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Abstract

The block tensor of trifocal tensors provides crucial geometric information on the
three-view geometry of a scene. The underlying synchronization problem seeks to
recover camera poses (locations and orientations up to a global transformation) from
the block trifocal tensor. We establish an explicit Tucker factorization of this tensor,
revealing a low multilinear rank of (6,4,4) independent of the number of cameras
under appropriate scaling conditions. We prove that this rank constraint provides
sufficient information for camera recovery in the noiseless case. The constraint
motivates a synchronization algorithm based on the higher-order singular value
decomposition of the block trifocal tensor. Experimental comparisons with state-
of-the-art global synchronization methods on real datasets demonstrate the potential
of this algorithm for significantly improving location estimation accuracy. Overall
this work suggests that higher-order interactions in synchronization problems can
be exploited to improve performance, beyond the usual pairwise-based approaches.

1 Introduction

Synchronization is crucial for the success of many data-intensive applications, including structure from
motion, simultaneous localization and mapping (SLAM), and community detection. This problem
involves estimating global states from relative measurements between states. While many studies have
explored synchronization in different contexts using pairwise measurements, few have considered
measurements between three or more states. In real-world scenarios, relying solely on pairwise mea-
surements often fails to capture the full complexity of the system. For instance, in networked systems,
interactions frequently occur among groups of nodes, necessitating approaches that can handle higher-
order relationships. Extending synchronization to consider measurements between three or more states,
however, increases computational complexity and requires sophisticated mathematical models. Ad-
dressing these challenges is vital for advancing various technological fields. For example, higher-order
synchronization can improve the accuracy of 3D reconstructions in structure from motion by leveraging
more complex geometric relationships. In SLAM, it enhances mapping and localization precision in dy-
namic environments by considering multi-robot interactions. Similarly, in social networks, it could lead
to more accurate identification of tightly-knit groups. Developing efficient algorithms to handle higher-
order measurements will open new research avenues and make systems more resilient and accurate.

In this work, we focus on a specific instance of the synchronization problem within the context
of structure from motion in 3D computer vision, where each state represents the orientation and
location of a camera. Traditional approaches rely on relative measurements encoded by fundamental
matrices, which describe the relative projective geometry between pairs of images. Instead, we
consider higher-order relative measurements encoded in trifocal tensors, which capture the projective
information between triplets of images. Trifocal tensors uniquely determine the geometry of three
views, even in the collinear case [1], making them more favorable than triplets of fundamental matrices
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for synchronization. To understand the structure and properties of trifocal tensors in multi-view
geometry, we carefully study the mathematical properties of the block tensor of trifocal tensors. We
then use these theoretical insights to develop effective synchronization algorithms.

Directly relevant previous works. In the structure from motion problem, synchronization has
traditionally been done using incremental methods, such as Bundler [2] and COLMAP [3]. These
methods process images sequentially, gradually recovering camera poses. However, the order of
image processing can impact reconstruction quality, as error may significantly accumulate. Bundle
adjustment [4], which jointly optimizes camera parameters and 3D points, has been used to limit
drifting but is computationally expensive.

Alternatively, global synchronization methods have been proposed. These methods process multiple
images simultaneously, avoiding iterative procedures and offering more rigorous and robust solutions.
Global methods generally optimize noisy and corrupted measurements by exploiting the structure
of relative measurements and imposing constraints. Many global methods solve for orientation and
location separately, using structures on SO(3) and the set of locations. Solutions for retrieving camera
poses from pairwise measurements have been developed for camera orientations [5, 6, 7, 8, 9, 10],
camera locations [11, 12, 13], and both simultaneously [14, 15, 16, 17]. Some methods explore the
structure on fundamental or essential matrices [18, 19, 20].

Several attempts to extract information from trifocal tensors include works by: Leonardos et al. [21],
which parameterizes calibrated trifocal tensors with non-collinear pinhole cameras as a quotient
Riemannian manifold and uses the manifold structure to estimate individual trifocal tensors robustly;
Larsson et al. [22], which proposes minimal solvers to determine calibrated radial trifocal tensors
for use in an incremental pipeline, handling distorted images with constraints invariant to radial
displacement; and Moulon et al. [23], which introduces a structure from motion pipeline, retrieving
global rotations via cleaning the estimation graph and solving a least squares problem, and solving
for translations by estimating trifocal tensors individually by linear programs. To our knowledge, no
prior works develop a global pipeline where the synchronization operates directly on trifocal tensors.

Contribution of this work. The main contributions of this work are as follows:

* We establish an explicit Tucker factorization of the block trifocal tensor when its blocks are
suitably scaled, demonstrating a low multilinear rank of (6,4,4). Moreover, we prove that
this rank constraint is sufficient to determine the scales and fully characterizes camera poses
in the noiseless case.

* We develop a method for synchronizing trifocal tensors by enforcing this low rank constraint
on the block tensor. We validate the effectiveness of our method through tests on several
real datasets in structure from motion.

2 Low-rankness of the block trifocal tensor

We first briefly review relevant background material in Section 2.1. Then we present the main new
construction and theoretical results in Section 2.2.

2.1 Background

2.1.1 Cameras and 3D geometry

Given a collection of n images I,...,I,, of a 3D scene, let t; € R? and R; € SO(3) denote the location
and orientation of the camera associated with the image /; in the global coordinate system. Moreover,
each camera is associated with a calibration matrix K; that encodes the intrinsic parameters of a camera,
including the focal length, the principal points, and the skew parameter. Then, the 3 x 4 camera matrix
has the following form, P; = K; R;[I5x3,—t;] and is defined up to nonzero scale. Three-dimensional
world points X are represented as R* vectors in homogeneous coordinates, and the projection of X into
the image corresponding to P is x = P X. 3D world lines L can be represented via Pliicker coordinates
as an RS vector. Then the projection of L onto the image corresponding to P is [ = PL, where P is
the 3 x 6 line projection matrix. It can be written as P = [PQ AP3;P3APL; Pl /\P2] where P is the
i-th row of the camera matrix P and wedge denotes exterior product. Explicitly the (4,7) element of
the line projection matrix can be calculated as the determinant of the submatrix, where the ¢-th row



is omitted and the column are selected as the j-th pair from [(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]. The
elements on the second row are multiplied by —1.

To retrieve global poses, relative measurement of pairs or triplets of images is needed. Let x; and x; be
any pair of corresponding keypoints in images I; and I; respectively, meaning that they are images of a
common world point. The fundamental matrix F;; is a 3 x 3 matrix such that fo 3525 ="0. Itis known
that F;; encodes the relative orientation R;; = R; R;-F and translation ¢,; = R;(t; —t;) through F;; =

K; T [tij] «Rij K J_ ! The essential matrix corresponds to the calibrated case, where K; = I3 3 for all <.

2.1.2 Trifocal tensors

Analogous to the fundamental matrix, the trifocal tensor T;;, is a 3 X 3 x 3 tensor that relates the
features across images and characterizes the relative pose between a triplet of cameras F;, P;,Py,. The
trifocal tensor T}, corresponding to cameras F;,P;, P, can be calculated by

(Tijk)wqr:(_l)w+1det P]q 3 (1)
b

where P} is the w-th row of F;, and ~ P;” is the 2 x 4 submatrix of P; omitting the w-th row. The
trifocal tensor determines the geometry of three cameras up to a global projective ambiguity, or up
to a scaled rigid transformation in the calibrated case. In addition to point correspondences, trifocal
tensors satisfy constraints for corresponding lines, and mixtures thereof. For example, let;,l;,!) be
corresponding image lines in the views of cameras P;, P;, P, respectively, then the lines are related
through the trifocal tensor T 1, by (l;‘-r[(TZ—jk)L: 7(Tijk)2::7(Tijk)3::}lk) [1]x =0T, where [I] « denotes the
% 3 skew-symmetric matrix corresponding to cross product by I. We refer to [1] for more details of the
properties of a trifocal tensor. We include the standard derivation of the trifocal tensor in Appendix A.1.

Since corresponding lines put constraints on the trifocal tensor, one advantage of incorporating trifocal
tensors into structure from motion pipelines is that trifocal tensors can be estimated purely from line cor-
respondences or a mixture of points and lines. Fundamental matrices can not be estimated directly from
line correspondences, so the effectiveness of pairwise methods for datasets where feature points are
scarce is limited. Furthermore, trifocal tensors have the potential to improve location estimation. From
pairwise measurements, one can only get the relative direction but not the scale and the location estima-
tion in the pairwise setting is a “notoriously difficult problem" (quoting from pages 316-317 of [24]).
However, trifocal tensors encode the relative scales of the direction and can greatly simplify the location
estimation procedure. We refer to several works on characterizing the complexity of minimal problems
for individual trifocal tensors [25, 26], and on developing methods for solving certain minimal problems
[271,[28], [29], [30], [31], [32], [33]. We also refer to [34] for a survey paper on structure from motion,
which discusses minimal problem solvers from the perspective of computational algebraic geometry.

2.1.3 Tucker decomposition and the multilinear rank of tensors

We review basic material on the Tucker decomposition and the multilinear rank of a tensor. We refer
to [35] for more details while adopting its notation. Let 7' € R71 X/2 X XIN be an order N tensor. The
mode-i flattening (or matricization) T(; € RI*(1-Tiilivi--IN) g the rearrangement of T into a
matrix by taking mode-: fibers to be columns of the flattened matrix. By convention, the ordering
of the columns in the flattening follows lexicographic order of the modes excluding i. Symbols ®
and © denote the Kronecker product and the Hadamard product respectively. The norm on tensors
is defined as || T'|| = || T(1) || 7. The i-rank of T"is the column rank of T7;y and is denoted as rank; (7).
Let R;=rank;(T"). Then the multilinear rank of T is defined as mlrank(T") = (R1,Ra,...,Rx). The
i-mode product of T with a matrix U € R™* i is a tensor in R11 > i—1xmxTiz1x-XIN gych that

I;
(TX’iU)jl"‘ji—lkji+l“'jN: j}lj2"‘jNUkji'
ji=1

Then, the Tucker decomposition of T € RT1* 12X Ix j5 3 decomposition of the following form:

T:gxlAl X2A2X3"'XNAN:[[Q;AlaAQa"'7AN]]7



where G € R@1 X XQN ig the core tensor, and A,, € RI»*®n are the factor matrices. Without loss of
generality, the factor matrices can be assumed to have orthonormal columns. Given the multilinear rank
of the core tensor (Ry,...,Ry ), the Tucker decomposition approximation problem can be written as

argmin IT—[G;A1,Asz,.... AN]- )

gERRlX“'XRN,AiERIiXRi

A standard way of solving (2) is the higher-order singular value decomposition (HOSVD). The
HOSVD is computed with the following steps. First, for each i calculate the factor matrix A; as the
R; leading left singular vectors of T{;). Second, set the core tensor G as G =T X AlT Xo e X N A%.
Though the solution from HOSVD will not be the optimal solution to (2), it satisfies a quasi-optimality
property: if T™* is the optimal solution, and 7" the solution from HOSVD, then

IT~T"| <VN|T-T"]. 3)

2.2 Low Tucker rank of the block trifocal tensor and one shot camera retrieval

Suppose we are given a set of camera matrices { P, }_, with n > 3 and scales fixed on each camera
matrix. Define the block trifocal tensor T™ to be the 3n x 3n x 3n tensor, where the 3 x 3 x 3 sized ik
block is the trifocal tensor corresponding to the triplet of cameras P;, P;, P,. We assume for all blocks
that have overlapping indices, the corresponding 3 x 3 x 3 tensor is also calculated using the formula
(1). We summarize key properties of 7™ in Proposition 1 and Theorem 1. The proof of Proposition 1
is by direct computation and can be found in Appendix A.3.

Proposition 1. We have the following observations for the block trifocal tensor T™. For all distinct
i,j € [n], we have the following properties:

(i) T3 =03x3x3
(it) The T,
(iii) The T, and T . blocks encode the epipoles.

ijt %]

blocks are rearrangements of elements in the fundamental matrix F; up to signs.

(iv) The horizontal slices T" (i,:,:) of T™ are skew symmetric.
(v) When all cameras are calibrated, three singular values of Tﬁ) are equal.

Theorem 1 (Tucker factorization and low multilinear rank of block trifocal tensor). The block trifocal
tensor T™ admits a Tucker factorization, T™ =G x 1 P x5C x3C, where G € R6*4x4 P cR3"%6  qnd
C e R®*™*4. Ifthe n cameras that produce T™ are not all collinear, then mirank(T™) = (6,4,4). If
the n cameras that produce T™ are collinear, then mlrank(T™) < (6,4,4).

Proof. We can explicitly calculate that 7" =G x1 P x2C x3C. The details of the calculation are in
Appendix A.2. The specific forms for G,C, P are the following. The horizontal slices of the core are

0 0 0 0 0O 0 O 0 0 0 0 0 0 0O 0 1 0O 0 -1 0 0 1 0 O
0 0 0 0 0O o0 o0 -1 0 0 1 0 0 0O 0 O 0o 0 0 0 -1 0 0 O
0 0 0 1’0 0 O 0o|’l0 -1 0 O0|’fO0 0O 0 of’|l1 O 0 0|’ 0O 0O 0 O :
o o0 -1 0 0O 1 0 0 0 0 0 o0 -1 0 0 O 0o 0 0 0 0 0O 0 O

The factor matrices are C =[P} ,Pg,...,Pn]T eR3*4 and P = [51,52,...,Sn}T €R37%6 where P; are
the camera matrices and .S; are the corresponding line projection matrices.

Now, we suppose that the n cameras are not collinear. We first show that C and P both have full rank.
From [1], the null space of a camera matrix P; is generated by the camera center. For the sake of
contradiction, suppose that rank(C) < 4. Then there exists 2 € R* such that z # 0 and Cx = 0. This
means that P,z =0 forallt=1,...,n. Then, x is the camera centre for all cameras, which means that the
cameras are centered at one point and are collinear. Similarly, every vector in the null space of the line
projection matrix S; is a line that passes through the camera centre [1]. For the sake of contradiction,
suppose that rank(7?) < 6. Then there exists 2 € RS such that x # 0 and Px = 0. This implies that
S;x=0forall i=1,...,n, which means that x is a line that passes through all of the camera centers.
Again the cameras are collinear, which is a contradiction. Next we write the flattening of the block

trifocal tensor as T7}) =PG(1)(C®C)". Then P € R*"*° has rank 6, and (C®C)" € R16397% hag
rank 16. Given the specific form of G, where Gy € R6*16 it is easy to check rank(G 1)) = 6. Thus,



rank(Tﬁ)) = 6. Similarly, we can show that rank(T(g)) =4, and rank(T(%)) =4. This implies that the
multilinear rank of the block trifocal tensor is (6,4,4) when the n cameras are not collinear.

When the n cameras are collinear, the individual factors in each flattening may be rank deficient, so
that rank(T )) <6, rank(T" ) <4, and rank(T )) < 4. This implies mlrank(7™) < (6,4,4). O

The theorem inspires a straightforward way of retrieving global poses from the block trifocal tensor,
which we summarize in the following claim.

Proposition 2 (One shot camera pose retrieval). Given the block trifocal tensor T™ produced by
cameras Py,Ps,...,P,, the cameras can be retrieved from T™ up to a global projective ambiguity using
the higher-order SVD. The cameras will be the leading 4 singular vectors of T@) or T@).

Using the higher-order SVD on 7™, we can get a Tucker decomposition of the block trifocal tensor
T" =G %1 P x3Cx3C. Though the Tucker factorization is not unique [35], as we can apply an
invertible linear transformation to one of the factor matrices and apply the inverse onto the core tensor,
this invertible linear transformation can be interpreted as the global projective ambiguity for projective
3D reconstruction algorithms. Thus, the cameras can be retrieved by taking the leading four singular
vectors of the mode-2 and mode-3 flattenings of the block tensor.

Very importantly however, in practice each trifocal tensor block in 7™ can be estimated from image data
only up to an unknown multiplicative scale [1]. The following theorem establishes the fact that the multi-
linear rank constraints provide sufficient information for determining the correct scales. In the statement

©p denotes blockwise scalar multiplication, thus the (7,5,k)-block of A&y T™ is Ai;r T}%; € R3%3%3,

Theorem 2. Let T™ € R3"*3"X3" be g block trifocal tensor corresponding to n > 4 calibrated or
uncalibrated cameras in generic position. Let A € R™*™*™ be a block scaling with \;ji, nonzero
iffi,j,k are not all equal. Assume that \©p T™ € R3*37X3% hag multilinear rank (6,4,4) where

Oy denotes blockwise scalar multiplication. Then there exist o, 3,y € R™ such that \iji, = oS5V
whenever 1,3,k are not all the same.

Sketch. The idea is to identify certain submatrices in the flattenings of A ©®, 7™ which must have
determinant 0, and use these to solve for A. A proof is in Appendix A.4. We remark that the proof
technique extends that of [36, Theorem 5.1], which showed a similar result for a matrix problem. [

Theorem 2 is the basic guarantee for our algorithm development below. We stress that the ambiguities
brought by «, 3,7 are not problematic for purposes of recovering the camera matrices by Proposition 2.
Indeed, (a®@B®7) @y T™ =G x1 (DaP) x2 (DgC) x3(D,C) where D,, € R3"*3" is the diagonal
matrix with each entry of « triplicated, etc. Hence the camera matrices can still be recovered up to
individual scales (as expected) and a global projective transformation, from the higher-order SVD.

3 Synchronization of the block trifocal tensor

In this section, we develop a heuristic method for synchronizing the block trifocal tensor 7™ by
exploiting the multilinear rank of 7" from Theorem 1. Let T™ denote the estimated block trifocal
tensor, and 7™ the ground truth. Assume that there are n images and a set of trifocal tensor estimates
Tijk where (7,7,k) € Q and € is the set of indices whose corresponding trifocal tensor is estimated.
Note that each estimated trifocal tensor Tij % will have an unknown scale \;;; € R* associated with
it. We always assume that we observe the i:: blocks, as they will be 0. We formulate the block trifocal
tensor 1" by plugging in the estimates Tijk and setting the unobserved positions ((4,7,k) ¢ Q) to
3 x 3 x 3 tensors of all zeros. Let Wq € {0,1}37*31%3n denote the block tensor where the (4,7,k)
blocks are ones for (7,5,k) € 2 and zeros otherwise. Let Wc denote the opposite. In our experiments,
we observe that the HOSVD is quite robust against noise for retrieving camera poses, which arises
e.g., from numerical sensitivities when first estimating relative poses [37]. Therefore we develop an
algorithm that projects 7™ onto the set of tensors that have multilinear rank of (6,4,4) while completing
the tensor and retrieving an appropriate set of scales. Specifically, we can write our problem as

m/&nHA@T"fPT(A@T")H? 4)



where A € R3"X37X37 _each 3 x 3 x 3 block is uniform, A, ;5 blocks are zero for (4,j,k) ¢ (2, and A
satisfies a normalization condition like || A||? =1 to avoid its vanishing. However, we drop this normal-
ization constant in our implementation as we never observe A vanishing in practice. (For convenience,
we formulate this section with the notation of A € R3"*37%3" and Hadamard multiplication, rather
than A € R"*"*™ and blockwise scalar multiplication from Theorem 2.) Furthermore in problem
(4), P, denotes the exact projection onto the set I' = {T" € R3"*37 X3 : mlrank(T') = (6,4,4) }. Note
that though HOSVD provides an efficient way to project onto I', it is quasi-optimal and not the exact
projection. The exact projection is much harder to calculate, and in general NP-hard. The algorithm
below adopts an alternating projection strategy to estimate the best set of scales.

3.1 Higher-order SVD with a hard threshold (HOSVD-HT)

The key idea for our algorithm is to use the relative scales on the rank truncated tensor as a heuristic
to retrieve scales for the estimated block tensor. There are two main challenges for calculating the
rank truncated tensor. First, the exact projection P, onto I' is expensive and difficult to calculate.
Second, many blocks in the block tensor will be unknown if the corresponding images of the block lacks
corresponding point and directly projecting the uncompleted tensor will be inaccurate. We apply an
HOSVD framework with imputations to tackle the challenges. Regarding the first challenge, HOSVD
is a simple, efficient, and quasi-optimal (3) projection onto I". Though inexact, it is a reliable approx-

imation. For the second challenge, the tensor 7" must be completed. We adopt the matrix completion
idea of HARD-IMPUTE [38], where the matrix is filled-in iteratively with the rank truncated matrix
obtained using the hard-thresholded SVD. In other words, we complete the missing blocks with the
corresponding blocks in the rank truncated tensor. We define three hyperparameters /1,l5,/3 that corre-
spond to the thresholding parameters of the hard-thresholded SVD on modes 1,2,3 of the block tensor
respectively. Specifically, for each mode-: flattening T(’Z’r), we calculate the full SVD T(’Z?) =USVT,
Since our tensor will scale cubically with the number of cameras, we suggest using a randomized SVD.
We refer to [39] for different randomized strategies. Assume the singular values o; on the diagonal of S
are sorted in descending order, as usual. We return the factor matrix A; as the top a left singular vectors
in U, where a =max{i:S;; >, }. Our adapted truncation method is summarized by Algorithm 1.

Algorithm 1 HOSVD-HT

Input: 77 € R37*31x3n: the estimated block tensor; [1,l,l5 € R: the thresholds for modes 1,2,3
respectively
Output: 7, € R37*37%3n: the rank truncated tensor.
fori=1to3do .
Perform the randomized SVD on the mode-7 flattening such that 7' (?) ~USsvT
a; < max{i:S; >1;}
A; + first a; columns of U
end for
g:T“ ><114%1 XQAg XgAg:
17« [G;A1,A2,A5]

From now on, we refer to hard-thresholded HOSVD as HOSVD-HT and denote the operation as Pp;.

3.2 Scalerecovery

HOSVD-HT provides an efficient way for projecting 7™ onto the set of tensors with with truncated
rank. To recover scales, we use the rank truncated tensor’s relative scale as a heuristic to adjust the
scale on our estimated block trifocal tensor 7'(™). For each step, we solve

A(t+1) :argmin||A®T”—73ht(A(t) @Tn) ||2 S.t. Aijk =03x3x3 for (Z,],k) S QC, 5)
A

where we drop the normalization condition on A because in practice it is not needed. We solve (5)
for each observed block separately. Denoting Pp,; (A ©T™) as (T*)®), we have

. . trace((T,)" ((T”)(t)) )

1 : n n ijk/ (1 r Jijk)(1)

A =argminu T3 — (7)1 = LU ©
K H((Trn)ijk)(l)np



Recall that our strategy for completing the tensor is to impute the tensor with the entries from the
rank truncated tensor using HOSVD-HT. Specifically, given the current imputed tensor (7’ ”)(t) , we
calculate P, ((7™)®)) and the new scales A(“+1). Then update with

(T™) ) = (A o (T D OWa)+Pre (1)) @ We. )

3.3 Synchronization algorithm

Now we summarize our synchronization framework in Algorithm 2. We have observed that the

Algorithm 2 Synchronization of the block trifocal tensor

Input: n €R3n><3n><3n; Wa,Wae € {0’1}3n><3n><3n; l1,lo,l3 €R
Output: C €R3"*4: camera matrices up to a 4 x 4 projective ambiguity and camera-wise scales
Initialize 7™ by imputing unobserved blocks randomly to get (7)(®)
while not converged do
Calculate Py ((T™)®)) using HOSVD-HT
Calculate A+ (5) using (6)
(T™) D — (A (T D ©Wa) +Pre (1)) 0 Woe
t<1t+1
end while A
(G,A1,42,A43) < HOSVD((T™)®)
C < First 4 columns of A,

algorithm can overfit, as the recovered scales will experience sudden and huge leaps. Our stopping
criteria for the algorithm is when we observe sudden jumps in the variance of the new scales or when
we exceed a maximum number of iterations. Another challenge in structure from motion datasets
is that estimations may be highly corrupted. The HOSVD framework mainly consists of retrieving
a dominant subspace from each flattening. Thus, it is natural to replace the SVD on each flattening
with a more robust subspace recovery method, such as the Tyler’s M estimator (TME) [40] or a recent
extension of TME that incorporates the information of the dimension of the subspace in the algorithm
[41]. We refer to Appendix A.5.2 for more details and provide an implementation there.

4 Numerical experiments

We conduct experiments of Algorithm 2 on two benchmark real datasets, the EPFL datasets [42] and
the Photo Tourism datasets [11]. We observe that the algorithm performs better in the calibrated setting,
and since the calibration matrix is usually known in practice, we restrict our scope of experiments
to calibrated trifocal tensors. We compare against three state-of-the-art synchronization based on two
view measurements, NRFM [18] and LUD [12]. NRFM relies on nonconvex optimization and requires
a good initialization. We test NRFM with an initialization obtained from LUD and with a random
initialization. We also test BATA [43] initialized with MPLS [9]. We refer to A.6 in the appendix
for a comprehensive summary of numerical results including rotation and translation estimation errors.
We include our code in the following github repository: TrifocalSync.

4.1 EPFL dataset

For EPFL, we follow the experimental setup and adopt code from [44] and test an entire structure
from motion pipeline. We first describe the structure from motion pipeline for EPFL experiements.

» Step 1 (feature detection and feature matching). We obtain matched features across pairs of images
using a modern deep learning based feature detection and matching algorithm, GlueStick [45]. Though
we do not implement this in our experiments, there have been methods developed to further screen
corrupted keypoint matches or obtain matches robustly, such as [46, 47, 48]. Key points across a triplet
of cameras is matched from pairs and is included only if it appears in all the pair combinations of the
three images.

» Step 2 (estimation and refinement of trifocal tensors). With the triplet matches, we calculate the
trifocal tensors with more than 11 correspondences. To have an even sparser graph, one can skip the


https://github.com/dmiao153/TrifocalSync

estimation of trifocal tensors and rely on the imputation for images that have less than a number bigger
than 11 point correspondences. This can further speed up the trifocal tensor estimation process. We
apply STE from [41] to find 40% of the correspondences as inliers, then use at most 30 inlier point
correspondences to linearly estimate the trifocal tensor. To refine the estimates, we apply bundle
adjustment on the inliers and delete triplets with reprojection error larger than 1 pixel.

* Step 3 (synchronization). We synchronize the estimated block trifocal tensor with a robust variant of
SVD using the framework described in Algorithm 2. The robustness comes from replacing SVD with
a robust subspace recovery method [41]. More details can be found in Appendix A.5.2. Recall that
the cameras we retrieve are up to a global projective ambiguity. When comparing with ground truth
poses, we first align our estimated cameras with the ground truth cameras by finding a 4 x 4 projective
transformation. Then we round the cameras to calibrated cameras and compare.

We test our full pipeline on two EPFL datasets on a personal machine with 2 GHz Intel Core i5 with
4 cores and 16GB of memory. To test NRFM [18], LUD [12] and BATA [43] initialized with MPLS
[9], we estimate the corresponding essential matrices using the GC-ransac [49]. We did not include
blocks corresponding to two views in our trifocal tensor pipeline. The mean and median translation
errors are summarized in Figure 1 here and more comprehensive results can be found in Table 1 and
Table 2 in the appendix.

20 20
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Figure 1: EPFL translation error comparison between our method, NRFM initialized by LUD, LUD,
and NRFM initialized randomly. BATA(MPLS) stands for BATA initialized by MPLS. HZS stands
for HerzP8, FP11 for FountainP11, HZ25 for Herz P25, EN10 for EntryP10, CS19 for CastleP19,
CS30 for CastleP30.

The EPFL datasets generally have a plethora of point correspondences, so that the trifocal tensors are
estimated accurately. When the dataset focuses on a single scene, our algorithm retrieves locations
competitively. Our algorithm achieves the best location estimation for 4 out of 6 datasets. The
translation error bars are not visible for FP11, HZP8, EN10 due to the accuracy that we achieve.
However, our pipeline is incapable of accurately processing CastleP19 and CastleP30. The main reason
is that our algorithm relies on having a very dense observation graph to ensure high completion rate.
CastleP19 and CastleP30 are datasets where the camera scans portions of the general area sequentially,
so that not many triplets have overlapping features. Our method is not suitable for this type of dataset.
However, it is possible to apply our algorithm in parallel on groups of neighboring frames, so that the
completion rate is high in each group. Then the results can be merged to obtain a larger reconstruction.
Rotations for the two view methods are estimated via rejecting outliers from iteratively applying [10].
We also compare against [43] for location estimation, where we initialize with a state-of-the-art global
rotation estimation method [9]. Our algorithm achieves superior rotation estimation for only 2 out of
the 6 datasets. See Table 1 and 2 in the appendix for comprehensive errors.

4.2 Photo Tourism

We conduct experiments on the Photo Tourism datasets. The Photo Tourism datasets consist of
internet images of real world scenes. Each scene has hundreds to thousands of images. The datasets



[11] provide essential matrix estimates, and we estimate the trifocal tensors from the given essential
matrices. To limit the computational cost for tensors, we downsample the datasets by choosing
cameras with observations more than a certain percentage in the corresponding block frontal slice
while maintaining a decent number of cameras. Note that this may not be the optimal way of extracting
a dense subset in general. The maximum number of cameras we select for each dataset is 225 cameras.
The largest dataset Piccadilly has 2031 cameras initially. We randomly sample 1000 cameras and
then run our procedure. For Roman Forum and Piccadilly, the two view methods further deleted
cameras from the robust rotation estimation process or parallel rigidity test. We rerun and report the
trifocal tensor synchronization algorithm with the further downsampled data. We initialize the hard
thresholding parameters for HOSVD-HT by first imputing the trifocal tensor with small random entries
and then calculating the singular values for each of the flattenings. We take [; to be the tertile singular
value for each mode-i flattening. We then keep this parameter fixed for the synchronization process.
Recall that the ji¢ blocks in the block trifocal tensor correspond to elements in the essential matrix
E;;. We also include these essential matrix estimations in the block trifocal tensor. The Photo Tourism
experiments were run on an HPC center with 32 cores, but the only procedure that can benefit from
parallel computing in a single experiment is the scale retrieval. Mean and median translation errors are
summarized in Figure 2. Fully comprehensive results can be found in Tables 3 and 4 in Appendix A.6.
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Figure 2: Photo Tourism translation error comparison between our method, NRFM initialized by LUD,
LUD, NRFM initialized randomly, and BATA initialized with MPLS. Note that we have not been
able to acquire results for Piccadilly for BATA + MPLS.

Our method is able to achieve competitive translation errors on 8 of the 14 datasets tested. Similar
to the observation in the EPFL experiments, our algorithm performs well when the viewing graph
is dense, or in other words, when the estimation percentage is high. We achieve better locations in
6 out of § datasets where the estimation percentage exceeds 60%, and better locations in only 2 out of 6
datasets where the estimation percentage falls below 60%. We achieve reasonable rotation estimations
for 10 out of 14 datasets, but not as good as LUD. See Table 4 for a comprehensive result. Since the
block trifocal tensor scales cubically with respect to the number of cameras, our algorithm runtime
is longer than most two view global methods. This could be alleviated by synchronizing dense subsets
in parallel and merging the results to construct a larger reconstruction.

Additional remark: Trifocal tensors can be estimated from line correspondences or a mix of point
and line correspondences, while fundamental matrices are estimated from only point correspondences.
There are many situations where accurate point correspondences are in short supply but there is a
plethora of clear and distinct lines. For example, see datasets in a recent SfM method using lines
[50]. We demonstrate the potential of our method to be adapted to process datasets with only lines
or very few points. Due to the limited availability of well annotated line datasets, we provide a small
synthetic experiment that simulates a case where only lines correspondences are present. We first
generate 20 random camera matrices, then we generate 25 lines that are projected on and shared across
all images. We add about 0.02 percent of noise in terms of the relative frobenius norms between the
line equation parameters and the noise. We estimate the trifocal tensor of three different views from line
correspondences linearly. One remark is that our synchronization method works well only when the
signs of the initial unknown scales are mostly uniform. We manually use ground truth trifocal tensors



to correct the sign of the scale. This has not been an issue in the previous experiments due to bundle
adjustment for EPFL and the overall good estimations in Photo Tourism. In practice, the sign of the scale
on a trifocal tensor can be corrected via triangulation of points or reconstruction of lines, and correcting
the sign using the depths of the reconstructed points or intersecting line segments. We synchronize
the trifocal tensors with Algorithm 2 and were able to achieve a mean rotation error of 0.61 degrees,
median rotation error of 0.49 degrees, mean location error of 0.76, and median location error of 0.74.

5 Conclusion

In this work, we introduced the block tensor of trifocal tensors characterizing the three-view geometry
of a scene. We established an explicit Tucker factorization of the block trifocal tensor and proved it has
a low multilinear rank of (6,4,4) under appropriate scaling. We developed a synchronization algorithm
based on tensor decomposition that retrieves an appropriate set of scales, and synchronizes rotations
and translations simultaneously. On several real data benchmarks we demonstrated state-of-the-art
performance in terms of camera location estimation, and saw particular advantages on smaller and
denser sets of images. Overall, this work suggests that higher-order interactions in synchronization
problems have the potential to improve performance over pairwise-based methods.

There are several limitations to our tensor-based synchronization method. First, our rotation
estimations are not as strong as our location estimations. Second, our algorithm performance is
affected by the estimation percentage of trifocal tensors within the block trifocal tensor. One could
incorporate more robust completion methods and explore new approaches for processing sparse triplet
graphs. Further, our block trifocal tensor scales cubically in terms of the number of cameras and
becomes computationally expensive for large datasets. We can develop methods for extracting dense
subgraphs, synchronizing in parallel, then merging results to obtain a larger reconstruction, similarly to
the distributed algorithms of [51] and [52]. Moreover, our synchronization method’s success depends
on accurate trifocal tensor estimations, and it motivates further work on robust estimation of multi-view
tensors. Algorithm 2 could also be made more robust by adding outlier rejection techniques. Finally
we plan to extend our theory by proving convergence of our algorithm and exploring structures for
even higher-order tensors, such as quadrifocal tensors.
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A Appendix / supplemental material

A.1 Derivation of the trifocal tensor

To provide a better intuition for the trifocal tensor, we briefly summarize the derivation of the trifocal
tensor from [1] and [21] under the general setup of uncalibrated cameras.

Let P, = K; R;[I,—t;] be the form of the camera matrix for Py, P,,Ps. Let L be a line in the 3D world
scene, and /1,192,135 the corresponding projections in the images I1,15, I3 respectively. Each [; back
projects to a plane 7; = PTl; in R3, and since [; correspond to the same L in the 3D world scene,
= [m1,m,m3) must be rank deficient and its kernel will generically be spanned by L. Then,

I {KfTRl 0] o {zl K TR1,KTl, K{TRi3KTl3

A A
71 0 (t1—t2) RIKIly (ty—ta) R KT 1)~ "07207s)

will also be rank-deficient, implying that the columns of 7’ are linearly dependent. This means that there
exist a3 such that 7} = arh + 5. We can choose av=—(t; —t3) T RY K113, B=(t1 —t2) T RYKT 15,
so that

L =17 [KyRy(t1 —to) KT T Ris KT )l — 12 [ Ko R, KM (t —t3) T RY KT,
Then, the canonical trifocal tensor centered at camera 1 is defined as
T;=KyRo(t1 —to)el Ky T RisKT —KoRI, K[ Ye;(ti—t3)T RI KT ®)

where e; € R is the i-th standard basis vector. The trifocal tensor will be the tensor {77,75,T3 }, where
the T;’s are stacked along the first mode. The line incidence relation is then ({1); = lgTilg. Other
combinations of point and line incidence relations are also encoded by the trifocal tensor; see [1] for
details. The construction for calibrated cameras is the same, just with P; in calibrated form.

A.2 Proof details for Theorem 1

We include a detailed calculation for the Tucker factorization of the block trifocal tensor. Recall that
each individual trifocal tensor corresponding to the cameras a,b,c can be calculated as

i a™
~Q n
Tigr=(—1)""'det | b7 | =(—1)"'det | %,
c’ .
&

i+1 Am3  Am4g am2  Am4
:(—I)ZJF (det|:a7nn3 a:4:|(bqlcr2bq20r1)+det|:a7:2 a:4:|(bqlcr3+bq30r1)

Am1  Om4 _ Am2  am3 .
+det l:anl an4:| (bq267-3 bqgcrg) +det l:anZ an3:| (bqlcr4 bq4CT.1)

Ay A am Am
+det l:anll an§:| (—quCT4 +bq4CT2) +det |:an11 a7122:| (bqgcr4 —bq4crg))

=P(a)is(bg1cra—bgacr1)+P(a)is(—bgrcrs+bgzcr1) +P(a)is(bgacrs —bgscra)
+P(a)ia(bgrcra—bgacr1)+P(a)ia(—bgacra+bgacra) +P(a)i1 (bgscra—bgacrs)
6

4 4
:Zp(a)lk Z bqw Zc'r'j gku}j .
w=1 j=1

k=1

The last equality can be easily checked since G is sparse. For example, when k = 1, P(a);; is
the determinant of the submatrix dropping the i-th row and keeping columns 1 and 2, which is
det[amiam2;an1an2]. The only nonzero elements in the first horizontal slice are G(1,4,3) = —1
and G(1,3,4) = 1. Then, the nonzero elements in the sum when & = 1 will be exactly

P(a)ir Y nym1 b g1 €5 Grus = P(@)ir (baacra—bgacrs).

Then, since P will be the stackings of P(F;), C is the stacking of camera matrices in Theorem 1, each
17k block in T™ will be calculated by exactly the corresponding i, j, k blocks in P,C,C respectively
using the calculations above.
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A.3 Proof details for Proposition 1

Proof for (i). We have
P!
P

(Tfii)wer=(=1)""+"det =0,

since P; is a 3 x 4 matrix and the submatrix above will always have two identical rows.
Proof for (ii): Consider the wqr element of the ji: block trifocal tensor, 77;;. It can be written as

)qu:(_l)w+1det PZq]
P

(T3

jit

Thus, when ¢ =7, clearly (Tﬁi)wqr =0 as we will have identical rows again. When ¢ # r, we first

observe that (77, ) wgr = — (T7;;)wrq Since we just swap two rows. Second,
(T war=(—1)"+ det | P =<—1>w“det[wz€%]
pr T

where m € {1,2,3}\ {¢,r}. This is exactly the bilinear relationship in [1] defining the fundamental
matrix (F};)m. element up to a possible negative sign.

Proof for (iii): We can only show this for 777

71; blocks from symmetry. The elements in 77;; blocks
can be calculated as

W]
Juwgr=(=1)"*'det | P
P

(T

1%

Elements are nonzero only when w = ¢, and they correspond to determinants of matrices with three
rows from one P; and one row from P;. By [1], these are exactly the elements of the epipoles. When
w=1, the order of the rows in the determinant corresponding to camera i is (2,3,1), when w =2, the
order is (1,3,2) and there is a negative sign in front of the determinant, and when w = 3, the order is
(1,2,3). Since the first and last case are even permutations of the rows of P;, and the second case is
corrected by a negative sign, (77, ).ww: is exactly the epipole.

Prooffor (iv): On a horizontal slice, the camera along the 1st mode is fixed, and blocks symmetric
across the diagonal is calculated by cameras, which the 2nd and 3rd mode cameras are swapped.
Then, we will simply be swapping rows in (1), which means that we will simply be changing signs
for elements symmetric across the diagonal, implying skew symmetry.

Proof for (v): Now assume that we have a block trifocal tensor whose corresponding cameras
are all calibrated. Let P be the line projection matrix, C = [Py, Py, ..., P,]7 is the stacked
camera matrix, and G is the core tensor. The flattening in the 1st mode can be written as
T(T{) =PGu)(C ®C)T, where T(’?l) is a 3n x 9n? matrix. For the proof, we calculate the eigenvalue

of T3 (T(3))" =PG1) (CRC)T (CRC)G ) PT
T4 (Th) " =PGa) (€T (CaC)Glh,PT
=PGu)(C"aC")(CaC)GlH,P"
=PGu (CTcactc)gh,PT.

The second and third line uses two Kronecker product properties: (A ® B)T = AT @ BT and
(A®B)(C®D)=AC®BD aslong as AC and BD are defined.

We first calculate (CTC®CTC).

We assume that the cameras are centered at the origin, i.e. Y ., ¢; =0. Then we have

I =St nl3xs 0351
cle=| pe fei ]:[ - : 9
ST ST T O X ]2 ©)
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so that
nl3x3RCTC 0351 ®CTC

cfewocte)= " 10
(cCcac’c) O1x3®@CTC S |It:)*®ctC (10)
We have an explicit form for g(l) :
o o o o o o o o o oo -1 0 o0 1O
o 0 o o 0 0 O 1 O O O O O -1 0 O
g_OOOOOO-lOOIOOOOOO (11
=0 o o0 -1 00O OO O OO O 1 0 0O
o 0 1 o 0 O O O -1 00 O O O O0 O
o -1 0 0 1.0 0 0 0 0 0 O 0 O 000
Let X =C7C and let X denote the ij entry in C'C. Leta=Y_"_, [|t;]|.
We first show that G (1) (CTC®CTC )Q(Tl) is diagonal by direct computation:
Gy ecac™o)gh,
(MX44+aXss aXo2 —nXy42 aX31 nXyq1 0
—aXo3 nXs+aXoo nX43 aXoa1 0 nXa1
_ nXoq —nX3aq nX33+nXa2 0 —nXoy —nXs1
o aX13 —aXi2 0 nXaa+aXi —nXu3 nX42
nXig 0 —nXi2 nXsa4 nXazz3+nXi1 —nXaz
L 0 —nXog —nXi3 nXoaa —nXoa3 nXo2+nXi1
ma+an 0 0 0 0 0
0 na-+an 0 0 0 0
| o 0 n?+n? 0 0 0
- 0 0 0 na-+an 0 0
0 0 0 0 n?4n? 0
) 0 0 0 0 n2+4n?
2na 0 0 0 0 0
0 2na 0 0 0 0
o0 0 222 0 0 0
10 0 0 2na 0 0
0 0 0 0 2n* 0
L 0 0 0 0 0 2n?

‘We then calculate the spectral decomposition of T(”l'). With a slight abuse of notation, let P¥ denote

the k-th column of P;. The 3n x 6 rank-6 stacked line projection matrix would have columns ordered
according to

[61/\62 eitNes ejN\eg eaxNeg exey 83/\64]7

and since the second row in P for each camera is P> A P} it holds

P=|P'xP? P!xP? P!xP! P?xP? P!xP! P3xP!|.

Or equivalently, the stacked wedge products between columns. Let P =U SV 7 be the thin singular
value decomposition of P, so that U is a 3n x 6 orthonormal matrix, .S is a 6 x 6 diagonal matrix where
all diagonal entries are nonzero, and V' is a 6 x 6 orthonormal matrix.

Then,
T4 (Th) " =PGa) (CTCoc™e)glh,PT
=U(SVTGu)(CTcacTe)Gh VS UT.

16



Since V' is orthonormal, SV7G1)(CTC ®CTC)G[}, VS is still a diagonal matrix. We just need to
establish the fact that three of the diagonal entries are the same.

For one camera, PTP equals

[t P?-pPy 0 —P! P! 0
1 S 0 0 —(pP}- P}
PPl (PP (PPl 0 —(P}-PH(P}-PP) —(Pl P (P! PY)
1 p;-p} —p2.p}
(P Ph—(P7-PH(P!-P]) —(P2-Ph(PL-P?)
L (P4 P4) (PS P4)(P4 PS)
1o p?-p} 0 -p}.p} 0
1 p?.p 0 0 — (P} P}
- IPHE = PLPH2 0 —(PLPA(PEPE) (P P“)(P4 P?)
B 1 P}-p} 2. pt '
Pz =P P — (P P“)(P4 P?)
L 1A= Pe pA?

where the matrix is symmetric and we reduce redundancy by omitting the entries below the diagonal.
For n cameras,

n 0 >, P2-p} 0 ->.p-p! 0
n Z§P3 P 0 0 ->.p'-p}
PTp— SR HP1 PH* 0 =X.(P-PH(PI-PE) =X (P-PH(P-PY)
n >, PP} —>, PP}

SAPTE P2 PP X (PPP (PR PP
PP 1P P

where P P? means the dot product between the ath and bth column

The SVD of PTPis PTP=HDHT, where H is 6 x 6 orthonormal matrix, D is 6 X 6 diagonal matrix.
However, since we have an nl3y3 submatrix in P7P, we deduce that n appears as an eigenvalue
3 times for P7P, where we can use the determinant identity for block matrices. We check that this
indeed holds by a computer calculation, generating random instances of P;’s and calculating the
eigenvalues for P7P.

As aresult, in the thin SVD of P, we have P=USV 7T where S=+/D, V = H. Then in

T4 (Th)) T =PGa (CTCact )Gl PT
=U(SVTGu)(cTcacme)glhvsuT

we see that .S VTg(l) (CTC ®CTC )g(l) V'S is a diagonal matrix where three of the entries are the same.

By the uniqueness of the eigenvalues, we see that we have a spectral decomposition of (1)( ﬁ) ),
so that three of the singular values of T(1) are equal. O

A.4 Proof details for Theorem 2

Proof. Note blockwise multiplication by a rank-1 tensor with nonzero entries preserves multilinear
rank, since it is a Tucker product by invertible diagonal matrices. Therefore, without loss of generality
we may assume \;11 = Ayj1 = A1 = 1 forall 4,5,k € {2,3,...,n}. Below we will prove it follows
Aijr = cif exactly one of 4,7,k equals 1, and \;j, = c? if none of 7,7,k equal 1 and the indices are
not all the same, for some constant c € R*. This will immediately imply the theorem, because taking
a=p=(1cc...c)and y=(111...1) achieves \; ;5 = ; B, whenever i,k are not all the same.

We consider the matrix flattenings T@) and (A®pT") (2 in R37%97° of the block trifocal tensor and
its scaled counterpart, with rows corresponding to the second mode of the tensors. By Theorem 1 and
assumptions, the flattenings have matrix rank 4, thus all of their 5 x 5 minors vanish. The argument
consists of considering several carefully chosen 5 x 5 submatrices of (A ©, T")(2) to prove the
existence of a constant ¢ as above. Index the rows and columns of the flattenings by (j,r) and (iq,ks)
respectively, for 4,5,k € [n] and ¢,7,s € [3], so that e.g., (AO,T™) (2)) (j,r). (iq.ks) = )\ijk(TZ}k)qm.
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Step 1: The first submatrix of (A®,T™)2) we consider has column labels (i1,11), (i1,21), (i1,31),
(11,12), (42,11) and row labels (1,1), (1,2),(1,3),(4,1),(¢,2), where i € {2,...,n}. Explicitly, it is

(T (Ti11)211 (T}11)311 (T )2 (T11:)111

(Ti1 )11 (T11)221 (Ti1)321 (T )122 (T11)121

(T )13 (77{1)231 (T711)331 (T711)132 (Tiiis |
Nt (T N (T )211 i ( ”1)311 Xiit(TH) 12 A ()1
Xiit ()21 At (TH)221 At (Th)s21 A (T )22 Aaa(T1%)121

which we abbreviate as

* * * * *
* * * * *
* * * * * |, (12)

Aiit* Ajin* o Aprk Aprk o Aqgk
Aat* Apr* A gk A

with asterisk denoting the corresponding entry in T(’é). As a function of \;;1,A1;;, the determinant of
(12)is a degree < 2 polynomial, which must be divisible by A;;1 and A;;1 — A14; (because if \;;; =0 then
clearly the bottom two rows of (12) are linearly independent, and if A;;; — A1;; =0 we have a submatrix
of T(%) with the bottom two rows scaled uniformly). So the determinant of (12) is a scalar multiple of

Aii1(Aii1 — A1i1). Note that the multiple is a polynomial function of the cameras P; and P;. We claim
that generically the multiple is nonzero; and to see this, it suffices to exhibit a single instance of (cali-
brated) cameras where the determinant of (12) does not vanish identically for all A;;1,\1;; due to the poly-
nomiality (e.g., see [53]). We check that this indeed holds by a computer calculation, generating numeri-
cal instances of P, and P; randomly. Thus the vanishing of the minor in (12) implies A;;1 (A1 — A14:) =

0, whence \;;1 = A14; since \j;1 #0. An analogous calculation with (A®,, T”)( 3) gives Ai1; = A1

Step 2: Next consider the submatrix of (A®7™)(2) with column labels (5j1,11), (j1,21), (51,31),
(j1,12), (14,11) and row labels (1,1), (1,2), (1,3), (4,1), (¢,2), where 7,5 € {2,...,n} are distinct. It
looks like

* * * * *
* * * * *
* * * * * |, (13)

Ajﬂ* Ajil* >\ji1* )\jil* Alij*
)‘jil* Ajil* )\jil* )\jil* Alij*

with asterisks denoting entries of T(Z). Similarly to the previous case, the determinant of (13) must

be a scalar multiple of Aj;1(Aji1 —A1;;) where the scale depends polynomially on P, P;, P;. By a
computer computation, we find that the scale is nonzero for random instances of cameras (alternatively,
note the polynomial system in step 1 is a special case of the present one). It the scale is generically
nonzero, hence A ;1 = A1;;. An analogous calculation with (A®; T”)(g) gives \j1; = A1ij.

Step 3: Consider the submatrix of (A®;T™)(2) with column labels (j1,11), (j1,21), (j1,31), (j1,12),
(1k,11) and row labels (1,1), (1,2), (1,3), (4,1), (¢,2), for i,5,k € {2,...,n} distinct. It looks like

* * * * *
* * * * *
* * * * * . (14)

)\jil* )\jﬂ* /\jﬂ* Ajil* ALik*
Ajirx gtk Ajirx o Ajarx o A

The determinant of (14) is a scalar multiple of A ;;; ()\jil —A1ik)- By a direct computer computation
as before, it is a nonzero multiple generically (alternatively, note the polynomial system in step 1 is a
special of the present one). We deduce Aj;1 = A1%. An analogous calculation with (AORT™) (3) gives
Ai1j = Akj-

In particular, combining with step 2 it follows /\1ij = )\1ji’ because >\1ij = /\klj = /\1kj =ikl =AMk =
Aj1s = A1ji. From this, step 1 and step 2, we have that the A-scale does not depend on the ordering
of its indices, provided there is a 1 among the indices.
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Step 4: Consider the submatrix of (A®,T™)(2) with column labels (j1,11), (j1,21), (j1,31), (j1,12),
(14,11) and row labels (1,1), (1,2), (1,3), (4,1), (¢,2), for i,j € {2,...,n} distinct. It looks like

* * * * *
* * * * *
* * * * * . (15)

)\jil* /\jil* )\jil* )\jil* ALis*

Ajitk Ak Ajarkx o Ajark Apgx
The determinant of (15) is a scalar multiple of A ;1 ()\jil — A141)- By a direct computer computation,
it is a nonzero multiple generically (alternatively, note the polynomial system in step 1 is a special
case of the present one). We deduce Aj;1 = Ay;;.

Putting together what we know so far, all A-scales with a single 1-index agree. Indeed, this follows
from A1 = Aji1 = Aij1 = Aij; so all A-scales with a single 1-index and two repeated indices agree,
combined with \j;1 = Ay4; and the last sentence of step 3. Let ¢ € R* denote this common scale.

Step 5: Consider the submatrix of (A©,T™) () with column labels (17,11), (14,21), (14,31), (1,12),
(i4,11) and row labels (1,1), (1,2), (1,3), (i,1), (¢,2), for 4,5 € {2,...,n} distinct. It looks like

* * * * cx
* * * * cx
e (16)

Ck ok Ccx Ok Nk

Ckck Cx Ok Ak
As a function of ¢ and )5, the determinant of (16) is a scalar multiple of 0(02 — Aisj) (the second
factor is present because it corresponds to scaling the bottom two rows and rightmost column of a
5 x 5 submatrix of 7|2y each by ¢, which preserves rank deficiency). By a direct computer computation,
we find that the scale is nonzero for a random instance of P;,P;, P;, therefore it is nonzero generically.
It follows ¢2 = Aiij. An analogous calculation with (A®p T")(3) gives A=\ i

Step 6: Consider the submatrix of (A©yT™) () with column labels (17,11), (14,21), (14,31), (1,12),
(ji,11) and row labels (1,1), (1,2), (1,3), (¢,1), (¢,2), fori,j € {2,...,n} distinct. It looks like

* * * * C*
* * * * C*

Ck ck Ccx Ok Ajyx
Ckck Cx Ok Ajyk

Similarly to the previous step, the determinant of (17) must be a scalar multiple of ¢(c? — \;;). By
a direct computer computation, it is a nonzero multiple generically. We deduce ¢® = \,;.

Step 7: Consider the submatrix of (A©yT™) () with column labels (17,11), (14,21), (14,31), (1,12),
(ik,11) and row labels (1,1), (1,2), (1,3), (4,1), (j,2), for i,j,k € {2,...,n} distinct. It looks like

* * * * C*
* * * * C*

ok ck Ck ok Ak
Ckcx Ck o Ck gk

The determinant of (18) is a scalar multiple of c(c2 — )\ijk). By a direct computer computation, it is
a nonzero multiple generically (alternatively, note the polynomial system in step 5 is a special case
of the present case). We deduce c? = \; ke

At this point, by steps 5,6,7 we have that all A-scales with no 1-indices and not all indices the same
must equal ¢2. Combined with the second paragraph of step 4, this shows c satisfies the property
announced at the start of the proof. Therefore the proof is complete. O

A.5 Implementation details

A.5.1 Estimating trifocal tensors from three fundamental matrices

Given three cameras P;, P», P3 and the corresponding fundamental matrices Fb1, F31,F32, we can
calculate the trifocal tensor T3, using the following procedure detailed in [1]. Specifically, from
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Fy; calculate an initial estimate of the cameras Pj, P5. Then, P F3,Pj and Py F3; P] should be
skew-symmetric matrices. This gives 20 linear equations in terms of the entries in P53, which can be
used to solve for the trifocal tensor. Note that there are no geometrical constraints when calculating
Ps, and there will be no guarantee of the quality of the estimation.

A.5.2 Higher-order regularized subspace-constrained Tyler’s estimator (HOrSTE) for EPFL

We describe the robust variant of SVD that we used for the EPFL experiments in Section 4. Numerically,
it performs more stably and accurately than HOSVD-HT, yet it is an iterative procedure and each
iteration requires an SVD of the 3n x 9n? flattening. This becomes computationally expensive when
n becomes large and the number of iterations are also large. However, since the number of cameras
for the EPFL dataset are below 20 cameras, the computational overhead is not too great.

In HOSVD, a low dimensional subspace is estimated using the singular value decomposition and
taking the R,, leading left singular vectors for each mode-n flattening. The Tyler’s M Estimator (TME)
[40] is a robust covariance estimator of a D dimensional dataset {x;}Y ; C RP. It minimizes the
objective function

N
. D Ts—1
Eer&glxDﬁglog(xi Y7 ) +logdet (%) (19)
such that ¥ is positive definite and has trace 1. The TME estimator can be applied to robustly find
an RR,, dimensional subspace by taking the R,, leading eigenvectors of the covariance matrix of TME.

To compute the TME, [40] proposes an iterative algorithm, where

» (k) Z Tz(k 1 Z Tz(k 1 = ). (20)

TME doesn’t exist when D > N, but a regularized TME has been proposed by [54]. The iterations
become

N
1 D Py N
EW = e I 21
+a N2 oT(Z6-0) g, 1+a 21

where « is a regularization parameter, and [ is the D x D identity matrix. TME does not assume
the dimension of the subspace d is predetermined. In the case when d is prespecified, [41]
improves the TME estimator by incorporating the information into the algorithm and develops the
subspace-constrained Tyler’s Estimator (STE). For each iteration, STE equalizes the trailing D —d
eigenvalues of the estimated covariance matrix and uses a parameter 0 <y < 1 to shrink the eigenvalues.
The iterative procedure for STE is summarized into 3 steps:

1. Calculate the unnormalized TME, Z®) =S"N (227 /2T (2k=1D)=1)z,).
2. Perform the eigendecomposition of Z(¥) = /(*) () (7(*NT  and set the trailing D — d
. D
eigenvaluesas vy ,_ ; ,0:/(D—d).
3. Calculate ) = U®ESE (UENT /1R SE)(TFENT) | which is the normalized

covariance matrix. Repeat steps 1-3 until convergence.

Similar to the regularized TME, STE can also be regularized to succeed in situations where there are
fewer inliers, and can improve the robustness of the algorithm. The regularized STE differs from STE
in only the first step, which is replaced by

1 D\~N :E:ET o

1.* Calculate the unnormalized regularized TME, Z (k) = Tra N 2uiz1 m +1ra

We apply the regularized STE to the HOSVD framework, and call the resulting projection the
higher-order regularized STE (HOrSTE). It is performed via the following steps:

1. For each n, calculate the factor matrices A, as the R,, leading left singular vectors from
regularized STE applied to T{,.

2. Setthe coretensor G as G=T x; AT ><2A2T~~~><NA%.
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A.6 Additional numerical results

In this section, we include comprehensive results for the rotation and translation errors for the EPFL
and Photo Tourism experiments. Table 1 and 2 contains all results for EPFL datasets. Table 3 contains

the location estimation errors for Photo Tourism. Table 4 contains the rotation estimation errors for

Photo Tourism. In Table 4, we only report the rotation errors for LUD for all the methods that we
compared against, as they are mostly the same since they used the same rotation averaging method.

Table 1: EPFL synchronization errors. €, is the mean rotation error in degrees, €, is the median rotation
error in degrees. €, is the mean location error, é; is the median location error. NRFM(LUD) is NRFM
initialized with LUD and NRFM is randomly initialized. BATA(MLPS) is BATA initialized with MPLS.

Our LUD [NRFM(LUD)] NREM |BATA(MPLS)

Dataset e ét € ét € ét €t ét €t ét
FountainP11(0.008 0.007|0.91 0.54/0.75 0.46 |[3.37 3.03|1.12 1.01
HerzP8 |0.02 0.02 5.065.0614.37 342 |4.24 3.145.04 5.03
HerzP25 |4.70 4.68 [7.758.00/6.20 5.82 |8.85 8.38(7.77 8.41
EntryP10 [ 0.05 0.02 |3.083.02|1.34 1.11 |7.63 7.43 290 2.58
CastleP19 [9.64 5.80 [4.584.04|13.37 3.02 |15.81 15.43|5.77 5.62
CastleP30 [11.00 11.33|4.273.72|13.24 2.75 [16.5417.04[4.23 3.26

Table 2: EPFL synchronization errors. €, is the mean rotation error in degrees, é, is the median
rotation error in degrees. BATA(MLPS) is BATA initialized with MPLS.

Our

LUD

BATA(MPLS)

Dataset e

€r

€r €r

e, ér

FountainP11

0.09 0.08

0.05 0.05

0.06

0.05

HerzP8

0.12 0.

12]0.330.34

0.44

0.39

HerzP25

201 1.

1110.180.19

0.26

0.23

Table 3: Translation errors for Photo Tourism. n is the size after downsampling. Est. % is the ratio of
observed blocks over total number of blocks. €; is the mean location error, é; is the median location error.

EntryP10

0.15 0.11]0.250.25

0.27

0.25

CastleP19

56.24 11.71

0.24 0.22

0.27 0.25

CastleP30

38.84 4.58

0.130.13

0.19 0.15

NRFM(L)is NRFM initialized with LUD and NRFM(R) is randomly initialized. The notation PR means
that the dataset was further downsampled to match the two view methods. BATA is BATA initialized
with MPLS. We were not able to get results for our subsampled dataset for Piccadilly with MPLS.

Dataset Our Approach NRFM(L) LUD NRFM(R) BATA
dataset n Est. % ét ét ét ét ét ét ét ét ét ét
Piazza del Popolo 185 72.3 0.78 0.45|1.63 0.85]1.66 0.86 |13.4512.06] 1.63 1.10
NYCLibrary [127 64.7 1.01 0.53|1.39 048|149 0.57 [13.06 14.03| 1.59 0.68
Ellis Island 194 703 9.56 7.73 [19.31 16.97|20.71 17.96{26.08 26.38]23.63 22.50
Tower of London [130 34.1 4.15 2.66|3.26 2.49|3.54 2.51(49.99 47.33]2.70 2.26
Madrid Metropolis[190 35.9 18.93 15.53|1.91 1.19| 1.94 1.20 (31.48 24.02| 3.33 1.72
Yorkminster 196 372 146 1.14|2.31 1.39|2.35 1.45|16.67 14.46|1.37 1.15
Alamo 224 943 0.62 0.28|0.53 0.31]0.53 0.31(10.04 7.68|0.55 0.33
Vienna Cathedral [197 97.8 0.73 0.33 296 1.64|3.15 1.79|16.08 14.76| 6.16 2.18
Roman Forum(PR)|111 51.1 10.71 6.75[1.59 0.89 | 1.63 0.93|23.23 11.20| 1.85 1.04
Notre Dame  |214 96.6 0.57 0.34|0.38 0.21|0.38 0.21 | 6.87 4.75]1.02 0.26
Montreal N.D. [162 97.0 0.38 0.24 | 0.56 0.37|0.57 0.38{10.33 11.15] 0.58 0.41
Union Square {144 28.6 5.64 3.99 [431 3.76 | 4.85 4.38(9.59 6.69|5.77 4.83
Gendarmenmarkt (112 89.7 45.34 23.63|37.93 17.35|37.92 17.41|62.69 26.42|54.38 15.91

Piccadilly(PR) [169 554 0.73 0.39|3.68 1.90|3.71 1.93 |13.5513.34| - -
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Table 4: Rotation errors for Photo Tourism. N is the total number of cameras. n is the size after
down sampling. Est. % is the ratio of observed blocks over total number of blocks. ¢, is the mean
rotation error, €, is the median rotation error. The notation PR means that the dataset was further down
sampled to match the two view methods. We were not able to get results for our subsampled dataset
for Piccadilly with MPLS.

Our Approach LUD MPLS

dataset N n Est.% e, ér e é €, €, |Our Runtime (s)

Piazza del Popolo | 307 185 72.3 1.26 0.61]0.72 0.43|0.69 0.41 13531
NYCLibrary |306 127 64.7 2.80 1.58|1.16 0.61|1.19 0.57 4465
Ellis Island 223 194 703 4.61 1.11]1.16 0.50|0.99 0.49 13816

Tower of London | 440 130 34.1 2.28 1.31|1.63 1.28|1.66 1.37 4242

Madrid Metropolis| 315 190 35.9 28.85 4.60 | 1.27 0.61 | 1.54 1.15 11764
Yorkminster 410 196 37.2 233 197|134 1.09|1.89 1.04 13115

Alamo 564 224 943 1.10 0.76|1.07 0.68 | 1.09 0.68 17513

Vienna Cathedral | 770 197 97.8 0.74 0.46|0.40 0.28|0.39 0.28 12499

Roman Forum(PR)| 989 111 51.1 11.86 3.39|0.40 0.28 | 1.07 0.65 2162
Notre Dame 547 214 96.6 0.78 0.50|0.67 0.43|0.68 0.43 17430
Montreal N.D. | 442 162 97.0 0.50 0.35]|0.49 0.32]0.49 0.31 7241
Union Square | 680 144 28.6 20.70 5.29 | 1.82 1.34 | 2.00 1.56 4355

Gendarmenmarkt | 655 112 89.7 22.95 15.24/18.42 10.25{17.42 8.41 2432
Piccadilly(PR) [1000 169 55.4 2.01 096 | 6.12 295| - - 11230
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend
on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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reliably to provide closed captions for online lectures because it fails to handle technical
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The statements are precise, and accompanied by complete proofs.
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* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we mention the numerical details and processing of our algorithm in
section Section 4 for each experiment. We also include code in the supplementary material
with instructions on how to run them. Our code depends on other publicly available code.
Instructions can be found in supplementary material.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.
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* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Please feel free to check our code in the supplementary material and the
README.MD file for instructions. A public version will be available in the future.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be pos-
sible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
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Answer: [Yes]

Justification: Please see our experiment details in Section 4. In particular, we included the
way we chose hyperparameter and specific numbers when applicable.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Though we didn’t set a random seed for some experiments, there were
insignificant differences between different runs of the method.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: Please see our experiment details in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).
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Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We only used open source code and have complied to the code of ethics. Please
check code in supplementary material.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require
adeviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our method is focused on a general framework for tensor based structure from
motion and we run experiments on open source datasets. No negative social impacts are
related to our work. Having a tensor based synchronization method opens up more research
directions and could help apply structure from motion to develop applications where point
correspondences are scarce.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: Our paper doesn’t pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited the authors whose code in our code, and respected all relevant licenses.

We include links to code in our submitted code as well. Please refer to the code and the
experiment details.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* Ifassets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide code for our methods and instructions for running the methods
in the supplementary material.
Guidelines:
* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper doesn’t involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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