by Definition 2, there always exist
a continuous encoder Q
 that guarantees meaningful encodings
on an r-dimensional manifold, and a continuous generator G

that generates samples with the same distribution as PX , using
those latent points encoded by Q
.

Theorem 1. If d ≥ r, then there exist two continuous mappings
Q
 : X → Z and G
 : Z → X such that Q
(X) ∼ N(0,Ar)
and X = G
(Q
(X)).

In such cases, we call (Q
,G
) an optimal encoder-generator
pair for the data distribution PX , and note that (Q
,G
) may
not be unique. On the other hand, Corollary 1 shows that if the
ambient dimension of PZ is insufficient, then the auto-encoder
structure is unable to recover the original distribution of X,
which justifies the finding in Figure 1(b).

Corollary 1. Suppose that d < r. Then for any continuous
mappings Q : R

p → R
d and G : R

d → R
p, we have

EX ‖X − G(Q(X))‖ > 0.

3.2. The ProposedModel

Theorem 1 shows the possibility to identify the dimension of
the data manifold X by learning a latent distribution with the

same intrinsic dimension via the encoder Q. In this section,
we realize this idea through our new auto-encoder generative
model, LWGAN, which takes advantages of both WGAN and
WAE. LWGAN is capable of learningQ,G, and r simultaneously
to accomplish all of our three goals. For brevity, we abbreviate
the subscript s in the matrix As when no confusion is caused.

There are three probability measures involved in our prob-
lem: the real data distribution PX , the generation distribution
PG(AZ0), and the reconstruction distribution PG(Q(X)). Our goal
is to ensure that all three measures are similar to each other in
a systematic way. To this end, we propose the following distance
between PX and PG(AZ0) with given G and A:

W1(PX ,PG(AZ0)) = inf
Q∈Q
 sup

f∈F

LA(G,Q, f ), (4)

LA(G,Q, f ) = EX ‖X − G(Q(X))‖ + EX
[
f (G(Q(X)))

]
−EZ0

[
f (G(AZ0))

]
,

where F
 is the set of all bounded 1-Lipschitz functions,
and Q
 is the set of continuous encoder mappings. The
term EX ‖X − G(Q(X))‖ can be viewed as the auto-encoder
reconstruction error in WAE, and also a loss to measure
the discrepancy between PX and PG(Q(X)). The other term
EX
[
f (G(Q(X)))

] − EZ0
[
f (G(AZ0))

]
quantities the difference

between PG(Q(X)) and PG(AZ0). Theorem 2 shows that, under
some mild conditions, (4) achieves its minimum as the 1-
Wasserstein distanceW1(PX ,PG(AZ0)).

Theorem 2. The W1 distance defined in (4) has the following
representation:

W1(PX ,PG(AZ0))

= inf
Q∈Q


{
W1(PX ,PG(Q(X))) + W1(PG(Q(X)),PG(AZ0))

}
. (5)

Therefore,W1(PX ,PG(AZ0)) ≤ W1(PX ,PG(AZ0)), and the equal-
ity holds if there exists an encoder Q ∈ Q
 such that Q(X) has
the same distribution as AZ0.

Remark 1. Theorem 1 shows that there exists some optimal
encoder-generator pair (Q
,G
) such that Q
(X)

d= ArZ0
and X = G
(Q
(X)). Therefore, Q
 is an optimal solution to
(5) for A = Ar , and hence the equality W1(PX ,PG(ArZ0)) =
W1(PX ,PG(ArZ0)) holds. This indicates that W1 is a tight
upper bound for W1. Furthermore, with G = G
, we have
W1(PX ,PG
(ArZ0)) = 0, which reaches its global minimum.
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Remark 2. The condition Q(X)
d= AZ0 is sufficient but not

necessary for W1 = W1 to hold. For example, using (Q
,G
)
in the proof of Theorem 1, we can show that Q
(X)

d= ArZ0 but
W1(PX ,PG
(AsZ0)) = W1(PX ,PG
(AsZ0)) = 0 for any s such that
r ≤ s ≤ d.

In our framework, we represent the encoder, generator,
and critic using deep neural networks, G = G(·; θG), Q =
Q(·; θQ), f = f (·; θf ), where θ = (θG, θQ, θf ) are the network
parameters. We restrict the three components of θ to compact
sets 	G, 	Q, and 	f , respectively, and further define 	̄f ={
θf ∈ 	f : ‖f (·; θf )‖L ≤ 1

}
, where ‖g‖L stands for the Lipschitz

constant of a function g. Then we define the parameter space
	 = 	G × 	Q × 	̄f and function spaces G = {G(·; θG) : θG ∈
	G}, Q = {Q(·; θQ) : θQ ∈ 	Q}, F = {f (·; θf ) : θf ∈ 	̄f }.
Accordingly, hereafter we replace the spaces Q
 and F
 in (4)
withQ andF , respectively for the definition ofW1(PX ,PG(AZ0)).

In practice, we only have the empirical versions of PX
and PG(AZ0). Suppose we have observed an iid data sam-
ple X1, . . . ,Xn, and have simulated an iid sample of N(0, Id),
Z0,1, . . . ,Z0,n, where X and Z0 samples are independent. Then
we define

L(x, z; θ) = ‖x − G(Q(x; θQ); θG)‖
+ f (G(Q(x; θQ); θG); θf ) − f (G(z; θG); θf ),

�(θ ,A) = EX⊗Z0[L(X,AZ0, θ)],

�̂n(θ ,A) = 1
n

n∑
i=1

L(Xi,AZ0,i, θ),

where EX⊗Z0 means taking the expectation of independent X
and Z0. Clearly,

W1(PX ,PG(AZ0)) = inf
Q∈Q sup

f∈F
L(G,Q, f ,A)

= inf
θQ∈	Q

sup
θf ∈	̄f

�(θ ,A),

and we denote its empirical version as W1(P̂X , P̂G(AZ0)) =
infθQ∈	Q supθf ∈	̄f

�̂n(θ ,A).
Remark 1 of Theorem 2 motivates us to estimate the gen-

erator G and the rank-revealing matrix A based on the W1
distance, but Remark 2 suggests that purely minimizing W1 is
not enough, since a matrix A with a rank larger than r can still
driveW1 to zero, the global minimum value. Therefore, we also
need to introduce a penalty term to regularize the rank of A.
Since A is uniquely determined by its rank s, below A and s are
used interchangeably to represent the rank parameter.Define the
rank-regularized objective function as

ρ̂n(θG,A) = W1(P̂X , P̂G(AZ0)) + λn · rank(A),

where λn is a deterministic sequence satisfying λn → 0 and
n1/2λn → ∞, which will be justified in Theorem 5. Then the
generator G and the matrix A are estimated by

(θ̂G, r̂) = argmin
θG∈	G,1≤s≤d

ρ̂n(θG,As). (6)

When the optimal points are not unique, θ̂G can be chosen
arbitrarily from the solution set, and r̂ is taken as the smallest
one among all the optimal points.

3.3. Computational Algorithm

The optimization problem (6) can be solved by computing the
“rank score”

�̂n(s) = min
θG,θQ

max
θf

�̂n(θ ,As) + λns (7)

for each s = 1, . . . , d, and then we have r̂ = argmins �̂n(s).
Equivalently, we need to solve

min
G1,Q1

max
f1

1
n

n∑
i=1

[‖Xi − G1(Q1(Xi))‖ + f1(G1(Q1(Xi)))

− f1(G1(A1Z0,i))
]+ λn · 1

· · · · · · (8)

min
Gd ,Qd

max
fd

1
n

n∑
i=1

[‖Xi − Gd(Qd(Xi))‖ + fd(Gd(Qd(Xi)))

− fd(Gd(AdZ0,i))
]+ λn · d

by fitting d different sets of neural networks (Gs,Qs, fs), s =
1, . . . , d, which may be time-consuming. Instead, we propose
a practical and efficient algorithm based on the idea that
encoder and critic functions under different ranks can share
network parameters. We slightly modify the network structures
of Q(x; θQ) and f (x; θf ) such that they also receive a rank input
es, where the one-hot encoding vector es is the sth column of
the identity matrix Id. As a result, the rank-aware encoder and
critic functions become Q(x, es; θQ) and f (x, es; θf ), respectively.
We also make the output of Q(x, es; θQ) to have rank s by setting
the last (d − s) components to zero. The generator G does not
need this modification, since its input Q(X, es) or AsZ0 already
contains the rank information.

Then problem (9) is equivalent to solving

min
G,Q

max
f

1
nd

d∑
s=1

n∑
i=1

[‖Xi − G(Q(Xi, es))‖

+ f (G(Q(Xi, es)), es) − f (G(AsZ0,i), es)
]
, (9)

as long as the rank-aware neural networks (G,Q, f ) have suffi-
cient expressive powers. This would be a reasonable assumption
if we recognize that (Gs,Qs, fs) and (Gt ,Qt , ft) should be similar
if s ≈ t. In practice, this means that (Gs,Qs, fs) and (Gt ,Qt , ft)
can share most of the neural network parameters, and their
difference is reflected by the input rank information es. Also note
that the rank penalty terms in (9) are tentatively dropped, since
they only affect the estimation of s but not (G,Q, f ). The rank
termswill be added back once the optimal (G,Q, f ) are obtained.

Furthermore, the objective function of (9) can be viewed as
an empirical expectation over (X,Z, S), where the average term
d−1∑d

s=1(·) represents an expectation ES(·) with S following a
discrete uniformdistribution on {1, . . . , d}. Therefore, to further
save computing time, we can randomly pick a rank in each
iteration, and then update (G,Q, f ) accordingly. In our numer-
ical experiments, we have saved various metrics to monitor the
training procecss, and they demonstrate that this computing
algorithm is both stable and efficient (see Section S2.3 of the
supplementary material).

The training details are summarized in Algorithm 1. In
our algorithm, the 1-Lipschitz constraint on the critic f is
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Algorithm 1 The training algorithm of LWGAN.
Input: Initial parameter value θ(0), batch size M, critic update

frequency L, gradient penalty parameter λGP, rank regular-
ization parameter λn.

Output: Neural network parameters θ̂ , estimated intrinsic
dimension r̂.

1: for k = 1, 2, . . . ,T do
2: Randomly select an integer s from 1, . . . , d with equal

probabilities
3: Set θ(k,0) ← θ(k−1)

4: for l = 1, 2, . . . , L do
5: Sample real data X1, . . . ,XM

iid∼ PX , latent data
Z0,1, . . . ,Z0,M

iid∼ N(0, Id), and ε1, . . . , εM
iid∼ Unif(0, 1)

6: Set X̂i = εiXi + (1 − εi)G(AsZ0,i; θ(k)
G ), i = 1, . . . ,M

7: Define J(θ) = �̂M(θ ,As) + λGP ·
M−1∑M

i=1

(
‖∇xf (X̂i; θf )‖ − 1

)2
8: Update θ

(k,l)
f ← θ

(k,l−1)
f + Adam

(
−∇θf J(θ)|θ=θ(k,l−1)

)
9: end for
10: Sample real data X1, . . . ,XM

iid∼ PX and latent data
Z0,1, . . . ,Z0,M

iid∼ N(0, Id)
11: Update θ

(k)
G,Q ← θ

(k,L)
G,Q + Adam

(
∇θG,Q �̂M(θ ,As)|θ=θ(k,L)

)
12: if θ(k) converges then
13: Compute �̂n(s) = �̂n(θ(k),As) + λns, s = 1, . . . , d
14: return θ̂ = θ(k), r̂ = argmins �̂n(s)
15: end if
16: end for

enforced by the gradient penalty technique proposed in Gulra-
jani et al. (2017), where X̂ is sampled uniformly along the seg-
ment between pairs of points sampled from PX and PG(AZ0), and
λGP is the regularization level of the gradient penalty. The oper-
ator Adam(·) means applying the Adam optimization method
(Kingma and Ba 2014) to update neural network parameters θ .

3.4. Tuning Parameter Selection

Another critical issue in applying LWGAN to real-life data is
the selection of the regularzation parameter λn in (7). From a
theoretical perspective, in Section 4 we will show that λn should
be chosen such that λn → 0 and n1/2λn → ∞, whereas
in this section, we propose a more practical and data-driven
scheme for selecting λn. The intuition is to note that without
the rank penalty, V̂n(As) := �̂n(s) − λns would all be close to
zero for s ≥ r, and their differences are mainly attributed to
the randomness from estimation. Therefore, if we can estimate
the standard errors of V̂n(As) for s ≥ r, then λn should be
chosen slightly larger than the estimated standard error, so as
to encourage the selection of the simplest model, namely, the
model with the smallest rank s.

Concretely, we use the following method to determine the
data-driven λn. First, train the model to optimum according to
Algorithm 1, using the whole training dataset. Second, continue
to train the model for T̃ iterations, using a subset of the training
data, denoted as X̃1. This can be viewed as fitting a model on

X̃1 based on a warm start. Third, based on this model, compute
the metric V̂n(As) for each s, and we use the symbol V̂1s to
denote its value. Then repeat this process on different training
data subsets X̃k, k = 2, . . . , K̃, and similarly compute the scores
V̂ks, k = 2, . . . , K̃, s = 1, . . . , d. Let

r̃ = argmin
s

V̂·s := 1
K̃

K̃∑
k=1

V̂ks,

ŜE =

√√√√√ 1
K̃ − 1

K̃∑
k=1

(
V̂kr̃ − V̂·r̃

)2
.

In other words, we first find the rank s that has the smallestmean
value V̂·s, and then estimate the standard error of the mean on
this rank. Finally, we set λn = ŜE0.8. In a typical setting, ŜE =
O(n−1/2), so λn = O(n−0.4) satisfies the theoretical rate. Our
numerical experiments use T̃ = 20 and K̃ = 50, so this method
essentially trains themodel for additional 1000 iterations, which
is relatively small compared to themain training cost for real-life
datasets.

4. Theoretical Results

4.1. Generalization Error Bound

Since the LWGAN model highly relies on the W1 distance,
and the estimators are based on its empirical version, a natural
question is how well the empirical quantity W1(P̂X , P̂G(AZ0))
approximates the population quantity W1(PX ,PG(AZ0)). This
problem can be characterized by the generalization error. In
the context of supervised learning, the generalization error is
defined as the gap between the empirical risk (i.e., the training
error) and the expected risk (i.e., the testing error). Similarly,
in the framework of LWGAN, we make the following definition
derived from Arora et al. (2017).

Definition 3. Given P̂X , an empirical version of the true data dis-
tribution with n observations, a generation distribution PG(AZ0)
generalizes under theW1(·, ·) distance with generalization error
ε, if ∣∣∣W1(PX ,PG(AZ0)) − W1(P̂X , P̂G(AZ0))

∣∣∣ ≤ ε

holds with a high probability, where P̂G(AZ0) is an empirical
version of the generation distribution PG(AZ0) with polynomial
number of observations drawn after PG(AZ0) is fixed.

Since the empirical version is what we have access to in
practice, a small generalization error implies that after we mini-
mize the empiricalW1 distance, we can expect a small distance
between the true data distribution and the generation distribu-
tion. To present the theorem below, we define the function sets
F ◦ G ◦ Q = {f ◦ G ◦ Q : f ∈ F ,Q ∈ Q} and F ◦ G ◦ A = {h :
h(z) = f (G(Asz)), f ∈ F , 1 ≤ s ≤ d}.
Theorem 3. Assume that ‖x‖ ≤ B for all x ∈ X , and every
function inQ is LQ-Lipschitz with respect to the input and LθQ-
Lipschitz with respect to the parameter. For a fixed LG-Lipschitz
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generatorG, let 	̂Q be an ε/(8LGLθQ)-net of the encoder param-
eter space 	Q. Then with a probability at least

1 − e−d − 2d|	̂Q| exp
{
− nε2

8[(1 + 2LGLQ)B + LGtn,d]2
}
,

where tn,d =
√
3d + 2 log n + 2

√
d2 + d log n, the following

inequality holds:

max
1≤s≤d

∣∣∣W1(PX ,PG(AsZ0)) − W1(P̂X , P̂G(AsZ0))
∣∣∣

≤ 2Rn(F ◦ G ◦ Q) + 2Rn(F ◦ G ◦ A) + ε, (10)

where Rn(F ◦ G ◦ Q) = Eδ

{
supf∈F ,Q∈Q n−1∑n

i=1 δi

f (G(Q(Xi)))
}

and Rn(F ◦ G ◦ A) =
Eδ

{
supf∈F ,1≤s≤d n−1∑n

i=1 δif (G(AsZ0,i))
}

are Rademacher
complexities of the function sets F ◦ G ◦ Q and F ◦ G ◦ A,
respectively, δ = (δ1, . . . , δn) are independent Rademacher
variables, that is, P(δi = 1) = P(δi = −1) = 1/2, and Eδ stands
for expectations with respect to δ while fixing X and Z0.

Theorem 3 describes how the function classes F and Q
contribute to the generalization error bound in our framework.
Given a fixed generator G, there exists a uniform upper bound
for any critic f ∈ F , encoder Q ∈ Q, and low-rank matrix
A with appropriate numbers of observations from PX and PZ0 .
More concretely, if |	̂Q| is small and the sample size is large, then
the generalization error is consequently guaranteed to hold with
a high probability. In Gao and Wang (2021), it has been proved
that log(|	̂Q|) ≤ O(K2

QDQ log(DQLQLGLθQ/ε)), where KQ and
DQ denote the width and depth of Q, respectively. Additionally,
the Lipschitz constants of Q and G are under the control of the
spectral normalization of their weights.

TheRademacher complexities in (10)measure the richness of
a class of real-valued functions with respect to a probability dis-
tribution. There are several existing results on the Rademacher
complexity of neural networks. For example, under some mild
conditions,Rn(F ◦G◦Q) is upper bounded by an order scaling
as O(LGLQ

√
(K2

QDQ + K2
f Df )/n), where Kf and Df denote the

width and depth of f , respectively. Similarly, an upper bound on
Rn(F ◦G◦A) scales asO(LG

√
(d2 + K2

f Df )/n) (Gao andWang
2021).

Finally, since W1(PX ,PG(AZ0)) is a tight upper bound for
the 1-Wasserstein distance between PX and PG(AZ0) from The-
orem 2, we further have

W1(PX ,PG(AsZ0)) ≤ W1(P̂X , P̂G(AsZ0)) + 2Rn(F ◦ G ◦ Q)

+ 2Rn(F ◦ G ◦ A) + ε

with a high probability. This implies that from the population
perspective, the real data distribution is close to the generation
distribution with respective to the 1-Wasserstein distance when
we minimize the empirical loss functionW1(P̂X , P̂G(AsZ0)).

4.2. Estimation Consistency

Theorem 1 has shown that an optimal encoder-generator pair
globally minimizes the W1(PX ,PG(AZ0)) distance under a suit-
able rank of A, and equation (6) indicates that the encoder and

generator are estimated by minimizing the empirical version
W1(P̂X , P̂G(AZ0)). Therefore, the question of interest here is how
the estimated quantities relate to the population ones.

However, unlike regular parameter estimation problems,
an important property of the encoder-generator structure in
LWGAN is that the encoder-generator pair may not be unique
even with the same objective function value. For example, when
Q and G simultaneously permute the first s output and input
variables, respectively, the corresponding value of LA(G,Q, f )
does not change. Therefore, the optimal solutions to (6) are not
singletons but set-valued. In this section, we first fix the rank of
A, and consider the estimation consistency through a distance
between sets called Hausdorff distance (Rockafellar and Wets
2009). We defer the estimation of the optimal rank of A, or
equivalently, InDim(PX), to Section 4.3.

For any two non-empty bounded subsets S1 and S2 of some
Euclidean space, the Hausdorff distance between S1 and S2 is
defined as

dH(S1, S2) = max

{
sup
a∈S1

d(a, S2), sup
b∈S2

d(b, S1)

}
,

where d(x, S) = infy∈S ‖x − y‖ is the shortest distance from a
point x to a set S. The Hausdorff distance dH is a metric for non-
empty compact sets, and dH(S1, S2) = 0 if and only if S1 = S2.

Recall that we represent G, Q, and f using deep neural
networks, and we pre-specify the network structures for these
mappings, such as the widths and depths. In this section we
only consider functions within the space G ×Q×F . Introduce
the function φA(θG, θQ) = supθf

�(θ ,A), and then an optimal
solution θ∗ solves
inf
θG

W1(PX ,PG(AZ0)) = inf
θG,θQ

sup
θf

�(θ ,A) = inf
θG,θQ

φA(θG, θQ)

when it is a solution to both the outer minimization problem
and the inner maximization problem. Therefore, the optimal
solution set 	∗

A is defined as

	∗
A =

{
θ∗ ∈ 	 : φA(θ∗

G, θ
∗
Q)

= inf
θG,θQ

φA(θG, θQ), �(θ∗,A) = φA(θ∗
G, θ

∗
Q)

}
.

For the empirical minimax problem infθG,θQ supθf
�̂n(θ ,A),

algorithms typically search for approximate solutions rather
than exact ones. Therefore, we define the empirical solution set
with slackness level τn as

	̂∗
n,A(τn) =

{
θ∗ ∈ 	 : φ̂A(θ∗

G, θ
∗
Q) ≤ inf

θG,θQ
φA(θG, θQ) + τn,

�̂n(θ
∗,A) ≥ φ̂A(θ∗

G, θ
∗
Q) − τn

}
,

where φ̂A(θG, θQ) = supθf
�̂n(θ ,A), and τn is a sequence of

nonnegative random variables such that τn
P→ 0. We further

make some assumptions on the LWGANmodel:

Assumption 2. (a)	 is a compact set. (b) The function L(x, z; θ)

is continuously differentiable on 	 for all (x, z) with

EX⊗Z0

[
sup
θ∈	

∥∥∥∥ ∂

∂θ
L(X,AsZ0; θ)

∥∥∥∥2
]

< ∞, s = 1, . . . , d.
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The compact parameter space assumption simplifies the
asymptotic analysis. Themoment condition rules out degenerate
cases, and the differentiability is a common requirement for
GAN training as various gradient descent–ascent algorithms are
used. Then we adopt the ideas from Meitz (2024) to prove the
estimation consistency of LWGAN.

Theorem 4. Suppose that τn is a sequence of nonnegative ran-
dom variables such that τn

P→ 0 and n−1/2/τn
P→ 0. Then

for a fixed A, under Assumption 2, dH(	̂∗
n,A(τn),	∗

A)
P→ 0 as

n → ∞.

Theorem 4 assures that the encoder, generator, and critic esti-
mators of LWGAN are consistent under the Hausdorff distance
for a fixed latent dimension.

4.3. Intrinsic Dimension Consistency

Finally, we show that the estimator r̂ computed from (6) is
capable of recovering the intrinsic dimension of PX . To this end,
we need to further assume that the neural network function
space G × Q × F is large enough to cover some optimal points
of interest. Define FA(G,Q) = supf∈F
 LA(G,Q, f ), and let G

denote the set of continuous generators. Then the optimal solu-
tion set of minimizingW1(PX ,PG(AZ0)) can be characterized as

SA =
⎧⎨⎩(G∗,Q∗, f ∗) : FA(G∗,Q∗) = inf

Q∈Q

G∈G


FA(G,Q),

LA(G∗,Q∗, f ∗) = sup
f∈F


LA(G∗,Q∗, f )

⎫⎬⎭ .

Clearly, coupled with some f 
 ∈ F
, we have (G
,Q
, f 
) ∈
SAr . We then make the following assumption.

Assumption 3. (a) SAr ∩ (G ×Q×F) �= ∅. (b) For each s < r,
there exists a triplet (G∗

s ,Q∗
s , f ∗s ) ∈ SAs such that f ∗s ∈ F and

sup
f∈F

LAs(G∗
s ,Q

∗
s , f ) = inf

Q∈Q
G∈G

sup
f∈F

LAs(G,Q, f ).

Now we are ready to show that the rank estimated from
(6) approaches the intrinsic dimension of X as the sample size
grows.

Theorem 5. Assume that Assumptions 2 and 3 hold. Then with
λn → 0 and n1/2λn → ∞, we have P(r̂ = r) → 1, where
r = InDim(PX) stands for the intrinsic dimension of X .

Theorem 5 can be compared to the well-known Bayesian
information criterion (BIC) for model selection of the following
form:

n−1BIC = − 2
n
L(θ̂ ;X1, . . . ,Xn) + log(n)

n
· s, (11)

where L(θ̂ ;X1, . . . ,Xn) = ∑n
i=1 log p(Xi; θ̂ ) is the maximized

likelihood function of the model p(x; θ), θ̂ is the maximum
likelihood estimator, and s is the number of parameters. We

normalize BIC by n in (11) to make the first term comparable
to an expectation.

To some extent, LWGAN and BIC share perceptible similar-
ities. For example, if we interpret the rank s as the complexity
of the model, then both LWGAN and BIC construct a penalty
term λn · s with λn → 0. More importantly, they both promise
some type of model selection consistency. However, there are
some fundamental differences between LWGAN and BIC. First,
the theoretical rates are different. BIC has λn = log(n)/n,
whereas in LWGAN we require λn → 0 and n1/2λn → ∞.
Second, BIC is mostly a likelihood-based criterion, whereas in
LWGAN, themain part is based on theW1 distance given in (4).
Third, in the BIC framework, s always represents the number of
parameters, but in LWGAN, this quantity is not meaningful, as
neural networks are known to be highly overparameterized.

5. Experimental Results

In this section, we conduct comprehensive numerical experi-
ments to validate that LWGAN is able to achieve our three goals
simultaneously: detecting the correct intrinsic dimension, gen-
erating high-quality samples, and obtaining small reconstruc-
tion errors. The programming code to reproduce the experiment
results is available at https://github.com/yixuan/LWGAN.

5.1. Simulated Experiments

We first verify our method using three toy examples supported
on manifolds with increasing dimensions. Besides the S-curve
data introduced in Section 2, the other two datasets are gener-
ated as

1. Swiss roll: X1 = V cos(V), X2 = V sin(V), where V =
3π(1 + 2U)/2, U ∼ N(0, 1).

2. Hyperplane: X1,X2,X3,X4
iid∼ N(0, 1), X5 = X1 + X2 + X3 +

X2
4.

The scatterplots for the three datasets are shown in the first
column of Figure 2. It is straightforward to find that the intrinsic
dimensions of the Swiss roll, S-curve, and Hyperplane datasets
are one, two, and four, respectively.

We then use Algorithm 1 to estimate the encoder Q and
generator G for each dataset. The gradient penalty parameter
is fixed to λGP = 5, and the rank regularization parameter is
chosen using the method introduced in Section 3.4. After each
model is trained to convergence, we compute the rank scores
�̂n(s) defined in (7) for each s, and their values are plotted in the
second column of Figure 2. From the plots we can find that the
minimizers of �̂n(s) are consistent with the corresponding true
intrinsic dimensions, which validate that LWGANcan detect the
manifold dimensions of the data distributions. In Section S2.4
of the supplementary material, we also design a bootstrap-type
experiment to quantify the uncertainty of the estimation results.

In addition, the third and fourth columns of Figure 2 demon-
strate the model-generated points G(Z) ≡ G(AZ0) and auto-
encoder-reconstructed dataG(Q(X)), respectively. Clearly, all of
the plots show a high quality of the generated distribution PG(Z)

and a small reconstruction error ‖X − G(Q(X))‖.

https://github.com/yixuan/LWGAN
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Figure 2. Simulated data supported on manifolds and the demonstrations of the fitted LWAGNmodels.

5.2. MNIST

MNIST (LeCun et al. 1998) is a large dataset of handwritten 0–
9 digits commonly used for training various image processing
systems. The training set of MNIST contains 60,000 images,
each consisting of 28 × 28 gray-scale pixels. It was shown that
different digits have different intrinsic dimensions (Costa and
Hero 2006), so the distribution ofMNISTdatamay be supported
on several disconnectedmanifolds with various intrinsic dimen-
sions.

We first train models on digits 1 and 2 separately using a 16-
dimensional latent variable, and the gradient penalty parameter
is fixed to λGP = 5. The true sample, estimated rank scores,
generated sample, and reconstructed sample for each digit are
given in Figure 3. The rank score plots show that our estimation
of the intrinsic dimension of digit 1 is 8, whereas the estimation
of digit 2 is 12. These estimates are consistent with those of Costa
and Hero (2006), which states that digit 1 exhibits a dimension
estimate between 9 and 10, and digit 2 has a dimension estimate
between 12 and 14.

We further estimate the intrinsic dimension of all digits from
MNIST, using a similar training scheme and parameter setting,
except that the maximum latent dimension is set to 20. The
results for the common tasks same as above are shown in Fig-
ure 4, which suggest that the intrinsic dimension of all digits is
around 16. Moreover, we also test the interpolation between two
digits in the latent space. In particular, we sample pairs of testing
images x1 and x2, and project them onto the latent space using
the encoder Q, obtaining latent representations z1 = Q(x1) and
z2 = Q(x2). We then linearly interpolate between z1 and z2,
and pass the intermediary points through the generator G to
visualize the observation-space interpolations. The results are
also displayed in Figure 4, which suggest that our model can get
rid of mode collapsing issues.

5.3. CelebA

CelebA (Liu et al. 2015) is another benchmark dataset for train-
ing models to generate synthetic images. It is a large-scale face
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Figure 3. Digits 1 (top row) and 2 (bottom row) of the MNIST data, and the demonstrations of the fitted LWAGNmodels.

Figure 4. MNIST data with all digits and the demonstrations of the fitted LWAGNmodel.

attributes dataset with 202,599 color celebrity face images, which
cover large pose variations. We preprocess the data by detecting
the bounding box of face region in each image, cropping images
to the bounding boxes, and resizing each image to 64 × 64
pixels. The preprocessing step has the effect of aligning the
face region of each image, after which we obtain a sample of
16,055 aligned face images. Ademonstration of the preprocessed
CelebA images is shown in Figure 5(a).

We train CelebA using a latent dimension d = 128,
and the rank score plot in Figure 5(b) shows that the esti-
mated intrinsic dimension is 34. We then compare LWGAN
with other generative models including WGAN, WAE, and
CycleGAN (Zhu et al. 2017) both visually and numerically.
In particular, the CycleGAN model introduces a cycle consis-
tency loss based on the �1-norm to push G(Q(X)) ≈ X and
Q(G(Z)) ≈ Z.
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Figure 5. True sample of the preprocessed CelebA dataset and the rank score plot to estimate the intrinsic dimension.

Figure 6. Generated images of WGAN, WAE, CycleGAN, and LWGAN trained from the CelebA dataset.

The generated images from the fourmodels are demonstrated
in Figure 6. For LWGAN, the images are generated as G(AsZ0),
Z0 ∼ N(0, Id), wherewe consider different ranks s = 16, 34, 128.
The other threemethods generate images asG(Z), Z ∼ N(0, Id).
We show the reconstructed images G(Q(X)) in Figure 7, and
demonstrate the interpolation results in Figure 8. For these two
tasks we exclude WGAN, since it does not have an encoder.

Figures 6 and 7 show that LWGAN is able to generate high-
quality images as long as the rank of As is larger than or equal
to the intrinsic dimension, and an insufficient rank results in a
low quality. This validates our claims in Theorem 1 and Corol-
lary 1. The generated images from the other three models have
different levels of blur and distortion, especially for WAE. In
Figure 7, we find that WAE has a good reconstruction quality,
so its low generation quality may be due to the dimension

mismatch between PQ(X) and PZ . On the other hand, Cycle-
GAN has a better generation quality than WAE, but it has a
large reconstruction error. As a result, its reconstructed images
are blurry, and it also loses many details in the interpolated
images.

Finally, we numerically compare these methods with respect
to three metrics: the inception scores (IS, Salimans et al. 2016),
the Fréchet inception distances (FID, Heusel et al. 2017), and the
reconstruction errors. IS uses a pre-trained Inception-v3 model
to predict the class probabilities for each generated image, and
FID improves IS by directly comparing the statistics of generated
samples to real samples. For IS, higher scores are better, and for
FID, lower is better. The reconstruction error is used to evaluate
whether the model generates meaningful latent codes and has
the capacity to recover the original information. The detailed
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Figure 7. Reconstructed images of CelebA dataset.

Figure 8. Interpolation of CelebA dataset.

Table 1. Numerical comparison of LWGAN, CycleGAN, WAE, and WGAN.

Methods IS ↑ FID ↓ Reconstruction error ↓
True 2.07 (0.04) 2.77 –
LWGAN, s = 16 1.62 (0.02) 40.98 14.95 (3.59)
LWGAN, s = r̂ = 34 1.66 (0.03) 32.79 8.19 (1.54)
LWGAN, s = 64 1.70 (0.03) 31.21 8.15 (1.54)
LWGAN, s = 128 1.71 (0.03) 31.56 8.15 (1.54)
CycleGAN 1.54 (0.02) 42.76 20.73 (4.40)
WAE 1.59 (0.04) 51.10 7.53 (1.35)
WGAN 1.50 (0.03) 31.60 –

NOTE: The values in the parentheses are standard deviations.

descriptions of these three metrics are provided in Section S2.2
of the supplementary material.

Table 1 shows the values of these metrics on each trained
model, with numbers in bold fonts indicating the best model
for the corresponding metric, excluding the ground truth. The
numerical results are consistent with our qualitative findings in
Figures 6–8. Specifically, WGAN and LWGAN have relatively
higher generation quality than the other two models, measured
by IS and FID. WAE has a small reconstruction error, but
its generation quality is low. On the contrary, CycleGAN has
moderate generation quality but large reconstruction errors. For
LWGAN, an insufficient rank s results in poor generation and
reconstruction quality, butmodels with ranks larger than r̂ = 34
have good overall performance. We can also find that with the
estimated rank s = r̂ = 34, LWGAN can achieve similar
performance as the case of s = d = 128, but choosing s to be
the intrinsic dimension can greatly reduce themodel complexity
without sacrificing the model accuracy. Overall, the proposed
LWGAN is able to produce meaningful latent code and generate
high-quality images at the same time, and it is the only one
among all themethods compared that is capable of detecting the
intrinsic dimension of data distributions.

6. Conclusion

We have developed a novel LWGAN framework that enables us
to adaptively learn the intrinsic dimension of data distributions
supported on manifolds. This framework fuses WAE and
WGAN in a principled way, so that the model learns a latent
normal distributionwhose rank is consistentwith the dimension
of the data manifold. We have provided theoretical guaran-
tees on the generalization error bound, estimation consistency,
and dimension consistency of LWGAN. Numerical experiments
have shown that the intrinsic dimension of the data can be
successfully detected under several settings on both synthetic
datasets and benchmark datasets, and themodel-generated sam-
ples are of high quality.

A potential future direction of LWGAN is to investigate a
more general scenario where the generator G is stochastic. This
can be achieved by adding an extra noise vector to the input
of G. In addition, it is interesting to incorporate the stochastic
LWGAN into somemore recent GANmodules such as BigGAN
(Brock, Donahue, and Simonyan 2019), so that high-resolution
and high-fidelity images can be produced along with the estima-
tion of the intrinsic dimension.

The new LWGAN framework has many potential applica-
tions in other fields. For example, LWGANcan be used for struc-
tural estimation, which is a useful tool to quantify economic
mechanisms and learn about the effects of policies that are yet to
be implemented (Wei and Jiang 2022). An economic structural
model specifies some outcome g(x, ε; θ) that depends on a set of
observables x, unobservables ε, and structural parameters θ . The
function g can represent a utilitymaximization problemor other
observed outcomes. Under many scenarios, the likelihood func-
tion and moment functions are not easy to obtain. This makes
the maximum likelihood estimator and generalized method of
moments infeasible, and other simulation-based methods can
cause additional computational burden. By training LWGANon
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the data from (x, y), we are able to adaptively learn the data
representation by the encoder Q, instead of using moments.
At the same time, we are able to boost the sample size by the
generatorG. By comparing the generated data (x, g(x, ε; θ)) and
the observed data (x, y) in the latent space, we can estimate θ

efficiently.

Supplementary Materials

The supplementary materials include additional experiment details and the
proofs of theorems in the main article.
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