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Abstract

The block tensor of trifocal tensors provides crucial geometric information on the
three-view geometry of a scene. The underlying synchronization problem seeks to
recover camera poses (locations and orientations up to a global transformation) from
the block trifocal tensor. We establish an explicit Tucker factorization of this tensor,
revealing a low multilinear rank of (6,4,4) independent of the number of cameras
under appropriate scaling conditions. We prove that this rank constraint provides
sufficient information for camera recovery in the noiseless case. The constraint
motivates a synchronization algorithm based on the higher-order singular value
decomposition of the block trifocal tensor. Experimental comparisons with state-
of-the-art global synchronization methods on real datasets demonstrate the potential
of this algorithm for significantly improving location estimation accuracy. Overall
this work suggests that higher-order interactions in synchronization problems can
be exploited to improve performance, beyond the usual pairwise-based approaches.

1 Introduction

Synchronization is crucial for the success of many data-intensive applications, including structure from
motion, simultaneous localization and mapping (SLAM), and community detection. This problem
involves estimating global states from relative measurements between states. While many studies have
explored synchronization in different contexts using pairwise measurements, few have considered
measurements between three or more states. In real-world scenarios, relying solely on pairwise mea-
surements often fails to capture the full complexity of the system. For instance, in networked systems,
interactions frequently occur among groups of nodes, necessitating approaches that can handle higher-
order relationships. Extending synchronization to consider measurements between three or more states,
however, increases computational complexity and requires sophisticated mathematical models. Ad-
dressing these challenges is vital for advancing various technological fields. For example, higher-order
synchronization can improve the accuracy of 3D reconstructions in structure from motion by leveraging
more complex geometric relationships. In SLAM, it enhances mapping and localization precision in dy-
namic environments by considering multi-robot interactions. Similarly, in social networks, it could lead
to more accurate identification of tightly-knit groups. Developing efficient algorithms to handle higher-
order measurements will open new research avenues and make systems more resilient and accurate.

In this work, we focus on a specific instance of the synchronization problem within the context
of structure from motion in 3D computer vision, where each state represents the orientation and
location of a camera. Traditional approaches rely on relative measurements encoded by fundamental
matrices, which describe the relative projective geometry between pairs of images. Instead, we
consider higher-order relative measurements encoded in trifocal tensors, which capture the projective
information between triplets of images. Trifocal tensors uniquely determine the geometry of three
views, even in the collinear case [1], making them more favorable than triplets of fundamental matrices
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for synchronization. To understand the structure and properties of trifocal tensors in multi-view
geometry, we carefully study the mathematical properties of the block tensor of trifocal tensors. We
then use these theoretical insights to develop effective synchronization algorithms.

Directly relevant previous works. In the structure from motion problem, synchronization has
traditionally been done using incremental methods, such as Bundler [2] and COLMAP [3]. These
methods process images sequentially, gradually recovering camera poses. However, the order of
image processing can impact reconstruction quality, as error may significantly accumulate. Bundle
adjustment [4], which jointly optimizes camera parameters and 3D points, has been used to limit
drifting but is computationally expensive.

Alternatively, global synchronization methods have been proposed. These methods process multiple
images simultaneously, avoiding iterative procedures and offering more rigorous and robust solutions.
Global methods generally optimize noisy and corrupted measurements by exploiting the structure
of relative measurements and imposing constraints. Many global methods solve for orientation and
location separately, using structures on SO(3) and the set of locations. Solutions for retrieving camera
poses from pairwise measurements have been developed for camera orientations [5, 6, 7, 8, 9, 10],
camera locations [11, 12, 13], and both simultaneously [14, 15, 16, 17]. Some methods explore the
structure on fundamental or essential matrices [18, 19, 20].

Several attempts to extract information from trifocal tensors include works by: Leonardos et al. [21],
which parameterizes calibrated trifocal tensors with non-collinear pinhole cameras as a quotient
Riemannian manifold and uses the manifold structure to estimate individual trifocal tensors robustly;
Larsson et al. [22], which proposes minimal solvers to determine calibrated radial trifocal tensors
for use in an incremental pipeline, handling distorted images with constraints invariant to radial
displacement; and Moulon et al. [23], which introduces a structure from motion pipeline, retrieving
global rotations via cleaning the estimation graph and solving a least squares problem, and solving
for translations by estimating trifocal tensors individually by linear programs. To our knowledge, no
prior works develop a global pipeline where the synchronization operates directly on trifocal tensors.

Contribution of this work. The main contributions of this work are as follows:

• We establish an explicit Tucker factorization of the block trifocal tensor when its blocks are
suitably scaled, demonstrating a low multilinear rank of (6,4,4). Moreover, we prove that
this rank constraint is sufficient to determine the scales and fully characterizes camera poses
in the noiseless case.

• We develop a method for synchronizing trifocal tensors by enforcing this low rank constraint
on the block tensor. We validate the effectiveness of our method through tests on several
real datasets in structure from motion.

2 Low-rankness of the block trifocal tensor

We first briefly review relevant background material in Section 2.1. Then we present the main new
construction and theoretical results in Section 2.2.

2.1 Background

2.1.1 Cameras and 3D geometry

Given a collection of n images I1,...,In of a 3D scene, let ti∈R3 and Ri∈SO(3) denote the location
and orientation of the camera associated with the image Ii in the global coordinate system. Moreover,
each camera is associated with a calibration matrixKi that encodes the intrinsic parameters of a camera,
including the focal length, the principal points, and the skew parameter. Then, the 3×4 camera matrix
has the following form, Pi=KiRi[I3×3,−ti] and is defined up to nonzero scale. Three-dimensional
world pointsX are represented asR4 vectors in homogeneous coordinates, and the projection ofX into
the image corresponding to P is x=PX . 3D world lines L can be represented via Plücker coordinates
as an R6 vector. Then the projection of L onto the image corresponding to P is l=PL, where P is
the 3×6 line projection matrix. It can be written asP=

[
P 2∧P 3;P 3∧P 1;P 1∧P 2

]
where P i is the

i-th row of the camera matrix P and wedge denotes exterior product. Explicitly the (i,j) element of
the line projection matrix can be calculated as the determinant of the submatrix, where the i-th row
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is omitted and the column are selected as the j-th pair from [(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]. The
elements on the second row are multiplied by−1.

To retrieve global poses, relative measurement of pairs or triplets of images is needed. Let xi and xj be
any pair of corresponding keypoints in images Ii and Ij respectively, meaning that they are images of a
common world point. The fundamental matrix Fij is a 3×3 matrix such that xT

i Fijxj=0. It is known
that Fij encodes the relative orientation Rij =RiR

T
j and translation tij =Ri(ti−tj) through Fij =

K−T
i [tij ]×RijK

−1
j . The essential matrix corresponds to the calibrated case, where Ki=I3×3 for all i.

2.1.2 Trifocal tensors

Analogous to the fundamental matrix, the trifocal tensor Tijk is a 3× 3× 3 tensor that relates the
features across images and characterizes the relative pose between a triplet of cameras Pi,Pj ,Pk. The
trifocal tensor Tijk corresponding to cameras Pi,Pj ,Pk can be calculated by

(Tijk)wqr=(−1)w+1det

∼Pw
i

P q
j

P r
k

, (1)

where Pw
i is the w-th row of Pi, and ∼Pw

i is the 2×4 submatrix of Pi omitting the w-th row. The
trifocal tensor determines the geometry of three cameras up to a global projective ambiguity, or up
to a scaled rigid transformation in the calibrated case. In addition to point correspondences, trifocal
tensors satisfy constraints for corresponding lines, and mixtures thereof. For example, let li,lj ,lk be
corresponding image lines in the views of cameras Pi,Pj ,Pk respectively, then the lines are related
through the trifocal tensorTijk by

(
lTj [(Tijk)1::,(Tijk)2::,(Tijk)3::]lk

)
[l]×=0T , where [l]× denotes the

×3 skew-symmetric matrix corresponding to cross product by l. We refer to [1] for more details of the
properties of a trifocal tensor. We include the standard derivation of the trifocal tensor in Appendix A.1.

Since corresponding lines put constraints on the trifocal tensor, one advantage of incorporating trifocal
tensors into structure from motion pipelines is that trifocal tensors can be estimated purely from line cor-
respondences or a mixture of points and lines. Fundamental matrices can not be estimated directly from
line correspondences, so the effectiveness of pairwise methods for datasets where feature points are
scarce is limited. Furthermore, trifocal tensors have the potential to improve location estimation. From
pairwise measurements, one can only get the relative direction but not the scale and the location estima-
tion in the pairwise setting is a “notoriously difficult problem" (quoting from pages 316-317 of [24]).
However, trifocal tensors encode the relative scales of the direction and can greatly simplify the location
estimation procedure. We refer to several works on characterizing the complexity of minimal problems
for individual trifocal tensors [25, 26], and on developing methods for solving certain minimal problems
[27],[28], [29], [30], [31], [32], [33]. We also refer to [34] for a survey paper on structure from motion,
which discusses minimal problem solvers from the perspective of computational algebraic geometry.

2.1.3 Tucker decomposition and the multilinear rank of tensors

We review basic material on the Tucker decomposition and the multilinear rank of a tensor. We refer
to [35] for more details while adopting its notation. Let T ∈RI1×I2×···×IN be an order N tensor. The
mode-i flattening (or matricization) T(i) ∈ RIi×(I1...Ii−1Ii+1...IN ) is the rearrangement of T into a
matrix by taking mode-i fibers to be columns of the flattened matrix. By convention, the ordering
of the columns in the flattening follows lexicographic order of the modes excluding i. Symbols ⊗
and⊙ denote the Kronecker product and the Hadamard product respectively. The norm on tensors
is defined as ∥T∥=∥T(1)∥F . The i-rank of T is the column rank of T(i) and is denoted as ranki(T ).
Let Ri=ranki(T ). Then the multilinear rank of T is defined as mlrank(T ) = (R1,R2,...,RN ). The
i-mode product of T with a matrix U ∈Rm×Ii is a tensor in RI1×···×Ii−1×m×Ii+1×···×IN such that

(T×iU)j1···ji−1kji+1···jN =

Ii∑
ji=1

Tj1j2···jNUkji .

Then, the Tucker decomposition of T ∈RI1×I2×···×IN is a decomposition of the following form:

T =G×1A1×2A2×3 ···×NAN =JG;A1,A2,...,AN K,
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where G∈RQ1×···×QN is the core tensor, and An∈RIn×Qn are the factor matrices. Without loss of
generality, the factor matrices can be assumed to have orthonormal columns. Given the multilinear rank
of the core tensor (R1,...,RN ), the Tucker decomposition approximation problem can be written as

argmin
G∈RR1×···×RN ,Ai∈RIi×Ri

∥T−JG;A1,A2,...,AN K∥. (2)

A standard way of solving (2) is the higher-order singular value decomposition (HOSVD). The
HOSVD is computed with the following steps. First, for each i calculate the factor matrix Ai as the
Ri leading left singular vectors of T(i). Second, set the core tensor G as G=T×1A

T
1 ×2 ···×N AT

N .
Though the solution from HOSVD will not be the optimal solution to (2), it satisfies a quasi-optimality
property: if T ∗ is the optimal solution, and T ′ the solution from HOSVD, then

∥T−T ′∥≤
√
N∥T−T ∗∥. (3)

2.2 Low Tucker rank of the block trifocal tensor and one shot camera retrieval

Suppose we are given a set of camera matrices {Pi}ni=1 with n≥3 and scales fixed on each camera
matrix. Define the block trifocal tensor Tn to be the 3n×3n×3n tensor, where the 3×3×3 sized ijk
block is the trifocal tensor corresponding to the triplet of cameras Pi,Pj ,Pk. We assume for all blocks
that have overlapping indices, the corresponding 3×3×3 tensor is also calculated using the formula
(1). We summarize key properties of Tn in Proposition 1 and Theorem 1. The proof of Proposition 1
is by direct computation and can be found in Appendix A.3.

Proposition 1. We have the following observations for the block trifocal tensor Tn. For all distinct
i,j∈ [n], we have the following properties:

(i) Tn
iii=03×3×3

(ii) The Tn
jii blocks are rearrangements of elements in the fundamental matrix Fij up to signs.

(iii) The Tn
iji and Tn

iij blocks encode the epipoles.

(iv) The horizontal slices Tn(i,:,:) of Tn are skew symmetric.

(v) When all cameras are calibrated, three singular values of Tn
(1) are equal.

Theorem 1 (Tucker factorization and low multilinear rank of block trifocal tensor). The block trifocal
tensor Tn admits a Tucker factorization, Tn=G×1P×2C×3C, where G∈R6×4×4,P∈R3n×6, and
C ∈R3n×4. If the n cameras that produce Tn are not all collinear, then mlrank(Tn)= (6,4,4). If
the n cameras that produce Tn are collinear, then mlrank(Tn)⪯(6,4,4).

Proof. We can explicitly calculate that Tn=G×1P×2C×3C. The details of the calculation are in
Appendix A.2. The specific forms for G,C,P are the following. The horizontal slices of the core are


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

,


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

,


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

,


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

,


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

,


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


.

The factor matrices are C=[P1,P2,...,Pn]
T ∈R3n×4 andP=[S1,S2,...,Sn]

T ∈R3n×6, where Pi are
the camera matrices and Si are the corresponding line projection matrices.

Now, we suppose that the n cameras are not collinear. We first show that C andP both have full rank.
From [1], the null space of a camera matrix Pi is generated by the camera center. For the sake of
contradiction, suppose that rank(C) < 4. Then there exists x∈R4 such that x ̸=0 and Cx=0. This
means that Pix=0 for all i=1,...,n. Then, x is the camera centre for all cameras, which means that the
cameras are centered at one point and are collinear. Similarly, every vector in the null space of the line
projection matrix Si is a line that passes through the camera centre [1]. For the sake of contradiction,
suppose that rank(P) < 6. Then there exists x ∈R6 such that x ̸= 0 and Px= 0. This implies that
Six=0 for all i=1,...,n, which means that x is a line that passes through all of the camera centers.
Again the cameras are collinear, which is a contradiction. Next we write the flattening of the block
trifocal tensor as Tn

(1) =PG(1)(C⊗C)
T . Then P ∈R3n×6 has rank 6, and (C⊗C)T ∈R16×9n2

has
rank 16. Given the specific form of G, where G(1) ∈R6×16 it is easy to check rank(G(1)) = 6. Thus,
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rank(Tn
(1)) = 6. Similarly, we can show that rank(Tn

(2)) = 4, and rank(Tn
(3)) = 4. This implies that the

multilinear rank of the block trifocal tensor is (6,4,4) when the n cameras are not collinear.

When the n cameras are collinear, the individual factors in each flattening may be rank deficient, so
that rank(Tn

(1))≤6, rank(Tn
(2))≤4, and rank(Tn

(3))≤4. This implies mlrank(Tn)⪯(6,4,4).

The theorem inspires a straightforward way of retrieving global poses from the block trifocal tensor,
which we summarize in the following claim.

Proposition 2 (One shot camera pose retrieval). Given the block trifocal tensor Tn produced by
cameras P1,P2,...,Pn, the cameras can be retrieved from Tn up to a global projective ambiguity using
the higher-order SVD. The cameras will be the leading 4 singular vectors of Tn

(2) or Tn
(3).

Using the higher-order SVD on Tn, we can get a Tucker decomposition of the block trifocal tensor
Tn = Ĝ ×1 P̂ ×2 Ĉ ×3 Ĉ′. Though the Tucker factorization is not unique [35], as we can apply an
invertible linear transformation to one of the factor matrices and apply the inverse onto the core tensor,
this invertible linear transformation can be interpreted as the global projective ambiguity for projective
3D reconstruction algorithms. Thus, the cameras can be retrieved by taking the leading four singular
vectors of the mode-2 and mode-3 flattenings of the block tensor.

Very importantly however, in practice each trifocal tensor block inTn can be estimated from image data
only up to an unknown multiplicative scale [1]. The following theorem establishes the fact that the multi-
linear rank constraints provide sufficient information for determining the correct scales. In the statement
⊙b denotes blockwise scalar multiplication, thus the (i,j,k)-block of λ⊙bT

n is λijkT
n
ijk∈R3×3×3.

Theorem 2. Let Tn ∈R3n×3n×3n be a block trifocal tensor corresponding to n≥ 4 calibrated or
uncalibrated cameras in generic position. Let λ ∈ Rn×n×n be a block scaling with λijk nonzero
iff i,j,k are not all equal. Assume that λ⊙b T

n ∈ R3n×3n×3n has multilinear rank (6,4,4) where
⊙b denotes blockwise scalar multiplication. Then there exist α,β,γ ∈Rn such that λijk = αiβjγk
whenever i,j,k are not all the same.

Sketch. The idea is to identify certain submatrices in the flattenings of λ⊙b T
n which must have

determinant 0, and use these to solve for λ. A proof is in Appendix A.4. We remark that the proof
technique extends that of [36, Theorem 5.1], which showed a similar result for a matrix problem.

Theorem 2 is the basic guarantee for our algorithm development below. We stress that the ambiguities
brought by α,β,γ are not problematic for purposes of recovering the camera matrices by Proposition 2.
Indeed, (α⊗β⊗γ)⊙bT

n =G×1 (DαP)×2 (DβC)×3 (DγC) where Dα ∈R3n×3n is the diagonal
matrix with each entry of α triplicated, etc. Hence the camera matrices can still be recovered up to
individual scales (as expected) and a global projective transformation, from the higher-order SVD.

3 Synchronization of the block trifocal tensor

In this section, we develop a heuristic method for synchronizing the block trifocal tensor Tn by
exploiting the multilinear rank of Tn from Theorem 1. Let T̂n denote the estimated block trifocal
tensor, and Tn the ground truth. Assume that there are n images and a set of trifocal tensor estimates
T̂ijk where (i,j,k)∈Ω and Ω is the set of indices whose corresponding trifocal tensor is estimated.
Note that each estimated trifocal tensor T̂ijk will have an unknown scale λijk ∈R∗ associated with
it. We always assume that we observe the iii blocks, as they will be 0. We formulate the block trifocal
tensor T̂n by plugging in the estimates T̂ijk and setting the unobserved positions ((i,j,k) ̸∈ Ω) to
3×3×3 tensors of all zeros. Let WΩ ∈ {0,1}3n×3n×3n denote the block tensor where the (i,j,k)
blocks are ones for (i,j,k)∈Ω and zeros otherwise. Let WΩC denote the opposite. In our experiments,
we observe that the HOSVD is quite robust against noise for retrieving camera poses, which arises
e.g., from numerical sensitivities when first estimating relative poses [37]. Therefore we develop an
algorithm that projects T̂n onto the set of tensors that have multilinear rank of (6,4,4)while completing
the tensor and retrieving an appropriate set of scales. Specifically, we can write our problem as

min
Λ
∥Λ⊙T̂n−Pτ (Λ⊙T̂n)∥2 (4)
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where Λ∈R3n×3n×3n, each 3×3×3 block is uniform, Λijk blocks are zero for (i,j,k) ̸∈Ω, and Λ
satisfies a normalization condition like ∥Λ∥2=1 to avoid its vanishing. However, we drop this normal-
ization constant in our implementation as we never observe Λ vanishing in practice. (For convenience,
we formulate this section with the notation of Λ∈R3n×3n×3n and Hadamard multiplication, rather
than λ ∈ Rn×n×n and blockwise scalar multiplication from Theorem 2.) Furthermore in problem
(4), Pτ denotes the exact projection onto the set Γ={T ∈R3n×3n×3n :mlrank(T )=(6,4,4)}. Note
that though HOSVD provides an efficient way to project onto Γ, it is quasi-optimal and not the exact
projection. The exact projection is much harder to calculate, and in general NP-hard. The algorithm
below adopts an alternating projection strategy to estimate the best set of scales.

3.1 Higher-order SVD with a hard threshold (HOSVD-HT)

The key idea for our algorithm is to use the relative scales on the rank truncated tensor as a heuristic
to retrieve scales for the estimated block tensor. There are two main challenges for calculating the
rank truncated tensor. First, the exact projection Pτ onto Γ is expensive and difficult to calculate.
Second, many blocks in the block tensor will be unknown if the corresponding images of the block lacks
corresponding point and directly projecting the uncompleted tensor will be inaccurate. We apply an
HOSVD framework with imputations to tackle the challenges. Regarding the first challenge, HOSVD
is a simple, efficient, and quasi-optimal (3) projection onto Γ. Though inexact, it is a reliable approx-
imation. For the second challenge, the tensor T̂n must be completed. We adopt the matrix completion
idea of HARD-IMPUTE [38], where the matrix is filled-in iteratively with the rank truncated matrix
obtained using the hard-thresholded SVD. In other words, we complete the missing blocks with the
corresponding blocks in the rank truncated tensor. We define three hyperparameters l1,l2,l3 that corre-
spond to the thresholding parameters of the hard-thresholded SVD on modes 1,2,3 of the block tensor
respectively. Specifically, for each mode-i flattening Tn

(i), we calculate the full SVD Tn
(i) =USV T .

Since our tensor will scale cubically with the number of cameras, we suggest using a randomized SVD.
We refer to [39] for different randomized strategies. Assume the singular values σi on the diagonal of S
are sorted in descending order, as usual. We return the factor matrix Ai as the top a left singular vectors
in U , where a=max{i :Sii>li}. Our adapted truncation method is summarized by Algorithm 1.

Algorithm 1 HOSVD-HT

Input: T̂n∈R3n×3n×3n: the estimated block tensor; l1,l2,l3∈R: the thresholds for modes 1,2,3
respectively
Output: T̂r∈R3n×3n×3n: the rank truncated tensor.
for i = 1 to 3 do

Perform the randomized SVD on the mode-i flattening such that T̂n
(i)←USV T

ai←max{i :Sii>li}
Ai← first ai columns of U

end for
G= T̂n×1A

T
1 ×2A

T
2 ×3A

T
3

T̂ r←JG;A1,A2,A3K

From now on, we refer to hard-thresholded HOSVD as HOSVD-HT and denote the operation asPht.

3.2 Scale recovery

HOSVD-HT provides an efficient way for projecting T̂n onto the set of tensors with with truncated
rank. To recover scales, we use the rank truncated tensor’s relative scale as a heuristic to adjust the
scale on our estimated block trifocal tensor T̂ (n). For each step, we solve

Λ(t+1)=argmin
Λ
∥Λ⊙T̂n−Pht(Λ

(t)⊙T̂n)∥2 s.t. Λijk=03×3×3 for (i,j,k)∈ΩC , (5)

where we drop the normalization condition on Λ because in practice it is not needed. We solve (5)
for each observed block separately. DenotingPht(Λ

(t)⊙T̂n) as (T̂n
r )

(t), we have

Λ
(t+1)
ijk =argmin

µ
∥µ·T̂n

ijk−(T̂n
r )

(t)
ijk∥

2=
trace((T̂n

ijk)
T
(1)((T̂

n
r )

(t)
ijk)(1))

∥((T̂n
r )

(t)
ijk)(1)∥2F

. (6)
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Recall that our strategy for completing the tensor is to impute the tensor with the entries from the
rank truncated tensor using HOSVD-HT. Specifically, given the current imputed tensor (T̂n)(t), we
calculatePht((T̂

n)(t)) and the new scales Λ(t+1). Then update with

(T̂n)(t+1)=(Λ(t+1)⊙(T̂n)(t)⊙WΩ)+Pht((T̂
n)(t))⊙WΩC . (7)

3.3 Synchronization algorithm

Now we summarize our synchronization framework in Algorithm 2. We have observed that the

Algorithm 2 Synchronization of the block trifocal tensor

Input: T̂n∈R3n×3n×3n; WΩ,WΩC ∈{0,1}3n×3n×3n; l1,l2,l3∈R
Output: C∈R3n×4: camera matrices up to a 4×4 projective ambiguity and camera-wise scales
Initialize T̂n by imputing unobserved blocks randomly to get (T̂n)(0)

while not converged do
CalculatePht((T̂

n)(t)) using HOSVD-HT
Calculate Λ(t+1) (5) using (6)
(T̂n)(t+1)←(Λ(t+1)⊙(T̂n)(t)⊙WΩ)+Pht((T̂

n)(t))⊙WΩC

t← t+1
end while
(G,A1,A2,A3)←HOSV D((T̂n)(t))
C← First 4 columns of A2

algorithm can overfit, as the recovered scales will experience sudden and huge leaps. Our stopping
criteria for the algorithm is when we observe sudden jumps in the variance of the new scales or when
we exceed a maximum number of iterations. Another challenge in structure from motion datasets
is that estimations may be highly corrupted. The HOSVD framework mainly consists of retrieving
a dominant subspace from each flattening. Thus, it is natural to replace the SVD on each flattening
with a more robust subspace recovery method, such as the Tyler’s M estimator (TME) [40] or a recent
extension of TME that incorporates the information of the dimension of the subspace in the algorithm
[41]. We refer to Appendix A.5.2 for more details and provide an implementation there.

4 Numerical experiments

We conduct experiments of Algorithm 2 on two benchmark real datasets, the EPFL datasets [42] and
the Photo Tourism datasets [11]. We observe that the algorithm performs better in the calibrated setting,
and since the calibration matrix is usually known in practice, we restrict our scope of experiments
to calibrated trifocal tensors. We compare against three state-of-the-art synchronization based on two
view measurements, NRFM [18] and LUD [12]. NRFM relies on nonconvex optimization and requires
a good initialization. We test NRFM with an initialization obtained from LUD and with a random
initialization. We also test BATA [43] initialized with MPLS [9]. We refer to A.6 in the appendix
for a comprehensive summary of numerical results including rotation and translation estimation errors.
We include our code in the following github repository: TrifocalSync.

4.1 EPFL dataset

For EPFL, we follow the experimental setup and adopt code from [44] and test an entire structure
from motion pipeline. We first describe the structure from motion pipeline for EPFL experiements.

• Step 1 (feature detection and feature matching). We obtain matched features across pairs of images
using a modern deep learning based feature detection and matching algorithm, GlueStick [45]. Though
we do not implement this in our experiments, there have been methods developed to further screen
corrupted keypoint matches or obtain matches robustly, such as [46, 47, 48]. Key points across a triplet
of cameras is matched from pairs and is included only if it appears in all the pair combinations of the
three images.
• Step 2 (estimation and refinement of trifocal tensors). With the triplet matches, we calculate the
trifocal tensors with more than 11 correspondences. To have an even sparser graph, one can skip the
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estimation of trifocal tensors and rely on the imputation for images that have less than a number bigger
than 11 point correspondences. This can further speed up the trifocal tensor estimation process. We
apply STE from [41] to find 40% of the correspondences as inliers, then use at most 30 inlier point
correspondences to linearly estimate the trifocal tensor. To refine the estimates, we apply bundle
adjustment on the inliers and delete triplets with reprojection error larger than 1 pixel.

• Step 3 (synchronization). We synchronize the estimated block trifocal tensor with a robust variant of
SVD using the framework described in Algorithm 2. The robustness comes from replacing SVD with
a robust subspace recovery method [41]. More details can be found in Appendix A.5.2. Recall that
the cameras we retrieve are up to a global projective ambiguity. When comparing with ground truth
poses, we first align our estimated cameras with the ground truth cameras by finding a 4×4 projective
transformation. Then we round the cameras to calibrated cameras and compare.

We test our full pipeline on two EPFL datasets on a personal machine with 2 GHz Intel Core i5 with
4 cores and 16GB of memory. To test NRFM [18], LUD [12] and BATA [43] initialized with MPLS
[9], we estimate the corresponding essential matrices using the GC-ransac [49]. We did not include
blocks corresponding to two views in our trifocal tensor pipeline. The mean and median translation
errors are summarized in Figure 1 here and more comprehensive results can be found in Table 1 and
Table 2 in the appendix.

Figure 1: EPFL translation error comparison between our method, NRFM initialized by LUD, LUD,
and NRFM initialized randomly. BATA(MPLS) stands for BATA initialized by MPLS. HZ8 stands
for HerzP8, FP11 for FountainP11, HZ25 for Herz P25, EN10 for EntryP10, CS19 for CastleP19,
CS30 for CastleP30.

The EPFL datasets generally have a plethora of point correspondences, so that the trifocal tensors are
estimated accurately. When the dataset focuses on a single scene, our algorithm retrieves locations
competitively. Our algorithm achieves the best location estimation for 4 out of 6 datasets. The
translation error bars are not visible for FP11, HZP8, EN10 due to the accuracy that we achieve.
However, our pipeline is incapable of accurately processing CastleP19 and CastleP30. The main reason
is that our algorithm relies on having a very dense observation graph to ensure high completion rate.
CastleP19 and CastleP30 are datasets where the camera scans portions of the general area sequentially,
so that not many triplets have overlapping features. Our method is not suitable for this type of dataset.
However, it is possible to apply our algorithm in parallel on groups of neighboring frames, so that the
completion rate is high in each group. Then the results can be merged to obtain a larger reconstruction.
Rotations for the two view methods are estimated via rejecting outliers from iteratively applying [10].
We also compare against [43] for location estimation, where we initialize with a state-of-the-art global
rotation estimation method [9]. Our algorithm achieves superior rotation estimation for only 2 out of
the 6 datasets. See Table 1 and 2 in the appendix for comprehensive errors.

4.2 Photo Tourism

We conduct experiments on the Photo Tourism datasets. The Photo Tourism datasets consist of
internet images of real world scenes. Each scene has hundreds to thousands of images. The datasets
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[11] provide essential matrix estimates, and we estimate the trifocal tensors from the given essential
matrices. To limit the computational cost for tensors, we downsample the datasets by choosing
cameras with observations more than a certain percentage in the corresponding block frontal slice
while maintaining a decent number of cameras. Note that this may not be the optimal way of extracting
a dense subset in general. The maximum number of cameras we select for each dataset is 225 cameras.
The largest dataset Piccadilly has 2031 cameras initially. We randomly sample 1000 cameras and
then run our procedure. For Roman Forum and Piccadilly, the two view methods further deleted
cameras from the robust rotation estimation process or parallel rigidity test. We rerun and report the
trifocal tensor synchronization algorithm with the further downsampled data. We initialize the hard
thresholding parameters for HOSVD-HT by first imputing the trifocal tensor with small random entries
and then calculating the singular values for each of the flattenings. We take li to be the tertile singular
value for each mode-i flattening. We then keep this parameter fixed for the synchronization process.
Recall that the jii blocks in the block trifocal tensor correspond to elements in the essential matrix
Eij . We also include these essential matrix estimations in the block trifocal tensor. The Photo Tourism
experiments were run on an HPC center with 32 cores, but the only procedure that can benefit from
parallel computing in a single experiment is the scale retrieval. Mean and median translation errors are
summarized in Figure 2. Fully comprehensive results can be found in Tables 3 and 4 in Appendix A.6.

(a) Photo Tourism mean translation errors (b) Photo Tourism median translation errors

Figure 2: Photo Tourism translation error comparison between our method, NRFM initialized by LUD,
LUD, NRFM initialized randomly, and BATA initialized with MPLS. Note that we have not been
able to acquire results for Piccadilly for BATA + MPLS.

Our method is able to achieve competitive translation errors on 8 of the 14 datasets tested. Similar
to the observation in the EPFL experiments, our algorithm performs well when the viewing graph
is dense, or in other words, when the estimation percentage is high. We achieve better locations in
6 out of 8 datasets where the estimation percentage exceeds 60%, and better locations in only 2 out of 6
datasets where the estimation percentage falls below 60%. We achieve reasonable rotation estimations
for 10 out of 14 datasets, but not as good as LUD. See Table 4 for a comprehensive result. Since the
block trifocal tensor scales cubically with respect to the number of cameras, our algorithm runtime
is longer than most two view global methods. This could be alleviated by synchronizing dense subsets
in parallel and merging the results to construct a larger reconstruction.

Additional remark: Trifocal tensors can be estimated from line correspondences or a mix of point
and line correspondences, while fundamental matrices are estimated from only point correspondences.
There are many situations where accurate point correspondences are in short supply but there is a
plethora of clear and distinct lines. For example, see datasets in a recent SfM method using lines
[50]. We demonstrate the potential of our method to be adapted to process datasets with only lines
or very few points. Due to the limited availability of well annotated line datasets, we provide a small
synthetic experiment that simulates a case where only lines correspondences are present. We first
generate 20 random camera matrices, then we generate 25 lines that are projected on and shared across
all images. We add about 0.02 percent of noise in terms of the relative frobenius norms between the
line equation parameters and the noise. We estimate the trifocal tensor of three different views from line
correspondences linearly. One remark is that our synchronization method works well only when the
signs of the initial unknown scales are mostly uniform. We manually use ground truth trifocal tensors
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to correct the sign of the scale. This has not been an issue in the previous experiments due to bundle
adjustment for EPFL and the overall good estimations in Photo Tourism. In practice, the sign of the scale
on a trifocal tensor can be corrected via triangulation of points or reconstruction of lines, and correcting
the sign using the depths of the reconstructed points or intersecting line segments. We synchronize
the trifocal tensors with Algorithm 2 and were able to achieve a mean rotation error of 0.61 degrees,
median rotation error of 0.49 degrees, mean location error of 0.76, and median location error of 0.74.

5 Conclusion

In this work, we introduced the block tensor of trifocal tensors characterizing the three-view geometry
of a scene. We established an explicit Tucker factorization of the block trifocal tensor and proved it has
a low multilinear rank of (6,4,4) under appropriate scaling. We developed a synchronization algorithm
based on tensor decomposition that retrieves an appropriate set of scales, and synchronizes rotations
and translations simultaneously. On several real data benchmarks we demonstrated state-of-the-art
performance in terms of camera location estimation, and saw particular advantages on smaller and
denser sets of images. Overall, this work suggests that higher-order interactions in synchronization
problems have the potential to improve performance over pairwise-based methods.

There are several limitations to our tensor-based synchronization method. First, our rotation
estimations are not as strong as our location estimations. Second, our algorithm performance is
affected by the estimation percentage of trifocal tensors within the block trifocal tensor. One could
incorporate more robust completion methods and explore new approaches for processing sparse triplet
graphs. Further, our block trifocal tensor scales cubically in terms of the number of cameras and
becomes computationally expensive for large datasets. We can develop methods for extracting dense
subgraphs, synchronizing in parallel, then merging results to obtain a larger reconstruction, similarly to
the distributed algorithms of [51] and [52]. Moreover, our synchronization method’s success depends
on accurate trifocal tensor estimations, and it motivates further work on robust estimation of multi-view
tensors. Algorithm 2 could also be made more robust by adding outlier rejection techniques. Finally
we plan to extend our theory by proving convergence of our algorithm and exploring structures for
even higher-order tensors, such as quadrifocal tensors.

Acknowledgement

D.M. and G.L. were supported in part by NSF award DMS 2152766. J.K. was supported in part by
NSF awards DMS 2309782 and CISE-IIS 2312746, the DOE award SC0025312, and start-up grants
from the College of Natural Science and Oden Institute at the University of Texas at Austin.

We thank Shaohan Li and Feng Yu for helpful discussions on processing EPFL and Photo Tourism.
We also thank Hongyi Fan for helpful advice and references on estimating trifocal tensors.

References
[1] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, 2003.

[2] Noah Snavely, Steven Seitz, and Richard Szeliski. Photo Tourism: Exploring photo collections
in 3D. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive
Techniques Conference, SIGGRAPH 2006, pages 835–846, 2006.

[3] Johannes Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pages
4104–4113, 2016.

[4] Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle adjustment
— A modern synthesis. In Bill Triggs, Andrew Zisserman, and Richard Szeliski, editors, Vision
Algorithms: Theory and Practice, pages 298–372, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

10



[5] Venu Madhav Govindu. Lie-algebraic averaging for globally consistent motion estimation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2004,
volume 1, pages 1–8, 2004.

[6] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Rotation averaging.
International Journal of Computer Vision, 103:267–305, 2013.

[7] Avishek Chatterjee and Venu Madhav Govindu. Robust relative rotation averaging. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(4):958–972, 2018.

[8] Avishek Chatterjee and Venu Madhav Govindu. Efficient and robust large-scale rotation
averaging. In Proceedings of the IEEE International Conference on Computer Vision, ICCV
2013, pages 521–528, 2013.

[9] Yunpeng Shi and Gilad Lerman. Message passing least squares framework and its application to
rotation synchronization. In Proceedings of the International Conference on Machine Learning,
ICML 2020, pages 8796–8806, 2020.

[10] Mica Arie-Nachimson, Shahar Kovalsky, Ira Kemelmacher-Shlizerman, Amit Singer, and
Ronen Basri. Global motion estimation from point matches. In Proceedings of the International
Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, 3DIMPVT
2012, pages 81–88, 2012.

[11] Kyle Wilson and Noah Snavely. Robust global translations with 1DSfM. In Proceedings of the
European Conference on Computer Vision, EECV 2014, pages 61–75, 2014.

[12] Onur Ozyesil and Amit Singer. Robust camera location estimation by convex programming.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, pages 2674–2683, 2015.

[13] Thomas Goldstein, Paul Hand, Choongbum Lee, Vladislav Voroninski, and Stefano Soatto.
ShapeFit and ShapeKick for robust, scalable structure from motion. In Proceedings of the
European Conference on Computer Vision, EECV 2016, pages 289–304, 2016.

[14] David Rosen, Luca Carlone, Afonso Bandeira, and John Leonard. SE-Sync: A certifiably
correct algorithm for synchronization over the special Euclidean group. International Journal
of Robotics Research, 38(2-3):95–125, 2019.

[15] Federica Arrigoni, Beatrice Rossi, and Andrea Fusiello. Spectral synchronization of multiple
views in SE(3). SIAM Journal on Imaging Sciences, 9(4):1963–1990, 2016.

[16] Mihai Cucuringu, Yaron Lipman, and Amit Singer. Sensor network localization by eigenvector
synchronization over the Euclidean group. ACM Transactions on Sensor Networks, 8(3), 2012.

[17] Jesus Briales and Javier Gonzalez-Jimenez. Cartan-Sync: Fast and global SE(d)-synchronization.
IEEE Robotics and Automation Letters, 2(4):2127–2134, 2017.

[18] Soumyadip Sengupta, Tal Amir, Meirav Galun, Tom Goldstein, David Jacobs, Amit Singer, and
Ronen Basri. A new rank constraint on multi-view fundamental matrices, and its application
to camera location recovery. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, pages 4798–4806, 2017.

[19] Yoni Kasten, Amnon Geifman, Meirav Galun, and Ronen Basri. Algebraic characterization
of essential matrices and their averaging in multiview settings. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, pages 5895–5903, 2019.

[20] Yoni Kasten, Amnon Geifman, Meirav Galun, and Ronen Basri. GPSfM: Global projective SFM
using algebraic constraints on multi-view fundamental matrices. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, pages 3264–3272, 2019.

[21] Spyridon Leonardos, Roberto Tron, and Kostas Daniilidis. A metric parametrization for trifocal
tensors with non-colinear pinholes. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, pages 259–267, 2015.

11



[22] Viktor Larsson, Nicolas Zobernig, Kasim Taskin, and Marc Pollefeys. Calibration-free
structure-from-motion with calibrated radial trifocal tensors. In Proceedings of the European
Conference on Computer Vision, EECV 2020, pages 382–399, 2020.

[23] Pierre Moulon, Pascal Monasse, and Renaud Marlet. Global fusion of relative motions for
robust, accurate and scalable structure-from-motion. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2013, pages 3248–3255, 2013.

[24] Onur Ozyesil, Vladislav Voroninski, Ronen Basri, and Amit Singer. A survey of structure from
motion. Acta Numerica, 26:305–364, 2017.

[25] Joe Kileel. Minimal problems for the calibrated trifocal variety. SIAM Journal on Applied
Algebra and Geometry, 1(1):575–598, 2017.

[26] Timothy Duff, Kathlen Kohn, Anton Leykin, and Tomas Pajdla. PLMP-point-line minimal
problems in complete multi-view visibility. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, pages 1675–1684, 2019.

[27] Ricardo Fabbri, Timothy Duff, Hongyi Fan, Margaret Regan, David da Costa de Pinho, Elias
Tsigaridas, Charles Wampler, Jonathan Hauenstein, Peter Giblin, Benjamin Kimia, Anton
Leykin, and Tomas Pajdla. Trifocal relative pose from lines at points. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(6):7870–7884, 2023.

[28] David Nister and Henrik Stewenius. A minimal solution to the generalised 3-point pose problem.
Journal of Mathematical Imaging and Vision, 27(1):67–79, 2007.

[29] Ali Elqursh and Ahmed Elgammal. Line-based relative pose estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pages 3049–3056,
2011.

[30] Yubin Kuang and Kalle Astrom. Pose estimation with unknown focal length using points,
directions and lines. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2013, pages 529–536, 2013.

[31] Zuzana Kukelova, Joe Kileel, Bernd Sturmfels, and Tomas Pajdla. A clever elimination strategy
for efficient minimal solvers. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, pages 4912–4921, 2017.

[32] Pedro Miraldo, Tiago Dias, and Srikumar Ramalingam. A minimal closed-form solution for
multi-perspective pose estimation using points and lines. In Proceedings of the European
Conference on Computer Vision, ECCV 2018, pages 474–490, 2018.

[33] Joe Kileel, Zuzana Kukelova, Tomas Pajdla, and Bernd Sturmfels. Distortion varieties.
Foundations of Computational Mathematics, 18:1043–1071, 2018.

[34] Joe Kileel and Kathlén Kohn. Snapshot of algebraic vision. arXiv preprint arXiv:2210.11443,
2022.

[35] Tamara Kolda and Brett Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

[36] Tommi Muller, Adriana Duncan, Eric Verbeke, and Joe Kileel. Algebraic constraints and
algorithms for common lines in cryo-EM. Biological Imaging, pages 1–30, Published online 2024.

[37] Hongyi Fan, Joe Kileel, and Benjamin Kimia. On the instability of relative pose estimation
and RANSAC’s role. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition 2022, pages 8935–8943, 2022.

[38] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for
learning large incomplete matrices. Journal of Machine Learning Research, 11:2287–2322, 2010.

[39] Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review,
53(2):217–288, 2011.

12



[40] David Tyler. A distribution-free M-estimator of multivariate scatter. Annals of Statistics, pages
234–251, 1987.

[41] Feng Yu, Teng Zhang, and Gilad Lerman. A subspace-constrained Tyler’s estimator and its
applications to structure from motion. arXiv preprint arXiv:2404.11590, 2024.

[42] Christoph Strecha, Wolfgang Von Hansen, Luc Van Gool, Pascal Fua, and Ulrich Thoennessen.
On benchmarking camera calibration and multi-view stereo for high resolution imagery. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008,
pages 1–8, 2008.

[43] Bingbing Zhuang, Loong-Fah Cheong, and Gim Hee Lee. Baseline desensitizing in translation
averaging. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018), June 2018.

[44] Laura Julia and Pascal Monasse. A critical review of the trifocal tensor estimation. In Proceedings
of the Pacific Rim Symposium on Image and Video Technology, PSIVT 2017, Revised Selected
Papers 8, pages 337–349. Springer, 2018.

[45] Rémi Pautrat, Iago Suárez, Yifan Yu, Marc Pollefeys, and Viktor Larsson. Gluestick: Robust
image matching by sticking points and lines together. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, CVPR 2023, pages 9706–9716, 2023.

[46] Yunpeng Shi, Shaohan Li, Tyler Maunu, and Gilad Lerman. Scalable cluster-consistency
statistics for robust multi-object matching. In Proceedings of the International Conference on
3D Vision, 3DV 2021, pages 352–360, 2021.

[47] Yunpeng Shi, Shaohan Li, and Gilad Lerman. Robust multi-object matching via iterative
reweighting of the graph connection laplacian. Advances in Neural Information Processing
Systems, 33:15243–15253, 2020.

[48] Shaohan Li, Yunpeng Shi, and Gilad Lerman. Fast, accurate and memory-efficient partial
permutation synchronization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2022, pages 15735–15743, 2022.
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A Appendix / supplemental material

A.1 Derivation of the trifocal tensor

To provide a better intuition for the trifocal tensor, we briefly summarize the derivation of the trifocal
tensor from [1] and [21] under the general setup of uncalibrated cameras.

Let Pi=KiRi[I,−ti] be the form of the camera matrix for P1,P2,P3. Let L be a line in the 3D world
scene, and l1,l2,l3 the corresponding projections in the images I1,I2,I3 respectively. Each li back
projects to a plane πi = PT

i li in R3, and since li correspond to the same L in the 3D world scene,
π=[π1,π2,π3] must be rank deficient and its kernel will generically be spanned by L. Then,

π′=

[
K−T

1 R1 0
tT1 1

]
π=

[
l1 K−T

1 R12K
T
2 l2 K−T

1 R13K
T
3 l3

0 (t1−t2)TRT
2 K

T
2 l2 (t1−t3)TRT

3 K
T
3 l3

]
=[π′

1,π
′
2,π

′
3]

will also be rank-deficient, implying that the columns ofπ′ are linearly dependent. This means that there
existα,β such that π′

1=απ′
2+βπ′

3. We can chooseα=−(t1−t3)TRT
3 K

T
3 l3, β=(t1−t2)TRT

2 K
T
2 l2,

so that

l1= lT2 [K2R2(t1−t2)K−T
1 R13K

T
3 ]l3−lT2 [K2R

T
12K

−1
1 (t1−t3)TRT

3 K
T
3 ]l3.

Then, the canonical trifocal tensor centered at camera 1 is defined as

Ti=K2R2(t1−t2)eTi K−T
1 R13K

T
3 −K2R

T
12K

−1
1 ei(t1−t3)TRT

3 K
T
3 (8)

where ei∈R3 is the i-th standard basis vector. The trifocal tensor will be the tensor {T1,T2,T3}, where
the Ti’s are stacked along the first mode. The line incidence relation is then (l1)i = lT2 Til3. Other
combinations of point and line incidence relations are also encoded by the trifocal tensor; see [1] for
details. The construction for calibrated cameras is the same, just with Pi in calibrated form.

A.2 Proof details for Theorem 1

We include a detailed calculation for the Tucker factorization of the block trifocal tensor. Recall that
each individual trifocal tensor corresponding to the cameras a,b,c can be calculated as

Tiqr=(−1)i+1det

∼ai

bq

cr

=(−1)i+1det

a
m

an

bq

cr


=(−1)i+1(det

[
am3 am4

an3 an4

]
(bq1cr2−bq2cr1)+det

[
am2 am4

an2 an4

]
(−bq1cr3+bq3cr1)

+det

[
am1 am4

an1 an4

]
(bq2cr3−bq3cr2)+det

[
am2 am3

an2 an3

]
(bq1cr4−bq4cr1)

+det

[
am1 am3

an1 an3

]
(−bq2cr4+bq4cr2)+det

[
am1 am2

an1 an2

]
(bq3cr4−bq4cr3))

=P(a)i6(bq1cr2−bq2cr1)+P(a)i5(−bq1cr3+bq3cr1)+P(a)i3(bq2cr3−bq3cr2)
+P(a)i4(bq1cr4−bq4cr1)+P(a)i2(−bq2cr4+bq4cr2)+P(a)i1(bq3cr4−bq4cr3)

=
6∑

k=1

P(a)ik
4∑

w=1

bqw

4∑
j=1

crjGkwj .

The last equality can be easily checked since G is sparse. For example, when k = 1, P(a)i1 is
the determinant of the submatrix dropping the i-th row and keeping columns 1 and 2, which is
det[am1am2;an1an2]. The only nonzero elements in the first horizontal slice are G(1,4,3) = −1
and G(1, 3, 4) = 1. Then, the nonzero elements in the sum when k = 1 will be exactly
P(a)i1

∑4
w=1bqw

∑4
j=1crjG1wj=P(a)i1(bq3cr4−bq4cr3).

Then, sinceP will be the stackings ofP(Pi), C is the stacking of camera matrices in Theorem 1, each
ijk block in Tn will be calculated by exactly the corresponding i, j, k blocks in P,C,C respectively
using the calculations above.
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A.3 Proof details for Proposition 1

Proof for (i). We have

(Tn
iii)wqr=(−1)w+1det

[∼Pw
i

P q
i

P r
i

]
=0,

since Pi is a 3×4 matrix and the submatrix above will always have two identical rows.

Proof for (ii): Consider the wqr element of the jii block trifocal tensor, Tn
jii. It can be written as

(Tn
jii)wqr=(−1)w+1det

∼Pw
j

P q
i

P r
i

.
Thus, when q= r, clearly (Tn

jii)wqr =0 as we will have identical rows again. When q ̸= r, we first
observe that (Tn

jii)wqr=−(Tn
jii)wrq since we just swap two rows. Second,

(Tn
jii)wqr=(−1)w+1det

∼Pw
j

P q
i

P r
i

=(−1)w+1det

[
∼Pw

j

∼Pm
i

]
where m∈{1,2,3}\{q,r}. This is exactly the bilinear relationship in [1] defining the fundamental
matrix (Fji)mw element up to a possible negative sign.

Proof for (iii): We can only show this for Tn
iij blocks from symmetry. The elements in Tn

iij blocks
can be calculated as

(Tn
iji)wqr=(−1)w+1det

∼Pw
i

P q
i

P r
j


Elements are nonzero only when w=q, and they correspond to determinants of matrices with three
rows from one Pi and one row from Pj . By [1], these are exactly the elements of the epipoles. When
w=1, the order of the rows in the determinant corresponding to camera i is (2,3,1), when w=2, the
order is (1,3,2) and there is a negative sign in front of the determinant, and when w=3, the order is
(1,2,3). Since the first and last case are even permutations of the rows of Pi, and the second case is
corrected by a negative sign, (Tn

iji)ww: is exactly the epipole.

Proof for (iv): On a horizontal slice, the camera along the 1st mode is fixed, and blocks symmetric
across the diagonal is calculated by cameras, which the 2nd and 3rd mode cameras are swapped.
Then, we will simply be swapping rows in (1), which means that we will simply be changing signs
for elements symmetric across the diagonal, implying skew symmetry.

Proof for (v): Now assume that we have a block trifocal tensor whose corresponding cameras
are all calibrated. Let P be the line projection matrix, C = [P1, P2, ... , Pn]

T is the stacked
camera matrix, and G is the core tensor. The flattening in the 1st mode can be written as
Tn
(1) =PG(1)(C⊗C)

T , where Tn
(1) is a 3n×9n2 matrix. For the proof, we calculate the eigenvalue

of Tn
(1)(T

n
(1))

T =PG(1)(C⊗C)T (C⊗C)GT(1)P
T

Tn
(1)(T

n
(1))

T =PG(1)(C⊗C)T (C⊗C)GT(1)P
T

=PG(1)(CT⊗CT )(C⊗C)GT(1)P
T

=PG(1)(CT C⊗CT C)GT(1)P
T .

The second and third line uses two Kronecker product properties: (A ⊗ B)T = AT ⊗ BT and
(A⊗B)(C⊗D)=AC⊗BD as long as AC and BD are defined.

We first calculate (CT C⊗CT C).
We assume that the cameras are centered at the origin, i.e.

∑n
i=1ti=0. Then we have

CT C=
[

nI3×3 −
∑n

i=1ti
−
∑n

i=1t
T
i

∑n
i=1∥ti∥2

]
=

[
nI3×3 03×1

01×3

∑n
i=1∥ti∥2

]
, (9)
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so that

(CT C⊗CT C)=
[
nI3×3⊗CT C 03×1⊗CT C
01×3⊗CT C

∑n
i=1∥ti∥2⊗CT C

]
(10)

We have an explicit form for G(1):

G(1)=


0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

. (11)

Let X=CT C and let Xij denote the ij entry in CT C. Let a=
∑n

i=1∥ti∥2.

We first show that G(1)(CT C⊗CT C)GT(1) is diagonal by direct computation:

G(1)(CT C⊗CT C)GT
(1)

=


nX44+aX33 aX22 −nX42 aX31 nX41 0

−aX23 nX44+aX22 nX43 aX21 0 nX41

nX24 −nX34 nX33+nX22 0 −nX21 −nX31

aX13 −aX12 0 nX44+aX11 −nX43 nX42

nX14 0 −nX12 nX34 nX33+nX11 −nX32

0 −nX24 −nX13 nX24 −nX23 nX22+nX11



=


na+an 0 0 0 0 0

0 na+an 0 0 0 0
0 0 n2+n2 0 0 0
0 0 0 na+an 0 0
0 0 0 0 n2+n2 0
0 0 0 0 0 n2+n2



=


2na 0 0 0 0 0
0 2na 0 0 0 0
0 0 2n2 0 0 0
0 0 0 2na 0 0
0 0 0 0 2n2 0
0 0 0 0 0 2n2

.

We then calculate the spectral decomposition of Tn
(1). With a slight abuse of notation, let P k

i denote
the k-th column of Pi. The 3n×6 rank-6 stacked line projection matrix would have columns ordered
according to

[e1∧e2 e1∧e3 e1∧e4 e2∧e3 e2∧e4 e3∧e4],

and since the second row inP for each camera is P 3
i ∧P 1

i it holds

P=


...

...
...

...
...

...
P 1
i ×P 2

i P 1
i ×P 3

i P 1
i ×P 4

i P 2
i ×P 3

i P 2
i ×P 4

i P 3
i ×P 4

i
...

...
...

...
...

...

.
Or equivalently, the stacked wedge products between columns. LetP=USV T be the thin singular
value decomposition ofP , so that U is a 3n×6 orthonormal matrix, S is a 6×6 diagonal matrix where
all diagonal entries are nonzero, and V is a 6×6 orthonormal matrix.

Then,

Tn
(1)(T

n
(1))

T =PG(1)(CT C⊗CT C)GT(1)P
T

=U(SV TG(1)(CT C⊗CT C)GT(1)V S)UT .
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Since V is orthonormal, SV TG(1)(CT C ⊗CT C)GT(1)V S is still a diagonal matrix. We just need to
establish the fact that three of the diagonal entries are the same.

For one camera,PTP equals


1 0 P 2
i ·P 4

i 0 −P 1
i ·P 4

i 0
1 P 3

i ·P 4
i 0 0 −(P 1

i ·P 4
i )

P 4
i ·P 4

i −(P 1
i ·P 4

i )(P
1
i ·P 4

i ) 0 −(P 1
i ·P 4

i )(P
4
i ·P 2

i ) −(P 1
i ·P 4

i )(P
4
i ·P 3

i )
1 P 3

i ·P 4
i −P 2

i ·P 4
i

(P 4
i ·P 4

i )−(P 2
i ·P 4

i )(P
4
i ·P 2

i ) −(P 2
i ·P 4

i )(P
4
i ·P 3

i )
(P 4

i ·P 4
i )−(P 3

i ·P 4
i )(P

4
i ·P 3

i )



=



1 0 P 2
i ·P 4

i 0 −P 1
i ·P 4

i 0
1 P 3

i ·P 4
i 0 0 −(P 1

i ·P 4
i )

∥P 4
i ∥

2−∥P 1
i ·P 4

i ∥
2 0 −(P 1

i ·P 4
i )(P

4
i ·P 2

i ) −(P 1
i ·P 4

i )(P
4
i ·P 3

i )
1 P 3

i ·P 4
i −P 2

i ·P 4
i

∥P 4
i ∥

2−∥P 2
i ·P 4

i ∥
2 −(P 2

i ·P 4
i )(P

4
i ·P 3

i )
∥P 4

i ∥
2−∥P 3

i ·P 4
i ∥

2

.

where the matrix is symmetric and we reduce redundancy by omitting the entries below the diagonal.
For n cameras,

PTP=


n 0

∑
iP

2
i ·P 4

i 0 −
∑

iP
1
i ·P 4

i 0
n

∑
iP

3
i ·P 4

i 0 0 −
∑

iP
1
i ·P 4

i∑
i∥P

4
i ∥2−∥P 1

i ·P 4
i ∥2 0 −

∑
i(P

1
i ·P 4

i )(P
4
i ·P 2

i ) −
∑

i(P
1
i ·P 4

i )(P
4
i ·P 3

i )
n

∑
iP

3
i ·P 4

i −
∑

iP
2
i ·P 4

i∑
i∥P

4
i ∥2−∥P 2

i ·P 4
i ∥2 −

∑
i(P

2
i ·P 4

i )(P
4
i ·P 3

i )∑
i∥P

4
i ∥2−∥P 3

i ·P 4
i ∥2

.

where P a
i ·P b

i means the dot product between the ath and bth column

The SVD ofPTP isPTP=HDHT , where H is 6×6 orthonormal matrix, D is 6×6 diagonal matrix.
However, since we have an nI3×3 submatrix in PTP , we deduce that n appears as an eigenvalue
3 times for PTP , where we can use the determinant identity for block matrices. We check that this
indeed holds by a computer calculation, generating random instances of Pi’s and calculating the
eigenvalues forPTP .

As a result, in the thin SVD ofP , we haveP=USV T where S=
√
D, V =H . Then in

Tn
(1)(T

n
(1))

T =PG(1)(CT C⊗CT C)GT(1)P
T

=U(SV TG(1)(CT C⊗CT C)GT(1)V S)UT ,

we see that SV TG(1)(CT C⊗CT C)GT(1)V S is a diagonal matrix where three of the entries are the same.
By the uniqueness of the eigenvalues, we see that we have a spectral decomposition of Tn

(1)(T
n
(1))

T ,
so that three of the singular values of Tn

(1) are equal.

A.4 Proof details for Theorem 2

Proof. Note blockwise multiplication by a rank-1 tensor with nonzero entries preserves multilinear
rank, since it is a Tucker product by invertible diagonal matrices. Therefore, without loss of generality
we may assume λi11 = λ1j1 = λ11k = 1 for all i,j,k ∈ {2,3,...,n}. Below we will prove it follows
λijk = c if exactly one of i,j,k equals 1, and λijk = c2 if none of i,j,k equal 1 and the indices are
not all the same, for some constant c∈R∗. This will immediately imply the theorem, because taking
α=β=(1cc...c) and γ=( 1c11...1) achieves λijk=αiβjγk whenever i,j,k are not all the same.

We consider the matrix flattenings Tn
(2) and (λ⊙bT

n)(2) in R3n×9n2

of the block trifocal tensor and
its scaled counterpart, with rows corresponding to the second mode of the tensors. By Theorem 1 and
assumptions, the flattenings have matrix rank 4, thus all of their 5×5 minors vanish. The argument
consists of considering several carefully chosen 5 × 5 submatrices of (λ ⊙b T

n)(2) to prove the
existence of a constant c as above. Index the rows and columns of the flattenings by (j,r) and (iq,ks)
respectively, for i,j,k∈ [n] and q,r,s∈ [3], so that e.g., ((λ⊙bT

n)(2))(j,r),(iq,ks)=λijk(T
n
ijk)qrs.
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Step 1: The first submatrix of (λ⊙bT
n)(2) we consider has column labels (i1,11), (i1,21), (i1,31),

(i1,12), (i2,11) and row labels (1,1), (1,2),(1,3),(i,1),(i,2), where i∈{2,...,n}. Explicitly, it is
(Tn

i11)111 (Tn
i11)211 (Tn

i11)311 (Tn
i11)112 (Tn

11i)111
(Tn

i11)121 (Tn
i11)221 (Tn

i11)321 (Tn
i11)122 (Tn

11i)121
(Tn

i11)131 (Tn
i11)231 (Tn

i11)331 (Tn
i11)132 (Tn

11i)131
λii1(T

n
ii1)111 λii1(T

n
ii1)211 λii1(T

n
ii1)311 λii1(T

n
ii1)112 λ1ii(T

n
1ii)111

λii1(T
n
ii1)121 λii1(T

n
ii1)221 λii1(T

n
ii1)321 λii1(T

n
ii1)122 λ1ii(T

n
1ii)121

,
which we abbreviate as 

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

λii1∗ λii1∗ λii1∗ λii1∗ λ1ii∗
λii1∗ λii1∗ λii1∗ λii1∗ λ1ii∗

, (12)

with asterisk denoting the corresponding entry in Tn
(2). As a function of λii1,λ1ii, the determinant of

(12) is a degree≤2 polynomial, which must be divisible byλii1 andλii1−λ1ii (because ifλii1=0 then
clearly the bottom two rows of (12) are linearly independent, and if λii1−λ1ii=0 we have a submatrix
of Tn

(2) with the bottom two rows scaled uniformly). So the determinant of (12) is a scalar multiple of
λii1(λii1−λ1ii). Note that the multiple is a polynomial function of the cameras P1 and Pi. We claim
that generically the multiple is nonzero; and to see this, it suffices to exhibit a single instance of (cali-
brated) cameras where the determinant of (12) does not vanish identically for allλii1,λ1ii due to the poly-
nomiality (e.g., see [53]). We check that this indeed holds by a computer calculation, generating numeri-
cal instances ofP1 andPi randomly. Thus the vanishing of the minor in (12) impliesλii1(λii1−λ1ii)=
0, whence λii1=λ1ii since λii1 ̸=0. An analogous calculation with (λ⊙bT

n)(3) gives λi1i=λ1ii.

Step 2: Next consider the submatrix of (λ⊙bT
n)(2) with column labels (j1,11), (j1,21), (j1,31),

(j1,12), (1j,11) and row labels (1,1), (1,2), (1,3), (i,1), (i,2), where i,j ∈{2,...,n} are distinct. It
looks like 

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

λji1∗ λji1∗ λji1∗ λji1∗ λ1ij∗
λji1∗ λji1∗ λji1∗ λji1∗ λ1ij∗

, (13)

with asterisks denoting entries of Tn
(2). Similarly to the previous case, the determinant of (13) must

be a scalar multiple of λji1(λji1−λ1ij) where the scale depends polynomially on P1,Pi,Pj . By a
computer computation, we find that the scale is nonzero for random instances of cameras (alternatively,
note the polynomial system in step 1 is a special case of the present one). It the scale is generically
nonzero, hence λji1=λ1ij . An analogous calculation with (λ⊙bT

n)(3) gives λi1j=λ1ij .

Step 3: Consider the submatrix of (λ⊙bT
n)(2) with column labels (j1,11), (j1,21), (j1,31), (j1,12),

(1k,11) and row labels (1,1), (1,2), (1,3), (i,1), (i,2), for i,j,k∈{2,...,n} distinct. It looks like
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

λji1∗ λji1∗ λji1∗ λji1∗ λ1ik∗
λji1∗ λji1∗ λji1∗ λji1∗ λ1ik∗

. (14)

The determinant of (14) is a scalar multiple of λji1(λji1−λ1ik). By a direct computer computation
as before, it is a nonzero multiple generically (alternatively, note the polynomial system in step 1 is a
special of the present one). We deduce λji1=λ1ik. An analogous calculation with (λ⊙bT

n)(3) gives
λi1j=λ1kj .

In particular, combining with step 2 it follows λ1ij=λ1ji, because λ1ij=λk1j=λ1kj=λik1=λ1ki=
λj1i = λ1ji. From this, step 1 and step 2, we have that the λ-scale does not depend on the ordering
of its indices, provided there is a 1 among the indices.
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Step 4: Consider the submatrix of (λ⊙bT
n)(2) with column labels (j1,11), (j1,21), (j1,31), (j1,12),

(1i,11) and row labels (1,1), (1,2), (1,3), (i,1), (i,2), for i,j∈{2,...,n} distinct. It looks like
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

λji1∗ λji1∗ λji1∗ λji1∗ λ1ii∗
λji1∗ λji1∗ λji1∗ λji1∗ λ1ii∗

. (15)

The determinant of (15) is a scalar multiple of λji1(λji1−λ1ii). By a direct computer computation,
it is a nonzero multiple generically (alternatively, note the polynomial system in step 1 is a special
case of the present one). We deduce λji1=λ1ii.

Putting together what we know so far, all λ-scales with a single 1-index agree. Indeed, this follows
from λ1ii =λji1=λij1 =λ1jj so all λ-scales with a single 1-index and two repeated indices agree,
combined with λji1=λ1ii and the last sentence of step 3. Let c∈R∗ denote this common scale.

Step 5: Consider the submatrix of (λ⊙bT
n)(2) with column labels (1i,11), (1i,21), (1i,31), (1i,12),

(ij,11) and row labels (1,1), (1,2), (1,3), (i,1), (i,2), for i,j∈{2,...,n} distinct. It looks like
∗ ∗ ∗ ∗ c∗
∗ ∗ ∗ ∗ c∗
∗ ∗ ∗ ∗ c∗
c∗ c∗ c∗ c∗ λiij∗
c∗ c∗ c∗ c∗ λiij∗

. (16)

As a function of c and λiij , the determinant of (16) is a scalar multiple of c(c2−λiij) (the second
factor is present because it corresponds to scaling the bottom two rows and rightmost column of a
5×5 submatrix of T(2) each by c, which preserves rank deficiency). By a direct computer computation,
we find that the scale is nonzero for a random instance of P1,Pi,Pj , therefore it is nonzero generically.
It follows c2=λiij . An analogous calculation with (λ⊙bT

n)(3) gives c2=λiji.

Step 6: Consider the submatrix of (λ⊙bT
n)(2) with column labels (1i,11), (1i,21), (1i,31), (1i,12),

(ji,11) and row labels (1,1), (1,2), (1,3), (i,1), (i,2), for i,j∈{2,...,n} distinct. It looks like
∗ ∗ ∗ ∗ c∗
∗ ∗ ∗ ∗ c∗
∗ ∗ ∗ ∗ c∗
c∗ c∗ c∗ c∗ λjii∗
c∗ c∗ c∗ c∗ λjii∗

. (17)

Similarly to the previous step, the determinant of (17) must be a scalar multiple of c(c2−λjii). By
a direct computer computation, it is a nonzero multiple generically. We deduce c2=λjii.

Step 7: Consider the submatrix of (λ⊙bT
n)(2) with column labels (1i,11), (1i,21), (1i,31), (1i,12),

(ik,11) and row labels (1,1), (1,2), (1,3), (j,1), (j,2), for i,j,k∈{2,...,n} distinct. It looks like
∗ ∗ ∗ ∗ c∗
∗ ∗ ∗ ∗ c∗
∗ ∗ ∗ ∗ c∗
c∗ c∗ c∗ c∗ λijk∗
c∗ c∗ c∗ c∗ λijk∗

. (18)

The determinant of (18) is a scalar multiple of c(c2−λijk). By a direct computer computation, it is
a nonzero multiple generically (alternatively, note the polynomial system in step 5 is a special case
of the present case). We deduce c2=λijk.

At this point, by steps 5,6,7 we have that all λ-scales with no 1-indices and not all indices the same
must equal c2. Combined with the second paragraph of step 4, this shows c satisfies the property
announced at the start of the proof. Therefore the proof is complete.

A.5 Implementation details

A.5.1 Estimating trifocal tensors from three fundamental matrices

Given three cameras P1,P2,P3 and the corresponding fundamental matrices F21,F31,F32, we can
calculate the trifocal tensor Tijk using the following procedure detailed in [1]. Specifically, from
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F21 calculate an initial estimate of the cameras P ′
1,P

′
2. Then, PT

3 F32P
′
2 and PT

3 F31P
′
1 should be

skew-symmetric matrices. This gives 20 linear equations in terms of the entries in P3, which can be
used to solve for the trifocal tensor. Note that there are no geometrical constraints when calculating
P3, and there will be no guarantee of the quality of the estimation.

A.5.2 Higher-order regularized subspace-constrained Tyler’s estimator (HOrSTE) for EPFL

We describe the robust variant of SVD that we used for the EPFL experiments in Section 4. Numerically,
it performs more stably and accurately than HOSVD-HT, yet it is an iterative procedure and each
iteration requires an SVD of the 3n×9n2 flattening. This becomes computationally expensive when
n becomes large and the number of iterations are also large. However, since the number of cameras
for the EPFL dataset are below 20 cameras, the computational overhead is not too great.

In HOSVD, a low dimensional subspace is estimated using the singular value decomposition and
taking the Rn leading left singular vectors for each mode-n flattening. The Tyler’s M Estimator (TME)
[40] is a robust covariance estimator of a D dimensional dataset {xi}Ni=1 ⊂ RD. It minimizes the
objective function

min
Σ∈RD×D

D

N

N∑
i=1

log(xT
i Σ

−1xi)+logdet(Σ) (19)

such that Σ is positive definite and has trace 1. The TME estimator can be applied to robustly find
an Rn dimensional subspace by taking the Rn leading eigenvectors of the covariance matrix of TME.
To compute the TME, [40] proposes an iterative algorithm, where

Σ(k)=
N∑
i=1

xix
T
i

xT
i (Σ

(k−1))−1)xi
/tr(

N∑
i=1

xix
T
i

xT
i (Σ

(k−1))−1)xi
). (20)

TME doesn’t exist when D>N , but a regularized TME has been proposed by [54]. The iterations
become

Σ(k)=
1

1+α

D

N

N∑
i=1

xix
T
i

xT
i (Σ

(k−1))−1)xi
+

α

1+α
I (21)

where α is a regularization parameter, and I is the D×D identity matrix. TME does not assume
the dimension of the subspace d is predetermined. In the case when d is prespecified, [41]
improves the TME estimator by incorporating the information into the algorithm and develops the
subspace-constrained Tyler’s Estimator (STE). For each iteration, STE equalizes the trailing D−d
eigenvalues of the estimated covariance matrix and uses a parameter 0<γ<1 to shrink the eigenvalues.
The iterative procedure for STE is summarized into 3 steps:

1. Calculate the unnormalized TME, Z(k)=
∑N

i=1(xix
T
i /x

T
i (Σ

(k−1))−1)xi).

2. Perform the eigendecomposition of Z(k) = U (k)S(k)(U (k))T , and set the trailing D− d

eigenvalues as γ
∑D

i=d+1σi/(D−d).

3. Calculate Σ(k) = U (k)S(k)(U (k))T /tr(U (k)S(k)(U (k))T ), which is the normalized
covariance matrix. Repeat steps 1-3 until convergence.

Similar to the regularized TME, STE can also be regularized to succeed in situations where there are
fewer inliers, and can improve the robustness of the algorithm. The regularized STE differs from STE
in only the first step, which is replaced by

1.* Calculate the unnormalized regularized TME, Z(k)= 1
1+α

D
N

∑N
i=1

xix
T
i

xT
i (Σ(k−1))−1)xi

+ α
1+αI

We apply the regularized STE to the HOSVD framework, and call the resulting projection the
higher-order regularized STE (HOrSTE). It is performed via the following steps:

1. For each n, calculate the factor matrices An as the Rn leading left singular vectors from
regularized STE applied to T(n).

2. Set the core tensor G as G=T×1A
T
1 ×2A

T
2 ···×NAT

N .
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A.6 Additional numerical results

In this section, we include comprehensive results for the rotation and translation errors for the EPFL
and Photo Tourism experiments. Table 1 and 2 contains all results for EPFL datasets. Table 3 contains
the location estimation errors for Photo Tourism. Table 4 contains the rotation estimation errors for
Photo Tourism. In Table 4, we only report the rotation errors for LUD for all the methods that we
compared against, as they are mostly the same since they used the same rotation averaging method.

Table 1: EPFL synchronization errors. ēr is the mean rotation error in degrees, êr is the median rotation
error in degrees. ēt is the mean location error, êt is the median location error. NRFM(LUD) is NRFM
initialized with LUD and NRFM is randomly initialized. BATA(MLPS) is BATA initialized with MPLS.

Our LUD NRFM(LUD) NRFM BATA(MPLS)
Dataset ēt êt ēt êt ēt êt ēt êt ēt êt

FountainP11 0.008 0.007 0.91 0.54 0.75 0.46 3.37 3.03 1.12 1.01
HerzP8 0.02 0.02 5.06 5.06 4.37 3.42 4.24 3.14 5.04 5.03

HerzP25 4.70 4.68 7.75 8.00 6.20 5.82 8.85 8.38 7.77 8.41
EntryP10 0.05 0.02 3.08 3.02 1.34 1.11 7.63 7.43 2.90 2.58
CastleP19 9.64 5.80 4.58 4.04 3.37 3.02 15.81 15.43 5.77 5.62
CastleP30 11.00 11.33 4.27 3.72 3.24 2.75 16.54 17.04 4.23 3.26

Table 2: EPFL synchronization errors. ēr is the mean rotation error in degrees, êr is the median
rotation error in degrees. BATA(MLPS) is BATA initialized with MPLS.

Our LUD BATA(MPLS)
Dataset ēr êr ēr êr ēr êr

FountainP11 0.09 0.08 0.05 0.05 0.06 0.05
HerzP8 0.12 0.12 0.33 0.34 0.44 0.39

HerzP25 2.01 1.11 0.18 0.19 0.26 0.23
EntryP10 0.15 0.11 0.25 0.25 0.27 0.25
CastleP19 56.24 11.71 0.24 0.22 0.27 0.25
CastleP30 38.84 4.58 0.13 0.13 0.19 0.15

Table 3: Translation errors for Photo Tourism. n is the size after downsampling. Est. % is the ratio of
observed blocks over total number of blocks. ēt is the mean location error, êt is the median location error.
NRFM(L) is NRFM initialized with LUD and NRFM(R) is randomly initialized. The notation PR means
that the dataset was further downsampled to match the two view methods. BATA is BATA initialized
with MPLS. We were not able to get results for our subsampled dataset for Piccadilly with MPLS.

Dataset Our Approach NRFM(L) LUD NRFM(R) BATA
dataset n Est. % ēt êt ēt êt ēt êt ēt êt ēt êt

Piazza del Popolo 185 72.3 0.78 0.45 1.63 0.85 1.66 0.86 13.45 12.06 1.63 1.10
NYC Library 127 64.7 1.01 0.53 1.39 0.48 1.49 0.57 13.06 14.03 1.59 0.68
Ellis Island 194 70.3 9.56 7.73 19.31 16.97 20.71 17.96 26.08 26.38 23.63 22.50

Tower of London 130 34.1 4.15 2.66 3.26 2.49 3.54 2.51 49.99 47.33 2.70 2.26
Madrid Metropolis 190 35.9 18.93 15.53 1.91 1.19 1.94 1.20 31.48 24.02 3.33 1.72

Yorkminster 196 37.2 1.46 1.14 2.31 1.39 2.35 1.45 16.67 14.46 1.37 1.15
Alamo 224 94.3 0.62 0.28 0.53 0.31 0.53 0.31 10.04 7.68 0.55 0.33

Vienna Cathedral 197 97.8 0.73 0.33 2.96 1.64 3.15 1.79 16.08 14.76 6.16 2.18
Roman Forum(PR) 111 51.1 10.71 6.75 1.59 0.89 1.63 0.93 23.23 11.20 1.85 1.04

Notre Dame 214 96.6 0.57 0.34 0.38 0.21 0.38 0.21 6.87 4.75 1.02 0.26
Montreal N.D. 162 97.0 0.38 0.24 0.56 0.37 0.57 0.38 10.33 11.15 0.58 0.41
Union Square 144 28.6 5.64 3.99 4.31 3.76 4.85 4.38 9.59 6.69 5.77 4.83

Gendarmenmarkt 112 89.7 45.34 23.63 37.93 17.35 37.92 17.41 62.69 26.42 54.38 15.91
Piccadilly(PR) 169 55.4 0.73 0.39 3.68 1.90 3.71 1.93 13.55 13.34 - -
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Table 4: Rotation errors for Photo Tourism. N is the total number of cameras. n is the size after
down sampling. Est. % is the ratio of observed blocks over total number of blocks. ēr is the mean
rotation error, êr is the median rotation error. The notation PR means that the dataset was further down
sampled to match the two view methods. We were not able to get results for our subsampled dataset
for Piccadilly with MPLS.

Our Approach LUD MPLS
dataset N n Est. % ēr êr ēr êr ēr êr Our Runtime (s)

Piazza del Popolo 307 185 72.3 1.26 0.61 0.72 0.43 0.69 0.41 13531
NYC Library 306 127 64.7 2.80 1.58 1.16 0.61 1.19 0.57 4465
Ellis Island 223 194 70.3 4.61 1.11 1.16 0.50 0.99 0.49 13816

Tower of London 440 130 34.1 2.28 1.31 1.63 1.28 1.66 1.37 4242
Madrid Metropolis 315 190 35.9 28.85 4.60 1.27 0.61 1.54 1.15 11764

Yorkminster 410 196 37.2 2.33 1.97 1.34 1.09 1.89 1.04 13115
Alamo 564 224 94.3 1.10 0.76 1.07 0.68 1.09 0.68 17513

Vienna Cathedral 770 197 97.8 0.74 0.46 0.40 0.28 0.39 0.28 12499
Roman Forum(PR) 989 111 51.1 11.86 3.39 0.40 0.28 1.07 0.65 2162

Notre Dame 547 214 96.6 0.78 0.50 0.67 0.43 0.68 0.43 17430
Montreal N.D. 442 162 97.0 0.50 0.35 0.49 0.32 0.49 0.31 7241
Union Square 680 144 28.6 20.70 5.29 1.82 1.34 2.00 1.56 4355

Gendarmenmarkt 655 112 89.7 22.95 15.24 18.42 10.25 17.42 8.41 2432
Piccadilly(PR) 1000 169 55.4 2.01 0.96 6.12 2.95 - - 11230
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Answer: [Yes]
Justification: Please feel free to check our code in the supplementary material and the
README.MD file for instructions. A public version will be available in the future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
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Answer: [Yes]

Justification: Please see our experiment details in Section 4.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than
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• If the authors answer NA or No, they should explain why their work has no societal
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
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technology is being used as intended but gives incorrect results, and harms following
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Answer: [NA]
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• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
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• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the authors whose code in our code, and respected all relevant licenses.
We include links to code in our submitted code as well. Please refer to the code and the
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide code for our methods and instructions for running the methods
in the supplementary material.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main

contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper doesn’t involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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28


	Introduction
	Low-rankness of the block trifocal tensor
	Background
	Cameras and 3D geometry
	Trifocal tensors
	Tucker decomposition and the multilinear rank of tensors

	Low Tucker rank of the block trifocal tensor and one shot camera retrieval

	Synchronization of the block trifocal tensor
	Higher-order SVD with a hard threshold (HOSVD-HT)
	Scale recovery
	Synchronization algorithm

	Numerical experiments
	EPFL dataset
	Photo Tourism

	Conclusion
	Appendix / supplemental material
	Derivation of the trifocal tensor
	Proof details for theorem1
	Proof details for prop1
	Proof details for thm:2
	Implementation details
	Estimating trifocal tensors from three fundamental matrices
	Higher-order regularized subspace-constrained Tyler's estimator (HOrSTE) for EPFL

	Additional numerical results


