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Abstract—Localization using the RFID technology provides an
effective solution for improving inventory accuracy in varying
industries. The retail environment being an ever-growing topic of
interest, our focus is on exploring Bayesian statistical algorithms
centered on particle filter localization. With the use of stereo
tracking cameras, we create a 3D point cloud of the environment
in real time and localize a variety of items. This method is
built upon a previous work that does not rely on RSSI or
phase measurements. After the environment is transferred to a
Digital Twin using RGB-D cameras, we can identify the position
of various tags. To determine the performance of the proposed
particle filter, we use a commercial off-the-shelf (COTS) storage
rack to emulate a retail environment. A testing procedure is
conducted to compare the proposed particle filter approach with
the previous Bayesian filter approach. The proposed scheme
performs adequately in heavy-clutter environments with a re-
duced computational time.

Index Terms—Digital twin, Radio-frequency identification
(RFID), Bayesian filter, Localization, Particle filter, Real-time
appearance-based mapping (RTAB-Map)

I. INTRODUCTION

The need for cost-effective inventory management systems

at the commercial level has motivated innovative problem-

solving techniques [1], [2]. With the rapid development of

the Internet of Things (IoT), the radio-frequency dentifica-

tion (RFID) technology has been widely adopted in many

fields [3]–[5] for a broad range of applications such as

retailing, asset tracking, healthcare, and supply chain manage-

ment [6]. Radio frequency (RF) and ultra-wide band-width

(UWB) hybrid real-time locating systems (RTLS) localization

has became a worthwhile investment as industries search for

future high-precision alternatives [7]. In the last two decades,

RFID has become a popular choice for item localization due

to these cost savings and simplicity of deployment [8]. The

use of handheld RFID scanners has become a popular solution

for retailers performing cycle counts regularly in their stores

due to a lower cost of implementation.

The concept of digital twin has gained popularity with

RFID researchers considering its utility for many fields, from

improving customer services in the retail industry [9], [10]

construction workplace safety [11], to cislunar operations [12].

A digital twin refers to a virtual representation (usually in the

digital world) of a physical system, while the digital twinning

technology aims at building a high-fidelity virtual model or

depiction of a real-world entity or system, which involves

both digital and physical elements [13]. With the integration

of the RFID technology and digital twin, we can create precise

models that better predict inventory status in an accurate and

timely matter. Such an overview of the retail store will enable

effective exploration and management of the retail store.

With the rapid growth since 2016, the digital twin has been

considered a critical component of many fields. The innovative

data streaming through digital twins could potentially benefit

the real-world process [12], [14], [15]. This is shown in

recent efforts to repair the industrial production of the modern

world with an idea known as industry 4.0 (4IR). Using smart

hardware, technologies, data collection, and IoT to improve

the production pipeline, many researchers have recognized

the digital twin technology as the next push for industrial

innovation [16]. Simulation models can be transformed to

establish a digital twin to interact with incoming data and

optimize the model efficiency. For example, Braglia et al. [17]

present an agent-based simulation model of a large paper

warehouse, in which the forklifts and the pallets are identified

by reading their attached Ultra High Frequency (UHF) RFID

tags. The sensors update data for the locations of products

and forklifts in the digital twin at certain time intervals. The

simulation model (i.e., the digital twin) develops new alter-

native scenarios, attempting to optimize warehouse efficiency

involving routes that forklifts traverse to minimize the overall

costs of warehouse management. Then, the optimized routes

are studied by staff and are then carefully followed.

The combination of robotics and digital twin technologies

has been developed in the retail store and warehouse man-

agement scenarios. Various studies have focused on deploy-

ing RFID techniques to localize items to benefit inventory

tracking [18]. The prior works mainly adopted RFID tags as

landmarks to accurately pinpoint the tagged products [19].

Maı̈zi and Bendavid developed an RFID-based digital twin

system for inventory tracking, customer monitoring, and oper-

ations management [9]. Smart-store designs leveraging ground

robots to deploy inventory updates have shown improvements

on customer experiences and store operations. This was also

achieved by introducing machine learning to analyze the

incoming data to enhance inventory accuracy [20].

In this paper, we present a pilot model of a retail store digital



twin based on the Real-Time Appearance-Based Mapping

(RTAB-map) technology [21], where each product attached

with an RFID tag is localized and marked in the digital twin

model. Our system implements two RGB-D cameras to capture

visual information and a handheld RFID reader to scan RFID

tags. While the human operator is scanning RFID tags, both

visual and localization data are fed into the digital twin model.

The 3D digital twin is then constructed in real-time, and all

scanned tags are labeled in the 3D environment of the gener-

ated retail store digital twin. The core of the proposed system

is a classical Bayesian filtering method for passive UHF RFID

tag localization. We prototype the system with commercial off-

the-shelf (COTS) equipment in a single, representative retail

scenario. The quantitative experimental results are examined

to measure the accuracy of item-level tag localization. The

experiments illustrated accurate localization results, which is

within 0.367 m, achieved with multi-path effects present in

the environment. Our particle filter-based localization scheme

exhibits a computational speed improvement of roughly 2.5

times over that of the Bayesian filter. With the integration

of digital twin and RFID localization in such retail store

environments, our proposed system can greatly improve the

efficiency of inventory and supply chain.

The rest of this paper is organized as follows. In Section II,

we present the system design. In Section III, we present the

experiment results. Section IV concludes this paper.

II. METHODOLOGY AND DESIGN

In this section, the Particle filter is first presented along with

background on classical Bayesian filtering methods for passive

UHF RFID tag localization. Then, we introduce the fixed

transmit power RF model for improved location estimation.

Finally, we describe the RTAB-Map method and demonstrate

how the digital twin is established to merge the map and

localization results, including coordinate transformation from

camera frames to global frames.

A. Particle filter-based RFID localization

To begin, Bayesian filtering is known as a classical method

that can be used to estimate the position of RFID tags. It is

a probabilistic technique to estimate the state of a dynamic

system (i.e., belief) over time by incorporating new observa-

tions while accounting for uncertainty. A detailed explanation

can be found in our previous work [10]. Particle filtering

implements a similar mathematical approach in which each

particle represents a state of the overall system (i.e., position

and orientation) denoted by the state space model:

xk = f(xk−1) + uk (1)

yk = h(xk) + nk, (2)

where xk and yk represent the systems internal state location

and the measurements at each time step k, respectively; f is

a non-linear state transition model function, while h is the

measurement function; uk and nk represent an independent

identically distributed (i.i.d.) process and the measurement

noise sequence, respectively. This i.i.d. process directly cor-

relates to any noise the system experiences and for our

application, noise refers to inaccuracies due to the reader’s

movements.

The particle filter method utilizes the creation of a discrete

approximation to the probability density function (pdf) found

by the fundamental Bayesian state filtering problem. The

pdfs of both uk and nk define the prior particle density

p(xk|xk−1) and likelihood functions p(yk|xk), respectively.

Therefore, with xi
k, i = 1, 2, ..., Ns representing our particles

and wi
k, i = 1, 2, ..., Ns the associated weights, we have the

following particle update formula and weight update formula,

respectively:

xi
k ∼ p(xk|x

i
k−1

) (3)

wi
k ∝ wi

k−1
p(yk|x

i
k). (4)

Both equations are summarized as the sampling and weight-

ing step respectively for all particle i, when 1 ≤ i ≤ N . After

the observed weights update from inferring the measurement

model (2), we need to identify which particles consist of higher

weights. A resampling step is required to discard particles

with low weights and duplicate those with high weights. Many

options for resampling exist, and we settled on a systematic

resampling technique simplified to:

p(xk|y1:k) ≈

Ns
∑

i=1

wi
kδ(xk − xi

k), (5)

where δ(xk − xi
k) is a delta function centered at xi

k.

Our resampling choice does not require sorting; instead,

it selects new particles using a cumulative sum sweeping

through each particle, which is linear in complexity. This is

how we achieve a shorter computational time when referring to

a Bayesian filter-based localization approach. This process can

be summarized by dividing into five parts: (i) initialize with

normal distribution assuming equal weights within the model,

(ii) predict the next state of particles, (iii) update weights

based on new measurement values, (iv) resample by discarding

improbable particles, and (v) finally compute the RFID tag’s

estimated position:

xest =

∑N

i=1
xiwi

∑N

i=1
wi

. (6)

Each estimated position xest is derived from the weighted

average of all particle position xi. Rather than resampling

at every step, we resample only when necessary, based on

the effective sample size Neff . This approach ensures that

resampling occurs only when it can enhance the particle

distribution. By leveraging Neff , we can estimate the number

of particles that meaningfully contribute to the probability dis-

tribution function (PDF), thereby maintaining diversity while

minimizing unnecessary computations.

Neff =
1

∑

w2

i

. (7)



This technique encompasses a broad selection of Monte

Carlo algorithms for approximating the probability density

of any distribution. Thrun [22] details the success of global

localization in ground robots using Markov chain particle

filtering, where this implementation consistently outperforms

traditional techniques. In our test environment, it is assumed

that the environment is static, which means that all the RFID

tags are stationary and located in the detecting area during the

experiments. As discussed, the user will hold the RFID reader

with two cameras mounted to collect data at various positions.

Every read of RFID tag response is recorded and correlated to

the specific pose in the predetermined global map. Then, after

all the readings from the RFID tags are received, the locations

will be estimated using the Particle filter.

A two-dimensional (2D) illustration of the Particle filter

is shown in Fig. 1, and the detailed steps are presented in

Algorithm 1. At the beginning of the algorithm, all observed

tags at their respective time k are assigned weights denoted

by the weighting step wi
k ∝ wi

k−1
p(yk|x

i
k) only after all

particles are normalized. The results of all estimated tags are

dependent on the Bayes model p(yk|x
i
k). Then, as the weights

get assessed, depending on their values, they will either

resample or stay assigned to their respective particle. Finally,

the estimated tag position is returned once all particles have

been resampled. Testing performed in a complex experimental

environment prevents simple modeling techniques from per-

forming adequately. Therefore, numerous observations during

each experiment are required. In other words, all observations

captured by an RFID reader are used to examine the dynamic

locations and orientations of all RFID tags. This become the

basis for an applied empirical model created specifically to

prevent poor performance in such environments. This model

requires capturing all observations by an RFID reader at fixed

positions, while the RFID tags are put at dynamic locations

with random orientations.

The search area is evenly divided into a grid at a fixed

spatial interval of 10 cm, and a tag is attached at the center

of each grid during each recording. In each round of data

collection, the reader’s transmit power is constant. By putting

an RFID tag in each grid, we can observe multiple reads from

the reader. The observation collection process consists of 20

rounds of experiment, and we establish a map of successful

readings from each grid in the area. The probabilistic RFID

observation model is acquired, in which a higher observation

probability indicates a larger number of successful readings.

More details on the observation experiment can be found in

our previous work [18]. The Particle filter with a fixed transmit

power is developed based on the approaches in [23].

B. RTAB-Map based digital twin construction

Real-Time Appearance-Based Mapping (RTAB-Map) [21]

is a powerful open-source approach of Simultaneous Local-

ization And Mapping (SLAM) [24]. It is widely used in

robotics localization and mapping studies to provide real-

time environment map construction based on sensors such as

cameras and LiDAR.

Algorithm 1 Particle filter for RFID tag localization

Input: RFID tag data, reader power level, and reader pose ;
Output: Estimated tag location after meaningful resampling steps

have occurred ;
1: //N represents the total number of particles over the state space
2: for each time step k do
3: Normalize particle weights so that their sum is equal to one ;
4: for i = 1 to N do
5: Compute an estimate of the state (estimated tag’s position)

as the weighted average of all particle states ;
6: wi

k ∝ wi
k−1p(yk|x

i
k) ;

7: end forqwerp0;-
8: for each scanned tag do
9: Assessing particle weight concentration and determine ef-

fective number of contributing particles ;
10: if Neff < N/2 then
11: Perform resample and assign updated weights to gener-

ate a new set of particles for high probability regions;
12: end if
13: end for
14: end for

15: return The estimated tag position ;

In this work, we create a digital twin model of our test envi-

ronment by deploying RTAB-Map with two cameras mounted

on an portable RFID reader. Specifically, the RealSense D435

camera, which is capable of capturing both RGB and depth

images (i.e., RGB-D), is adopted to populate the essential data

required for constructing a 3D map [25]. The RealSense T265,

as a specialized tracking camera, offers odometry data to en-

able the localization and mapping of the scanning system [26].

Before data acquisition begins, the two cameras should be

calibrated. This procedure comprises the identification and

adjustment of both intrinsic and extrinsic parameters of the

cameras to establish a precise correspondence between pixel

coordinates and the global coordinates [25]. Synchronization

of the sensing process plays an essential role in ensuring the

creation of an accurate digital twin by aligning the visual data

from both cameras with continuous RF signals. The visual

features, such as key points and descriptors, are extracted

from the RGB-D images acquired with the D435 camera. The

odometry data gathered from the T265 camera offers motion

estimation that facilitate feature matching over consecutive

frames and the identification of loop closures [24]. Loop

closure detection is the crucial procedure of comparing the

current visual data with previously acquired data. It enhances

the digital twin’s consistency and mitigates drift when the

system refines the map and the agent’s estimated pose within

the map. The RTAB-Map method leverages graph optimization

to maximize the consistency and accuracy of the map based

on the designed graph structure of inter-frame agent pose and

landmarks.

To integrate the odometry data and the RGB-D data from

both cameras, a comprehensive 3D spatial map as a digital

twin of the target region is created. However, the pose of

the two cameras mounted together on the RFID reader is

described in the T265’s built-in frame coordinate [25]. In the
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Fig. 1: An illustration of RFID tag localization with a Particle Filter. Over four steps (epochs), the weights are resampled to

show the estimated tag location.

Fig. 2: The coordinate system: the global coordinate (g) and

the camera local coordinate (c).

data acquisition phase, the user carries the RFID reader and

camera system in the 3D space with six degrees of freedom (6-

DoF) [19]. Its pose is defined as the combination of position T

and orientation R, which are three translation DoFs and three

rotation DoFs, respectively [27]. We assume a predetermined

frame coordinates as L and a pose P is assigned to this

coordinate according to its relative position and orientation

of axes. A pose P related to coordinate frame L is given by:

P = [T,R]
T
, (8)

where position T is a 3D vector, orientation R is a 3D matrix,

and (·)
T

denotes the transpose operation.

As illustrated in Fig. 2, we defined two coordinate systems

to represent the camera-reader pose in the 3D space. One is

the camera’s local coordinates c, with an origin at the center

point of the T265 camera. The other coordinate is the global

coordinates g as the environment coordinate frame, with its

origin located at a fixed location on the ground. The RFID

reader detects a UHF tag at position Pc = (xc, yc, zc)
T

in the

local camera coordinate. To perform the rigid transformation

from the camera coordinates to the global coordinates, the

translation vector T g
c and rotation matrix Rg

c are calculated.

The 3D-translation represents the offset from the camera frame

coordinates c relative to the global frame g, specified as:

T g
c = [ogx − ocx, o

g
y − ocy, o

g
z − ocz]

T
= [tx, ty, tz]

T , (9)

Fig. 3: System architecture of the proposed approach: blue

colored blocks represent the RFID pipeline, whereas the peach

colored blocks are for the visual components.

which [ocx, o
c
y, o

c
z] and [ogx, o

g
y, o

g
z ] denote the origins of the

camera coordinate frame and the global coordinate frame,

respectively. The 3D-rotation matrix from the local camera

coordinates to the global coordinates is specified as a 3 × 3
matrix, given by:

Rg
c =





X̂c · X̂g Ŷc · X̂g Ẑc · X̂g

X̂c · Ŷg Ŷc · Ŷg Ẑc · Ŷg

X̂c · Ẑg Ŷc · Ẑg Ẑc · Ẑg



 =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 ,

where X̂c, Ŷc, and Ẑc denote the unit vector of local camera

coordinate axes and X̂g , Ŷg , Ẑg denote the unit vector of

global coordinate axes. Based on the derived translation vector

T g
c and rotation matrix Rg

c , the frame coordinate transforma-

tion from local camera to global is given by:

Pg = Rg
c · Pc + T g

c

=





r11 r12 r13
r21 r22 r23
r31 r32 r33



Pc + [tx, ty, tz]
T , (10)

By exporting the transformed tag locations to the RTAB-

Map built 3D real-time map, we establish the digital twin of

the target area, which contains the visual features, structural

geometry, and the RFID tags localization results. The system

architecture of the proposed method is illustrated in Fig. 3.

III. EXPERIMENTS AND RESULTS

A. Experimental setup

To evaluate the performance of the model, a series of exper-

iments are conducted in the RFID Lab of Auburn University.





Fig. 5: The RF-visual sensing component: Realsense D435

RGB-D camera (Top), Realsense T265 tracking camera (Mid-

dle), and the Zebra RFD8500 Bluetooth Handheld UHF RFID

Reader (Bottom).

performed adequately in heavy-clutter environments with the

presence of multi-path effect while reducing the computational

time. Performance of the model’s tag localization showed an

average error across all tests of 0.367 m. Multi-model handheld

digital twin inventory localization could achieve significant

improvements for specialized use cases. Future models could

be trained and adjusted to fit retailers needs for achieving

higher efficiency in inventory management.
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