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Abstract—Localization using the RFID technology provides an
effective solution for improving inventory accuracy in varying
industries. The retail environment being an ever-growing topic of
interest, our focus is on exploring Bayesian statistical algorithms
centered on particle filter localization. With the use of stereo
tracking cameras, we create a 3D point cloud of the environment
in real time and localize a variety of items. This method is
built upon a previous work that does not rely on RSSI or
phase measurements. After the environment is transferred to a
Digital Twin using RGB-D cameras, we can identify the position
of various tags. To determine the performance of the proposed
particle filter, we use a commercial off-the-shelf (COTS) storage
rack to emulate a retail environment. A testing procedure is
conducted to compare the proposed particle filter approach with
the previous Bayesian filter approach. The proposed scheme
performs adequately in heavy-clutter environments with a re-
duced computational time.

Index Terms—Digital twin, Radio-frequency identification
(RFID), Bayesian filter, Localization, Particle filter, Real-time
appearance-based mapping (RTAB-Map)

I. INTRODUCTION

The need for cost-effective inventory management systems
at the commercial level has motivated innovative problem-
solving techniques [1], [2]. With the rapid development of
the Internet of Things (IoT), the radio-frequency dentifica-
tion (RFID) technology has been widely adopted in many
fields [3]-[5] for a broad range of applications such as
retailing, asset tracking, healthcare, and supply chain manage-
ment [6]. Radio frequency (RF) and ultra-wide band-width
(UWB) hybrid real-time locating systems (RTLS) localization
has became a worthwhile investment as industries search for
future high-precision alternatives [7]. In the last two decades,
RFID has become a popular choice for item localization due
to these cost savings and simplicity of deployment [8]. The
use of handheld RFID scanners has become a popular solution
for retailers performing cycle counts regularly in their stores
due to a lower cost of implementation.

The concept of digital twin has gained popularity with
RFID researchers considering its utility for many fields, from
improving customer services in the retail industry [9], [10]
construction workplace safety [11], to cislunar operations [12].
A digital twin refers to a virtual representation (usually in the
digital world) of a physical system, while the digital twinning
technology aims at building a high-fidelity virtual model or

depiction of a real-world entity or system, which involves
both digital and physical elements [13]. With the integration
of the RFID technology and digital twin, we can create precise
models that better predict inventory status in an accurate and
timely matter. Such an overview of the retail store will enable
effective exploration and management of the retail store.

With the rapid growth since 2016, the digital twin has been
considered a critical component of many fields. The innovative
data streaming through digital twins could potentially benefit
the real-world process [12], [14], [15]. This is shown in
recent efforts to repair the industrial production of the modern
world with an idea known as industry 4.0 (4IR). Using smart
hardware, technologies, data collection, and IoT to improve
the production pipeline, many researchers have recognized
the digital twin technology as the next push for industrial
innovation [16]. Simulation models can be transformed to
establish a digital twin to interact with incoming data and
optimize the model efficiency. For example, Braglia et al. [17]
present an agent-based simulation model of a large paper
warehouse, in which the forklifts and the pallets are identified
by reading their attached Ultra High Frequency (UHF) RFID
tags. The sensors update data for the locations of products
and forklifts in the digital twin at certain time intervals. The
simulation model (i.e., the digital twin) develops new alter-
native scenarios, attempting to optimize warehouse efficiency
involving routes that forklifts traverse to minimize the overall
costs of warehouse management. Then, the optimized routes
are studied by staff and are then carefully followed.

The combination of robotics and digital twin technologies
has been developed in the retail store and warehouse man-
agement scenarios. Various studies have focused on deploy-
ing RFID techniques to localize items to benefit inventory
tracking [18]. The prior works mainly adopted RFID tags as
landmarks to accurately pinpoint the tagged products [19].
Maizi and Bendavid developed an RFID-based digital twin
system for inventory tracking, customer monitoring, and oper-
ations management [9]. Smart-store designs leveraging ground
robots to deploy inventory updates have shown improvements
on customer experiences and store operations. This was also
achieved by introducing machine learning to analyze the
incoming data to enhance inventory accuracy [20].

In this paper, we present a pilot model of a retail store digital



twin based on the Real-Time Appearance-Based Mapping
(RTAB-map) technology [21], where each product attached
with an RFID tag is localized and marked in the digital twin
model. Our system implements two RGB-D cameras to capture
visual information and a handheld RFID reader to scan RFID
tags. While the human operator is scanning RFID tags, both
visual and localization data are fed into the digital twin model.
The 3D digital twin is then constructed in real-time, and all
scanned tags are labeled in the 3D environment of the gener-
ated retail store digital twin. The core of the proposed system
is a classical Bayesian filtering method for passive UHF RFID
tag localization. We prototype the system with commercial off-
the-shelf (COTS) equipment in a single, representative retail
scenario. The quantitative experimental results are examined
to measure the accuracy of item-level tag localization. The
experiments illustrated accurate localization results, which is
within 0.367 m, achieved with multi-path effects present in
the environment. Our particle filter-based localization scheme
exhibits a computational speed improvement of roughly 2.5
times over that of the Bayesian filter. With the integration
of digital twin and RFID localization in such retail store
environments, our proposed system can greatly improve the
efficiency of inventory and supply chain.

The rest of this paper is organized as follows. In Section II,
we present the system design. In Section III, we present the
experiment results. Section IV concludes this paper.

II. METHODOLOGY AND DESIGN

In this section, the Particle filter is first presented along with
background on classical Bayesian filtering methods for passive
UHF RFID tag localization. Then, we introduce the fixed
transmit power RF model for improved location estimation.
Finally, we describe the RTAB-Map method and demonstrate
how the digital twin is established to merge the map and
localization results, including coordinate transformation from
camera frames to global frames.

A. Particle filter-based RFID localization

To begin, Bayesian filtering is known as a classical method
that can be used to estimate the position of RFID tags. It is
a probabilistic technique to estimate the state of a dynamic
system (i.e., belief) over time by incorporating new observa-
tions while accounting for uncertainty. A detailed explanation
can be found in our previous work [10]. Particle filtering
implements a similar mathematical approach in which each
particle represents a state of the overall system (i.e., position
and orientation) denoted by the state space model:

xp = f(axp—1) + uk (D
yr = h(xr) + nr, 2

where xj, and yj represent the systems internal state location
and the measurements at each time step k, respectively; f is
a non-linear state transition model function, while h is the
measurement function; wug and ny represent an independent
identically distributed (i.i.d.) process and the measurement

noise sequence, respectively. This i.i.d. process directly cor-
relates to any noise the system experiences and for our
application, noise refers to inaccuracies due to the reader’s
movements.

The particle filter method utilizes the creation of a discrete
approximation to the probability density function (pdf) found
by the fundamental Bayesian state filtering problem. The
pdfs of both w; and nji define the prior particle density
p(zk|zr—1) and likelihood functions p(yx|xy), respectively.
Therefore, with z%,i = 1,2, ..., Ny representing our particles
and wz,i = 1,2,..., N, the associated weights, we have the
following particle update formula and weight update formula,
respectively:

xj, ~ p(a|w)_y) 3)
wy, o wy,_1p(Y|T],)- 4)

Both equations are summarized as the sampling and weight-
ing step respectively for all particle ¢, when 1 < ¢ < N. After
the observed weights update from inferring the measurement
model (2), we need to identify which particles consist of higher
weights. A resampling step is required to discard particles
with low weights and duplicate those with high weights. Many
options for resampling exist, and we settled on a systematic
resampling technique simplified to:

N
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where 0(x), — %) is a delta function centered at x%.

Our resampling choice does not require sorting; instead,
it selects new particles using a cumulative sum sweeping
through each particle, which is linear in complexity. This is
how we achieve a shorter computational time when referring to
a Bayesian filter-based localization approach. This process can
be summarized by dividing into five parts: (i) initialize with
normal distribution assuming equal weights within the model,
(ii) predict the next state of particles, (iii) update weights
based on new measurement values, (iv) resample by discarding
improbable particles, and (v) finally compute the RFID tag’s
estimated position:

Lest = % (6)
D iy Wi

Each estimated position x.s; is derived from the weighted
average of all particle position z;. Rather than resampling
at every step, we resample only when necessary, based on
the effective sample size Negs. This approach ensures that
resampling occurs only when it can enhance the particle
distribution. By leveraging N, we can estimate the number
of particles that meaningfully contribute to the probability dis-
tribution function (PDF), thereby maintaining diversity while
minimizing unnecessary computations.
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This technique encompasses a broad selection of Monte
Carlo algorithms for approximating the probability density
of any distribution. Thrun [22] details the success of global
localization in ground robots using Markov chain particle
filtering, where this implementation consistently outperforms
traditional techniques. In our test environment, it is assumed
that the environment is static, which means that all the RFID
tags are stationary and located in the detecting area during the
experiments. As discussed, the user will hold the RFID reader
with two cameras mounted to collect data at various positions.
Every read of RFID tag response is recorded and correlated to
the specific pose in the predetermined global map. Then, after
all the readings from the RFID tags are received, the locations
will be estimated using the Particle filter.

A two-dimensional (2D) illustration of the Particle filter
is shown in Fig. 1, and the detailed steps are presented in
Algorithm 1. At the beginning of the algorithm, all observed
tags at their respective time k are assigned weights denoted
by the weighting step wi oc wi_p(yx|zl) only after all
particles are normalized. The results of all estimated tags are
dependent on the Bayes model p(yx|zi). Then, as the weights
get assessed, depending on their values, they will either
resample or stay assigned to their respective particle. Finally,
the estimated tag position is returned once all particles have
been resampled. Testing performed in a complex experimental
environment prevents simple modeling techniques from per-
forming adequately. Therefore, numerous observations during
each experiment are required. In other words, all observations
captured by an RFID reader are used to examine the dynamic
locations and orientations of all RFID tags. This become the
basis for an applied empirical model created specifically to
prevent poor performance in such environments. This model
requires capturing all observations by an RFID reader at fixed
positions, while the RFID tags are put at dynamic locations
with random orientations.

The search area is evenly divided into a grid at a fixed
spatial interval of 10 cm, and a tag is attached at the center
of each grid during each recording. In each round of data
collection, the reader’s transmit power is constant. By putting
an RFID tag in each grid, we can observe multiple reads from
the reader. The observation collection process consists of 20
rounds of experiment, and we establish a map of successful
readings from each grid in the area. The probabilistic RFID
observation model is acquired, in which a higher observation
probability indicates a larger number of successful readings.
More details on the observation experiment can be found in
our previous work [18]. The Particle filter with a fixed transmit
power is developed based on the approaches in [23].

B. RTAB-Map based digital twin construction

Real-Time Appearance-Based Mapping (RTAB-Map) [21]
is a powerful open-source approach of Simultaneous Local-
ization And Mapping (SLAM) [24]. It is widely used in
robotics localization and mapping studies to provide real-
time environment map construction based on sensors such as
cameras and LiDAR.

Algorithm 1 Particle filter for RFID tag localization

Input: RFID tag data, reader power level, and reader pose ;
Output: Estimated tag location after meaningful resampling steps
have occurred ;
1: /IN represents the total number of particles over the state space
2: for each time step k£ do
3:  Normalize particle weights so that their sum is equal to one ;
4 for i =1 to N do
5 Compute an estimate of the state (estimated tag’s position)
as the weighted average of all particle states ;
6: wy, o wi_1p(Yk|Tk) 3
7:  end forqwerpO;-
8 for each scanned tag do
9 Assessing particle weight concentration and determine ef-
fective number of contributing particles ;
10: if Nesr < N/2 then
11: Perform resample and assign updated weights to gener-
ate a new set of particles for high probability regions;
12: end if
13:  end for
14: end for

15: return The estimated tag position ;

In this work, we create a digital twin model of our test envi-
ronment by deploying RTAB-Map with two cameras mounted
on an portable RFID reader. Specifically, the RealSense D435
camera, which is capable of capturing both RGB and depth
images (i.e., RGB-D), is adopted to populate the essential data
required for constructing a 3D map [25]. The RealSense T265,
as a specialized tracking camera, offers odometry data to en-
able the localization and mapping of the scanning system [26].
Before data acquisition begins, the two cameras should be
calibrated. This procedure comprises the identification and
adjustment of both intrinsic and extrinsic parameters of the
cameras to establish a precise correspondence between pixel
coordinates and the global coordinates [25]. Synchronization
of the sensing process plays an essential role in ensuring the
creation of an accurate digital twin by aligning the visual data
from both cameras with continuous RF signals. The visual
features, such as key points and descriptors, are extracted
from the RGB-D images acquired with the D435 camera. The
odometry data gathered from the T265 camera offers motion
estimation that facilitate feature matching over consecutive
frames and the identification of loop closures [24]. Loop
closure detection is the crucial procedure of comparing the
current visual data with previously acquired data. It enhances
the digital twin’s consistency and mitigates drift when the
system refines the map and the agent’s estimated pose within
the map. The RTAB-Map method leverages graph optimization
to maximize the consistency and accuracy of the map based
on the designed graph structure of inter-frame agent pose and
landmarks.

To integrate the odometry data and the RGB-D data from
both cameras, a comprehensive 3D spatial map as a digital
twin of the target region is created. However, the pose of
the two cameras mounted together on the RFID reader is
described in the T265’s built-in frame coordinate [25]. In the
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Fig. 1: An illustration of RFID tag localization with a Particle Filter. Over four steps (epochs), the weights are resampled to

show the estimated tag location.

Fig. 2: The coordinate system: the global coordinate (g) and
the camera local coordinate (c).

data acquisition phase, the user carries the RFID reader and
camera system in the 3D space with six degrees of freedom (6-
DoF) [19]. Its pose is defined as the combination of position T
and orientation R, which are three translation DoFs and three
rotation DoFs, respectively [27]. We assume a predetermined
frame coordinates as £ and a pose P is assigned to this
coordinate according to its relative position and orientation
of axes. A pose P related to coordinate frame L is given by:

P=[T,R]", (8)

where pTosition T is a 3D vector, orientation R is a 3D matrix,
and (-)" denotes the transpose operation.

As illustrated in Fig. 2, we defined two coordinate systems
to represent the camera-reader pose in the 3D space. One is
the camera’s local coordinates c, with an origin at the center
point of the T265 camera. The other coordinate is the global
coordinates g as the environment coordinate frame, with its
origin located at a fixed location on the ground. The RFID
reader detects a UHF tag at position P, = (z, ye, zc)T in the
local camera coordinate. To perform the rigid transformation
from the camera coordinates to the global coordinates, the
translation vector T and rotation matrix I2J are calculated.
The 3D-translation represents the offset from the camera frame
coordinates c relative to the global frame g, specified as:
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Fig. 3: System architecture of the proposed approach: blue
colored blocks represent the RFID pipeline, whereas the peach
colored blocks are for the visual components.

which [0f,07,05] and [0, 09,09] denote the origins of the
camera coordinate frame and the global coordinate frame,
respectively. The 3D-rotation matrix from the local camera
coordinates to the global coordinates is specified as a 3 x 3
matrix, given by:

X.- Xg Y, - Xq Z, - Xg Tir T2 713
R‘Z = | X Yg c’ Yg Ze - Yg = [T21 T22 T23),
Xe 2y Y. 2y Z.-Zg r31 T3z 733

where Xc, YC, and Zc denote the unit vector of local camera
coordinate axes and Xg, }A’g, 29 denote the unit vector of
global coordinate axes. Based on the derived translation vector
T9 and rotation matrix RY, the frame coordinate transforma-
tion from local camera to global is given by:

Py=RY-P.+T¢

i1 Ti2 Ti13
T
= |T21 T22 T23 Pc+[tw7tyatz] ) (10)
31 T32 T33

By exporting the transformed tag locations to the RTAB-
Map built 3D real-time map, we establish the digital twin of
the target area, which contains the visual features, structural
geometry, and the RFID tags localization results. The system
architecture of the proposed method is illustrated in Fig. 3.

III. EXPERIMENTS AND RESULTS

A. Experimental setup

To evaluate the performance of the model, a series of exper-
iments are conducted in the RFID Lab of Auburn University.



The experiment environment consists of a single shoe rack
populated with 40 tags on its 5 shelves as shown in Fig. 4(a).
This rack is 1.82 m x 1.00 m and is placed in a 106 m? sized
room with the rack placed directly in the center.

As shown in Fig. 5, a Realsense D435 RGB-D camera and a
Realsense T265 tracking camera are mounted on top of a Zebra
RFD8500 Bluetooth Handheld UHF RFID Reader, creating a
proposed RF-visual sensing prototype. The RGB-D camera
and the tracking camera are connected to a mini-computer
through USB3 Type-C and USB Micro B cables, respectively.
Connection between the Zebra RFD8500 reader [28] and the
host computer is established via Bluetooth 2.1.

ROS Noetic is executed on Ubuntu for synchronizing all
sensors in the proposed prototype. The passive UHF RFID
tags we use is the Avery Dennison AD-237 [29]. It has an
IC-type Impinj Monza R6 and 96-bit EPC for identification.
The system is capable of localizing any specific tag model
and other types of tags have been recognized but are not
evaluated during our testing. To evaluate the performance of
the tag localization in the digital twin, we conduct a small-
scale experiment. In this test, the shoe rack is scanned and its
digital twin is created. The actual location of the tags attached
to the shoes are measured to serve as the ground truth.

B. Experimental results and discussions

Fig. 4(b) shows an example of the digital twin we built
for the shoe rack to evaluate the performance of the proposed
prototype in a small-scale scenario. All the RFID tags are
localized and shown in the figure as red dots. This digital
twin is created by the proposed method performed with the
equipment shown in Fig. 5. For data collection, a user carries
the equipment along with a host mini-computer holstered
across their body to explore the target area. RGB-D images
and RFID tag readings are captured to build the real-time
digital twin of the shoe rack. All the shelves are scanned
in 360 degrees at various heights using a consistent vertical
and horizontal motion with the reader an even distance of
roughly 1 m from the rack. Each test is accomplished within 2
minutes. The small-scale scenario experiment is performed in
a highly cluttered environment with multi-path effect present
from other tags not associated with the rack during each test.
Five testing repetitions are performed at a fixed reader level
of 12dB with 1 minute time intervals between tests. The
localization error is then combined and averaged across all
tests.

From each test, our computation time is significantly lower
than Bayesian-filter localization for localizing all 40 tags,
as shown in Table I. All the tags are distributed within a
reasonable range using this proposed particle filter method.
The average localization error from all tests is 0.367 m and
the maximum error is 0.392 m in this experiment.

IV. CONCLUSIONS

This work developed an alternative statistical model for
portable localization of a digital twin retail environment, using
data collected by two cameras and a portable RFID reader.

(b) The digital twin of the shoe rack.

Fig. 4: An example digital twin built for a shoe rack to evaluate
the proposed system.

TABLE I: Mean Localization Time Comparison

Filter | Mean Localization Time Per Tag
0.954 Seconds

2.49 Seconds

Particle Filter |

Bayesian Filter |

A particle filter-based RFID tag localization algorithm was
examined using the previous antenna model implementation
for real-time spatial mapping. The proposed particle filter



Fig.

5: The RF-visual sensing component: Realsense D435

RGB-D camera (Top), Realsense T265 tracking camera (Mid-
dle), and the Zebra RFD8500 Bluetooth Handheld UHF RFID
Reader (Bottom).

performed adequately in heavy-clutter environments with the
presence of multi-path effect while reducing the computational
time. Performance of the model’s tag localization showed an
average error across all tests of 0.367 m. Multi-model handheld
digital twin inventory localization could achieve significant
improvements for specialized use cases. Future models could
be trained and adjusted to fit retailers needs for achieving
higher efficiency in inventory management.
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