
Proceedings of Machine Learning Research vol 291:1–52, 2025 38th Annual Conference on Learning Theory

Tight Bounds for Noisy Computation of High-Influence Functions,

Connectivity, and Threshold

Yuzhou Gu YUZHOUGU@NYU.EDU

New York University

Xin Li LIXINTS@CS.JHU.EDU

Johns Hopkins University

Yinzhan Xu XYZHAN@UCSD.EDU

University of California, San Diego

Editors: Nika Haghtalab and Ankur Moitra

Abstract

The noisy query model (a.k.a. noisy decision tree model) was formally introduced by (Feige,

Raghavan, Peleg and Upfal, SICOMP 1994). In this model, the (binary) return value of every

query (possibly repeated) is independently flipped with some fixed probability p ∈ (0, 1/2). The

noisy query complexity (a.k.a. noisy decision tree complexity) is the smallest number of queries an

algorithm needs to make to achieve error probability f 1
3 .

Previous works often focus on specific problems, and it is of great interest to have a character-

ization of noisy query complexity for general functions. We show that any Boolean function with

total influence Ω(n) has noisy query complexity Ω(n log n), matching the trivial upper bound of

O(n log n). Our result is the first noisy query complexity lower bound of this generality, beyond

what was known for random Boolean functions (Reischuk and Schmeltz, FOCS 1991).

Our second contribution is to determine the asymptotic noisy query complexity of the Graph

Connectivity problem. In this problem, the goal is to determine whether an undirected graph is

connected, where each query asks for the existence of an edge in the graph. A simple algorithm can

solve the problem with error probability o(1) using O(n2 log n) noisy queries, but no non-trivial

lower bounds were known prior to this work. We show that any algorithm that solves the problem

with error probability f 1
3 uses Ω(n2 log n) noisy queries.

For the proofs of the above lower bounds, we develop a three-phase method, which is a re-

finement of the two-phase method of (Feige, Raghavan, Peleg and Upfal, SICOMP 1994). Our

three-phase method adds an extra step where carefully designed “free” information is disclosed to

the algorithm. This way, we can precisely control the posterior distribution of the input given the

query results, empowering a more refined analysis.

Last but not least, we determine the exact number of noisy queries (up to lower order terms)

needed to solve the k-Threshold problem and the Counting problem. The k-Threshold prob-

lem asks to decide whether there are at least k ones among n bits, given noisy query access

to the bits. We prove that (1 ± o(1))n log(min{k,n−k+1}/δ)

(1−2p) log 1−p

p

queries are both sufficient and nec-

essary to achieve error probability ¶ = o(1). Previously, such a result was only known when

min{k, n − k + 1} = o(n) (Wang, Ghaddar, Zhu and Wang, ALT 2025). We also show a similar

(1± o(1))n log(min{k+1,n−k+1}/δ)

(1−2p) log 1−p

p

bound for the Counting problem, where one needs to count the

number of ones among n bits given noisy query access and k denotes the answer.

Keywords: noisy computation, total influence, connectivity, k-threshold, counting

© 2025 Y. Gu, X. Li & Y. Xu.

GU LI XU

1. Introduction

Fault tolerance is a crucial feature of algorithms that work on large systems, as errors are unavoid-

able. Hence, previous studies have considered various models to capture the effect of errors, such as

the Rényi–Ulam game (Rényi, 1961; Ulam, 1976), independent noise models (Feige et al., 1994),

and independent noise models without resampling (Braverman and Mossel, 2008).

(Feige et al., 1994) formally proposed the noisy query model with independent noise, which

they call the noisy Boolean decision tree model or the noisy comparison tree model, depending on

whether the problem uses point queries to input bits or comparison queries between input elements.

In this model, each query returns one bit that is independently flipped with some fixed probability

p ∈ (0, 12) (i.e., independent noise), and repeated queries are allowed. The efficiency of an algorithm

is measured in terms of the number of queries it makes. (Feige et al., 1994) showed tight asymptotic

bounds for the noisy query complexity for a wide range of problems, including Parity, Threshold,

Binary Search and Sorting.

In fact, researchers had studied queries with independent noise even before (Feige et al., 1994)

formally defined the model. (Berlekamp, 1964; Horstein, 1963; Burnashev and Zigangirov, 1974)

all studied some versions of Binary Search under independent noise. In particular, (Berlekamp,

1964; Horstein, 1963) studied the problem through the lens of channel coding. See (Wang et al.,

2022) for a more detailed discussion about the relationship between the channel coding perspective

and the noisy query perspective.

Furthermore, many learning problems involve queries with unreliable answers, thus can be nat-

urally considered under the noisy query model. For example, the field of active learning studies

problems such as Top-k Selection (e.g., (Mohajer et al., 2017)) in a slightly more general noise

model. The Best-Arm Identification problem in Multi-Armed Bandits (e.g., (Audibert et al., 2010))

can also be interpreted under the noisy query model, as observed in (Gu et al., 2025). Noisy group

testing (e.g., (Scarlett, 2018)) is yet another notable problem that can be considered as a noisy query

problem. These examples further demonstrate that the noisy query model is a natural model to study

and have wide applications in learning theory and computer science.

Following (Feige et al., 1994), researchers have studied problems in the noisy query model

extensively, including random functions (Reischuk and Schmeltz, 1991; Feige, 1992; Evans and

Pippenger, 1998), k-CNF and k-DNF (Kenyon and King, 1994), Binary Search (Ben-Or and Has-

sidim, 2008; Dereniowski et al., 2021; Gu and Xu, 2023; Zhu et al., 2023b), Sorting (Wang et al.,

2022, 2023; Gu and Xu, 2023; Zhu et al., 2023b), Graph Search (Emamjomeh-Zadeh et al., 2016;

Dereniowski et al., 2019, 2021) (a generalization of Binary Search), and k-Threshold (Zhu et al.,

2023b,a; Wang et al., 2025).

However, despite the popularity and naturality of the model, most research on the noisy query

model focus on specific functions instead of general functions. In the above examples, the only

exceptions are the lower bounds for random functions (Reischuk and Schmeltz, 1991; Feige, 1992;

Evans and Pippenger, 1998), and upper bounds for k-CNF and k-DNF (Kenyon and King, 1994).

Furthermore, the specific functions studied in literature are often the ones studied already in (Feige

et al., 1994) such as Threshold, Binary Search and Sorting. As a result, the noise query complexity

of many important and natural problems are left unexplored. In this paper, we take a first step

towards studying the noise query complexity of more general functions and problems.

2

TIGHT BOUNDS FOR NOISY COMPUTATION

1.1. High-influence functions

Our first result is a lower bound for the noisy query complexity of high-influence functions, a greatly

general family of functions. This is the first result towards understanding the lower bound for

general Boolean functions, beyond the lower bound for random functions (Reischuk and Schmeltz,

1991; Feige, 1992; Evans and Pippenger, 1998).

Influence is a central quantity in the analysis of Boolean functions. For a Boolean function

f : {0, 1}n → {0, 1}, the influence of coordinate i ∈ [n] is defined as

Infi(f) = Px∼{0,1}n(f(x) ̸= f(x· ei)),

where ei denotes the bit string where the only 1 is in the i-th coordinate, and· denotes exclusive or.

That is, Infi(f) is the probability that flipping the i-th coordinate of a uniformly random bit string

also flips the function value. The total influence is the sum of influences over all coordinates, i.e.,

I(f) =
∑

i∈[n]

Infi(f).

We prove that Boolean functions with linear total influence have noisy query complexity Ω(n log n).

Theorem 1 (Noisy query complexity of high-influence functions) For any c > 0, there exists

c′ > 0 such that the following holds. For any Boolean function f : {0, 1}n → {0, 1}with I(f) g cn,

any noisy query algorithm computing f(x) with error probabilityf 1
3 makes at least c′n log n noisy

queries in expectation to the coordinates of the input x ∈ {0, 1}n.

Note that the error probability 1
3 can be replaced with any 0 < ϵ < 1

2 without affecting the

asymptotic noisy query complexity. The statement is tight in the sense that any Boolean function

on n inputs can be computed with error probability o(1) using O(n log n) noisy queries: by simply

querying each bit O(log n) times, we can determine the input string with o(1) error probability.

Theorem 1 unifies and generalizes several previous results. For example, it was known that

a random Boolean function (with probability 1 − o(1)) has noisy query complexity Ω(n log n)
(Reischuk and Schmeltz, 1991; Feige, 1992; Evans and Pippenger, 1998), and computing the parity

function requires Ω(n log n) noisy queries (Feige et al., 1994). As random Boolean functions and

the parity function have total influence Ω(n), Theorem 1 immediately implies these lower bounds

as special cases.

Another central notion related to influence is the sensitivity of Boolean functions1, as it is well

known that the total influence is the same as the average sensitivity (the expected sensitivity over a

uniformly random input). (Reischuk and Schmeltz, 1991) proved that any non-adaptive algorithm

computing a Boolean function f makes at least Ω(s(f) log s(f)) noisy queries, where s(f) is the

(maximum) sensitivity of f . This result is incomparable to Theorem 1, as their lower bound only

holds against non-adaptive algorithms. In fact, it is not possible to extend the Ω(s(f) log s(f))
lower bound against adaptive algorithms in general. For instance, the OR function has sensitivity

n and (adaptive) noisy query complexity O(n) (Feige et al., 1994). On the other hand, the average

sensitivity of OR is much smaller, which suggests that the average sensitivity of a Boolean function

f is a more reasonable measure for lower bounding the adaptive noisy query complexity. This

1. The sensitivity of a Boolean function f at input x, denoted by s(f, x), is the number of bits i for which f(x) ̸=
f(x· ei).

3

GU LI XU

motivates us to raise the following open question regarding a lower bound for general Boolean

functions.

Open Problem 1 Is it true that every Boolean function f : {0, 1}n → {0, 1} has noisy query

complexity Ω(I(f) log I(f))?

Theorem 1 resolves the case where I(f) = Ω(n). We note further evidence supporting the I(f) log I(f)
lower bound. The randomized query complexity R(f) satisfies R(f) = Ω(bs(f)) = Ω(s(f)) =
Ω(I(f)), where bs(f) denotes block sensitivity and the first step is by (Nisan, 1989, Lemma 4.2). In

general, the noisy query complexity of a function f is always between R(f) and O(R(f) logR(f)).
Therefore, the Ω(I(f) log I(f)) lower bound is consistent with these known relationships.

For the proof of Theorem 1, we develop a three-phase lower bound framework, which is based

on and refines the two-phase method of (Feige et al., 1994) for proving a lower bound for the k-

Threshold problem. In the three-phase method, we reduce the original problem in the noisy query

model to a stronger observation model, where in Phase 1 the algorithm makes non-adaptive noisy

observations and in Phase 3 the algorithm makes adaptive exact observations. In Phase 2, the model

gives away free information, which can only help the algorithm. By designing this free information

carefully, the effect of Phase 1 and 2 combined can be significantly simplified, allowing for a precise

analysis in Phase 3.

We note that this idea of giving away free information already appears in (Feige et al., 1994)’s

two-phase method. For their problem (k-Threshold), this free information is relatively simple. How-

ever, for other problems, the free information could be significantly more involved. We design the

free information in a different way in order for the analysis in Phase 3 to be viable. This additional

phase to the original two-phase method makes it easier to apply and allows for other applications.

As we will soon discuss, the three-phase framework is essential for our result on Graph Connectivity

and also leads to a simple proof for the lower bound of k-Threshold.

1.2. Graph Connectivity

Although the noisy query model is quite natural, there has been little prior work studying graph

problems in this model. Some prior examples include (Feige et al., 1994), which briefly mentioned

that a lower bound for the noisy query complexity of Bipartite Matching can be achieved by reducing

from the other problems they studied; (Kenyon and King, 1994) designed algorithms for k-CNF and

k-DNF using a small number of queries, which imply, for instance, that one can test, up to error

probability ¶, whether a given n-vertex graph contains a triangle using O
(
n2 log 1

¶

)
noisy queries.

One of the most fundamental graph problems is Graph Connectivity, where we are given an n-

vertex undirected graph G, and need to determine whether the graph is connected via edge queries.

It is a very basic problem that appears in most first courses in algorithms. For instance, breadth-first

search and depth-first search are usually among the first graph algorithms taught in undergraduate

algorithm classes, and the simplest application of them is to detect whether a graph is connected.

However, to our surprise, we do not even have a good understanding of the noisy query complexity

of such an elementary problem.

One simple algorithm for Graph Connectivity is to query every edge in the input graph O(log n)
times to correctly compute the input graph with high probability, and then solve Graph Connectivity

on the computed graph. This naive algorithm uses O(n2 log n) noisy queries, and is essentially all

4

TIGHT BOUNDS FOR NOISY COMPUTATION

what was previously known about Graph Connectivity in the noisy query model. In particular,

hardness of Graph Connectivity does not seem to follow from known hardness results.

Using the three-phase method, we prove an Ω(n2 log n) lower bound on the noisy query com-

plexity of Graph Connectivity, showing that the naive O(n2 log n) algorithm is actually optimal up

to a constant factor:

Theorem 2 (Hardness of Graph Connectivity) Any algorithm solving the Graph Connectivity

problem with error probability f 1
3 uses Ω(n2 log n) noisy queries in expectation.

Similarly as before, the error probability 1
3 can be replaced with any 0 < ϵ < 1

2 without affecting

the asymptotic noisy query complexity.

We also show an Ω(n2 log n) lower bound for the related s-t Connectivity problem, where we

are given an n-vertex undirected graph G and two fixed vertices s and t, and the goal is to determine

whether there is a path in the graph connecting s and t.
As Graph Connectivity and s-t Connectivity are very basic tasks on graphs, their lower bounds

immediately imply lower bounds for several other fundamental graph problems as well. For in-

stance, given the lower bounds for Graph Connectivity and s-t Connectivity, it is straightforward to

show that Global Min-Cut, s-t Shortest Path, and s-t Max Flow on unweighted undirected graphs

all require Ω(n2 log n) noisy queries in expectation.

1.3. Threshold and Counting

In the k-Threshold problem, one is given a length-n Boolean array a and an integer k, and the goal

is to determine whether the number of 1’s in the array a is at least k. Note that the answer to the

input is false if and only if the number of 0’s in the input is at least n − k + 1. We can thus solve

k-Threshold using an algorithm for (n − k + 1)-Threshold: we can flip all input bits, change k to

n− k+1, solve the modified instance, and finally flip the result. Therefore, we can assume without

loss of generality that k f n− k + 1, or equivalently, k f (n+ 1)/2.

k-Threshold is one of the first problems studied in the noisy query model. In (Feige et al., 1994),

it was shown that Θ
(
n log k

¶

)
queries are both sufficient and necessary to solve the problem with

error probability ¶. However, the optimal constant factor was left unknown.2

There has been some progress towards determining the exact constant for k-Threshold. In (Zhu

et al., 2023a), it was shown that the noisy query complexity of the OR function on n input bits

(equivalent to 1-Threshold) is

(1± o(1))
n log 1

¶

DKL(p ∥ 1− p)

for ¶ = o(1), where DKL(p ∥ 1−p) = (1−2p) log 1−p
p is the Kullback-Leibler divergence between

two Bernoulli distributions with heads probabilities p and 1 − p. This result was later generalized

to k-Threshold for all k = o(n) and ¶ = o(1) by (Wang et al., 2025), who showed an

(1± o(1))
n log k

¶

DKL(p ∥ 1− p)

2. Studying constant factors is often overlooked in theoretical computer science, but in this research area, determining

the optimal constants for noisy query complexities of other fundamental problems such as Binary Search and Sorting

has been an active topic (e.g., (Burnashev and Zigangirov, 1974; Ben-Or and Hassidim, 2008; Dereniowski et al.,

2021; Gu and Xu, 2023)). See (Gretta and Price, 2024) for more discussions on the importance of studying constants

in noisy query complexity.

5

GU LI XU

bound. Compared to (Zhu et al., 2023a), (Wang et al., 2025)’s result works for a much wider range of

k. However, their lower bound proof technique unfortunately stops working for the case k = Θ(n),
and this case is frustratingly left open (we remark that their algorithm gives the right upper bound

even for k = Θ(n)).
In this work, we complete the last piece of the puzzle, showing a matching bound for all values

of k.

Theorem 3 (Noisy query complexity of k-Threshold) For any 1 f k f (n+1)/2 and ¶ = o(1),
computing k-Threshold on a length-n array with error probability ¶ needs and only needs

(1± o(1))
n log k

¶

DKL(p ∥ 1− p)

noisy queries in expectation.

Here the ¶ = o(1) assumption is standard and has appeared in several previous works (Gu and

Xu, 2023; Zhu et al., 2023a; Wang et al., 2025).

While (Wang et al., 2025) has already given an algorithm achieving the tight upper bound for

any k, their algorithm involves calling some extra algorithms such as Noisy Sorting and Noisy

Heap, which seems too heavy and unnecessary for the k-Threshold problem. After all, in the classic

noiseless setting, the algorithm for k-Threshold is much simpler than algorithms for Sorting or

Heap. We provide a much simpler algorithm which involves only checking each bit one by one and

completely avoids calling these extra algorithms.

We also provide an alternative and simpler proof of the lower bound for k-Threshold with k =
o(n). The proof of (Wang et al., 2025) considers three cases and uses two different methods (the

two-phase method from (Feige et al., 1994) and Le Cam’s two point method) for solving them. We

show that this casework is unnecessary by providing a uniform and simple proof for all k = o(n)
by using our three-phase method.

We also consider a related problem, Counting, where we need to compute the number of 1’s in

n input Boolean bits. The lower bound for k-Threshold easily applies to Counting as well (though

in a non-black-box way). In addition, we design an algorithm for Counting that matches the lower

bound, obtaining the following result.

Theorem 4 (Noisy query complexity of Counting) Given a sequence a ∈ {0, 1}n, computing

∥a∥1 with error probability ¶ = o(1) needs and only needs

(1± o(1))
n log min{∥a∥1,n−∥a∥1}+1

¶

DKL(p ∥ 1− p)

noisy queries in expectation.

A problem closely-related to k-Threshold is the k-Selection problem, where one is given n
items (comparable with each other) and the goal is to select the k-th largest element using noisy

comparison queries. It is known that solving k-Selection with error probability ¶ = o(1) needs and

only needs Θ
(
n log min{k,n−k+1}

¶

)
noisy queries (Feige et al., 1994). Their bounds are only tight

up to a constant factor, so the exact value of the leading coefficient remains open.

Open Problem 2 Determine the exact constant c such that (c ± o(1))n log min{k,n−k+1}
¶ noisy

queries is both sufficient and necessary to solve the k-Selection problem with error probability

¶ = o(1).

6

TIGHT BOUNDS FOR NOISY COMPUTATION

2. Technical overview

2.1. Proof overview for high-influence functions

Recall that the error probability 1
3 in the statement of Theorem 1 can be replaced with any 0 < ϵ < 1

2
without loss of generality. Also, the expected number of queries can be replaced by the worst-case

number of queries by Markov’s inequality.

Let f : {0, 1}n → {0, 1} be a Boolean function with I(f) = Ω(n). The hard distribution for the

input x will be the uniform distribution over {0, 1}n.

Inspired by (Feige et al., 1994), we prove hardness under the noisy query model by introducing

a new problem where the algorithm has more power, and prove hardness of this new problem.

The new problem has three phases, described as follows.

1. In Phase 1, the algorithm makes m1 = c1 log n noisy queries to coordinate xi for every

i ∈ [n].

2. In Phase 2, the oracle reveals some coordinates of x to the algorithm.

3. In Phase 3, the algorithm makes m2 = c2n adaptive exact queries for some constant c2.

The goal of the algorithm is to compute the value f(x).
Note that the first two phases are non-adaptive. The third phase is adaptive but the algorithm

makes exact queries. This is the reason why the three-phase problem is easier to analyze than the

original noisy query problem.

It is not hard to prove that if no algorithm can solve the three-phase problem with ϵ error proba-

bility, then no algorithm can solve the original problem with ϵ error probability using no more than

m1m2 = c1c2n log n noisy queries. Therefore we only need to prove hardness of the three-phase

problem.

Phase 1. Let ai be the number of times where a query to xi returns 1 in Phase 1. The posterior

distribution of the input x given observations made in Phase 1 depends only on the variables ai.
In other words, (ai)i∈[n] is a sufficient statistic for x. Conditioned on x, the variables (ai)i∈[n] are

independent, and the distribution of each ai is a binomial distribution depending only on whether

xi = 1. That is, if xi = 1, then ai ∼ Bin(m1, 1 − p); otherwise, ai ∼ Bin(m1, p) (Bin(·, ·)
denotes the binomial distribution). Moreover, for xi = 0, ai is in an interval I around pm1 with

probability 1− o(1); for xi = 1, ai is in the interval I with probability n−c3±o(1), for some constant

c3 > 0 depending on c1 and p. Because the observations are independent for different coordinates,

each index has a non-negative weight, such that the posterior probability of the input being x is

proportional to the product of weights of the coordinates i where xi = 1.

Phase 2. In Phase 2, the oracle reveals some coordinates of x to the algorithm. This information

is revealed in two steps:

2a. All coordinates with ai ̸∈ I are revealed.

2b. Every xi with ai ∈ I is revealed independently with probability qai for some real numbers

(qk ∈ [0, 1])k∈I .

Because of the observations in Phase 1, the unrevealed coordinates can have different weights. That

is, given observations up to Step 2a, the posterior probabilities for different coordinates being 1 can

7

GU LI XU

be different, which is undesirable. Step 2b is a subsampling procedure, with the goal of reweighting

the unrevealed coordinates so that all of them have the same weight. If the interval I is not too large,

then the probabilities qk for k ∈ I will not be too small. Because observations made up to Step 2b

are independent for different coordinates, they have the same effect as the following procedure (if

the real numbers qk are chosen carefully): every xi with xi = 1 is revealed independently with

probability p+ = 1 − n−c3±o(1) and xi with xi = 0 is revealed independently with probability

p− = o(1).

Phase 3. At this stage, let the set of unrevealed coordinates be U . Conditioned on the revealed

coordinates, xi for i ∈ U are i.i.d. Ber(q) variables, where Ber(q) denotes the Bernoulli distribution

with head probability q = 1−p+
1−p++1−p−

= n−c3±o(1). In other words, the distribution of xU is

Ber(q)¹U . Let g be a restriction of f where the revealed coordinates of x are fixed to be the

revealed values. Then we need to show that on average, computing g with error probability f ϵ
requires Ω(n) (adaptive) exact queries, for some sufficiently small ϵ > 0. To this end, we consider

a biased version of total influence Iq:

Iq(g) =
∑

i∈U

Px∼Ber(q)¹U (g(x) ̸= g(x· ei)).

Our proof strategy consists of the following three steps.

3a. First, we show that Iq(g) = Ω(n) in expectation.

3b. After we make a query, we further fix the value of the queried coordinate, and replace g with

the new restricted function. We show that each exact query can only decrease Iq(g) by at most

1 in expectation.

3c. Finally, we show that if Iq(g) = Ω(n), then it is impossible to guess g(x) (where x follows a

biased product distribution) with error probability f ϵ.

Combining the three steps, we obtain that making c2n exact queries (in expectation) cannot compute

g with f ϵ error probability, for sufficiently small c2 and ϵ > 0.

We note that Step 3c is where this approach fails to extend to general functions with sublinear

total influence. In fact, for Iq(g) = o(n), it might be possible to guess g(x) (where x follows a

biased product distribution) with o(1) error probability. For instance, if g(x) is a function where

o(1) random fraction of the values are 0, and the other values are 1, it is straightforward to show

that Iq(g) = o(n) (in expectation), and we can guess g(x) = 1 to achieve o(1) error probability,

without using any queries.

2.2. Proof overview for Graph Connectivity

In this section we present an overview of our proof of Theorem 2, hardness of Graph Connectivity.

Again, the error probability 1
3 can be replaced with any 0 < ϵ < 1

2 and the expected number of

queries can be replaced by the worst-case number of queries, without loss of generality.

Hard distribution. To prove the lower bound, we design a hard distribution of inputs. The distri-

bution is based on uniform random spanning trees (USTs) of the complete graph. Let T be a UST.

We say an edge e ∈ T is ´-balanced if both components of T\e have size at least ´n. Let e be a

8

TIGHT BOUNDS FOR NOISY COMPUTATION

uniform random ´0-balanced edge of T , where ´0 = 1
21 . (If such e does not exist, we restart.) We

throw a fair coin and decide whether to erase edge e from T . That is, conditioned on (T, e), the

input graph G is T (connected) with probability 1
2 , and is T\e (disconnected) with probability 1

2 .

Three-phase problem. Following the three-phrase method, it suffices to show the hardness of the

three-phase problem described as follows.

1. In Phase 1, the algorithm makes m1 = c1 log n noisy queries to every unordered pair (called

“potential edge”) (u, v) ∈
(
V
2

)
for some constant c1.

2. In Phase 2, the oracle reveals some edges and non-edges of G to the algorithm.

3. In Phase 3, the algorithm makes m2 = c2n
2 adaptive exact queries for some constant c2.

The goal of the algorithm is to determine whether the graph is connected.

Phase 1. This phase is similar to Phase 1 in Section 2.1. In Phase 1, the algorithm makes m1 noisy

queries to every potential edge e ∈
(
V
2

)
. Let ae be the number of times where a query to a potential

edge e returns 1 in Phase 1. Similar to Section 2.1, if e ∈ G, then ae ∼ Bin(m1, 1− p); otherwise

ae ∼ Bin(m1, p). Specifically, for e ̸∈ G, ae is in an interval I around pm1 with probability

1 − o(1); for e ∈ G, ae is in the interval I with probability n−c3±o(1), for some constant c3 > 0
depending on c1 and p. Because the observations are independent for different edges, each edge has

a non-negative weight, such that the posterior probability of G = T for a tree T is proportional to

the product of weights of edges in T .

Phase 2. In Phase 2, the oracle reveals some edges and non-edges of G. This information is

revealed in three steps (the first two steps are similar to those in Section 2.1).

2a. In Step 2a, the potential edges e with ae ̸∈ I are revealed. (Recall that I is an interval around

pm1.) That is, the algorithm now knows which potential edges e with ae ̸∈ I are edges.

2b. In Step 2b, every edge e with ae ∈ I is revealed independently with probability qae , for some

real numbers (qk ∈ [0, 1])k∈I .

2c. In Step 2c, n − 2 edges are revealed as follows. If G is disconnected, reveal all edges of G;

otherwise, if there is a ´0-balanced edge that has not been revealed so far, uniformly randomly

choose one (say e∗) from all such edges, and reveal all edges of G\e∗. If G is connected but

all ´0-balanced edges have been revealed, report failure.

Similar to Section 2.1, if the real numbers qk are chosen carefully, the observations made up to

Step 2b have the same effect as the following procedure: observe every edge independently with

probability p+ = 1−n−c3±o(1); observe every non-edge independently with probability p− = o(1).

We can show that Step 2c reports failure with 1 − Ω(1) probability. In the following, we con-

dition on the event that the oracle does not report failure in Step 2c. In this case, Step 2c reveals all

except for one edge, which forms two connected components T1 and T2. By the construction, T1

and T2 both have size at least ´0n. The posterior distribution is supported on {T1∪T2, T1∪T2∪{e} :
e ∈ E(T1, T2)}. In our full analysis, we compute an exact formula for the posterior probability of

every graph in the support.

9

GU LI XU

Phase 3. In Phase 3 the algorithm makes m2 = c2n
2 adaptive exact queries. Let G0 = T1 ∪ T2,

Ge = T1 ∪ T2 ∪ {e} for e ∈ E(T1, T2). Let P(2) denote the posterior distribution of G after Phase

2. Because T1 and T2 are already revealed, we can w.l.o.g. assume that the algorithm makes queries

only to edges in E(T1, T2). We prove that after Phase 2, for most edges e ∈ E(T1, T2), we have

P(2)(Ge)

P(2)(G0)
= Θ

(
1

|T1||T2|

)
= Θ

(
1

n2

)

Let E(3) be the set of potential edges queried in Phase 3. For small enough c2, we have

∑

e∈E(3)

P(2)(Ge) = O(1) · P(2)(G0).

Therefore, with constant probability, all queries in Phase 3 return 0. Furthermore, if this happens,

then the posterior probability of G0 and {Ge : e ∈ E(T1, T2)\E(3)} are within a constant factor

of each other. In this situation, outputting anything will result in a constant error probability. This

concludes that for some ϵ > 0, no algorithm can solve the three-phase problem with error probability

ϵ.

2.3. Proof overview for k-Threshold and Counting

Before we discuss our techniques for k-Threshold and Counting, we briefly discuss the previous

work of (Wang et al., 2025), who showed a

(1± o(1))
n log k

¶

DKL(p ∥ 1− p)

bound for k-Threshold where k = o(n). Their lower bound stops working for k = Θ(n) because

one step in their lower bound proof reveals the locations of k − 1 1’s to the algorithm, leaving

only n − k + 1 = (1 − Ω(1))n unknown bits. This case can be solved by an algorithm using

(1 − Ω(1))
n log k

δ
DKL(p∥1−p) noisy queries, meaning that this approach cannot be used to show a tight

lower bound.

Lower bound for k-Threshold. Our lower bound for k-Threshold for general values of k is a

reduction from (Wang et al., 2025)’s lower bound for k = o(n). In the overview, we focus on the

case where k = (n + 1)/2 for odd n. In this case, the problem is equivalent to computing the

majority of n input bits.

Given any instance of k-Threshold on a length-n array for k = n/ log n, we first add L artificial

1’s to the array to obtain a new instance where n′ = n + L and k′ = k + L. We set L so that

k′ = (n′ +1)/2 (or equivalently, L = n− 2k+1). Now suppose we have an algorithm for the new

instance that uses only (1 − ϵ)
n′ log k′

δ
DKL(p∥1−p) noisy queries for some ϵ > 0. Whenever the algorithm

queries an artificial 1, it can be simulated without incurring an actual noisy query; instead, we only

need to flip biased coin with head probability 1 − p and return its value. Because the algorithm is

for computing the majority, intuitively, by symmetry, the expected number of queries it spends on

an input 0 and an input 1 should be the same. Furthermore, if we add the artificial 1’s to random

positions, the algorithm should not be able to distinguish an artificial 1 with an actual 1. Therefore,

10

TIGHT BOUNDS FOR NOISY COMPUTATION

in expectation, L/n′ fraction of the algorithm’s queries are to artificial 1’s, so the actual query

complexity for solving the original k-Threshold instance is

(
1− L

n′

)
· (1− ϵ)

n′ log k′

¶

DKL(p ∥ 1− p)
= (1− ϵ)

n log k′

¶

DKL(p ∥ 1− p)
.

Because k = n/ log n, we have log k′ f log(n+1) = (1+o(1)) log k, so the above bound becomes

(1− ϵ+ o(1))
n log k

¶

DKL(p ∥ 1− p)
,

which contradicts the lower bound from (Wang et al., 2025).

Our lower bound for more general values of k is proved using a similar idea. However, we no

longer have the symmetry between 0 and 1, so we need to reduce from the case k = n/ log n or

k = (n+ 1)/2 depending on whether the algorithm spends more queries on an input 0 or 1.

Upper bound for k-Threshold. For the upper bound, (Wang et al., 2025)’s algorithm already

works also for the k = Θ(n) case. Nevertheless, we provide a much simpler algorithm that achieves

the same tight upper bound. (Wang et al., 2025) used a standard CHECK-BIT procedure to estimate

the value of each input bit, and then used established machinery on Noisy Sorting and Noisy Heap

studied earlier (Feige et al., 1994). In comparison, our algorithm uses an asymmetric version of the

CHECK-BIT procedure that estimates the value of each input bit. Using this asymmetric procedure,

we essentially only need to check each input bit one by one, avoiding calling extra algorithms such

as Noisy Sorting or Noisy Heap.

Upper bound for Counting. Our algorithm for Counting is based on the idea of our algorithm

for k-Threshold. Our algorithm for k-Threshold can additionally count the number of 1’s in the

input if it is at most k, so one natural idea for Counting is to first compute an estimation k of

the answer ∥a∥1, then use our algorithm for k-Threshold to compute the exact answer. However,

this approach does not work when ∥a∥1 is very small compared to n, as there is no reliable way

to estimate the answer within a constant factor using o

(
n

log
∥a∥1

δ
DKL(p∥1−p)

)
queries. We circumvent

this issue by gradually increasing k during the algorithm and simulate the asymmetric CHECK-BIT

procedure on each input bit. We can view the asymmetric CHECK-BIT procedure for each bit as a

biased random walk on Z, and for different k the procedure only changes the stopping condition,

but not the random walk. In this way we show that k will eventually stop at the correct answer with

desired error probability.

Acknowledgments

Part of the work was done while Y. G. was supported by the National Science Foundation under

Grant No. DMS-1926686. X. L. is supported by NSF CAREER Award CCF-1845349 and NSF

Award CCF-2127575. Y. X. is supported by NSF Grant CCF-2330048, HDR TRIPODS Phase II

grant 2217058 and a Simons Investigator Award.

References

David Aldous. The Continuum Random Tree. I. The Annals of Probability, 19(1):1 – 28, 1991. doi:

10.1214/aop/1176990534. URL https://doi.org/10.1214/aop/1176990534.

11

GU LI XU

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed

bandits. In Conference on Learning Theory, 2010.

Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary search

(and pretty good for quantum as well). In Proceedings of the 2008 49th Annual IEEE Symposium

on Foundations of Computer Science (FOCS), pages 221–230, 2008. doi: 10.1109/FOCS.2008.

58.

Elwyn R. Berlekamp. Block coding with noiseless feedback. PhD thesis, Massachusetts Institute of

Technology, 1964.

Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Proceedings of the

19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 268–276, 2008.

M. V. Burnashev and K. Sh. Zigangirov. An interval estimation problem for controlled observations.

Probl. Peredachi Inf., 10(3):51–61, 1974.

Dariusz Dereniowski, Stefan Tiegel, Przemysław Uznański, and Daniel Wolleb-Graf. A framework

for searching in graphs in the presence of errors. In Proceedings of the 2nd Symposium on

Simplicity in Algorithms (SOSA), volume 69 of OASIcs, pages 4:1–4:17, 2019. doi: 10.4230/

OASICS.SOSA.2019.4. URL https://doi.org/10.4230/OASIcs.SOSA.2019.4.

Dariusz Dereniowski, Aleksander Łukasiewicz, and Przemysław Uznański. Noisy searching: sim-

ple, fast and correct. arXiv preprint arXiv:2107.05753, 2021. doi: 10.48550/arXiv.2107.05753.

Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabilistic

binary search in graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

of Computing (STOC), pages 519–532, 2016. doi: 10.1145/2897518.2897656. URL https:

//doi.org/10.1145/2897518.2897656.

William Evans and Nicholas Pippenger. Average-case lower bounds for noisy boolean decision

trees. SIAM J. Comput., 28(2):433–446, 1998.

Uriel Feige. On the complexity of finite random functions. Inf. Process. Lett., 44(6):295–296, 1992.

Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy information.

SIAM J. Comput., 23(5):1001–1018, 1994. doi: 10.1137/S0097539791195877.

William Feller. An Introduction to Probability Theory and Its Applications, 3rd Edition. Wiley,

1970.

Lucas Gretta and Eric Price. Sharp noisy binary search with monotonic probabilities. In Proceed-

ings of the 51st International Colloquium on Automata, Languages, and Programming (ICALP),

volume 297, pages 75:1–75:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. doi:

10.4230/LIPICS.ICALP.2024.75. URL https://doi.org/10.4230/LIPIcs.ICALP.

2024.75.

Yuzhou Gu and Yinzhan Xu. Optimal bounds for noisy sorting. In Proceedings of the 55th Annual

ACM Symposium on Theory of Computing (STOC), pages 1502–1515, 2023.

12

TIGHT BOUNDS FOR NOISY COMPUTATION

Yuzhou Gu, Yanjun Han, and Jian Qian. Evolution of information in interactive decision making:

A case study for multi-armed bandits. arXiv preprint arXiv:2503.00273, 2025.

Michael Horstein. Sequential transmission using noiseless feedback. IEEE Trans. Inf. Theory, 9(3):

136–143, 1963. doi: 10.1109/TIT.1963.1057832.

Claire Kenyon and Valerie King. On boolean decision trees with faulty nodes. Random Struct.

Algorithms, 5(3):453–464, 1994. doi: 10.1002/RSA.3240050306. URL https://doi.org/

10.1002/rsa.3240050306.

Soheil Mohajer, Changho Suh, and Adel Elmahdy. Active learning for top-k rank aggregation

from noisy comparisons. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th

International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning

Research, pages 2488–2497. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.

press/v70/mohajer17a.html.

Noam Nisan. Crew prams and decision trees. In Proceedings of the twenty-first annual ACM

symposium on Theory of computing, pages 327–335, 1989.

Rüdiger Reischuk and Bernd Schmeltz. Reliable computation with noisy circuits and decision

trees-a general n log n lower bound. In Proceedings 32nd Annual Symposium of Foundations of

Computer Science (FOCS), pages 602–611, 1991.

Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl. B, 6(MR143666):

505–516, 1961.

Jonathan Scarlett. Noisy adaptive group testing: Bounds and algorithms. IEEE Transactions on

Information Theory, 65(6):3646–3661, 2018.

Stanislaw M. Ulam. Adventures of a mathematician. New York: Scribner, 1976.

Ziao Wang, Nadim Ghaddar, and Lele Wang. Noisy sorting capacity. In Proceedings of the 2022

IEEE International Symposium on Information Theory (ISIT), pages 2541–2546. IEEE, 2022.

doi: 10.1109/ISIT50566.2022.9834370.

Ziao Wang, Nadim Ghaddar, Banghua Zhu, and Lele Wang. Variable-length insertion-based noisy

sorting. In Proceedings of the 2023 IEEE International Symposium on Information Theory (ISIT),

pages 1782–1787, 2023. doi: 10.1109/ISIT54713.2023.10206482.

Ziao Wang, Nadim Ghaddar, Banghua Zhu, and Lele Wang. Noisy computing of the thresh-

old function. In 36th International Conference on Algorithmic Learning Theory, 2025. URL

https://openreview.net/forum?id=Rpy7ViuSNC.

Banghua Zhu, Ziao Wang, Nadim Ghaddar, Jiantao Jiao, and Lele Wang. Noisy computing of the

OR and MAX functions. arXiv preprint arXiv:2309.03986, 2023a.

Banghua Zhu, Ziao Wang, Nadim Ghaddar, Jiantao Jiao, and Lele Wang. On the optimal bounds for

noisy computing. In 2023 IEEE International Symposium on Information Theory (ISIT), pages

1788–1793, 2023b. doi: 10.1109/ISIT54713.2023.10206881.

13

GU LI XU

Appendix A. Preliminaries

Throughout the paper, we use p ∈ (0, 1/2) to denote the flipping probability of each noisy query,

i.e., for a bit x, QUERY(x) returns x with probability 1 − p and returns 1 − x with probability p.

For 0 f q f 1, Ber(q) denotes the Bernoulli distribution with head probability q. Throughout the

paper, all logs have base e. For two sequences (fn)n, (gn)n, we write fn ≍ gn if fn = Θ(gn), i.e.,

there exists ϵ > 0 such that ϵfn f gn f ϵ−1fn for all n large enough.

Let Bin(n, p) denote the binomial distribution. The following large deviation bound is useful.

Lemma 5 Let 0 < p < 1
2 and 0 < q < 1. Then for large enough m and integer k = (q ± o(1))m,

we have

P(Bin(m, p) = k) = exp (−(DKL(q ∥ p)± o(1))m) ,

where

DKL(a ∥ b) = a log
a

b
+ (1− a) log

1− a

1− b

is the binary KL divergence function.

Proof

P(Bin(m, p) = k) =

(
m

k

)
pk(1− p)m−k

= exp(m logm− k log k − (m− k) log(m− k)± o(m))

· exp(k log p+ (m− k) log(1− p))

= exp

(
−
(
q log

q

p
+ (1− q) log

1− q

1− p
± o(1)

)
m

)

= exp(−(DKL(q ∥ p)± o(1))m).

Appendix B. High-influence functions

We prove Theorem 1 in this section. Let us recall the theorem statement.

Theorem 1 (Noisy query complexity of high-influence functions) For any c > 0, there exists

c′ > 0 such that the following holds. For any Boolean function f : {0, 1}n → {0, 1}with I(f) g cn,

any noisy query algorithm computing f(x) with error probabilityf 1
3 makes at least c′n log n noisy

queries in expectation to the coordinates of the input x ∈ {0, 1}n.

B.1. Three-phase problem

Let f be a Boolean function with total influence I(f) g cn and x be uniformly chosen from {0, 1}n.

Our goal is to show that any algorithm computing f(x) with error probability ϵ makes at least

c′n log n queries in expectation. (The error probability 1/3 in Theorem 1 can be replaced with

any ϵ > 0 without affecting the asymptotic noisy query complexity, by repeating the algorithm

constantly many times and taking the majority vote.)

Let c1, c2 > 0 be two absolute constants. We define a three-phase problem as follows.

14

TIGHT BOUNDS FOR NOISY COMPUTATION

1. In Phase 1, the algorithm makes m1 = c1 log n queries to every coordinate.

2. In Phase 2, the oracle reveals some elements to the algorithm.

3. In Phase 3, the algorithm makes m2 = c2n adaptive exact queries.

The goal of the algorithm is to determine the value of f(x).

Lemma 6 If no algorithm can solve the three-phase problem with error probability ϵ > 0, then no

algorithm can compute f(x) with error probability ϵ using at most c1c2n log n noisy queries.

Proof Suppose there is an algorithm A that computes f(x) with error probability ϵ using at most

m1m2 noisy queries. We define an algorithm A′ that solves the three-phase problem with the same

error probability.

Let x ∈ {0, 1}n be chosen uniformly randomly. Algorithm A′ receives query results in Phase 1

and 2 and enters Phase 3. It simulates algorithm A on the same input x as follows.

(1) Initially, xi ← ∗ for all i ∈ [n].

(2) When A queries coordinate i:

(a) If this is the k-th time coordinate i is queried for k f m1, return the k-th noisy query

result on coordinate i in Phase 1 to A.

(b) Suppose coordinate i has been queried more than m1 times. If xi = ∗, make an exact

query to coordinate i in Phase 3 and let xi ← the query result. Return BSCp(xi) to A.

(3) When A returns, A′ returns the same result.

Because A has error probability ϵ, A′ also has error probability ϵ. It suffices to prove that in

Phase 3, A′ makes at most m2 exact queries. Note that the number of exact queries A′ makes in

Phase 3 is equal to the number of coordinates i to which A makes more than m1 queries. Because

A makes m1m2 queries, the expected number of such coordinates is at most m2.

By Lemma 6, to prove Theorem 1, it suffices to prove hardness of the three-phase problem.

Proposition 7 For some c1, c2, ϵ > 0, no algorithm can solve the three-phase problem with error

probability ϵ, where the input is uniformly chosen from {0, 1}n.

Theorem 1 follows by combining Lemma 6 and Proposition 7. The rest of the section is devoted to

the proof of Proposition 7.

B.2. Phase 1

In Phase 1, the algorithm makes m1 = c1 log n queries to every element i ∈ [n]. Let A = {i ∈
[n] : xi = 1}, where x is the input bit string. Let ai denote the number of times where a query to

i returns 1. Then for i ∈ A, ai ∼ Bin(m1, 1 − p); for i ̸∈ A, ai ∼ Bin(m1, p). For 0 f j f m1,

define

pj = P(Bin(m1, 1− p) = j) =

(
m1

j

)
(1− p)jpm1−j . (1)

Let I =
[
pm1 −m0.6

1 , pm1 +m0.6
1

]
.

15

GU LI XU

Lemma 8 Let x ∼ Bin(m1, 1− p), y ∼ Bin(m1, p). Then

P(x ∈ I) = n−c3±o(1), (2)

P(y ∈ I) = 1− o(1), (3)

where c3 = c1(1− 2p) log 1−p
p .

Proof By Lemma 5, for k ∈ I , we have

P(x = k) = exp(−(DKL(p ∥ 1− p)± o(1))m1) = n−c1DKL(p∥1−p)±o(1).

So

P(x ∈ I) =
∑

k∈I

P(x = k) = n−c1DKL(p∥1−p)±o(1).

This proves Eq. (2).

Eq. (3) follows from the Chernoff bound.

Let P(0) = Ber(1/2)¹n denote the prior distribution of A and P(1) denote the posterior distri-

bution of A conditioned on observations in Phase 1. Then for any set B ¦ [n] we have

P(1)(B) ∝ P
(
(ai)i∈[n]|B

)
P(0)(B)

=

(
∏

i∈B

pai

)


∏

i∈[n]\B

pm1−ai


P(0)(B)

∝
(
∏

i∈B

pai

)


∏

i∈[n]\B

pm1−ai


 .

B.3. Phase 2

In Phase 2, the oracle reveals some elements in A and not in A as follows.

2a. In Step 2a, the oracle reveals elements i with ai ̸∈ I .

2b. In Step 2b, the oracle reveals every i ∈ A independently with probability qai , for some

constants (qk)k∈I to be chosen later.

B.3.1. Step 2a

Let S
(2a)
+ (resp. S

(2a)
−) denote the set of elements in A (resp. in Ac) revealed in Step 2a. For B ¦ [n],

we say B is consistent with the observations
(
S
(2a)
+ , S

(2a)
−

)
if S

(2a)
+ ¦ B and S

(2a)
− ∩ B = ∅. Let

P(2a) denote the posterior distribution at the end of Step 2a, and C(2a) be its support. Then B ¦ [n]

is in C(2a) if and only if it is consistent with
(
S
(2a)
+ , S

(2a)
−

)
. For B ∈ C(2a), the posterior probability

P(2a)(B) is given by

P(2a)(B) ∝ P(1)(B) ∝
(
∏

i∈B

pai

)(
∏

i∈Bc

pm1−ai

)
. (4)

16

TIGHT BOUNDS FOR NOISY COMPUTATION

B.3.2. Step 2b

Let S
(2b)
+ be the set of elements of A revealed in Step 2b that were not revealed in Step 2a. Define

S
(f2b)
+ = S

(2a)
+ ∪S(2b)

+ . Define P(2b), C(2b) similarly to Section B.3.1. Then C(2b) is the set B ∈ C(2a)

that are consistent with
(
S
(2b)
+ , ∅

)
. For any B ∈ C(2b), we have

P(2b)(B) ∝ P

(
S
(2b)
+ |B,S

(2a)
+

)
P(2a)(B) (5)

∝




∏

i∈B\S
(f2b)
+

(1− qai)


P(2a)(B)

∝




∏

i∈B\S
(f2b)
+

(1− qai)pai







∏

i∈Bc\S
(2a)
−

pm1−ai




∝




∏

i∈B\S
(f2b)
+

(1− qai)pai
pm1−ai


 .

Note that for any B ∈ C(2b) and any i ∈ B\S(f2b)
+ , we have ai ∈ I .

Let us now choose the values of qk for k ∈ I . For k ∈ I , define

qk = 1− pm1−kpkl
pkpm1−kl

where kl = pm1 − log0.6 n is the left endpoint of I . Because
pm1−k

pk
=
(
1−p
p

)m1−2k
is decreasing

in k, we have qk ∈ [0, 1] for k ∈ I . So this choice of qk’s is valid.

With this choice of qk, we can simplify Eq. (5) as

P(2b)(B) ∝
(

pkl
pm1−kl

)|B|

. (6)

Eq. (6) is very useful and greatly simplifies the posterior distribution. Importantly, (ai)i∈[n] does

not appear directly in the expression. Therefore,
(
S
(f2b)
+ , S

(2a)
− , |A|

)
is a sufficient statistic for A

at the end of Step 2b.

Let us now consider the distribution of
(
S
(f2b)
+ , S

(2a)
−

)
conditioned on A.

Let p+ be the probability that a coordinate i ∈ A is in S
(f2b)
+ . Every coordinate i ∈ A is

independently in S
(2a)
+ with probability P(Bin(m1, 1−p) ̸∈ I) = 1−n−c3±o(1) (Lemma 8). Every

coordinate i ∈ A is independently in S
(2b)
+ with probability

∑

k∈I

pkqk =
∑

k∈I

pk

(
1− pm1−kpkl

pkpm1−kl

)
.

17

GU LI XU

For a fixed i ∈ A, the events i ∈ S
(2a)
+ and i ∈ S

(2b)
+ are disjoint, so

p+ = P(Bin(m1, 1− p) ̸∈ I) +
∑

k∈I

pkqk g P(Bin(m1, 1− p) ̸∈ I) = 1− n−c3±o(1).

On the other hand,

p+ = 1−
∑

k∈I

pk(1− qk) f 1− pkl(1− qkl) = 1− pkl = 1− n−c3±o(1),

where the last step is by Lemma 5. Thus,

p+ = 1− n−c3±o(1). (7)

Let p− be the probability that a coordinate i ∈ Ac is in S
(2a)
− . By Lemma 8,

p− = P(Bin(m1, p) ̸∈ I) = o(1). (8)

Therefore, observations up to Step 2b have the same effect as the following procedure:

Definition 9 (Alternative observation procedure) Let A ∼ Ber(1/2)¹n.

(1) Observe every coordinate i ∈ A independently with probability p+ (Eq. (7)).

(2) Observe every coordinate i ∈ Ac independently with probability p− (Eq. (8)).

By Eq. (6), the posterior distribution of A after Phase 2 is a biased product distribution on the

unrevealed coordinates.

B.4. Phase 3

In Phase 3, the algorithm makes at most c2n adaptive exact queries. We will show that for c2 small

enough, no algorithm is able to determine f(x) with very small error probability.

Our proof strategy is as follows.

3a. Because f has linear total influence, after Phase 2 ends, the Boolean function on the unre-

vealed coordinates will have a biased version of total influence Iq at least Ω(n) in expectation.

3b. Every (adaptive) query made in Phase 3 decreases Iq by at most 1. Therefore, after Phase 3,

the Boolean function on the remaining unrevealed coordinates has Iq = Ω(n) in expectation.

3c. Finally, we show that if a Boolean function has Iq = Ω(n), then it is impossible to guess f(x)
(where x follows a biased product distribution) with very small error probability.

Because observations up to Phase 2 have been simplified by our analysis, we make some defi-

nitions and restate the problem we need to solve in Phase 3.

18

TIGHT BOUNDS FOR NOISY COMPUTATION

B.4.1. Preliminaries

We have a Boolean function f : {0, 1}n → {0, 1} and an input x ∼ Ber(1/2)¹n, and the goal is to

determine f(x). Then we independently observe each i ∈ [n] with probability is p+ = 1−n−c3±o(1)

for xi = 1 and p− = o(1) for xi = 0. Let s ∈ {0, 1, ∗}n be the observations. That is, if coordinate

i is revealed, then si is the revealed value; otherwise si = ∗. Let U = {i ∈ [n] : si = ∗} be the

unrevealed coordinates. Conditioned on s, the distribution of xU is a product of Ber(q), where

q =
1− p+

1− p+ + 1− p−
= n−c3±o(1). (9)

Let fs : {0, 1}U → {0, 1} be the function fs(xU) = f(s�xU) for all xU ∈ {0, 1}U , where s�xU
denotes the bit string where all ∗ in s are replaced with the corresponding value in xU . Let Ä be the

distribution
(p−

2 , p+2 , 1− p−
2 −

p+
2

)
on {0, 1, ∗}. Then without conditioning on x, s has distribution

Ä¹n.

For any Boolean function g : {0, 1}S → {0, 1}, define the q-biased influence of coordinate

i ∈ S as

Infq,i(f) = Px∼Ber(q)¹S (f(x) ̸= f(x· ei))

and the q-biased total influence as

Iq(f) =
∑

i∈S

Infq,i(f).

When we mention the q-biased total influence of the function fs, the sum is over the unrevealed

coordinates i ∈ U .

For a string y ∈ {0, 1}S , let Dy denote the distribution of t ∈ {0, 1, ∗}S where for i ∈ S with

yi = 1, ti = 1 with probability p+ and ti = ∗ with probability 1−p+; for i ∈ S with yi = 0, ti = 0
with probability p− and ti = ∗ with probability 1 − p−. For a string t ∈ {0, 1, ∗}S , let Es denote

the distribution of y ∈ {0, 1}S where yi = ti if ti ∈ {0, 1} and yi ∼ Ber(q) independently for

i ∈ S with ti = ∗, where q is defined in Eq. (9). With these definitions, we have x ∼ Ber(1/2)¹n,

s ∼ Ä¹n, x ∼ Es conditioned on s, s ∼ Dx conditioned on x.

B.4.2. Step 3a

We connect the total influence I(f) with the biased total influence Iq(fs).

19

GU LI XU

Fix i ∈ [n], we have (in the following, x∪ 0i and x∪ 1i denotes setting the i-th bit of x as 0 and

1, respectively)

Infi(f) = Px∼Ber(1/2)¹([n]\i)(f(x ∪ 0i) ̸= f(x ∪ 1i))

= Px∼Ber(1/2)¹([n]\i)

s∼Dx

(f(x ∪ 0i) ̸= f(x ∪ 1i))

= Ps∼Ä¹([n]\i)

x∼Es

(f(x ∪ 0i) ̸= f(x ∪ 1i))

=
1

Psi∼Ä(si = ∗)
· P s∼Ä¹[n]

x∼Es[n]\i

(f(x ∪ 0i) ̸= f(x ∪ 1i) ' si = ∗)

=
1

Psi∼Ä(si = ∗)
· Ps∼Ä¹[n]

x∼Es

(f(x) ̸= f(x· ei) ' si = ∗)

=
1

Ä(∗) · Es∼Ä¹[n] [1si=∗ · Px∼Es(f(x) ̸= f(x· ei))] .

The first step is by definition of Infi. The second step is because s is not involved in the condition.

The third step is by considering the joint distribution between x and s. The fourth step is because

the two conditions f(x ∪ 0i) ̸= f(x ∪ 1i) and si = ∗ are independent: the former depends on s[n]\i
and the latter depends on si. The fifth step rewrites the condition. The sixth step changes the order

of checking si = ∗ and choosing x ∼ Es.

Summing over i ∈ [n], we have

Ä(∗) I(f) =
∑

i∈[n]

Es∼Ä¹[n] [1si=∗ · Px∼Es(f(x) ̸= f(x· ei))]

= Es∼Ä¹[n]




∑

i∈[n]:si=∗

Px∼Es(f(x) ̸= f(x· ei))




= Es∼Ä¹[n] Iq(fs).

The second step is by linearity of expectation. The third step is by definition of Iq.

Note that Ä(∗) = 1− p−
2 −

p+
2 = 1

2 ± o(1). Because I(f) g cn, we have

Es∼Ä¹[n] Iq(fs) g (2c± o(1))n. (10)

That is, fs has expected q-biased total influence at least (2c± o(1))n.

B.4.3. Step 3b

We prove the following lemma, which essentially says that adaptive exact queries in Phase 3 can

only decrease the q-biased total influence Iq by a certain amount. In the following, recall the defini-

tion of ft for a Boolean function f : {0, 1}n → {0, 1} and t ∈ {0, 1, ∗}n is f where we restrict all

input coordinates i with ti ̸= ∗ to be equal to ti.

Lemma 10 Let f : {0, 1}n → {0, 1} be a Boolean function. Suppose the input x follows

distribution Ber(q)¹n. Consider an algorithm which adaptively makes at most m exact queries

in expectation. Let t ∈ {0, 1, ∗}n be the random variable denoting the query results. Then

E[Iq(ft)] g Iq(f) − m, where E is over the randomness of the revealed coordinates and the ran-

domness of the algorithm.

20

TIGHT BOUNDS FOR NOISY COMPUTATION

Proof By induction it suffices to prove the case where the algorithm makes exactly one query.

Without loss of generality, assume that the algorithm makes an query to coordinate 1. Then t =
1∗n−1 with probability q and t = 0∗n−1 with probability 1− q.

E[Iq(ft)] = q Iq(f1∗n−1) + (1− q) Iq(f0∗n−1)

= q
∑

2fifn

Infq,i(f1∗n−1) + (1− q)
∑

2fifn

Infq,i(f0∗n−1)

=
∑

2fifn

Infq,i(f)

= Iq(f)− Infq,1(f)

g Iq(f)− 1.

The first step is by expanding the expectation. The second step is by definition of Iq. The third step

is because q Infq,i(f1∗n−1) + (1 − q) Infq,i(f0∗n−1) = Infq,i(f). The fourth step is by definition of

Iq. The fifth step is because Infq,i(f) f 1.

We now apply Lemma 10 to Phase 3. Let t ∈ {0, 1, ∗}U be the observations made in Phase 3, where

U = {i ∈ [n] : si = ∗} is the set of unrevealed coordinates at the end of Phase 2. Then Eq. (10)

together with Lemma 10 implies that

Es∼Ä¹[n] [Et[Iq((fs)t)]] g (2c− c2 ± o(1))n. (11)

B.4.4. Step 3c

After Phase 3, the Boolean function on the unrevealed coordinates has q-biased total influence at

least (2c − c2 ± o(1))n = Ω(n) in expectation. In particular, with probability g c − c2/2 ± o(1),
the function has Iq((fs)t) g (c − c2/2 ± o(1))n. Any algorithm now needs to output an answer

in {0, 1}. The following result shows that the error probability will be Ω(1) no matter what the

algorithm outputs.

Lemma 11 For any 0 < c f 1, there exists c′ > 0 such that the following holds. Let f : {0, 1}n →
{0, 1} be a Boolean function and 1

3n f q f c/6 be a parameter. If Iq(f) g cn, then

c′ f Ex∼Ber(q)¹n [f(x)] f 1− c′.

Proof Since Iq(f) g cn and Infq,i(f) f 1 for every i, there exist at least cn/2 indices i ∈ [n] with

Infq,i(f) g c/2. As +c/6q, f cn/2, there are m = +c/6q, indices i ∈ [n] with Infq,i(f) g c/2.

Without loss of generality, assume that Infq,i(f) g c/2 for i ∈ [m].

Let 0m denote the length-m bit string with all 0’s. By union bound, we have

Px∼Ber(q)¹n

(
x[m] = 0m

)
g 1−

∑

i∈[m]

Px∼Ber(q)¹n (xi = 1) = 1−mq g 1− c/6.
(12)

21

GU LI XU

Let ⋄ denote the concatenation operation of two bit strings. For any i ∈ [m], we have

Py∼Ber(q)¹([n]\[m]) (f(0m ⋄ y) ̸= f(ei ⋄ y))
= Px∼Ber(q)¹n

(
f(x) ̸= f(x· ei) | x[m] = 0m

)

g Px∼Ber(q)¹n

(
f(x) ̸= f(x· ei) ' x[m] = 0m

)

g Px∼Ber(q)¹n (f(x) ̸= f(x· ei)) + Px∼Ber(q)¹n

(
x[m] = 0m

)
− 1

g Infq,i(f) + (1− c/6)− 1 (By Eq. (12))

g c/3. (13)

Finally, we have

Ex∼Ber(q)¹n(f(x))

g Px∼Ber(q)¹n(f(x) = 1 ' x1 + · · ·+ xm = 1)

=
∑

i∈[m]

Px∼Ber(q)¹n(f(x) = 1 ' x[m] = ei)

= q(1− q)m−1 ·
∑

i∈[m]

Py∼Ber(q)¹([n]\[m])(f(ei ⋄ y) = 1)

g Θc(q) ·
∑

i∈[m]

Py∼Ber(q)¹([n]\[m])(f(0m ⋄ y) = 0 ' f(0m ⋄ y) ̸= f(ei ⋄ y))

g Θc(q) ·
∑

i∈[m]

(
Py∼Ber(q)¹([n]\[m])(f(0m ⋄ y) = 0) + Py∼Ber(q)¹([n]\[m])(f(0m ⋄ y) ̸= f(ei ⋄ y))− 1

)

g Θc(1) ·
(
Py∼Ber(q)¹([n]\[m])(f(0m ⋄ y) = 0) + c/3− 1

)
(By Eq. (13))

g Θc(1) ·
(
Px∼Ber(q)¹n(f(x) = 0 ' x[m] = 0m) + c/3− 1

)

g Θc(1) ·
(
Px∼Ber(q)¹n(f(x) = 0) + (1− c/6)− 1 + c/3− 1

)
(By Eq. (12))

= Θc(1) · (c/6− Ex∼Ber(q)¹n(f(x))).

Therefore, there exists c′ depending only on c such that Ex∼Ber(q)¹n [f(x)] g c′.
By symmetry, we also have Ex∼Ber(q)¹n(f(x)) f 1− c′.

Applying Lemma 11 to the Boolean function (fs)t on the unrevealed coordinates finishes the

proof.

Appendix C. Graph Connectivity

Recall the Graph Connectivity problem, where the input is an unknown undirected graph on n
labeled vertices. In each query, the algorithm picks an unordered pair e = (u, v) ∈

(
V
2

)
, and the

oracle returns whether e is an edge of G, flipped independently with probability 0 < p < 1
2 . The

goal of the algorithm is to determine whether G is connected or not.

In this section, we prove Theorem 2, which we recall below:

Theorem 2 (Hardness of Graph Connectivity) Any algorithm solving the Graph Connectivity

problem with error probability f 1
3 uses Ω(n2 log n) noisy queries in expectation.

22

TIGHT BOUNDS FOR NOISY COMPUTATION

C.1. Preliminaries

Lemma 12 (Stirling’s formula)

1. There exists an absolute constant ϵ > 0 such that for all n g 1,

ϵ
√
n
(n
e

)n
f n! f ϵ−1√n

(n
e

)n
.

2. Fix m g 2. There exists an constant ϵ = ϵ(m) > 0 such that for all n g 1 and all

k1, . . . , km g 1 with k1 + · · ·+ km = n,

ϵ · nn+1/2

∏
i∈[m] k

ki+1/2
i

f
(

n

k1, . . . , km

)
f ϵ−1 · nn+1/2

∏
i∈[m] k

ki+1/2
i

.

Let (Pn)n and (Qn)n be two sequences of probability measures such that Pn and Qn are defined

on the same measurable spaces Ωn. We say Qn is contiguous with respect to Pn, denoted by

Qn ◁ Pn, if for every sequence (An)n of measurable sets An ¦ Ωn, Pn(An) → 0 implies

Qn(An)→ 0.

Lemma 13 (Cayley’s formula) The number of spanning trees on n labeled vertices is nn−2.

C.2. Structure of a uniform spanning tree

Our proof of Theorem 2 uses several properties of the uniform random spanning tree (UST) of the

complete graph. In this section we state and prove these properties.

The notion of balanced edges is crucial to our construction and analysis.

Definition 14 (Balanced edges) Let ´ > 0 be a constant. Let T be a spanning tree on n labeled

vertices. An edge e ∈ T is called ´-balanced if both sides of e has at least ´n vertices. Let B´(T)
denote the set of ´-balanced edges of T .

Proposition 15 Let T be a UST on n labeled vertices. There exist absolute constants ϵ, µ1, µ2, µ3 >
0 such that with probability at least ϵ, the following are true simultaneously.

(i)

µ1
√
n f

∣∣B1/3(T)
∣∣ f µ2

√
n.

(ii) For all e ∈ B1/3(T), if T1, T2 are the two connected components of T\e, then

min{
∣∣B1/7(T1)

∣∣ ,
∣∣B1/7(T2)

∣∣} g µ3
√
n.

Our proof of Proposition 15 uses the following lemmas.

Lemma 16 (Balanced edges form a chain) Let T be a tree on n labeled vertices. Then the sub-

graph formed by all edges in B1/3(T) is either empty or a chain.

Proof Suppose B1/3(T) is non-empty. Let H be the subgraph formed by all edges in B1/3(T).

23

GU LI XU

Step 1. We prove that H is connected. Let e1, e2 ∈ B1/3(T) and e3 be an edge on the path (in T)

between e1 and e2. Let Ti,1, Ti,2 (i = 1, 2, 3) be the two connected components of T\ei, such that

e3 ∈ T1,1, e3 ∈ T2,1, e1 ∈ T3,1, e2 ∈ T3,2. Then |Ti,j | g n
3 for i, j ∈ {1, 2}. We have T3,i § Ti,2

(i = 1, 2). So |T3,i| g n
3 for i = 1, 2 and e3 is 1

3 -balanced. This shows that H is connected.

Step 2. We prove that H is a chain. By Step 1, H is a connected subgraph of T , so it is a

tree. Suppose H has a vertex v of degree at least three. Then there exist three distinct 1
3 -balanced

edges e1, e2, e3 containing v. Say ei = (v, ui) (i = 1, 2, 3). Let Ti (i = 1, 2, 3) be the connected

component of T\ei not containing v. Then |Ti| g n
3 and Ti (i = 1, 2, 3) are all disjoint. This

implies

n g |T1|+ |T2|+ |T3|+ 1 g n+ 1,

which is a contradiction. So all vertices of H have degree at most two, and H must be a chain.

The following statement about typical distances in a UST is well-known (e.g., (Aldous, 1991)).

Lemma 17 (Typical distance in UST) Let T be a UST on n labeled vertices and u, v be two fixed

vertices (not dependent on T). Then for any ϵ > 0, there exist absolute constants µ1, µ2 > 0, such

that

P
[
µ1
√
n f distT (u, v) f µ2

√
n
]
g 1− ϵ,

where distT denotes the graph distance in T .

To prove Proposition 15, we define a probability measure Q on the space of spanning trees on n
labeled vertices that is contiguous with respect to the UST measure, and Proposition 15 holds under

Q.

Definition 18 (Measure Q) We define the measure Q as follows. A tree tuple D is a tuple which

consists of the following data:

(i) Six distinct vertices u0, u1, u2, v0, v1, v2 ∈ [n].

(ii) Integers n
3 − n

100 f L0, R0 f n
3 − 1. Integers n

3 −L0 f L1 f n
100 , n

3 −R0 f R1 f n
100 . Let

W = n− L0 − L1 −R0 −R1.

(iii) A partition of V = [n] into five subsets V = VL0 ⊔ VL1 ⊔ VR0 ⊔ VR1 ⊔ VW , where ui ∈ VLi ,

vi ∈ VRi , u2, v2 ∈ VW , and |VLi | = Li, |VRi | = Ri, |VW | = W (i = 1, 2).

(iv) Five spanning trees: TLi on VLi , TRi on VRi , TW on VW (i = 1, 2).

Given a tree tuple D, it produces a spanning tree

T (D) = TL0 ∪ TL1 ∪ TR0 ∪ TR1 ∪ TW ∪ {(u0, u1), (u1, u2), (v0, v1), (v1, v2)}.

The measure Q is the distribution of T (D), where D is uniformly chosen from all tree tuples.

Lemma 19 (Contiguity) Let P be the UST measure on n labeled vertices. Let Q be as defined in

Definition 18. Then Q ◁ P.

24

TIGHT BOUNDS FOR NOISY COMPUTATION

Proof Let us study the support of Q. By Lemma 16, 1
3 -balanced edges in T form a chain. By the

construction (Definition 18), for T = T (D), u1 and v1 are the two endpoints of the chain B1/3(T),
and u2 (resp. v2) is the second vertex on the path from u1 to v1 (resp. v1 to u1). Furthermore, u0
(resp. v0) is the only neighbor x of u1 (resp. v1) not on the path between u1 and v1, such that u0’s

connected component in T\(u0, x) (resp. v0’s connected component in T\(v0, x)) has size at least
n
3 − n

100 . This means that D can be reconstructed given T (D), up to swapping (u0, u1, u2) and

other data with (v0, v1, v2) and the corresponding data. Specifically, every T in the support of Q is

realized by exactly two Ds. Therefore, Q is equal to the conditional measure P(· | T ∈ suppQ).

Now, to prove that Q ◁ P, it suffices to prove that |suppQ| = Θ(|suppP|) = Θ(nn−2).
Because every T is realized exactly twice, it suffices to prove that the number of different tree

tuples is Θ(nn−2). We construct a tree tuple according to the following procedure.

(i) Choose six distinct vertices u0, u1, u2, v0, v1, v2 ∈ [n]. There are n!/(n− 6)! = Θ(n6) ways

to do this.

(ii) Choose L1 and R1 from [1, n
100]. Choose L0 from

[
n
3 − L1,

n
3 − 1

]
and R0 from

[
n
3 −R1,

n
3 − 1

]
.

(iii) Choose the partition V = VL0 ⊔ VL1 ⊔ VR0 ⊔ VR1 ⊔ VW . There are

(
n− 6

L0 − 1, L1 − 1, R0 − 1, R1 − 1,W − 2

)

ways to do this.

(iv) Choose the five spanning trees, TL0 , TL1 , TR0 , TR1 , TW . There are

LL0−2
0 LL1−2

1 RR0−2
0 RR1−2

1 WW−2

ways to do this.

25

GU LI XU

Summarizing the above, for large enough n, the number of different tree tuples is

n!

(n− 6)!
·

∑

1fL1,R1f
n

100

∑

n
3
−L1fL0f

n
3
−1

n
3
−R1fR0f

n
3
−1

(
n− 6

L0 − 1, L1 − 1, R0 − 1, R1 − 1,W − 2

)

· LL0−2
0 LL1−2

1 RR0−2
0 RR1−2

1 WW−2

≍
∑

1fL1,R1f
n

100

∑

n
3
−L1fL0f

n
3
−1

n
3
−R1fR0f

n
3
−1

(
n

L0, L1, R0, R1,W

)
LL0−1
0 LL1−1

1 RR0−1
0 RR1−1

1 WW

≍
∑

1fL1,R1f
n

100

∑

n
3
−L1fL0f

n
3
−1

n
3
−R1fR0f

n
3
−1

nn+1/2

(L0L1R0R1)3/2W 1/2

≍
∑

1fL1,R1f
n

100

∑

n
3
−L1fL0f

n
3
−1

n
3
−R1fR0f

n
3
−1

nn−3

(L1R1)3/2

≍
∑

1fL1,R1f
n

100

nn−3

(L1R1)1/2

≍ nn−2.

This finishes the proof.

Lemma 20 (Proposition 15, Item (i) for Q) Let T be sampled from Q (Definition 18). For any

ϵ > 0, there exist µ1, µ2 > 0 such that with probability at least 1− ϵ, Proposition 15, Item (i) holds

for T .

Proof As we discussed in the proof of Lemma 19, all edges on the path between u1 and v1 are
1
3 -balanced. Conditioned on VW , TW being a UST on VW , by Lemma 17,

P

[
µ1
√
W f distTW

(u1, v1) f µ2
√
W
]
g 1− ϵ.

Noting that distT (u1, v1) = distTW
(u1, v1) and W = Θ(n), we finish the proof.

Corollary 21 (Proposition 15, Item (i)) Let T be a UST on n labeled vertices. There exist abso-

lute constants ϵ, µ1, µ2 > 0 such that with probability at least ϵ, Proposition 15, Item (i) holds for

T .

Proof By Lemmas 19 and 20.

Using Corollary 21, we can prove that Proposition 15 holds for Q.

Lemma 22 (Proposition 15 for Q) Let T be sampled from Q (Definition 18). There exist absolute

constants ϵ, µ1, µ2, µ3 > 0 such that with probability at least ϵ, both items in Proposition 15 hold

for T .

26

TIGHT BOUNDS FOR NOISY COMPUTATION

Proof Let EL0 (resp. ER0 , EW) be the event that
∣∣B1/3(TL0)

∣∣ (resp.
∣∣B1/3(TR0)

∣∣, distTW
(u1, v1)) is

in [µ1
√
n, µ2
√
n]. Let E = EL0 ∩ ER0 ∩ EW . Let A be the Ã-algebra generated by VL0 , VR0 , VW .

Conditioned onA, the three subtrees TL0 , TR0 , TW are independent and are USTs on the respective

vertex sets. By Lemma 17, Corollary 21, and L0, R0,W = Θ(n), there exist ϵ, µ1, µ2 > 0 such that

P(EL0 |A),P(ER0 |A),P(EW |A) g ϵ1/3.

By independence, we have P(E|A) g ϵ. Therefore P(E) g ϵ.
Now we show that when E happens, both items in Proposition 15 hold. As we discussed in the

proof of Lemma 19, B1/3(T) is the set of edges on the path between u1 and v1. So Item (i) holds

because EW happens. Now consider Item (ii). Let e be an edge on the path between u1 and v1. Let

T1, T2 be the two components of T\e, where u1 ∈ T1, v1 ∈ T2. Then TL0 ¦ T1, TR0 ¦ T2. Every
1
3 -balanced edge of TL0 divides TL0 into components of size at least

|TL0
|

3 , so it is a ´-balanced edge

of T1 with ´ =
|TL0

|

3|T1|
g

n
3
− n

100

3· 2
3
n
g 1

7 . The same discussion holds for TR0 and T2. Because EL0 and

ER0 happen, Item (ii) holds.

By Lemmas 19 and 22, we complete the proof of Proposition 15.

Lemma 23 Let T be a UST. Then for any ϵ > 0, 0 < ´ < 1
2 , there exists µ > 0 such that

P
[
|B´(T)| f µ

√
n
]
g 1− ϵ.

Proof The proof is by the first moment method. Let e = (u, v) be an unordered pair of vertices.

For any integer ´n f k f (1 − ´)n, the number of spanning trees containing e such that u’s side

contains exactly k (including u) vertices is

(
n− 2

k − 1

)
kk−2(n− k)n−k−2 ≍ n−2

(
n

k

)
kk−1(n− k)n−k−1 ≍ nn−3/2

(k(n− k))3/2
≍ nn−9/2.

So the number of trees T with e ∈ B´(T) is

≍
∑

k∈[´n,(1−´)n]

nn−9/2 ≍ nn−7/2.

Therefore,

E [B´(T)] ≍
(
n
2

)
· nn−7/2

nn−2
≍ √n.

The result then follows from Markov’s inequality.

Lemma 24 Let T be a UST. For e ∈ T , let sT (e) denote the size of the smaller component of T\e.

Then for any ϵ > 0, there exists µ > 0 such that

P

[
∑

e∈T

sT (e) f µn3/2

]
g 1− ϵ.

27

GU LI XU

Proof The proof is by first moment method. Let e = (u, v) be an unordered pair of vertices. We

define sT (e) = 0 if e ̸∈ T . Then

E [sT (e)] ≍
1

nn−2
·
∑

1fkfn
2

k ·
(
n− 2

k − 1

)
kk−2(n− k)n−k−2

≍ 1

nn

∑

1fkfn
2

(
n

k

)
kk(n− k)n−k−1

≍
∑

1fkfn
2

n1/2

k1/2(n− k)3/2

≍
∑

1fkfn
2

1

k1/2n

≍ n−1/2.

Therefore,

E

[
∑

e∈T

sT (e)

]
≍
(
n

2

)
· n−1/2 ≍ n3/2.

The result then follows from Markov’s inequality.

Combining Proposition 15, Lemma 23 and Lemma 24, we get the following corollary.

Corollary 25 Let T be a UST on n labeled vertices. There exist absolute constants ϵ, µ1, µ2, µ3, µ4, µ5 >
0 such that the following are true simultaneously.

(i)

µ1
√
n f

∣∣B1/3(T)
∣∣ f

∣∣B1/42(T)
∣∣ f µ2

√
n.

(ii) For all e ∈ B1/3(T), if T1 and T2 are the two connected components of T\e, then

µ3
√
n f min{

∣∣B1/7(T1)
∣∣ ,
∣∣B1/7(T2)

∣∣} f max{
∣∣B1/14(T1)

∣∣ ,
∣∣B1/14(T2)

∣∣} f µ4
√
n.

(iii)

∑

e∈T

sT (e) f µ5n
3/2.

Proof By Proposition 15, there exist ϵ, µ1, µ3 > 0 such that with probability at least ϵ, the lower

bounds in Corollary 25, Items (i) and (ii) hold. By Lemma 23, there exists µ2 > 0 such that

P
[∣∣B1/42(T)

∣∣ f µ2
√
n
]
g 1− ϵ/3.

28

TIGHT BOUNDS FOR NOISY COMPUTATION

By Lemma 24, there exists µ5 > 0 such that

P

[
∑

e∈T

sT (e) f µ5n
3/2

]
g 1− ϵ/3.

By union bound, with probability at least ϵ/3, Corollary 25, Items (i) and (iii), and the lower bound

in Corollary 25, Item (ii) hold. Now notice that B1/14(T1) ∪ B1/14(T2) ¦ B1/42(T), so the upper

bound in Corollary 25, Item (ii) holds with µ4 = µ2.

C.3. Hard distribution and three-phase problem

We now start the proof of Theorem 2. Our input distribution is defined as follows.

Definition 26 (Hard distribution for graph connectivity) Let ´0 = 1
21 . We generate the input

graph G using the following procedure.

(1) Let T be a UST on vertex set V = [n].

(2) If B´0(T) = ∅, return to the previous step. Otherwise, let e0 ∼ Unif(B´0(T)).

(3) Throw a fair coin z ∼ Ber(1/2). If z = 1, output G = T ; if z = 0, output G = T\e0.

We define the following three-phase problem, where the algorithm has more power than in the

noisy query model.

Definition 27 (Three-phase problem) Let G be generated from Definition 26. Let c1, c2 > 0 be

constants to be determined later. Consider the following three-phase problem.

1. Phase 1: The algorithm makes m1 = c1 log n noisy queries to every unordered pair of ver-

tices (u, v) ∈
(
V
2

)
.

2. Phase 2: The oracle reveals some edges and non-edges of G. The choice of these edges and

non-edges will be described later.

3. Phase 3: The algorithm makes up to m2 = c2n
2 (adaptive) exact queries.

The goal of the algorithm is to determine whether the input graph G is connected.

Lemma 28 If no algorithm can solve the three-phase problem (Definition 27) with error probabil-

ity ϵ > 0, then no algorithm can solve the graph connectivity problem with error probability ϵ using

at most m1m2 = c1c2n
2 log n noisy queries.

The proof is similar to Lemma 6 and omitted.

Proposition 29 (Hardness of the three-phase problem) For some choices of c1, c2, and Phase 2

strategy (Definition 27), the following is true: there exists ϵ > 0 such that no algorithm can solve

the three-phase problem (Definition 27) with error probability ϵ.

Proof [Proof of Theorem 2] Combining Proposition 29 and Lemma 28.

The following sections are devoted to the proof of Proposition 29.

29

GU LI XU

C.4. Phase 1

In Phase 1, the algorithm makes m1 = c1 log n noisy queries to every potential edge e ∈
(
V
2

)
. Let

ae denote the number of times where a query to e returns 1. Then for e ∈ G, ae ∼ Bin(m1, 1− p);
for e ̸∈ G, ae ∼ Bin(m1, p). For 0 f k f m1, define

pk = P(Bin(m1, 1− p) = k) =

(
m1

k

)
(1− p)kpm1−k.

Let I =
[
pm1 − log0.6 n, pm1 + log0.6 n

]
.

Lemma 30 Let x ∼ Bin(m1, 1− p), y ∼ Bin(m1, p). Then

P(x ∈ I) = n−c3±o(1), (14)

P(y ∈ I) = 1− o(1), (15)

where c3 = c1(1− 2p) log 1−p
p .

The proof is the same as Lemma 8 and omitted.

Let P(0) denote the graph distribution in Definition 26. Let P(1) denote the posterior distribu-

tion of G conditioned on observations in Phase 1. Let C(0) (resp. C(1)) deonte the support of P(0)

(resp. P(1)). Then C(1) = C(0) and for any graph H ∈ C(0), we have

P(1)(H) ∝ P

(
(ae)e∈(V2)

|H
)
P(0)(H), (16)

=

(
∏

e∈H

pae

)(
∏

e∈Hc

pm1−ae

)
P(0)(H).

where Hc denotes the complement
(
V
2

)
\H .

C.5. Phase 2

In Phase 2, the oracle reveals some edges and non-edges of G as follows.

2a. In Step 2a, the oracle reveals potential edges e with ae ̸∈ I .

2b. In Step 2b, the oracle reveals every e ∈ G independently with probability qae . We choose

qj = 1− pm1−jpjl
pjpm1−jl

for j ∈ I where jl = pm1 −m0.6
1 .

2c. In Step 2c, the oracle reveals n − 2 edges of G as follows. If G is disconnected, reveal all

edges of G. Otherwise, G is connected and is some tree T . If G has a ´0-balanced edge that

is not revealed yet, uniformly randomly choose an edge e∗ from all such edges, and reveal all

edges of G\e∗. If all ´0-balanced edges of G have been revealed, report failure.

C.5.1. Step 2a and Step 2b

By the same analysis as in Sections B.3.1 and B.3.2, observations up to Step 2b have the same effect

as the following procedure:

Definition 31 (Alternative observation procedure) Let G be generated as in Definition 26.

30

TIGHT BOUNDS FOR NOISY COMPUTATION

(1) Observe every edge e ∈ G independently with probability

p+ = 1−
∑

j∈I

pj(1− qj) = 1− pjl
pm1−jl

·
∑

j∈I

pm1−j

= 1− (1± o(1))
pjl

pm1−jl

= 1− n−c3±o(1).

(2) Observe every non-edge e ∈ Gc independently with probability

p− = P(Bin(m1, p) ̸∈ I) = o(1).

Let P(2b) be the posterior distribution of G after Step 2b and C(2b) be its support. Let E
(2a)
+

(resp. E
(2a)
−) denote the set of edges (resp. non-edges) revealed in Step 2a. Let E

(2b)
+ be the set of

edges revealed in Step 2b that were not revealed in Step 2a. Define E
(f2b)
+ = E

(2a)
+ ∪ E

(2b)
+ . Then

C(2b) is the set of graphs H ∈ C(0) satisfying E
(f2b)
+ ¦ H and E

(2a)
− ∩H = ∅.

By the same analysis as in Sections B.3.1 and B.3.2, the posterior distribution satisfies

P(2b)(H) ∝
(

pkl
pm1−kl

)|H|−(n−2)

P(0)(H). (17)

for H ∈ C(2b).

C.5.2. Step 2c

Let E
(2c)
+ be the set of edges revealed in Step 2c that were not revealed in previous steps. Let P(2c)

be the posterior distribution of G and C(2c) be the support of P(2c).

Lemma 32 Conditioned on G being connected, with probability Ω(1), Step 2c does not report

failure, and e∗ is 1
3 -balanced.

Proof Step 2c reports failure when G is connected and all ´0-balanced edges have been revealed in

previous steps. Let T be a UST. By Corollary 25, for some ϵ, µ1, µ2 > 0, we have

P
[
µ1
√
n f

∣∣B1/3(T)
∣∣ f |B´0(T)| f µ2

√
n
]
> ϵ.

When constructing the input distribution (Definition 14), conditioned on G being connected, the

distribution of G is uniform over all spanning trees with at least one ´0-balanced edge. Let E1 be

the event that G is connected, has at least µ1
√
n 1

3 -balanced edges, and at most µ2
√
n ´0-balanced

edges. By the above discussion, P(E1) = Ω(1). In Definition 31, every edge is observed indepen-

dently with probability p+ = 1 − n−c3±o(1). By choosing c1 > 0 small enough, we can let c3 > 0
be arbitrarily small. Let B̃1/3 (resp. B̃´0) be the set of 1

3 -balanced (resp. ´0-balanced) edges of G
not revealed in previous steps. Then

B̃1/3 ¦ B̃´0 ,
∣∣∣B̃1/3

∣∣∣ ∼ Bin
(∣∣B1/3(G)

∣∣ , 1− p+
)
,

∣∣∣B̃´0

∣∣∣ ∼ Bin (|B´0(G)| , 1− p+) .

31

GU LI XU

Note that

E
[
Bin

(∣∣B1/3(G)
∣∣ , 1− p+

)]
=
∣∣B1/3(G)

∣∣ · (1− p+) = n1/2−c3±o(1),

E [Bin (|B´0(G)| , 1− p+)] = |B´0(G)| · (1− p+) = n1/2−c3±o(1).

By Bernstein’s inequality, there exists µ3, µ4 > 0 such that conditioned on E1, we have

P

[∣∣∣B̃1/3

∣∣∣ g µ3
∣∣B1/3(G)

∣∣ · (1− p+) | E1
]
g 1− exp

(
−n1/2−c3±o(1)

)
,

P

[∣∣∣B̃´0

∣∣∣ f µ4 |B´0(G)| · (1− p+) | E1
]
g 1− exp

(
−n1/2−c3±o(1)

)
.

Let E2 be the event that

∣∣∣B̃1/3

∣∣∣ g µ3
∣∣B1/3(G)

∣∣ · (1− p+) and

∣∣∣B̃´0

∣∣∣ f µ4 |B´0(G)| · (1− p+). The

above discussion shows that P(E2|E1) = 1− o(1).

When E1 and E2 both happen, we have
|B̃1/3|
|B̃β0 |

g µ3µ1
µ4µ2

> 0. So conditioned on E1 ∩ E2, the

probability that e∗ is 1
3 -balanced is Ω(1). This finishes the proof.

From now on we condition on the event that Step 2c does not report failure, and e∗ is 1
3 -balanced.

Let us consider the posterior distribution P(2c). Let E
(f2c)
+ = E

(f2b)
+ ∪E(2c)

+ be the set of observed

edges at the end of Step 2c. Then E
(f2c)
+ consists of n − 2 edges, which is a forest with two

components T1 and T2, each containing at least n
3 and at most 2n

3 vertices. The support C(2c) is easy

to describe. Let G0 = T1 ∪ T2 and Ge = T1 ∪ T2 ∪ {e} for e ∈ E(T1, T2). Then

C(2c) = {G0} ∪
{
Ge : e ∈ E(T1, T2)\E(2a)

−

}
.

The posterior distribution P(2c) is not simply the distribution P(2b) restricted to C(2c). For H ∈ C(2c),
we have

P(2c)(H) ∝ P

(
E

(2c)
+ | H,E

(f2b)
+

)
P(2b)(H) (18)

∝ P

(
E

(2c)
+ | H,E

(f2b)
+

)(pkl
pm1−kl

)|H|−(n−2)

P(0)(H).

For H = G0, Eq. (18) simplifies to

P(2c)(G0) ∝ P(0)(G0). (19)

For H = Ge, Eq. (18) simplifies to

P(2c)(Ge) ∝
1∣∣∣B´0(Ge)\E(f2b)

+

∣∣∣
· pkl
pm1−kl

P(0)(Ge). (20)

Note that the ∝ symbols in Eqs. (19) and (20) hide the same factor.

Further simplifying Eqs. (19) and (20), we get

P(2c)(G0) ∝
∑

e∈E(T1,T2)

1

|B´0(Ge)|
, (21)

P(2c)(Ge) ∝
1∣∣∣B´0(Ge)\E(f2b)

+

∣∣∣
· pkl
pm1−kl

, ∀e ∈ E(T1, T2)\E(2a)
− . (22)

32

TIGHT BOUNDS FOR NOISY COMPUTATION

We now consider the set B´0(Ge) for e ∈ E(T1, T2). Let ´1 = ´0n
|T1|

, ´2 = ´0n
|T2|

. Then 1
14 f

´1, ´2 f 1
7 and B´1(T1) ∪ B´2(T2) ¦ B´0(Ge) for all e ∈ E(T1, T2). For ei ∈ Ti (i = 1, 2), let

STi(ei) be the set of vertices in the smaller component of Ti\ei. (If the two components have the

same size, choose a side arbitrarily.) For e = (u1, u2) ∈ E(T1, T2) (with ui ∈ Ti, i = 1, 2), an

edge ei ∈ Ti\B´i
(Ti) (i = 1, 2) is in B´0(Ge) if and only if ui ∈ STi(ei). For i ∈ {1, 2} and

e = (u1, u2) ∈ E(T1, T2), define

B′
Ti
(e) = {ei : ei ∈ Ti\B´i

(Ti), ui ∈ STi(ei)}.

Then for e ∈ E(T1, T2), we have

B´0(Ge) = {e} ∪B´1(T1) ∪B´2(T2) ∪B′
T1
(e) ∪B′

T2
(e). (23)

Note that the union is a disjoint union.

Lemma 33 Conditioned on G being connected, there exist constants ϵ, µ1, µ2, µ3 > 0 such that

with probability at least ϵ, the following are true simultaneously.

(i) Step 2c does not report failure and e∗ ∈ B1/3(G).

(ii)

µ1
√
n f |B´1(T1)|+ |B´2(T2)| f µ2

√
n.

(iii)

∑

e1∈T1\Bβ1
(T1)

|ST1(e1)|+
∑

e2∈T2\Bβ2
(T2)

|ST2(e2)| f µ3n
3/2.

Proof Let T be a UST. Let E1 be the event that all items in Corollary 25 hold. Then conditioned

on G being connected, E1 happens with probability Ω(1). In the following, condition on that G is

connected and E1 happens.

Let E2 be the event that Lemma 33, Item (i) holds. By the proof of Lemma 32, conditioned on

E1, E2 happens with probability Ω(1). In the following, condition on that E1 and E2 both happen.

By Corollary 25, Item (ii), and because e∗ ∈ B1/3(T),

|B´1(T1)|+ |B´2(T2)| g
∣∣B1/7(T1)

∣∣+
∣∣B1/7(T2)

∣∣ g µ3
√
n,

|B´1(T1)|+ |B´2(T2)| f
∣∣B1/14(T1)

∣∣+
∣∣B1/14(T2)

∣∣ f µ4
√
n.

Therefore conditioned on E1 and E2, Lemma 33, Item (ii) holds.

By Corollary 25, Item (iii), we have

∑

e1∈T1\Bβ1
(T1)

|ST1(e1)|+
∑

e2∈T2\Bβ2
(T2)

|ST2(e2)| f
∑

e∈T

|ST (e)| f µ5n
3/2.

Therefore conditioned on E1 and E2, Lemma 33, Item (iii) holds.

33

GU LI XU

Corollary 34 Conditioned on G being connected, there exist constants ϵ, µ1, µ2, µ3, µ4, µ5 > 0
such that with probability at least ϵ, the following are true simultaneously.

(i) For all e ∈ E(T1, T2),

|B´0(Ge)| g µ1
√
n.

(ii) For all e ∈ E(T1, T2),

µ2 |B´0(Ge)| · (1− p+) f
∣∣∣B´0(Ge)\E(f2b)

+

∣∣∣ f µ3 |B´0(Ge)| · (1− p+). (24)

(iii)

µ4n
3/2 f

∑

e∈E(T1,T2)

1

|B´0(Ge)|
f µ5n

3/2.

Proof Let T be a UST. Let E be the event that all items in Lemma 33 hold. Then conditioned

G being connected, E happens with probability Ω(1). In the following, condition on that G is

connected and E happens.

By Lemma 33, Item (ii) and Eq. (23), we have

|B´0(Ge)| g |B´1(T1)|+ |B´2(T2)| g µ1
√
n.

So Corollary 34, Item (i) holds. This implies the upper bound in Corollary 34, Item (iii) as

∑

e∈E(T1,T2)

1

|B´0(Ge)|
f n2 · 1

µ1
√
n
= µ−1

1 n3/2.

By Corollary 34, Item (i) and Bernstein’s inequality, for every e ∈ E(T1, T2), with probability

1−exp
(
−n1/2−c3±o(1)

)
, Eq. (24) holds. By union bound, with probability 1−o(1), Eq. (24) holds

for all e ∈ E(T1, T2). This proves Corollary 34, Item (ii).

It remains to prove the lower bound in Corollary 34, Item (iii). By Lemma 33, Items (ii) and (iii),

and Eq. (23), we have

∑

e∈E(T1,T2)

|B´0(Ge)|

=
∑

e∈E(T1,T2)

(
1 + |B´1(T1)|+ |B´2(T2)|+

∣∣B′
T1
(e)
∣∣+
∣∣B′

T2
(e)
∣∣)

f
∑

e∈E(T1,T2)

(
1 + µ2

√
n+

∣∣B′
T1
(e)
∣∣+
∣∣B′

T2
(e)
∣∣)

f (1 + µ2)
√
n|T1||T2|+

∑

e1∈T1\Bβ1
(T1)

|ST1(e1)| · |T2|+
∑

e2∈T2\Bβ2
(T2)

|ST2(e2)| · |T1|

f (1 + µ2 + µ3)n
5/2.

34

TIGHT BOUNDS FOR NOISY COMPUTATION

On the other hand, by Cauchy-Schwarz inequality,




∑

e∈E(T1,T2)

1

|B´0(Ge)|






∑

e∈E(T1,T2)

|B´0(Ge)|


 g (|T1||T2|)2 g

2

9
n2.

So

∑

e∈E(T1,T2)

1

|B´0(Ge)|
g 2

9(µ2 + µ3)
n3/2.

Now we are able to further utilize Eq. (21) and Eq. (22). Write

Z(2c) =
∑

e∈E(T1,T2)

1

|B´0(Ge)|
+

∑

e∈E(T1,T2)\E
(2a)
−

1∣∣∣B´0(Ge)\E(f2b)
+

∣∣∣
· pkl
pm1−kl

.

Conditioned on that all items in Corollary 34 hold, for all e ∈ E(T1, T2)\E(2a)
− , we have

1∣∣∣B´0(Ge)\E(f2b)
+

∣∣∣
· pkl
pm1−kl

≍ 1

|B´0(Ge)| (1− p+)
· pkl
pm1−kl

≍ 1

|B´0(Ge)|
,

where the second step holds because

pm1−kl

pkl
· (1− p+) =

pm1−kl

pkl
·
∑

k∈I

pk(1− qk) =
∑

k∈I

pm1−k = 1− p− = 1− o(1).

Therefore,

Z(2c) ≍
∑

e∈E(T1,T2)

1

|B´0(Ge)|
≍ n3/2,

P(2c)(G0) =
1

Z(2c)

∑

e∈E(T1,T2)

1

|B´0(Ge)|
≍ 1.

By Bernstein’s inequality, for any ¶1 > 0, we have

P

[∣∣∣E(2a)
−

∣∣∣ g ¶1n
2
]
= o(1).

35

GU LI XU

So for small enough ¶1 > 0, with probability 1− o(1), we have

∑

e∈E(T1,T2)\E
(2a)
−

P(2c)(Ge)

=
1

Z(2c)

∑

e∈E(T1,T2)\E
(2a)
−

1∣∣∣B´0(Ge)\E(f2b)
+

∣∣∣
· pkl
pm1−kl

≍ n−3/2
∑

e∈E(T1,T2)\E
(2a)
−

1

|B´0(Ge)|

≍ n−3/2




∑

e∈E(T1,T2)

1

|B´0(Ge)|
−

∑

e∈E
(2a)
−

1

|B´0(Ge)|




≍ n−3/2
(
n3/2 − ¶1n

2 · n−1/2
)

≍ 1,

where in the second-to-last step we used Corollary 34, Items (i) and (iii), and

∣∣∣E(2a)
−

∣∣∣ f ¶1n
2.

Summarizing the above, at the end of Step 2c, with probability Ω(1), we have

P(2c)(disconnected) = P(2c)(G0) = Θ(1),

P(2c)(connected) =
∑

e∈E(T1,T2)\E
(2a)
−

P(2c)(Ge) = Θ(1).

C.6. Phase 3

In Phase 3, the algorithm makes c2n
2 adaptive exact queries. We show that for c2 > 0 small enough,

with probability Ω(1), the algorithm will not be able to return the correct answer.

Let E(3) be the set of edges queried in Phase 3. We can w.l.o.g. assume that E(3) ¦ E(T1, T2)\E(2a)
− ,

because only queries in this set are useful. Conditioned on G being connected, the probability that

E(3) hits the edge e∗ is

∑
e∈E(3) P

(2c)(Ge)∑
e∈E(T1,T2)\E

(2a)
−

P(2c)(Ge)
f c2n

2 ·Θ(n−2) ≍ c2,

which is 1− Ω(1) for c2 > 0 small enough. Therefore, for small enough c2, with probability Ω(1),
E(3) does not hit the edge e∗.

Conditioned on E(3) does not hit e∗, let P(3) denote the posterior distribution of the original

graph G given all observations. We have

P(3)(disconnected) = P(3)(G0),

P(3)(connected) =
∑

e∈E(T1,T2)\
(
E

(2a)
− ∪E(3)

)
P(3)(Ge),

36

TIGHT BOUNDS FOR NOISY COMPUTATION

where

P(2c)(G0) =
1

Z(3)

∑

e∈E(T1,T2)

1

|B´0(Ge)|
,

P(2c)(Ge) =
1

Z(3)

1∣∣∣B´0(Ge)\E(f2b)
+

∣∣∣
· pkl
pm1−kl

,

Z(3) =
∑

e∈E(T1,T2)

1

|B´0(Ge)|
+

∑

e∈E(T1,T2)\
(
E

(2a)
− ∪E(3)

)

1∣∣∣B´0(Ge)\E(f2b)
+

∣∣∣
· pkl
pm1−kl

.

By the same discussion as in the end of Phase 2, Step 2c, for c2 > 0 small enough, with

probability Ω(1), we have

P(3)(disconnected) = Θ(1),

P(3)(connected) = Θ(1).

In this case, any return value would lead to an error probability of Ω(1).
This concludes the proof of Proposition 29.

C.7. s-t Connectivity

In this section we modify the proof of Theorem 2 to show hardness of s-t Connectivity. Recall the

s-t Connectivity problem, where the input is an unknown undirected graph on n labeled vertices,

and a pair of vertices s, t ∈ V . An algorithm can make noisy queries to edge membership and the

goal is to determine whether s and t are in the same connected component of G.

Proposition 35 (Hardness of s-t Connectivity) Any algorithm that solves the s-t Connectivity

problem with 1
3 error probability uses Ω(n2 log n) noisy queries in expectation.

Proof As discussed in Section 2.2, the error probability in the proposition statement can be replaced

with any 0 < ϵ < 1
2 , and the expected number of queries can be replaced with worst-case number

of queries.

We design an input distribution for s-t Connectivity by generating G from Definition 26, and

choosing s, t i.i.d. ∼ Unif(V).
Then we run the same proof as Theorem 2. That is, we define a three-phase problem for s-t

Connectivity, where the oracle uses the same strategy in Phase 2 as in Graph Connectivity. Because

s and t are independent with G, in the end of Phase 2, conditioned on Step 2c does not report

failure, with probability Ω(1), s ∈ T1 and t ∈ T2. In this case, s-t Connectivity is equivalent to

Graph Connectivity. In the proof of Graph Connectivity, we have shown that with probability Ω(1)
(over the randomness of the graph and Phase 1 and 2), any algorithm that uses at most c2n

2 queries

in Phase 3 has Ω(1) error probability. This implies that the same holds for s-t Connectivity.

Appendix D. Threshold and Counting

In this section we present our proof for Theorem 3 and Theorem 4. We use THn
k to denote k-

Threshold problem with input length n.

37

GU LI XU

D.1. Lower bound for k-Threshold

In this section we prove the lower bound part of Theorem 3. That is, solving THn
k for k f 2n − 1

requires at least (1 − o(1))
n log k

δ
DKL(p∥1−p) noisy queries in expectation. The k = o(n) case has been

proved in (Wang et al., 2025) (see also Section E for our alternative and simpler proof).

Theorem 36 For k = o(n), solving THn
k with ¶ = o(1) error probability requires

(1− o(1))
n log k

¶

DKL(p ∥ 1− p)

noisy queries in expectation, even when the input is uniformly chosen from
([n]
k

)
with probability

1/2 and uniformly chosen from
([n]
k−1

)
with probability 1/2.

In our lower bound proof, we will use Theorem 36 with k = O(n/ log n).
We first prove the case where k = (n+ 1)/2.

Lemma 37 Solving TH2k−1
k with ¶ = o(1) error probability requires

(1− o(1))
2k log k

¶

DKL(p ∥ 1− p)

noisy queries in expectation, even when the input is uniformly chosen from
([2k−1]

k

)
with probability

1/2 and uniformly chosen from
([2k−1]

k−1

)
with probability 1/2.

Proof Suppose for the sake of contradiction that we have an algorithm A that solves TH2k−1
k with

error probability ¶ = o(1) and uses only (1 − ϵ)
2k log k

δ
DKL(p∥1−p) noisy queries in expectation, for some

absolute constant ϵ > 0. Let D be a distribution of inputs where with 1/2 probability the input

is chosen uniformly from
([2k−1]

k

)
, and with 1/2 probability the input is chosen uniformly from([2k−1]

k−1

)
. Now we consider two cases, depending on whether the expected number of queries A

make on indices with 1’s is larger or not. In either case, we will use A to obtain an algorithm more

efficient than the lower bound in Theorem 36, thus reaching a contradiction.

First, suppose A makes more queries in expectation on indices with 1’s under input distribution

D. Let k′ = Θ(k/ log k) and let n = k − 1 + k′. Consider an instance of THn
k′ where the input is

uniformly chosen from
([n]
k′

)
with probability 1/2 and uniformly chosen from

([n]
k′−1

)
with probability

1/2. By Theorem 36, this instance requires (1− o(1))
n log k′

δ
DKL(p∥1−p) = (1− o(1))

k log k
δ

DKL(p∥1−p) queries

in expectation. We will design an algorithm B solving such an instance utilizing A.

When B gets the input, it first adds 2k − 1 − n 1’s to the input, and then randomly shuffle the

indices. Then B sends this input to A. Whenever A makes a query to a 1 that is artificially added,

B simulates a noisy query using random bits; when A makes a query to an actual input, B makes a

query as well and pass the result to A. When A returns a result, B returns the same result. It is not

difficult to verify that the input distribution for A is exactly D. Also, whenever the input to A has

at least k 1’s, the input to B has k′ 1’s, and vice versa, so the correct output of A is the same as the

correct output of B. Therefore, B is correct whenever A is correct, which happens with probability

¶.

Next, we analyze the expected number of queries B makes, which consist of two parts:

38

TIGHT BOUNDS FOR NOISY COMPUTATION

• The number of queriesA makes to an actual 0 in the input: Because we are in the case where

A makes more queries in expectation on indices with 1’s in the input than indices with 0’s,

the expected number of this type of queries is at most half of the expected total number of

queries A makes. Thus, the number of queries in this case is at most (1− ϵ)
k log k

δ
DKL(p∥1−p) .

• The number of queries A makes to an actual 1 in the input: Each actual 1 in the input to

B is later permuted to a random position in the sequence. By symmetry, a random 1 in the

input to A under the input distribution D is queried at most 1
k−1 · (1− ϵ)

2k log k
δ

DKL(p∥1−p) times in

expectation. The number of actual 1’s is k′ = Θ(k/ log k), so the expected number of queries

A makes on them is k′

k−1 · (1− ϵ)
2k log k

δ
DKL(p∥1−p) = o(1) · k log k

δ
DKL(p∥1−p) .

As a result, the total number of queriesBmakes is (1−ϵ) k log k
δ

DKL(p∥1−p) , which contradicts Theorem 36.

For the second case whereAmakes more (or equal number of) queries in expectation on indices

with 0’s under input distribution D. The only difference is that, when B sends the input to A, it has

to flip the roles of 0’s and 1’s. Additionally, it has to flip the resultA returns. We omit the details.

Given Theorem 36 and Lemma 37, we are ready to prove the lower bound for general k.

Theorem 38 Solving THn
k with ¶ = o(1) error probability requires

(1− o(1))
n log k

¶

DKL(p ∥ 1− p)

noisy queries in expectation for n/ log n f k f n/2.

Proof The high-level proof strategy is similar to that of Lemma 37, by reducing from a hard instance

to THn
k . However, the difference is that we need to reduce from two different cases depending on

whether the average number of queries per 1 or per 0 is larger. In Lemma 37 we did not have to

do it because we can simply flip all the 0’s and 1’s in the input and retain the same problem as

n = 2k − 1.

Let D be the input distribution where with 1/2 probability the input is chosen uniformly from([n]
k

)
and with 1/2 probability the input is chosen uniformly from

([n]
k−1

)
. Let A be an algorithm

solving THn
k under input distribution D using (1 − ϵ)

n log k
δ

DKL(p∥1−p) noisy queries in expectation, for

some absolute constant ϵ > 0. Let q0 denote the expected number of queries A makes on a random

index with input value 0 (under input distribution D), and let q1 denote the expected number of

queries A makes on a random index with input value 1 (under input distribution D). Let Q be the

expected number of queries A makes.

Consider the following two cases: q0 f q1 and q0 > q1.

Case q0 f q1. Let k′ = Θ(n/ log n) f k and let n′ = n − k + k′. Note that n′ ∈ [n/2, n], so

we have k′ = Θ(n′/ log n′). By Theorem 36, solving THn′

k′ under input distribution where with

1/2 probability the input is uniformly from
([n′]
k′

)
and with 1/2 probability the input is uniformly

from
([n′]
k′−1

)
with error probability ¶ requires (1− o(1))

n′ log k′

δ
DKL(p∥1−p) = (1− o(1))

n′ log n
δ

DKL(p∥1−p) noisy

queries in expectation.

39

GU LI XU

Given an instance of THn′

k′ , we add n− n′ artificial 1’s to the input, and then randomly permute

the input, and feed it to A. If A queries an actual input, we also make an actual query; if A queries

an artificial input, we can simulate a query without making an actual query. Finally, we use the

result returned by A as our answer. It is not difficult to verify that this algorithm is correct with

error probability ¶, and the input distribution to A is D.

Let us analyze the expected number of queries Q′ used by the algorithm, which can be expressed

as follows:
1

2
·
(
q1(k

′ − 1) + q0(n− k + 1)
)
+

1

2
·
(
q1k

′ + q0(n− k)
)
.

Also, notice that the number of queries Q made by A under input D is

1

2
· (q1(k − 1) + q0(n− k + 1)) +

1

2
· (q1k + q0(n− k)) .

As q0 f q1, the above implies that q1 g Q/n. Furthermore, we have that Q−Q′ = q1 · (k− k′) =
q1 · (n− n′) g n−n′

n ·Q. Therefore,

Q′ f n′

n
·Q f (1− ϵ)

n′ log k
¶

DKL(p ∥ 1− p)
f (1− ϵ)

n′ log n
¶

DKL(p ∥ 1− p)
,

which contradicts Theorem 36.

Case q0 > q1. By Lemma 37, solving TH2k−1
k under input distribution where with 1/2 probability

the input is uniformly from
([2k−1]

k

)
and with 1/2 probability the input is uniformly from

([2k−1]
k−1

)

with error probability ¶ requires (1 − o(1))
2k log k

δ
DKL(p∥1−p) = (1 − o(1))

2k log n
δ

DKL(p∥1−p) noisy queries in

expectation.

Given such an input to TH2k−1
k , we add n− 2k+1 artificial 0’s to the input, and then randomly

permute the input, and feed it to A. Similar as before, we make an actual query if A queries an

actual input, and we simulate a query otherwise. It is not difficult to verify that this algorithm is

correct with error probability ¶, and the input distribution to A is D.

The expected number of actual queries used by the algorithm can be similarly analyzed as the

previous case, which can be upper bounded by (1− ϵ)
2k log n

δ
DKL(p∥1−p) , contradicting Lemma 37.

D.2. Upper bound for k-Threshold

In this section we prove our upper bound for k-Threshold, stated as follows.

Theorem 39 Given a sequence a ∈ {0, 1}n and an integer 1 f k f n, there is an algorithm that

can output min{k, ∥a∥1} with error probability ¶ = o(1) using

(1 + o(1))
n log k

¶

DKL(p ∥ 1− p)

noisy queries in expectation.

40

TIGHT BOUNDS FOR NOISY COMPUTATION

D.2.1. Preliminaries

The following lemmas are standard.

Lemma 40 (e.g., (Gu and Xu, 2023; Wang et al., 2025)) For a bit B, there is an algorithm CHECK-BIT(B, ¶)
that can return the value of the bit with error probability f ¶ using

(1 + o1/¶(1))
log 1

¶

DKL(p ∥ 1− p)

noisy queries in expectation.

Lemma 41 (e.g., (Feller, 1970)) Consider a biased random walk on Z starting at 0. At each time

step, the walk adds 1 to the current value with probability p < 1/2, and adds −1 to the current

value with probability 1 − p. Then the probability that the random walk ever reaches some integer

x g 0 is (p/(1− p))x.

Lemma 42 (e.g., (Feller, 1970)) Consider a biased random walk on Z starting at 0. At each time

step, the walk adds 1 to the current value with probability p < 1/2, and adds −1 to the current

value with probability 1 − p. Then the expected number of steps needed to first reach some integer

−x f 0 is x
1−2p .

Our algorithm for k-Threshold and Counting uses the following asymmetric version of CHECK-BIT.

Lemma 43 For a bit B, there is an algorithm ASYMMETRIC-CHECK-BIT(B, ¶0, ¶1) such that:

• If the actual value of B is 0, then the algorithm returns the value of the bit with error proba-

bility f ¶0 using

(1 + o1/¶1(1))
log 1

¶1

DKL(p ∥ 1− p)

noisy queries in expectation.

• If the actual value of B is 1, then the algorithm returns the value of the bit with error proba-

bility f ¶1 using

(1 + o1/¶0(1))
log 1

¶0

DKL(p ∥ 1− p)

noisy queries in expectation.

Proof Let a and b be two integer parameters to be set later. The algorithm works as follows: we

keep querying the input bit, and keep track of the number of queries that returns 1 (denoted by q1)

and the number of queries that returns 0 (denoted by q0). We stop once q1−q0 = −a, in which case

we declare the bit to be 0, or q1 − q0 = b, in which case we declare the bit to be 1.

If the input bit is 1, then the probability that the algorithm returns 0 can be upper bounded by(
p

1−p

)a
using Lemma 41, so by setting a =

⌈
log(1/¶1)

log((1−p)/p)

⌉
, this probability is upper bounded by ¶1.

On the other hand, if the input bit is 0, then the probability that the algorithm returns 1 can be

upper bounded by
(

p
1−p

)b
using Lemma 41, so by setting b =

⌈
log(1/¶0)

log((1−p)/p)

⌉
, this probability is

upper bounded by ¶0.

41

GU LI XU

Now we consider the expected running time of the algorithm. First suppose the input bit is 1,

then the algorithm can be viewed as a random walk on integers starting at 0, and each time it adds 1
with probability 1− p and subtracts 1 with probability p. It stops once the random walk reaches −a
or b. This stopping time is upper bounded by the first time it reaches b, and the expected number of

steps required for it to first reach b is b
1−2p = (1 + o1/¶0(1))

log(1/¶0)
DKL(p∥1−p) by Lemma 42. Similarly,

if the input bit is 0, then the expected number of queries used by the algorithm is upper bounded by

(1 + o1/¶1(1))
log(1/¶1)

DKL(p∥1−p) .

D.2.2. The proof

We are now ready to state our proof of Theorem 39.

Our algorithm is extremely simple and is outlined in Algorithm 1. It repeatedly calls the sub-

routine ASYMMETRIC-CHECK-BIT(ai, ¶/2n, ¶/2k) from Lemma 43 for every i ∈ [n], and uses

the returned value as the guess for ai. If at any point, the current number of ai whose guess is 1
reaches k, the algorithm terminates early and return k. Otherwise, the algorithm returns the number

of ai whose guess is 1 at the end.

Algorithm 1

1: procedure THRESHOLD-COUNT({a1, . . . , an}, k, ¶)

2: cnt = 0
3: for i = 1→ n do

4: cnt = cnt+ ASYMMETRIC-CHECK-BIT(ai, ¶/2n, ¶/2k)
5: if cnt g k then return k

6: return cnt

Error probability. We first analyze the error probability of the algorithm. First, suppose ∥a∥1 g
k. Let S ¦ [n] be an arbitrary size-k set where ai = 1 for i ∈ S. Then by the guarantee of

ASYMMETRIC-CHECK-BIT, for every i ∈ S, the probability that the guess for ai is not 1 isf ¶/2k.

Therefore, by union bound, the guesses for ai for all i ∈ S are 1 with probability g 1 − ¶/2.

Therefore, the count will be at least k so the algorithm will return k as the correct answer with error

probability f ¶/2 f ¶.

If ∥a∥1 < k, then by union bound, the probability that all guesses are correct isg 1− ¶
2k ·∥a∥1−

¶
2n ·(1−∥a∥1) g 1−¶, so the returned count of the algorithm is also correct with probabilityg 1−¶.

Expected number of queries. We first consider the number of ai with ai = 1 that we pass

to ASYMMETRIC-CHECK-BIT. One trivial upper bound is ∥a∥1. Also, the expected number of

ai = 1 we need to pass to ASYMMETRIC-CHECK-BIT before cnt is incremented by 1 is f 1
1−¶/2k ,

so another upper bound is k
1−¶/2k f (1 + o(1))k (as ¶ = o(1)). On the other hand, the number of

ai where ai = 0 that we pass to ASYMMETRIC-CHECK-BIT is upper bounded by n − ∥a∥1. Note

that whether we pass some ai to ASYMMETRIC-CHECK-BIT only depends on the queries we make

to ai′ for i′ < i, so even given that we pass some ai to ASYMMETRIC-CHECK-BIT, we can still use

the bounds from Lemma 43 to bound the expected number of queries we make to ai. Therefore, the

42

TIGHT BOUNDS FOR NOISY COMPUTATION

expected number of queries can be upper bounded by

(1 + o(1))

(
min {∥a∥1, k} ·

log n
¶

DKL(p ∥ 1− p)
+ (n− ∥a∥1) ·

log k
¶

DKL(p ∥ 1− p)

)
.

Then we consider two cases depending on how large k is.

Case k g n/ log n. In this case, log(n) = (1+o(1)) log k, so the expected number of queries can

be upper bounded by

(1 + o(1))

(
min {∥a∥1, k} ·

log k
¶

DKL(p ∥ 1− p)
+ (n− ∥a∥1) ·

log k
¶

DKL(p ∥ 1− p)

)

=(1 + o(1))
n log k

¶

DKL(p ∥ 1− p)
.

Case k f n/ log n. In this case, k log n
¶ = o(n log k

¶), so the expected number of queries can be

upper bounded by

(1 + o(1))

(
k · log n

¶

DKL(p ∥ 1− p)
+ n · log k

¶

DKL(p ∥ 1− p)

)

=(1 + o(1))
n log k

¶

DKL(p ∥ 1− p)
.

D.3. Bounds for Counting

Let us first prove a one-sided upper bound for Counting.

Theorem 44 Given a sequence a ∈ {0, 1}n, there is an algorithm that can output ∥a∥1 with error

probability ¶ = o(1) using

(1 + o(1))
n log ∥a∥1+1

¶

DKL(p ∥ 1− p)

noisy queries in expectation.

The difference between Theorem 44 and the upper bound part of Theorem 4 is that we have ∥a∥1+1
rather than min{∥a∥1 + 1, n− ∥a∥1 + 1} inside the log term.

Proof

Outlined in Algorithm 2, the algorithm for counting is an adaptation of Algorithm 1. Notice

that in Algorithm 1, when calling ASYMMETRIC-CHECK-BIT, we have ¶0 = ¶/2n and ¶1 = ¶/2k.

The value ¶0 is fixed regardless of the value of k, and the value ¶1 depends on k. The algorithm

for counting in some sense is simulating Algorithm 1, but dynamically adjusting ¶1 based on the

current estimate of k, which is the number of input bits that are believed to be 1’s.

For simplicity, throughout the analysis, we use k∗ = ∥a∥1 to denote the desired answer. Let

S0 ¦ [n] be indices i with ai = 0 and let S1 = [n]\S0.

43

GU LI XU

Algorithm 2

1: procedure COUNTING({a1, . . . , an}, ¶)

2: k ← 0
3: c← {0}n
4: Active← [n]
5: while True do

6: i∗ ← argmaxi∈Active ci

7: if ci∗ f − log(6(k+1)/¶)
log((1−p)/p) then return k

8: if QUERY(ai∗) = 1 then

9: ci∗ = ci∗ + 1
10: if ci∗ g log(6n/¶)

log((1−p)/p) then

11: Active← Active\{i∗}
12: k ← k + 1

13: else

14: ci∗ = ci∗ − 1

Error probability. For any i, we can view the value of ci as a random walk, i.e., after every query

to ai, we either adds 1 to ci or subtracts 1 from ci. If ci = 1, then the probability that we add 1 to ci
after every step is 1 − p, and the probability that we subtract 1 is p. If ci = 0, then the probability

that we add 1 to ci after every step is p, and the probability that we subtract 1 is 1−p. Conceptually,

we can view ci as an infinite random walk, and the algorithm only utilizes some prefix of it.

For i ∈ S1, by Lemma 41, the probability that ci ever reaches −
⌈

log(6/¶)
log((1−p)/p)

⌉
is at most

(
p

1− p

) log(6/δ)
log((1−p)/p)

= ¶/6.

Furthermore, if some ci never reaches −
⌈

log(6/¶)
log((1−p)/p)

⌉
, then i will eventually be removed from

Active and contributes towards k. Since the random walks ci’s are independent for different i’s, the

probability that there are +k∗/2, + 1 many i ∈ S1 where ci reaches −
⌈

log(6/¶)
log((1−p)/p)

⌉
can be upper

bounded by
(

k∗

+k∗/2,+ 1

)
· (¶/6)+k∗/2,+1 f 2k

∗
(¶/6)k

∗/2+1 f (1.5¶)k
∗/2 · (¶/6) f ¶/6,

where the last step holds because ¶ = o(1) and hence we can assume 1.5¶ f 1. Thus, up to ¶/6
error probability, the number of i ∈ S1 that contributes towards k is at least k∗ − (+k∗/2, + 1),
which means the final value of k is g max{0, k∗ − (+k∗/2, + 1)} = max{0, +k∗/2, − 1}. This

further implies that k + 1 g k∗/3. Let E1 be the event k + 1 g k∗/3 and as analyzed above,

P(¬E1) f ¶/6.

Next, we consider the event E2 where all ci for i ∈ S1 never reaches −
⌈
log(6(k∗/3)/¶)
log((1−p)/p)

⌉
. By

Lemma 41, the probability that each ci for i ∈ S1 reaches −
⌈
log(6(k∗/3)/¶)
log((1−p)/p)

⌉
is upper bounded by

(
p

1− p

) log(6(k∗/3)/δ)
log((1−p)/p)

=
¶

2k∗
.

44

TIGHT BOUNDS FOR NOISY COMPUTATION

Therefore, by union bound, P(¬E2) f ¶/2.

Next, let E3 be the event where all ci for i ∈ S0 never reaches
⌈

log(6n/¶)
log((1−p)/p)

⌉
. By Lemma 41,

the probability that each ci for i ∈ S0 reaches
⌈

log(6n/¶)
log((1−p)/p)

⌉
is upper bounded by

(
p

1− p

) log(6n/δ)
log((1−p)/p)

=
¶

6n
.

Therefore, by union bound, P(¬E3) f ¶/6.

Assume E1, E2, E3 all happen. Then we know that k + 1 g k∗/3, and so all i ∈ S1 will

eventually be removed from Active and contribute towards k. Also, all i ∈ S0 will not contribute

towards k. Therefore, the returned value of k will be equal to k∗. Hence, the error probability of the

algorithm is upper bounded by P(¬E1 (¬E2 (¬E3) f ¶/6 + ¶/2 + ¶/6 f ¶.

Expected number of queries. Next, we analyze the expected number of queries used by the

algorithm.

First, for every i ∈ S1, the expected number of times we query ai is upper bounded by the ex-

pected number of steps it takes for the random walk ci takes to reach
⌈

log(6n/¶)
log((1−p)/p)

⌉
. By Lemma 42,

it is bounded by

⌈
log(6n/¶)

log((1−p)/p)

⌉

1− 2p
= (1 + o(1))

log n
¶

DKL(p ∥ 1− p)
.

Then we consider the expected number of times we query ai for i ∈ S0. Fix any i ∈ S0. Let

Fj be the event where for exactly j distinct i′ ∈ S0\{i}, the infinite random walk cj ever reaches⌈
log(6n/¶)

log((1−p)/p)

⌉
. By analysis in the error probability part, P(Fj) f

(
n
j

)
· (¶/6n)j f ¶j . Note that Fj

is independent with the random walk ci. If Fj holds, then the number of times we query ai is upper

bounded by the expected number of steps it takes for the random walk ci first hits
⌈
log(6(k∗+j+1))/¶)

log((1−p)/p)

⌉

(because once ci hits this value, k can never be larger than k∗ + j under Fj , so we will not query ai
again). By Lemma 42, this expectation is

⌈
log(6(k∗+j+1))/¶)

log((1−p)/p)

⌉

1− 2p
= (1 + o(1))

log k∗+j+1
¶

DKL(p ∥ 1− p)
.

45

GU LI XU

Let Qi be the number of times we query ai. Then we have

E(Qi) =
∑

jg0

E(Qi|Fj) · P(Fj)

f 1 + o(1)

DKL(p ∥ 1− p)

∑

jg0

¶j · log
(
k∗ + j + 1

¶

)

f 1 + o(1)

DKL(p ∥ 1− p)

∑

jg0

¶j · log
(
(k∗ + 1)(j + 1)

¶

)

=
1 + o(1)

DKL(p ∥ 1− p)



∑

jg0

¶j · log
(
k∗ + 1

¶

)
+
∑

jg0

¶j · log(j + 1)




f 1 + o(1)

DKL(p ∥ 1− p)

(
1

1− ¶
· log

(
k∗ + 1

¶

)
+O(1)

)

f (1 + o(1))
log k∗+1

¶

DKL(p ∥ 1− p)
.

Summing up everything, the overall expected number of queries is

(1 + o(1))

(
k∗ · log n

¶

DKL(p ∥ 1− p)
+ (n− k∗) · log k∗+1

¶

DKL(p ∥ 1− p)

)
.

Similar to the proof of Theorem 39, we consider two cases depending on how large k∗ is.

Case k∗ g n/ log n. In this case, log(n) = (1 + o(1)) log(k∗ + 1), so the expected number of

queries can be bounded by

(1 + o(1))

(
k∗ · log k∗+1

¶

DKL(p ∥ 1− p)
+ (n− k∗) · log k∗+1

¶

DKL(p ∥ 1− p)

)

=(1 + o(1))
n log k∗+1

¶

DKL(p ∥ 1− p)
.

Case k∗ f n/ log n. In this case, k∗ log n
¶ = o(n log k∗+1

¶), so the expected number of queries

can be bounded by

(1 + o(1))

(
k∗ · log n

¶

DKL(p ∥ 1− p)
+ n · log k∗+1

¶

DKL(p ∥ 1− p)

)

=(1 + o(1))
n log k∗+1

¶

DKL(p ∥ 1− p)
.

Finally, we prove Theorem 4, which we recall below:

46

TIGHT BOUNDS FOR NOISY COMPUTATION

Theorem 4 (Noisy query complexity of Counting) Given a sequence a ∈ {0, 1}n, computing

∥a∥1 with error probability ¶ = o(1) needs and only needs

(1± o(1))
n log min{∥a∥1,n−∥a∥1}+1

¶

DKL(p ∥ 1− p)

noisy queries in expectation.

Proof

Suppose there is an algorithm for Counting with

(1− ϵ)
n log min{∥a∥1,n−∥a∥1}+1

¶

DKL(p ∥ 1− p)

noisy queries in expectation, for some absolute constant c > 0. First, suppose ∥a∥1 f n/2. Recall

that in the lower bound for k-Threshold, the hard distribution for k-Threshold is to distinguish

whether the input contains k or k − 1 1’s. Thus, by running the assumed algorithm for Counting,

the running time would be

(1− ϵ)
n log k+1

¶

DKL(p ∥ 1− p)
,

which contradicts the lower bound for k-Threshold.

If ∥a∥1 > n/2, we can simply first flip all the bits in the k-Threshold instance, and then use the

same argument.

For the upper bound, given Theorem 44, it suffices to first estimate whether ∥a∥1 is bigger than

n/2 or smaller. When it is smaller, we can directly run Theorem 44; otherwise, we first flip all input

bits and then run Theorem 44.

More precisely, we randomly sample n0.99 input elements with replacements, use Lemma 40

to estimate them with error probability 1/n100. If the fraction of elements in the sample whose

estimates are 1 is f 1
2 , we directly call Theorem 44 with error bound ¶ and return the result;

otherwise, we flip all input bits, call Theorem 44 with error bound ¶, and return n minus the result.

Regardless of whether we flip the input bits, the output is always correct assuming the returned

result of Theorem 44 is correct. Therefore, the error probability of the algorithm is at most ¶.

Next, we analyze the expected running time of the algorithm. Let E1 be the event that the

fraction of sampled elements that are 1 is within n−0.01 of the fraction of all elements that are 1. By

Chernoff bound,

P(¬E1) f 2e−2(n−0.01)
2
·n0.99 f O

(
1

n99

)
.

Let E2 be the event that the returned result of Lemma 40 for all sampled elements are correct. By

union bound,

P(¬E2) f
1

n99
.

If E1 and E2 both hold, the expected number of queries of Theorem 44 can be bounded as

(1 + o(1)) · n

DKL(p ∥ 1− p)
·





log ∥a∥1+1
¶ , if ∥a∥1 f n/2− n0.99,

log n+1
¶ , if n/2− n0.99 < ∥a∥1 f n/2 + n0.99,

log n−∥a∥1+1
¶ , if ∥a∥1 > n/2 + n0.99.

47

GU LI XU

Regardless of which case it is, the expected number of queries is always (1+o(1))
n log

min{∥a∥1,n−∥a∥1}+1
δ

DKL(p∥1−p) .

Even if E1 and E2 do not both hold, the expected number of queries of Theorem 44 can be bounded

as

(1 + o(1)) · n log n+1
¶

DKL(p ∥ 1− p)
.

Therefore, the overall expected number of queries can be bounded as

n0.99 · (1 + o(1)) · log 1
n100

DKL(p ∥ 1− p)
+ (1 + o(1))

n log min{∥a∥1,n−∥a∥1}+1
¶

DKL(p ∥ 1− p)

+ P(¬E1 (¬E2)(1 + o(1))
n log n+1

¶

DKL(p ∥ 1− p)

=(1 + o(1))
n log min{∥a∥1,n−∥a∥1}+1

¶

DKL(p ∥ 1− p)

as desired.

Appendix E. A simpler proof of hardness of Threshold for small k

In this section we provide a simpler proof of Theorem 36. Let us recall the theorem statement.

Theorem 36 For k = o(n), solving THn
k with ¶ = o(1) error probability requires

(1− o(1))
n log k

¶

DKL(p ∥ 1− p)

noisy queries in expectation, even when the input is uniformly chosen from
([n]
k

)
with probability

1/2 and uniformly chosen from
([n]
k−1

)
with probability 1/2.

Our proof uses the three-phase framework which we also used in the proof of Theorem 2. It is a

refinement of (Feige et al., 1994)’s two-phase framework, which were used to prove that computing

THn
k requires Ω

(
n log k

¶

)
noisy queries. Here we add a phase where the oracle can send extra

information to the algorithm, allowing for a more precise analysis obtaining the exact constant.

Comparison with (Wang et al., 2025)’s proof. Let us briefly compare our proof with (Wang

et al., 2025)’s proof. Both proofs are based on (Feige et al., 1994)’s two-phase framework. (Wang

et al., 2025)’s proof is divided into three cases: log(1/¶) log log(1/¶) < log k f log(1/¶)
log log(1/¶) , log k >

log(1/¶) log log(1/¶), log k f log(1/¶)
log log(1/¶) . The first two cases are handled using the two-phase

framework, and the last case is proved using Le Cam’s two point method. In comparison, our proof

is simpler and handles all k = o(n) and ¶ = o(1) uniformly. We achieve this simplification by

carefully designing the information that the oracle reveals to the algorithm for free.

48

TIGHT BOUNDS FOR NOISY COMPUTATION

E.1. Three-phase problem

Let us now describe the three-phase problem. Let ϵ1, ϵ2 > 0 be two absolute constants (i.e., they do

not grow with n).

1. In Phase 1, the algorithm makes m1 = (1− ϵ1)
log k

δ
DKL(p∥1−p) queries to every element.

2. In Phase 2, the oracle reveals some elements to the algorithm.

3. In Phase 3, the algorithm makes m2 = (1− ϵ2)n adaptive exact queries.

The goal of the algorithm is to distinguish whether there are at least k+1 ones among the elements.

Lemma 45 If no algorithm can solve the three-phase problem with error probability ¶ > 0, then

no algorithm can solve THn
k with error probability ¶ using at most (1−ϵ1)(1−ϵ2) n log k

δ
DKL(p∥1−p) noisy

queries.

The proof is similar to Lemma 6 and omitted.

By Lemma 45, to prove Theorem 36, it suffices to prove hardness of the three-phase problem.

Proposition 46 For any absolute constants ϵ1, ϵ2 > 0, no algorithm can solve the three-phase

problem for THn
k with error probability ¶ for k = o(n) and ¶ = o(1), where the input is uniformly

chosen from
([n]
k

)
with probability 1/2 and uniformly chosen from

([n]
k−1

)
with probability 1/2.

Theorem 36 follows by combining Lemma 45 and Proposition 46.

The rest of the section is devoted to the proof of Proposition 46.

E.2. Phase 1

Define A = {i ∈ [n] : ai = 1} where a is the input bit string. Then A ∈
([n]
k

)
∪
([n]
k−1

)
, and the goal

is to distinguish whether |A| = k or k − 1.

In Phase 1, the algorithm makes m1 = (1− ϵ1)
log k

δ
DKL(p∥1−p) queries to every element i ∈ [n]. Let

ai denote the number of times where a query to i returns 1. Then for i ∈ A, ai ∼ Bin(m1, 1 − p);
for i ̸∈ A, ai ∼ Bin(m1, p). For 0 f j f m1, define

pj = P(Bin(m1, 1− p) = j) =

(
m1

j

)
(1− p)jpm1−j .

Let I =
[
pm1 −m0.6

1 , pm1 +m0.6
1

]
.

Lemma 47 Let x ∼ Bin(m1, 1− p), y ∼ Bin(m1, p). Then

P(x ∈ I) = (¶/k)1−ϵ1±o(1), (25)

P(y ∈ I) = 1− o(1). (26)

Proof Eq. (25) is by Lemma 5. Eq. (26) is by Chernoff bound.

49

GU LI XU

Let P(0) denote the prior distribution of A and P(1) denote the posterior distribution of A condi-

tioned on observations in Phase 1. Let C(0) (resp. C(1)) denote the support of P(0) (resp. P(1)). Then

C(1) = C(0) =
([n]
k−1

)
∪
([n]
k

)
and for any set B ∈ C(0) we have

P(1)(B) ∝ P
(
(ai)i∈[n]|B

)
P(0)(B)

=

(
∏

i∈B

pai

)(
∏

i∈Bc

pm1−ai

)
P(0)(B).

E.3. Phase 2

In Phase 2, the oracle reveals some elements in A and not in A as follows.

2a. In Step 2a, the oracle reveals elements i with ai ̸∈ I .

2b. In Step 2b, the oracle reveals every i ∈ A independently with probability qai . We choose

qj = 1− pm1−jpjl
pjpm1−jl

for j ∈ I where jl = pm1 −m0.6
1 .

2c. In Step 2c, the oracle reveals k − 1 elements of A as follows. If |A| = k − 1, reveal all

elements of A. Otherwise, |A| = k. If A contains an element that is not revealed yet,

uniformly randomly choose an element i∗ from all such elements and reveal all elements in

A\i∗. If all elements of A have been revealed, report failure.

Step 2a and Step 2b. By the same analysis as in Sections B.3.1 and B.3.2, observations up to Step

2b have the same effect as the following procedure:

(1) Observe every element i ∈ A independently with probability

p+ = 1−
∑

j∈I

pj(1− qj) = 1− pjl
pm1−jl

·
∑

j∈I

pm1−j

= 1− (1± o(1))
pjl

pm1−jl

= 1− (¶/k)1−ϵ1±o(1).

(2) Observe every element i ∈ Ac independently with probability

p− = P(Bin(m1, p) ̸∈ I) = o(1).

Let A
(2a)
+ (resp. A

(2a)
−) denote the set of elements in I (resp. not in I) revealed in Step 2a. Let

A
(2b)
+ be the set of elements in I revealed in Step 2b, and A

(f2b)
+ = A

(2a)
+ ∪ A

(2b)
+ . Then the oracle

reports failure in Step 2c if and only if

∣∣∣A(f2b)
+

∣∣∣ = k.

Let P(2b) denote the posterior distribution of A after Step 2b and C(2b) be its support. By the

same analysis as in Sections B.3.1 and B.3.2, the posterior probability after Step 2b satisfies

P(2b)(B) ∝
(

pjl
pm1−jl

)|B|−(k−1)

P(0)(B)

for B ∈ C(2b). In particular,
(
A

(f2b)
+ , A

(2a)
− , |A|

)
is a sufficient statistic for A at the end of Step 2b.

We note that

∣∣∣A(f2b)
+

∣∣∣ < k with probability g ¶1−ϵ1±o(1) because

P (Bin(k, 1− p+) > 0) = 1− pk+ g 1− exp (k(1− p+)) g ¶1−ϵ1±o(1). (27)

50

TIGHT BOUNDS FOR NOISY COMPUTATION

Step 2c. Let A
(2c)
+ be the set of elements in I revealed in Step 2c but not in previous steps, and

A
(f2c)
+ = A

(f2b)
+ ∪ A

(2c)
+ . Let P(2c) be the posterior distribution of A and C(2c) be the support of

P(2c). Then

C(2c) =
{
A : A ∈

(
[n]

k − 1

)
∪
(
[n]

k

)
, A

(f2c)
+ ¦ A ¦ [n]\A(2a)

−

}

=
{
A

(f2c)
+

}
∪
{
A

(f2c)
+ ∪ {i} : i ∈ [n]\

(
A

(f2c)
+ ∪A

(2a)
−

)}
.

For simplicity of notation, define A0 = A
(f2c)
+ and Ai = A

(f2c)
+ ∪{i} for i ∈ [n]\

(
A

(f2c)
+ ∪A

(2a)
−

)
.

Then

P(2c)(A0) ∝ P(0)(A0),

P(2c)(Ai) ∝
1

k −
∣∣∣A(f2b)

+

∣∣∣
· pjl
pm1−jl

· P(0)(Ai).

Recall that P(0)(B) = 1
2 · 1

(n
|B|)

for |B| ∈ {k − 1, k}. Let P
(2c)
k (resp. P

(2c)
k−1) denote the probability

measure of observations at the end of Step 2c conditioned on |A| = k (resp. |A| = k−1). Summing

over i, we have

dP
(2c)
k

dP
(2c)
k−1

=
∣∣∣[n]\

(
A

(f2c)
+ ∪A

(2a)
−

)∣∣∣ · 1

k −
∣∣∣A(f2b)

+

∣∣∣
· pjl
pm1−jl

·
(

n
k−1

)
(
n
k

) .

Lemma 48

P
(2c)
k

(
dP

(2c)
k

dP
(2c)
k−1

f ¶−ϵ1/2

)
g ¶1−ϵ1±o(1).

Proof Because p− = o(1), with probability 1− o(1), we have

∣∣∣A(2a)
−

∣∣∣ f np
1/2
− . Then

∣∣∣[n]\
(
A

(f2c)
+ ∪A

(2a)
−

)∣∣∣ = n− (k − 1)−A
(2a)
− = (1± o(1))n

and

dP
(2c)
k

dP
(2c)
k−1

= (1± o(1))n · 1

k −
∣∣∣A(f2b)

+

∣∣∣
· pjl
pm1−jl

· k
n

= (1± o(1))
k

k −
∣∣∣A(f2b)

+

∣∣∣
· pjl
pm1−jl

.

Note that k−
∣∣∣A(f2b)

+

∣∣∣ ∼ Bin(k, 1− p+), and

∣∣∣A(f2b)
+

∣∣∣ is independent with

∣∣∣A(2a)
−

∣∣∣ conditioned

on |A|. Recall that

1− p+ = (1± o(1))
pjl

pm1−jl

= (¶/k)1−ϵ1±o(1).

51

GU LI XU

If kϵ1¶1−ϵ1 g ¶−ϵ1/2, then k(1− p+) = É(1) and by concentration

P

(
Bin(k, 1− p+) g

1

2
k(1− p+)

)
= 1− o(1)

Under P
(2c)
k , conditioned on k −

∣∣∣A(f2b)
+

∣∣∣ g 1
2k(1− p+), we have

dP
(2c)
k

dP
(2c)
k−1

= (1± o(1))
k

k −
∣∣∣A(f2b)

+

∣∣∣
· pjl
pm1−jl

= O(1).

If kϵ1¶1−ϵ1 f ¶−ϵ1/2, then conditioned on

∣∣∣A(f2b)
+

∣∣∣ < k (which happens with probability at

least ¶1−ϵ1±o(1) by Eq. (27)), we have

dP
(2c)
k

dP
(2c)
k−1

= (1± o(1))
k

k −
∣∣∣A(f2b)

+

∣∣∣
· pjl
pm1−jl

f ¶−ϵ1/2±o(1).

Combining both cases we finish the proof.

From Lemma 48 we can conclude that no algorithm can determine |A| with error probability f ¶ at

the end of Phase 2. Suppose for the sake of contradiction that such an algorithm exists. Let E denote

the event that
dP

(2c)
k

dP
(2c)
k−1

f ¶−ϵ1/2. Under P
(2c)
k , conditioned on E , the algorithm outputs “|A| = k” with

probability at least 1
2 (otherwise the overall error probability under P

(2c)
k is at least 1

2 · ¶1−ϵ±o(1)).

However, this implies that under P
(2c)
k−1, the algorithm outputs |A| = k with probability at least

1
2¶

ϵ1/2 by definition of E .

E.4. Phase 3

In Phase 3, the algorithm makes at most (1−ϵ2)n adaptive exact queries. If

∣∣∣[n]\
(
A

(f2c)
+ ∪A

(2a)
−

)∣∣∣ =
(1±o(1))n, then with probability (1±o(1))ϵ2, these exact queries do not hit any elements in A. Let

P
(3)
k (resp. P

(3)
k−1) denote the probability measure of observations at the end of Phase 3 conditioned

on |A| = k (resp. |A| = k− 1). Conditioned on that the exact queries do not hit any elements in A,

we have

dP
(2c)
k

dP
(2c)
k−1

=
∣∣∣[n]\

(
A

(f2c)
+ ∪A

(2a)
− ∪A(3)

)∣∣∣ · 1

k −
∣∣∣A(f2b)

+

∣∣∣
· pjl
pm1−jl

·
(

n
k−1

)
(
n
k

)

where A(3) denotes the set of elements queried in Phase 3. By a similar proof as Lemma 48, we can

prove that

P
(3)
k

(
dP

(3)
k

dP
(3)
k−1

f ϵ−1
2 ¶−ϵ1/2

)
g ϵ2¶

1−ϵ1±o(1).

However, ϵ2 is a constant, so the discussion in the end of Section E.3 still applies. This concludes

that no algorithm can solve the three-phase problem with error probability f ¶ using at most (1 −
ϵ)

n log k
δ

DKL(p∥1−p) noisy queries.

52

	Introduction
	High-influence functions
	Graph Connectivity
	Threshold and Counting

	Technical overview
	Proof overview for high-influence functions
	Proof overview for Graph Connectivity
	Proof overview for k-Threshold and Counting

	Preliminaries
	High-influence functions
	Three-phase problem
	Phase 1
	Phase 2
	Step 2a
	Step 2b

	Phase 3
	Preliminaries
	Step 3a
	Step 3b
	Step 3c

	Graph Connectivity
	Preliminaries
	Structure of a uniform spanning tree
	Hard distribution and three-phase problem
	Phase 1
	Phase 2
	Step 2a and Step 2b
	Step 2c

	Phase 3
	s-t Connectivity

	Threshold and Counting
	Lower bound for k-Threshold
	Upper bound for k-Threshold
	Preliminaries
	The proof

	Bounds for Counting

	A simpler proof of hardness of Threshold for small k
	Three-phase problem
	Phase 1
	Phase 2
	Phase 3

