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Abstract. Intra-operative data captured during image-guided surgery 
lacks sub-surface information, where key regions of interest, such as ves-
sels and tumors, reside. Image-to-physical registration enables the fusion 
of pre-operative information and intra-operative data, typically repre-
sented as a point cloud. However, this registration process struggles due 
to partial visibility of the intra-operative point cloud. In this research, 
we propose a patient-specific point cloud completion approach to assist 
with the registration process. Specifically, we leverage VN-OccNet to 
generate a complete liver surface from a partial intra-operative point 
cloud. The network is trained in a patient-specific manner, where sim-
ulated deformations from the pre-operative model are used to train the 
model. First, we conduct an in-depth analysis of VN-OccNet’s rotation-
equivariant property and its effectiveness in recovering complete sur-
faces from partial intra-operative surfaces. Next, we integrate the com-
pleted intra-operative surface into the Go-ICP registration algorithm to 
demonstrate its utility in improving initial rigid registration outcomes. 
Our results highlight the promise of this patient-specific completion app-
roach in mitigating the challenges posed by partial intra-operative vis-
ibility. The rotation equivariant and surface generation capabilities of 
VN-OccNet hold strong promise for developing robust registration frame-
works for variations of the intra-operative point cloud. 

Keywords: Image-guided liver surgery · point cloud completion · pre-
to intra-operative registration 

1 Introduction 

Registration methods play a vital role during image-guided interventions in 
assisting surgeons to target the key regions of interest, such as tumors and ves-
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sels, that lie beneath the organ surface. Image-to-physical registration aligns pre-
operative Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) 
data, represented as a point cloud or mesh, to intra-operative data acquired using 
surgical tracking devices or cameras, often represented as a point cloud [ 4, 17]. 
However, the registration [ 3, 17] faces challenges caused by the partial intra-
operative visibility that arises due to constrained camera viewpoints and occlu-
sions [ 3, 5, 7]. Therefore, it is necessary to address the issue of partial visibility, 
which prevents registration methods from performing with sufficient accuracy. 

The reconstruction of an intra-operative 3D liver surface from a partially 
visible surface has the potential to mitigate the partial visibility issue faced by 
registration methods. Toward this effort, Jia et al. [ 5] proposed a non-rigid regis-
tration framework that integrates a learning-based point completion network to 
generate a complete surface from sparse intra-operative data to guide non-rigid 
registration. However, the proposed method still requires a rigid registration 
as the initialization. Foti et al. [ 2] adopted a Variational Autoencoder on pre-
operative models to generate a full liver surface from a partial point cloud, which 
undergoes an iterative optimization procedure to generate an intra-operative sur-
face. However, this approach also requires manually identified correspondences 
between the generated mesh and the intra-operative point cloud, which is non-
trivial. 

In this work, we propose a patient-specific pipeline to improve image-to-
physical registration (and hence pre- to intra-operative registration) by complet-
ing partial intra-operative liver surfaces. The pipeline leverages a vector neuron-
based occupancy network (VN-OccNet [ 1]) to recover a complete liver mesh from 
a partial intra-operative point cloud. VN-OccNet offers two key advantages for 
the registration: (1) rotation equivariance, which addresses the failure of con-
ventional models under varying orientations of intra-operative data [ 12], and (2) 
the ability to generate watertight meshes rather than point clouds, enabling uni-
form surface sampling—a crucial feature for registration methods requiring con-
sistent point density [ 15, 17]. We adopt a patient-specific training strategy that 
synthesizes intra-operative liver surfaces by deforming a pre-operative patient-
specific liver model, hence allowing the model to focus on patient-specific geome-
try and deformation patterns. We first evaluate VN-OccNet’s ability to generate 
rotation-equivariant surfaces across diverse rotation settings. We then compare 
registration outcomes using completed surfaces against those using only partial 
point clouds. Results show that the reconstructed surfaces significantly reduce 
registration error, highlighting the benefit of surface completion towards enhanc-
ing registration accuracy. 

2 Methodology 

2.1 Problem Definition 

We define the intra-operative partial liver point cloud as the target point cloud 
T = {ti}

N 
i=1 ∈ R3 and the pre-operative liver point cloud as the source point 

cloud S = {si}
M 
i=1 ∈ R3. Let  fθ(xi, z) denote the trained VN-OccNet, where θ
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Fig. 1. Overview diagram of proposed pipeline: The target point cloud is input to 
the trained VN-OccNet to output occupancy points (magenta). An integrated mesh 
generation reconstructs a mesh from the predicted occupancy. The mesh vertices are 
extracted to represent the complete target point cloud and registered with a source 
point cloud. (Color figure online) 

represents the learned parameters, xi represents the ith query point, and z is 
the latent representation of T . The solution is to utilize fθ(xi, z) to reconstruct 

a complete estimate of the target point cloud, denoted as �T , and subsequently 
perform registration with S. 

2.2 Proposed Pipeline 

Our proposed pipeline illustrated in Fig. 1 consists of three key stages: (1) Gener-
ation of occupancy points from a target point cloud using VN-OccNet, (2) Mesh 
construction from the predicted occupancy points, and (3) Registration, where 
the complete target point cloud (obtained by extracting vertices from the gener-
ated mesh) is aligned with the source point cloud using the Go-ICP registration
method. 

Vector Neuron Occupancy Network (VN-OccNet): To accomplish the 
rotation-equivariant point cloud completion task, VN-OccNet [ 1] leverages the 
original OccNet architecture [ 10], with a vector-based equivariant encoder. The 
decoder is invariant, where all the operations are non-vector. The target point 
cloud T = {ti}

N 
i=1 ∈ R3 is input to the encoder network, and outputs equivariant 

latent vector-list features z. The query set X = {xi}
K
i=1 ∈ R3, set of points that 

encloses the liver, and latent feature z are input to the decoder network to output 
the occupancy probabilities between 0 and 1. Points with probability greater 
than or equal to a threshold c correspond to occupancy points that implicitly 
represent the liver surface. Since VN-OccNet aims to predict whether or not 
each point in the query point set corresponds to a liver surface point, binary 
cross-entropy classification loss is utilized to learn the parameters θ.
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Mesh Generation: Meshes are constructed by first identifying the voxels that 
intersect the liver surface using the Multiresolution Isosurface Extraction (MISE) 
algorithm [ 10]. The algorithm starts with a fixed query set with an initial resolu-
tion of 323, consisting of 313 voxels, each containing 8 points. For all 323 points 
in the query set, the occupancy probability is determined using the trained VN-
OccNet. The points inside the surface are identified by applying a threshold value 
of c = 0.4. Voxels that are entirely inside or outside the surface are separated 
from the surface-intersecting voxels by checking if at least two adjacent points 
of a voxel differ in occupancy (i.e., one point is inside and the other is outside). 
Each such ambiguous voxel that intersects the surface is further subdivided into 
8 subvoxels, generating 19 additional points. The VN-OccNet is queried again 
to find the occupancy probability for the newly generated query points. This 
process is repeated until all ambiguous regions have been subdivided down to 
the finest voxel grid resolution of 1283. Finally, the surface-intersecting voxels 
obtained are passed to the Marching Cubes algorithm [ 8] to generate the surface 
mesh. 

Rigid Registration Using Go-ICP: To evaluate the effectiveness of incorpo-
rating the complete intra-operative target surface generated from using the pro-
posed protocol into the registration, we utilize the Go-ICP registration algorithm 
[ 15] to compare the registration outcomes between using the initial, incomplete 
target point clouds and the complete intra-operative surface meshes generated 
using the proposed method. 

For the remainder of the manuscript, we refer to these registrations as regis-
tration w/ surface completion (when the complete surface mesh is utilized) and 
registration w/o surface completion (when only the original partial point cloud is 
utilized). The registration algorithm yields the transformation (T), which aligns 
the source point cloud to the target point cloud. 

3 Experiments 

3.1 Datasets 

The experiments utilize the following datasets: an in silico phantom dataset is 
used to train and test VN-OccNet, and an in vitro phantom dataset is used to 
assess the registration performance. 

In Silico Phantoms: We used the undeformed No. 1 synthetic phantom con-
structed based on a patient-specific CT image according to the methods proposed 
by Yang et al. [ 18] briefly described in further detail in the next sub-section. To 
simulate deformed models, the deformation simulation pipeline described in [ 11] 
is followed, which models the liver as a neo-Hookean hyperelastic material with a 
Young’s modulus of 2–5 kPa and a Poisson’s ratio of 0.35. Three forces of magni-
tude up to 3N and zero boundary conditions, along with the material properties, 
were input to the finite element solver to output deformed liver models. The com-
plete target point clouds are obtained by extracting the mesh vertices. In total, 
4,969 deformed models were generated.
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Training an occupancy network requires transforming liver models into a 
representation comprising a liver point cloud, a set of query points enclosing 
the liver, and corresponding occupancy values that indicate whether each query 
point lies inside or outside the liver surface. We followed the pipeline of Stutz 
et al. [ 12] to generate this data format. The generated data was divided into 
training, validation, and testing sets with a ratio of 8:1:1. 

In Vitro Phantoms: We used the in vitro phantom dataset described and 
released in [ 18], which includes four pairs of underformed and deformed models. 
Phantoms were manufactured using synthetic gelatin (Humimic Gelatin # 0, 
Humimic Medical, Fort Smith, AK, USA) poured into a 3D-printed mold gener-
ated [ 9] from a patient-specific liver model obtained from OpenHELP [ 6]. They 
were deformed by placing wedges of different gradients underneath part of the 
liver phantom. The surfaces and fiducial marker locations are segmented from 
CT scans. As Go-ICP requires a long time to estimate rigid registration, we 
utilized No. 1 and No. 3 phantoms within the dataset in this work, as shown in 
Fig. 2. No. 1 and No. 3 phantoms feature 53 and 176 fiducials, respectively. 

Fig. 2. The purple phantoms in (a) and (b) represent the undeformed No. 1 and phan-
tom No. 3, respectively, while the blue phantoms represent their deformed counterparts. 
(Color figure online) 

3.2 VN-OccNet Training and Testing Setup 

Target Point Cloud Generation: In training, target point clouds are dynam-
ically generated from the complete point clouds. First, we crop the posterior sur-
faces of the deformed liver models. The anterior surface points are then down-
sampled to D points. A viewpoint is randomly selected, and the N nearest 
surface points relative to this viewpoint are extracted to create the target point 
cloud. For testing, we follow the approach proposed in [ 19] to simplify the qual-
itative analysis, where five distinct viewpoints are selected for each liver model, 
as illustrated in Fig. 3. 

Rotation Setup: VN-OccNet is trained in three different modes based on the 
rotation imposed on the target point clouds: without any imposed rotations, 
with rotations restricted to the Z-axis, and with SO(3) rotations. We imposed 
random rotations within the range [−π 

2 
, π 
2 
] for Z-axis and SO(3) rotation modes.
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In the non-rotation mode, all target point clouds are aligned and share the same 
pose. The evaluation involves four train/test rotation settings: I/I, where both 
training and testing are conducted on non-rotated target point clouds; Z/Z, 
where both training and testing involve rotations of target point clouds along 
the Z-axis; Z/SO(3), where training is performed with Z-axis rotations, while 
testing involves SO(3) rotations; and SO(3)/SO(3), where both training and 
testing involve SO(3) rotations. 

Fig. 3. Visualization of five target point clouds generated for each intra-operative liver 
model during testing. Each target is captured from a unique viewpoint, with different 
regions of the liver obscured to mimic varying intra-operative visibility. 

3.3 VN-OccNet Implementation 

We employed the PyTorch implementation of the VN-OccNet by Deng et al. [ 1]. 
The anterior liver points were downsampled to D = 1000, and  N = 300 nearest 
points from the viewpoint were chosen to create the target liver point cloud, 
yielding a surface visibility of approximately 30%. The network was trained with 
a batch size of B = 8  and a learning rate of 0.0001, using the Adam optimizer. 
The optimal threshold value c was determined to be 0.4 based on the validation 
dataset. Training was performed for 604 epochs on a NVIDIA A100 GPU, with 
all other hyperparameters kept unchanged from the original implementation. To 
verify the rotation equivariance property, we further compared VN-OccNet with 
OccNet [ 10], which does not include rotation equivariance design.
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3.4 Registration Evaluation Setup 

In a manner similar to the five target point clouds generated for each liver model 
during testing in the previous Subsect. 3.2, five target point clouds are generated 
for each in vitro phantom (No. 1 and No. 3) to perform registration. A set of 
100 random SO(3) rotations within the range [− π 

2 
, π 
2 
] are applied to the target 

point clouds, resulting in 500 target point clouds at different orientations for 
each phantom. Registration w/ surface completion is performed by utilizing the 
complete target point clouds reconstructed from target point clouds featuring 
a minimum of 30% visibility. To test the influence of the increment of surface 
coverage, registration w/o surface completion was performed at three different 
visibilities of the target point cloud at around 30%, 40%, and  50% by varying 
the value of D, where  D = 1000, 750, and 600, respectively. 

3.5 Evaluation Metrics 

Chamfer Distance (CD-L2), F-Score, and Intersection over Union (IoU) were 
used to evaluate the performance of complete target surface generation. More-
over, the Target Registration Error (TRE) computed across a set of fiducials 
was used to assess registration performance. 

CD-L2 measures the bidirectional similarity between the complete generated 
target and ground truth target points: 

dCD( T̂ , G) =  
1 

|T |

�

t̂∈ ̂T 

min 
g∈G

�t̂ − g�2 + 
1 

|G|

�

g∈G 

min 
t̂∈P

�g − ̂t�2, (1) 

where | ̂T |  and |G| represent the total number of points in the complete generated 
target and ground truth target point cloud, respectively, and dCD( T̂ , G) denotes 
the Chamfer Distance between the point sets T̂ and G. 

The F-Score measures the quality of the reconstructed surface by balancing 
precision P (d) and recall R(d). Precision measures the fraction of complete target 
points that lie within a threshold d = 1  mm  of the nearest ground truth target 
points, and recall measures the fraction of ground truth target points that lie 
within d of the nearest complete target points: 

F-Score(d) =  
2P (d)R(d) 

P (d) +  R(d) 
. (2) 

IoU measures the ratio of the intersection to the union of the occupancy 
values of the generated and ground truth targets, as defined in Eq. (3): 

IoU = 
|occgt ∩ occpred| 

|occgt ∪ occpred| 
, (3) 

where occgt and occpred represent the ground truth and predicted occupancy 
values, respectively, and | · |  denotes the number of true occupancy labels.
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TRE measures the Euclidean distance between the estimated target fiducial 
markers Ftgt,i and the transformed source fiducial markers T(Fsrc,i): 

TRE = 
1 

F 

F�

i=1

�Ftgt,i − T(Fsrc,i)�2, (4) 

where F is the total number of fiducial markers. 

4 Results 

4.1 Mesh Construction Results 

Table 1 presents the performance of the intra-operative surface completion for 
OccNet and VN-OccNet across four different train/test configurations: I/I, Z/Z, 
Z/SO(3), and SO(3)/SO(3). OccNet achieves the best performance across all 
metrics in the I/I setting. However, its performance significantly deteriorates 
when tested with target liver point clouds with rotations along the Z-axis and 
SO(3). 

Table 1. Performance of OccNet and VN-OccNet: I/I represents training and testing 
without any rotations of target point cloud, Z/Z denotes training and testing with 
rotations along the Z-axis, Z/SO(3) involves training with Z-axis rotations and testing 
with SO(3) rotations, and SO(3)/SO(3) refers to both training and testing with SO(3) 
rotations. CD-L2 and IoU represent the Chamfer Distance (in mm) and Intersection 
over Union. 

I/I Z/Z Z/SO(3) SO(3)/SO(3) 

OccNet 

F-Score 0.57 ± 0.20 0.47 ± 0.17 0.07 ± 0.07 0.33 ± 0.12 

CD-L2 2.75 ± 1.52 3.51 ± 1.88 29.43 ± 13.41 4.87 ± 2.27 

IoU 0.89 ± 0.06 0.86 ± 0.07 0.35 ± 0.18 0.18 ± 0.07 

VN-OccNet 

F-Score 0.52 ± 0.17 0.51 ± 0.18 0.51 ± 0.18 0.50 ± 0.18 

CD-L2 3.30 ± 1.91 3.29 ± 1.89 3.25 ± 1.83 3.41 ± 2.02 

IoU 0.87 ± 0.07 0.87 ± 0.07 0.87 ± 0.06 0.86 ± 0.07 

While data augmentation along SO(3) improves performance to some extent, 
it remains impractical to encode all possible SO(3) rotations during train-
ing, making the model susceptible to failure when encountering unseen liver 
poses during testing. Although VN-OccNet does not outperform OccNet in 
the I/I setting, it maintains consistent performance across Z/Z, Z/SO(3), and 
SO(3)/SO(3), demonstrating robustness to rotations. 

Unlike OccNet, VN-OccNet does not show performance improvement due 
to data augmentation, indicating that its inherent rotation-equivariant prop-
erties reduce reliance on augmented training data. The statistical significance
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Fig. 4. Visualization of mesh reconstruction results: The first column displays the 
target input point clouds alongside the ground truth target mesh. The second column 
presents the complete target liver surfaces generated by OccNet and VN-OccNet. Qual-
itative results are shown for four train/test configurations: I/I (first row), where both 
training and testing involve non-rotated target point clouds; Z/Z (second row), where 
training and testing are restricted to Z-axis rotations; Z/SO(3) (third row), where 
training uses Z-axis rotations and testing employs SO(3) rotations; and SO(3)/SO(3) 
(fourth row), where both training and testing involve SO(3) rotations. 

of OccNet and VN-OccNet performance was evaluated by comparing all three 
evaluation metrics using a Wilcoxon Rank Sum test at a significance level of 
α = 0.05. The test yielded p-values less than α (p < α), confirming that the per-
formance differences between VN-OccNet and OccNet across various train/test 
setups are statistically significant. 

Figure 4 presents the target point clouds, ground truth target mesh surfaces, 
and complete target mesh surfaces generated by OccNet and VN-OccNet across 
four different train/test configurations: I/I, Z/Z, Z/SO(3), and SO(3)/SO(3). 
The performance gap in surface generation is evident in the Z/SO(3) case, where 
OccNet struggles to generate a target mesh surface that accurately resembles the
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ground truth target mesh. In the SO(3)/SO(3) setting, the mesh generated by 
OccNet lacks the correct geometry, indicating an incorrect reconstruction. In 
contrast, the mesh generated by VN-OccNet is able to capture correct geometry 
and better alignment of the target point cloud with the reconstructed mesh. 

4.2 Go-ICP Registration Results 

Table 2 summarizes the Target Registration Error (in mm) measured between 
target fiducial markers and source fiducial markers. The measurements are 
reported for registration w/ and w/o surface completion. The registration w/o 
surface completion is performed using the target point clouds at three visibility 
levels (30%, 40%, and  50%), and registration w/ surface is performed using the 
completed surface meshes generated from the 30% visible target point clouds. 

Table 2. Target Registration Error (TRE) (in mm) measured between target fiducial 
markers and transformed source fiducial markers for phantoms No. 1 and No. 3. For 
registration w/o surface completion, TRE is evaluated at intra-operative visibility levels 
of 30%, 40%, and  50%. For registration w/ surface completion, the full surfaces are 
reconstructed from the target point clouds with 30% visibility. 

Phantom W/O surface completion W/ surface completion 

30% Visibility 40% Visibility 50% Visibility

No. 1 33.13 ± 13.89 30.39 ± 12.60 26.04 ± 7.81 5.19 ± 1.34 

No. 3 39.87 ± 15.07 32.79 ± 14.97 25.87 ± 10.36 3.35 ± 0.61 

The registration for phantom No. 1 yields the TRE of 33.13 ± 13.89 mm 
for the 30% visibility of target point clouds. However, when using the complete 
target point clouds generated from the same 30% visible target, the TRE sig-
nificantly decreased to 5.19 ± 1.34 mm. This notable improvement demonstrates 
the effectiveness of VN-OccNet’s surface completion in enhancing registration 
performance. Furthermore, as the visibility of the target point clouds increased, 
TRE progressively decreased, confirming that a lower visibility ratio leads to 
higher registration errors. 

A Wilcoxon Rank Sum test, conducted at a significance level of α = 0.05, 
showed statistically significant differences (p < α) between the three cases of 
registration w/o surface completion and registration w/ surface completion. 

Figure 5 displays the results for registration w/ surface completion and w/o 
surface completion for in vitro phantom No. 1 and No. 3. The registration w/o 
surface completion struggles to find the correct alignment between the source 
and target point clouds. The incorrect registration is evident when the complete 
ground truth target is overlaid onto the registered results. However, registration 
w/ surface completion is able to correctly align the source and target point 
clouds.
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Fig. 5. The registration results are displayed for the source point cloud (purple) and 
the target point cloud (blue) for phantoms No. 1 and No. 3. For easy visualization, the 
source point cloud is fixed and the target point clouds are moving. The first column 
represents the initial position of the source and target point clouds. The second column 
displays the registered results. To see the correctness of the registration, the third 
column overlays the ground truth target point cloud (yellow). The registrations are 
performed using partial surface (30% visibility) and full surface generated from the 
same partial surface. (Color figure online) 

Similarly, Fig. 6 shows the registration between source and target fiducial 
markers for phantom No. 1 and phantom No. 3. The transformations were deter-
mined using a target point cloud with 30% visibility for registration w/o surface 
completion and a reconstructed completed surface mesh from the same target 
point cloud for registration w/ surface completion. For the registration w/o 
surface completion, the registered source fiducial markers are misaligned with 
respect to the target fiducial markers. In contrast, in registration w/ complete 
surface, the source and target fiducial markers are closely aligned, demonstrating 
improved registration.
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Fig. 6. Visualization of target fiducial markers (purple) and registered source fiducial 
markers (blue) for in vitro phantom No. 1 and No. 3. The target point clouds utilized 
for registration w/o surface completion have 30% visibility, and the full point clouds 
are reconstructed from the same targets for registration w/ surface completion. The 
ground truth target liver surface is overlaid for improved visualization. (Color figure 
online) 

5 Discussion 

The partial visibility of intra-operative point clouds poses challenges for both 
initial rigid and non-rigid registration methods in image-guided liver surgery. To 
address this issue, we propose a patient-specific, learning-based surface comple-
tion approach. In this work, we initially validate the effectiveness of this approach 
in facilitating the initial rigid registration. 

Initial rigid registration has relied on global optimization techniques [ 15] and  
the establishment of reliable correspondences using handcrafted [ 13] or learning-
based methods [ 17]. However, these approaches are often sensitive to partial liver 
surfaces and inconsistent point cloud densities. In contrast, our method tackles 
the problem at its root by employing surface completion through learning-based 
techniques. Unlike previous completion approaches that require rigid initializa-
tion [ 5] or manual interaction [ 2], our method operates without such depen-
dencies. We utilize a vector-based occupancy network—VN-OccNet—due to its 
robustness to rotation and its ability to generate watertight meshes in just 0.25 
seconds per mesh, making it a strong candidate for this task. 

We first verify the rotation-equivariance property of VN-OccNet, which is 
essential for our application. Recent work [ 12] evaluated several widely used 
point completion methods and found them unsuitable for this task. We compared 
VN-OccNet with the original OccNet, which lacks a rotation-invariant design, 
under various training and testing conditions, using extensive quantitative and 
qualitative evaluations. Furthermore, we assessed registration performance by 
integrating completed surfaces with Go-ICP, a method known for its robustness 
to partial visibility [ 16]. Results show that our reconstructed surfaces signifi-
cantly reduce registration errors, demonstrating the value of surface completion 
in improving registration accuracy. However, Go-ICP, which takes approximately 
16 s per registration, is computationally intensive, suggesting that integrating
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surface completion directly into learning-based registration methods may offer a 
more efficient solution. 

An additional challenge lies in the variation of liver geometries across differ-
ent patients, which can hinder surface completion. To overcome this, we adopt 
a patient-specific training strategy that simulates intra-operative surfaces by 
deforming a pre-operative patient-specific liver model. This approach enables 
the network to learn patient-specific geometries and deformation patterns. Our 
results show that this strategy allows the model to generalize effectively to real-
istic deformations observed in in vitro phantoms. Nonetheless, the requirement 
to train a new model for each patient may limit its practicality in resource-
constrained environments. 

It is also important to note that real intra-operative data may exhibit more 
complex patterns, such as noise, holes, and occlusions, than those seen in our sim-
ulations. This discrepancy poses a challenge for learning-based methods, which 
generally assume the test data distribution is similar to that of the training 
data. As such, improving generalization to diverse, realistic intra-operative point 
clouds remains an open challenge. 

6 Conclusion and Future Work 

This paper presents a pipeline that incorporates VN-OccNet to generate a com-
plete liver surface from partial intra-operative point cloud data, using the recon-
structed surface for subsequent registration. We demonstrate the effectiveness of 
VN-OccNet in producing accurate and complete surface reconstructions, which 
significantly enhance registration performance. While partial intra-operative 
data typically hampers the accuracy of most registration methods, our results 
indicate that the proposed pipeline provides a promising solution to this chal-
lenge. 

In future work, we plan to investigate the integration of surface completion 
with non-rigid registration, explore patient-generic surface completion strategies, 
incorporate completion into end-to-end learning-based registration pipelines, and 
develop a more robust simulation pipeline capable of generating realistic intra-
operative point clouds with noise, holes, and occlusions. 
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