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Abstract—In this work, we present a novel approach to
enhance the robustness of autonomous robotic Radio Frequency
Identification (RFID) inventory systems using Conformal Predic-
tion (CP). Recent AI-driven approaches, especially deep-learning
models, have made significant advances in performing inventory
strategies and action planning. However, these models lack the
capability to measure uncertainty during the prediction process,
which can result in accumulated errors and lead to catastrophic
failures. To address the above challenge, we propose a confidence-
guaranteed policy using CP to ensure reliable predictions in RFID
inventory tasks. Our method focuses on managing the uncertainty
in sub-goal estimation for a trained model, ensuring that predic-
tions can meet or exceed a user-specific confidence level. We
conduct extensive experiments to assess the proposed method
by regulating an existing model and evaluate its effectiveness
in identifying uncertain predictions. The experimental results
demonstrate the effectiveness of our approach in improving both
the reliability and efficiency of RFID inventory tasks, ensuring
consistent and trustworthy operation.

Index Terms—Robustness, Conformal Prediction (CP), Radio-
frequency identification (RFID), Inventory.

I. INTRODUCTION

The Radio-frequency Identification (RFID) technology pro-

vides a low-cost and efficient solution for inventory man-

agement [1], [2]. It offers a touchless and non-line-of-sight

(Non-LoS) inventory to enable robots to automatically scan all

RFID-tagged items in a large space (e.g., warehouses, retail

stores) by navigating to cover the interest area [3]. While

previous work has successfully applied deep learning models

and robotic systems to automate RFID inventory tasks [4],

[5], they often face challenges in robustness to environmental

changes. These discrepancies increase the uncertainty of the

trained model and cumulatively lead to incorrect predictions,

resulting in inefficiencies and failed inventory tasks. An exam-

ple highlighted in [5] involves a robot colliding with a shelf

and leading to a failed task, a typical failure resulting from

accumulated uncertainties throughout the prediction process.

To address these challenges, we propose a confidence-

guaranteed policy for reliable prediction in RFID inven-

tory tasks, utilizing Conformal Prediction (CP) – a sta-

tistical method that quantifies and manages uncertainty in

real-time [6], [7]. Previous studies across various domains,

including natural language processing [8], indoor localiza-

tion [9], robot navigation [10], [11], have demonstrated the

Fig. 1. Traditional AI-driven Methods vs. Proposed Confidence-Guaranteed
RFID Inventory Policy: The figure’s upper part illustrates traditional methods’
limitations, where a lack of ability to detect uncertainty leads to specious
actions, resulting in catastrophic failures. The bottom part shows the proposed
confidence-guaranteed RFID inventory policy using Conformal Prediction,
which efficiently detects prediction uncertainty and offers well-calibrated,
confident predictions for conducting inventory tasks.

effectiveness of CP-based confidence methods. These studies

also employ uncertainty assessment metrics to evaluate model

performance. Building on this, we develop a confidence-

guaranteed RFID inventory policy that uses CP to detect uncer-

tainty in sub-goal predictions and enables proactive responses.

The sub-goal enables our method in various platforms without

being affected by the hardware of the platforms. Our approach

leverages a small set of calibration samples collected from

the specific environment and task conditions to provide well-

calibrated, confident sub-goals, ensuring the safe and effective

execution of RFID inventory tasks. When uncertainties are

detected, our method allows the robot to recover from un-

certain predictions and subsequently request assistance from

a human operator if repeated recovery attempts fail. Fig. 1

visually illustrates and compares our proposed method to

existing methods. This calibration-based method supports real-

time adjustments based on environmental uncertainties, user-

defined confidence levels, and an efficient recovery process,

helping address trust gaps and maintain operational safety [12].

Furthermore, we introduce several quantification metrics to

evaluate the proposed method and the uncertain performance

of the trained model. The major contributions of this work are

summarised as follows:

• This work proposes a confidence-guaranteed RFID in-
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by giving “expert” samples {(s0, g0), . . . , (sm, gm)|E}. Here,

ht ∈ RH×W is the goal probability map with a width of W ,

and height of H , an example of ht is given in Fig. 2. Each

pixel in ht corresponds to a location in the environment E ,

with its value representing the model’s empirical confidence.

Considering the environmental noise and hardware defect, a

sub-goal gt is defined as a navigational cycle zone in ht with

noise level derr as the radius. A robot arrives at gt when it

stops inside any place inside this zone. To settle this inherent

noise, we apply a sum-pooling approach to process the ht to

generate a grid probability map hg
t : [0, 1]Hg×Wg , defined as:

hg
t [x, y] = Softmax

( (x+1)·sh
∑

i=x·sh

(y+1)·sw
∑

j=y·sw

ht[i, j]

)

(3)

where x, y is the coordinate of the hg
t , sh, sw is the stride of the

pooling window, and hg
t is normalized with Softmax function

to value range from 0 to 1. The stride is chosen when the width

or height of the ht is divisible by the corresponding stride. It

is a trade-off between navigation resolution and computational

performance; a higher stride will have better computational

performance but a lower navigation resolution. To achieve the

best balance, usually, the stride should be in the range of

derr/2 to derr based on empirical results. An example of this

hg
t is shown in the top right corner of Fig. 2. Thus, a sub-goal

gt will correspond to a specific position (x, y) in this grip map

and can be defined as:

gt = (x, y), (4)

it coordinates with an empirical confidence value hg
t (x, y).

Our previous experiment and initial investigations found that

the empirical confidence may not be aligned with correctness:

sometimes, the ground truth sub-goal ĝt may not be the one

with the highest value, especially when the test environment

differs from the training environment.

B. Conformal Prediction based sub-goal prediction

To satisfy our goal (1), we employ CP to guarantee the

confidence level of the model’s prediction results. CP is a

statistical method that converts any model’s empirical confer-

ence value to a statistic rigorously guaranteed assurance [14],

[15]. It utilizes a calibration set Ccal consisting of a small

number of representative samples comprising the observations

and correlated ground truth predictions for a given task in

a specific environment. It regulates the model to ensure its

output satisfies the given confidence level by calibrating the

empirical conference value. More importantly, this rigorously

guaranteed conformal prediction set Cα
t can be produced at

each step t to ensure it comprises the ground truth prediction

with at least (1- α) confidence.

By deploying CP, we introduce a new robotic deployment

paradigm. When a robot is deployed in a new environment

for our RFID inventory task, end users first collect a small

set of state samples Ctask = {s0, . . . , sn}. Then, end users

will select the ground truth sub-goal ĝt for each st to form a

calibration sample pair (st, ĝt) and construct the Ccal as:

Ccal = {(s0, ĝ0), . . . , (sn, ĝn)}, st ∈ Ctask (5)

This Ccal provides end users’ specific expectations at the task

context in this given environment. With the Ccal, we will take

several steps to calibrate any new prediction and ensure it is

an optimized sub-goal with at least (1- α) probability.

Step 1. to calculate the conformal quantile. We start by

calculating the empirical confidence value for each sample

in Ccal and form the empirical confidence value set Cucv =
{1 − hg

t (ĝi)}
n
i=1. Here, hg

t (ĝi) is the empirical confidence

value for the ground truth sub-goal ĝi at i-th sample. Our grid

probability map hg
t at the position of ĝi provides this empirical

confidence value. With an user-specified error tolerance level

α, we have q = (n+1)(1−α)/n to get the conformal quantile

q̂ of Ccal as:

q̂ = Q(Cucv, ⌈q⌉) (6)

where Q is the quantile function, ⌈·⌉ is the ceil function.

Step2. Now with the q̂, we can calculate the conformal

prediction set Cα
t for a new state st ∼ Ccal. Given the new state

st, our model M produces the grid probability map hg
t that

offers candidate sub-goals and related empirical confidence

value. Based on hg
t , we can get the conformal prediction set

Cα
t as follows:

Cα
t = {gt|h

g
t (x, y) ≤ q̂}

Hg,Wg

x=1,y=1 (7)

Where gt is defined in (4). Therefore, the proposed conformal

prediction based sub-goal prediction πα can be defined as:

πα(st) = Cα
t , ∀st ∼ Ccal (8)

Based on the CP’s statistical guarantee, we can satisfy our

goal (1) with an additional constraint that the new state st
should have a similar distribution with calibration set Ccal.

C. Uncertainty Quantification & Self-recovery Actions

a) Uncertainty Quantification: Based on equation (8),

the πα guarantees to produce a prediction set Cα
t comprised

of the ground truth subgoal within the given confidence level.

From this Cα
t , we can quantify its prediction uncertainty at

step t via analyzing the number of equivalent sub-goals. We

formalize uncertainty quantification as follows:

Uα

(

πα(st)
)

= I

[

∣

∣Cl(C
α
t , derr)

∣

∣ = 1

]

, (9)

where | · | denotes the cardinality of the set, Cl is a clustering

function that measures the distances between candidate sub-

goals in Cα
t and groups those with distances less than derr

into an equivalent sub-goal, and the indicator function I = 1
when only a single equivalent sub-goal is produced. The

distance is the Euclidean distance measured in the units of

the environment (such as meters). Thus, Uα = 1 indicates

the prediction is certain because all elements in Cα
t are in

proximity within the noise level derr; in other words, as

previously stated, all these elements represent the equivalent

ground truth sub-goal ĝt. Otherwise, we will have Uα = 0
indicates the policy is uncertain about the prediction result.
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b) Self-recovery Action: By using the equations (8)

and (9), we provide a way to detect task uncertainty, and the

robot confidently performs the task when it provides a certain

sub-goal. However, we still need a strategy to handle and

respond to the uncertainties. To this end, we define and develop

the self-recovery action At to allow the robot to recover from

the uncertainties. Usually, At is a tasking-dependent strategy

that needs the knowledge and context of a given task and

environment. In our RFID inventory task, At will be deployed

as a simple navigational strategy that allows the robot to move

around the current position within a limited safe zone. This

strategy empowers the robot to gather more environmental

information, thereby making a certain prediction. We allow

at most mrec self-recovery attempts during the inventory task.

If the model is still not able to predict a certain prediction, the

robot will proactively ask the human user for help. Therefore,

we complete our final confidence-guaranteed RFID inven-

tory policy πα with uncertainty quantification ability and self-

recovery, and it is defined as follows:

gt = πα(st) =

{

Cl(C
α
t , derr), when Uα = 1

At, otherwise
(10)

The πα will output a specific sub-goal gt while it is certain

about the current prediction. Otherwise, it will produce the

recovery action At. Here, the probability of the gt is an

equivalent sub-goal of the ground truth ĝt is at least (1− α).

D. Evaluation Metrics

Inspired by previous work [9], we proposed 3 metrics to

quantify the uncertainty performance of a trained model M.

Given a evaluate set Ceval = {(s0, ĝ0), . . . , (sn, ĝn)}, the

Average Sub-goal Prediction set Size (ASP) is defined as:

ASPα(Ceval) =
1

n

n
∑

i=1

∣

∣πα(si)
∣

∣, ∀si ∈ Ceval (11)

This metric represents the uncertain degree of the well-trained

model M for the task; a large ASPα denotes its lack of confi-

dence. Then, we define the Uncertainty Detection Percentage

(UDP) to describe the ratio of uncertain predictions:

UDPα(Ceval) =
1

n

n
∑

i=1

Uα

(

πα(si)

)

, ∀si ∈ Ceval (12)

UDPα represents the overall confidence prediction ratio at

the evaluation set; therefore, a UDPα closer to 1 denotes that

the model is more certain about the task. The Conformal Pre-

diction Accuracy (CPA) represents the accuracy of conformal

prediction, defined as:

CPAα =

∑n

i=1 I
[

D(πα(si), ĝi) < derr
]

∑n

i=1 I
[

Uα = 1
] , ∀si ∈ Ceval (13)

where D is the Euclidean distance function; as previously men-

tioned, a prediction gt = πα(st) is considered correct if it is

within a distance derr of the ground truth ĝt. CPAα is defined

as the rate of correct predictions among all certain predictions;

thus, a CPAα closer to 1 denotes that the proposed CP-based

Fig. 3. An example of the virtual experimental environment: (a). It is a virtual
indoor apparel store with a size of 5m × 5m = 25m2, and 5 shelves are
placed randomly in the room. (b). A zoom-in of the virtual robot that equipped
a 2D Lidar and simulated RFID reader as main sensors.

method effectively produces correct results in these certain

predictions.

IV. EXPERIMENTAL STUDY

A. Experiment Setup

In this section, we introduce the experimental environment

and configurations for the proposed confidence-guaranteed

RFID inventory policy πα. We employed a well-trained model

M similar to our prior work, which has sufficient capability

to complete the autonomous RFID inventory task even in

complex environments. For all experiments, we deployed

a Unity3D-based digital-twin virtual environment proposed

in [5] and adapted the new scenario in which the robot is asked

to conduct an RFID inventory task in a novel environment that

is not included in the training dataset. It was an indoor apparel

store comprised of 5 shelves of 3 types, randomly placed in

this 5m × 5m = 25m2 room to create novel scenarios. We

show an example of this virtual store in Fig. 3.a. As shown in

Fig. 3.b, a virtual mobile robot was deployed in this store for

inventory tasks. It is a virtual replica of an Interbotix X-Series

LoCoBot Base robot, which is equipped with a 2D Lidar and

a simulated RFID reader.

In this virtual environment, the navigational noise level

derr = 0.3 meters, which was calculated based on the naviga-

tion local planner precision and the localization accuracy of the

virtual environment. The resolution of the goal probability map

ht was 0.05 meter per pixel. In our setup, all pixels in ht were

uniquely matched with the locations in the environment. To

balance navigation resolution and computational performance,

we chose a pooling window stride of sh = 8, sw = 8, resulting

in a grid probability map hg
t with the size of 32 × 32. Each

grid in hg
t was equal to an area with a length of 0.4 meters.

Thus, a navigational cycle zone with derr = 0.3 meters can

be approximated as an area of 2×2 grids. For the confidence-

guaranteed RFID inventory experiment, we set the maximum

self-recovery attempts mrec = 3. When the policy failed

to yield a certain conformal prediction after the maximum

attempts, an alert was sent to the user, and the user was

asked to select the next sub-goal from the conformal prediction

results. An episode was completed when the robot scanned all

RFID tags in the room or reached the maximum step limit.
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TABLE I
UNCERTAINTY QUANTIFICATION RESULTS

Error Tolerance Level α ASPα UDPα CPAα

0.10 444.59 0.186 0.967
0.15 348.99 0.262 0.956
0.20 274.87 0.315 0.948
0.25 207.92 0.361 0.930
0.30 111.07 0.434 0.899

B. Experiment Result and Analysis

a) Uncertainty Quantification: We first evaluated the

uncertainty performance of the trained model M by analyzing

the CP results of multiple task episodes. First, we conducted

15 episodes to collect and construct the calibration set Ccal
with 368 samples that included state st and manually given

ground truth sub-goal ĝt. Then, we used Ccal in our pro-

posed confidence-guaranteed policy πα to conduct other 135
episodes to collect 3287 samples, which formed the evaluation

set Ceval. We also manually selected the true sub-goals for

each sample in Ceval, then compared the results from πα.

Based on this Ceval, we calculated all the uncertainty quan-

tification metrics defined in equations (11), (12), and (13).

The experimental results are presented in Table. I.

The metric ASPα offers an overall indicator of the un-

certainties for M in step level. A higher value of ASPα

represents the model is more uncertain about its predictions,

which is also affected by the user-defined error tolerance level

α. Table. I tells a linearly decrease as α increases because

when the users can tolerance more errors, the πα utilizes a

loose constraint that allows making more certain predictions

with a higher risk of excluding the ground truth sub-goal in

the predicted set, which is proofed by the decreasing CPAα.

UDPα offers a tool to indicate the model M’s uncertainty

in the task level under the current environmental scenarios.

A higher UDPα indicates the model is more overall certain

for the task. Table. I also shows the linearly increasing as the

α increases, indicating that the model is more certain about

the task under higher error tolerance. Experiment results show

that by introducing the user-specific error tolerance α, the

proposed πα offers an effective method to allow users to adjust

the model’s confidence level to align with their expectations.

With the statistical results of ASPα and UDPα, although our

current model M can successfully execute the autonomous

RFID inventory task at a very high scan percentage, without

the regulation from our πα its ability to handle uncertainty

is limited that may accumulate leads to catastrophic failures.

Additionally, the metric CPAα shows the correctness ratio

in certain predictions, and our πα rigorously guarantees that

certain predictions can offer a correctness rate that reaches

or exceeds (1-α). The results in Table. I proved that our

proposed πα achieved this goal to empower robots to safely

and confidently conduct RFID tasks in novel environments and

can significantly reduce the risk of failures.

b) Insights of Uncertainty Identification: In this exper-

iment, we dived into the details of uncertainty detection by

Fig. 4. An example of insights into certainties detection. Both figures are
in the same step t = 13; the green dot represents the optimal sub-goal, the
yellow dot represents the predicted sub-goal, and the orange dot denotes the
start point. (a) A close look at the wrong prediction made by only the M in
the simulation environment with trajectory, (b) The map with CP prediction
set Cα

t
from πα, each candidate sub-goals are shown as red rectangles.

comparing the behavior between the proposed confidence-

guaranteed policy πα and only the model M through con-

ducting multiple RFID inventory tasks by them separately.

We explored and discussed the behavior of both policies in

uncertain prediction situations and analyzed how πα regu-

lated the behavior of the model M in episode-to-episode

comparison to provide insights into the possible reasons that

caused those behaviors through the intermediate result in the

conformal prediction set Cα
t . Fig. 4.a demonstrates a situation

when M predicts a sub-optimal sub-goal. The figure shows

that the model can navigate from the initial position down

along half of the circle shelf. However, it predicts a sub-goal

that has already been navigated, represented with a yellow dot,

instead of the optimal sub-goal, represented by a green dot.

Fig. 4.b shows the conformal prediction result: the conformal

prediction set in this position contains multiple candidate sub-

goals, and we notice that this set also includes the optimal sub-

goal. However, the πα shows a higher uncertainty at this step,

which outputs several candidate sub-goals over all racks. In

contrast, Fig. 5 shows the behavior from πα when it is certain

about the prediction at other steps. Here, only one candidate

sub-goal is also near our target scan rack. As we can see, πα

is more certain about navigating this type of shelf that only

outputs a single sub-goal candidate, which indicates the M
was better trained under this scenario.

Fig. 5. Two sequential certain predictions provided by the proposed
confidence-guaranteed policy πα at steps t = 16 and t = 17.
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TABLE II
UNCERTAINTY QUANTIFICATION RESULTS

Policy Scanned Percentage Average Travel Distance

M 0.980 124.23
πα 0.951 91.08

c) Confidence Guaranteed RFID inventory: This exper-

iment evaluated the effectiveness of the proposed confidence-

guaranteed policy πa in the inventory tasks regarding RFID

tag scanning. We ran e = 25 episodes of autonomous RFID

inventory task that covers all possible shelf distributions for

environment E . Each environment was deployed with 288
RFID tags that were randomly placed on each rack. We

evaluated its RFID inventory performance by comparing it

with only the M and compared their results in Table II. We

used the criteria in [5] to assess the robotic inventory task by

the RFID tag scanned percentage and average travel distance

for all episodes. An effective and efficient policy should offer a

higher scanned percentage with short travel distances. Table II

shows that the proposed πα significantly reduces the average

travel distance while maintaining the scanned percentage at

the same level as the well-trained model M, revealing the

proposed policy’s effectiveness. This experiment also unveiled

the effectiveness of the proposed self-recovery action At in

accomplishing the inventory task under uncertainties. Fig. 6

shows an episode of a completed confidence-guaranteed RFID

inventory task while the robot adopted three recovery actions.

In this episode, πα demonstrated very high certainty when

navigating a close shelf, but when it finished the shelf and

was ready to transit, uncertainties arose. These uncertainties

in the M might guide the robot randomly transited among

racks, causing excessive time consumption; our proposed πα

identified them and proactively adopted At. Then, the self-

recovery action At enabled the robot to handle these uncer-

tainties appropriately. Furthermore, this phenomenon indicates

that the model M was poorly performed in transition scenarios

and offers great clues to help in raining processes, such as

providing more related training data.

Fig. 6. An example of a confidence-guaranteed inventory task, the red
cycles indicate the recovery actions raised and help accomplish the task under
uncertainties detected.

V. CONCLUSION

This paper introduces a confidence-guaranteed RFID in-

ventory management policy using Conformal Prediction (CP).

The approach enhances the robustness of AI-driven robotic

inventory systems by filtering out uncertain predictions and

only allowing confident actions, improving task reliability and

performance. Additionally, the proposed policy will proac-

tively adopt self-recovery actions to handle the detected un-

certainties and accomplish the inventory task with robust

strategies. The evaluation metrics provide a systematic tool for

assessing prediction uncertainty in any AI model. Extensive

experiments confirm the method’s effectiveness in managing

uncertainties in dynamic environments. Future work will focus

on integrating CP into training to improve performance in

novel scenarios, such as for transitions between racks.
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