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Figure 1. OmniFlow is capable of a diverse range of any-to-any generation tasks. OmniFlow supports generation of any output modalities
given any input modality, such as text-to-image, text-to-audio, audio-to-image generations. It also supports tasks in multiple input modalities,

such as text+audio-to-image.

Abstract

We introduce OmniFlow, a novel generative model de-
signed for any-to-any generation tasks such as text-to-image,
text-to-audio, and audio-to-image synthesis. OmniFlow ad-
vances the rectified flow (RF) framework used in text-to-
image models to handle the joint distribution of multiple
modalities. It outperforms previous any-to-any models on a
wide range of tasks, such as text-to-image and text-to-audio
synthesis. Our work offers three key contributions: First, we

extend RF to a multi-modal setting and introduce a novel
guidance mechanism, enabling users to flexibly control the
alignment between different modalities in the generated out-
puts. Second, we propose a novel architecture that extends
the text-to-image MMDIT architecture of Stable Diffusion 3
and enables audio and text generation. The extended mod-
ules can be efficiently pretrained individually and merged
with the vanilla text-to-image MMDIT for fine-tuning. Lastly,
we conduct a comprehensive study of the design choices of
rectified flow transformers for large-scale audio and text



generation, providing valuable insights into optimizing per-
formance across various modalities. Code is available at
https://github.com/jacklishufan/OmniFlows.

1. Introduction

Generative modeling has witnessed considerable advance-
ments in recent years. Notably, diffusion models such as
DALLE-3 [40], Stable Diffusion 3 [11], AudioLDM?2 [33]
achieves state-of-the art performance on text-to-image and
text-to-audio tasks. However, these models can only per-
form a single task while requiring considerable computing
resources and data for training. To achieve any-to-any gen-
erations, previous works such as CoDi [46] and UIO [36]
typically combine a set of modality-specific encoders (e.g.
ViT [1]) and decoders (e.g. Stable Diffusion [44]). However,
this design limits these models’ ability to integrate infor-
mation across modalities and generate multi-modal outputs
coherently. For example, to perform audio-+text-to-image
(A+T—I) generation, CoDi simply takes a weighted average
of the audio embedding and text embedding to condition
an image generator. However, there is no guarantee that the
averaged embedding can faithfully represent the two input
modalities, as arbitrarily many modality embeddings can
average to the same embedding.

An alternative approach for any-to-any generation is to
use a single multi-modal model to learn the joint distribu-
tion of multiple modalities. This approach has often led to
strong performance as it allows information to flow across
modalities. However, existing single-model designs typically
involve training from scratch, and thus require a considerable
amount of data. Existing works in this area, such as UniDif-
fuser [4] and Chameleon [47] only experiment with text and
image modalities. They also require considerable compute
resources. To the best of our knowledge, there has yet to be
a unified open-sourced multi-modal generative model that
supports text, image, and audio simultaneously.

We propose OmniFlow, a unified multi-modal generative
model for any-to-any generation. Unlike previous unified
multi-modal models, OmniFlow does not need to be trained
from scratch with a large amount of data because of its
modular design, saving considerable computing resources
for its training. OmniFlow is inspired by the MMDiT ar-
chitecture used in Stable Diffusion 3 [11], which performs
text-to-image generation using a two-stream network that
combines a text-input stream and an image-output stream
through a series of joint attention blocks. OmniFlow builds
on MMDIT by incorporating additional input and output
streams, extending its text-to-image capability to support
any-to-any generation. Crucially, since the parameters for
each stream are mostly independent, we can pretrain them
separately or initialize them with a pretrained single-task
expert model (e.g. SD3).

To effectively train OmniFlow, we propose a novel multi-
modal rectified flow formulation that incorporates a diverse
set of tasks, such as text-to-audio and audio-to-image, into
a unified learning objective. Multi-modal rectified flow is
built upon a decoupled, time-differentiable interpretation
between the distribution of a multi-modal data pair and i.i.d.
Gaussian noise. In this formulation, each of the any-to-any
generation tasks can be represented by a path connecting
two noise levels. For example, given text, image, and audio
modalities, the task of text+audio-to-image (T+A—1I) can
be represented by a path between the distribution of (clean
text, clean audio, Gaussian noise) to (clean text, clean audio,
clean image).

We conducted extensive evaluations of OmniFlow. Ex-
periment results show that OmniFlow outperforms previous
any-to-any models on a wide range of tasks, including text-to-
image and text-to-audio generation. Compared to single-task
specialist models, OmniFlow achieves competitive perfor-
mance with state-of-the-art methods.

In summary, our contributions are three-fold:

* First, we extend rectified flow formulation to the multi-
modal setting and support flexible learning of any-to-any
generation in a unified framework.

* Second, we proposed OmniFlow, a novel modular multi-
modal architecture for any-to-any generation tasks. It al-
lows multiple modalities to directly interact with each
other while being modular enough to allow individual
components to be pretrained independently or initialized
from task-specific expert models.

* Lastly, to the best of our knowledge, we are the first work
that provides a systematic investigation of the different
ways of combining state-of-the-art flow-matching objec-
tives with diffusion transformers for audio and text genera-
tion. We provide meaningful insights and hope to help the
community develop future multi-modal diffusion models
beyond text-to-image generation tasks.

2. Backgrounds

2.1. Flow-Based Generative Models

Flow-based generative models [23, 31, 34, 48], represent the
1

coupling of data points 2° and noise distribution 2! using an
ordinary differential equation (ODE):
dz' = vg(z', t)dt (D

where the velocity v is parameterized by a neural network.
Directly solving this equation is expensive. However, we can
define a forward process z* = a(t)x? + b(t)x! to directly
regress a conditional vector field using the Conditional Flow
Matching (CFM) objective [48] as follows:
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Figure 2. Pipeline of OmniFlow. Previous any-to-any models
such as CoDi [46] (Top) concatenate multiple modality-specific
encoders and decoders, and naively average the embedding of
multiple modalities to achieve joint conditioning. By contrast, Om-
niFlow (Bottom) is a unified, modular multi-modal model, where
features from different modalities directly interact with each other
through joint attention layers. OmniFlow is inspired by the modular
design of Stable Diffusion 3 [11] (Middle), a text-to-image model.

where A(t) = log aégz is the signal-to-noise ratio (SNR),

eo(zt,t) = —W(vg(xt, t) — i((tt)) x') is parameterized

by vg. The optimum of this objective remains unchanged
when introducing time-dependent weighting, and hence we
can rewrite it following [22] as:

1
Lu(w0) = =3By s w(t)X (B)]|eo(z0,t) — €l (3)

where, w(t) = — N (¢)b(t)? for CFM and z' ~ N(0, 1)
follows noise distribution. This formulation gives a uni-
fied representation for a variety of generative modeling ap-
proaches. For example, a rectified flow’s forward process
is defined as z* = (1 — t)z" + tx!, which corresponds to
wRF = ﬁ Esser et al. [11] summarized many configura-
tions of common methods under this unified formulation,
including (LDM)-Linear [44] and Cosine [39]. They also
explored a logit-normal distribution of timestep ¢ for text-
to-image generation. We explore all these variants in the
context of multi-modal generation, particularly for audio
and text, as it is unclear if the results from the text-to-image
domain can be directly generalized.

2.2. Any-to-Any Generation

Prior works have explored any-to-any generation. CoDi [46]
achieved it first by combining multiple modality-specific
encoders (e.g. ViT) and decoders (e.g. Stable Diffusion)
through bridge alignment. However, its design has lim-
ited cross-modality interaction. For example, to achieve
text+audio-to-image (T+A—1 generation), it simply com-
putes the weighted average of text embeddings and audio
embedding. Unified-10 [36] models any-to-any generation
as a sequence-to-sequence problem, and uses an autoregres-
sive model to achieve any-to-any generation, such as text-
to-image or text-to-audio. Our work is the first to use a
multi-modal flow matching objective for any-to-any tasks.

Additional works focus exclusively on unifying text-to-
image and image-to-text generation. Chameleon [47] uses
an LLM-like large autoregressive model to handle multi-
modal data. It represents images as VQGAN tokens [50].
Transfusion [52] adopted a similar design, but uses a non-
autoregressive diffusion loss for image modeling, while
maintaining an autoregressive loss for text generation. De-
spite their successes, these unified multi-modal models re-
quire considerable training resources, because they are less
modular than previous works that combine multiple mod-
els. OmniFlow achieves a good balance by separating the
parameters of each individual modality, while allowing the
features of each modality to freely interact with each other
at every layer.

3. Method
3.1. Multi-Modal Rectified Flow
0

We consider the joint distribution (29,29, ..22) ~ 74aia
over the space of paired multi-modal data where z; C R%
is a sample of modality ¢ represented by a vector of d;
dimension. Let (z},23,..2L) ~ 7! be the i.i.d Gaussian
distribution where z} ~ AN(0,1) is a Gaussian vector of
d; dimension. Given empirical observations z° ~ 7Tgq1q,
and z! ~ 7!, we consider the decoupled, continuous, time-

differential interpolation given by:
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where the independence condition of Eq (2) indicates
x% only moves when #; moves. Over this interpretation
space, we can use a path 7 : ¢t — (f1,t2..t,);[0,1] —
[0, 1]™ to model any-to-any generation tasks involving these
modalities. For example, given (x1, 2, Z3) ~ Pdate Where
x1, X2, X3 are image, text, and audio modalities. We can



Algorithm 1 Multi-Modal Rectified Flow

Input: Dataset D consists of modality 1,.../N,where
each sample z = (29, 2%, ..) consists of a subset (or
all) of modalities 41, 45.. € {1,2,..N}.

Output: vp; : b2 gt

(2, 2k, alr) — ol for each i =
1,2..N, parameterized by 6
Initialize 6

1: while not converged do

2 Sample z = (2, 2%,..) ~ D

3 29 0;Vj € {1,2.N}\ {il,42...}

4: Sample path 7.*

5: Sample ¢ ~ Uniform(][0, 1])

6 (ty..tNn) < T(t)

7 zh ezl = (1 — 1)) + t;x}; Vi€ 1,2.N

8 L=ty pllvi —vai(al aly )|

9: Perform optimizer step using VoL

10: end while

11: Return 6

122 > * 7 encodes a task involving only modality %1, ¢5..,
hence t; = 1;Vj ¢ {i1,42..}

model text-to-image(T—1I) tasks as a path 7y9; such that
712:(0) = (0,0, 1), which represents a clean text-image pair
and 742;(1) = (1,0, 1), which represents clean text. We can
similarly model the joint sampling of text, image and audio
set as a path from (0,0,0) to (1,1,1) and text+image-to-
audio (T'+ I — A) as a path from (0, 0, 0) to (0,0, 1).

The flow matching objective would be solving n least
squares regression problems for each modality of the form:

mzn]ET/]EIo,ﬂHvi —wp (it a2 aln 4 t,)|Pds
T

Yo
N
where v; = z? — zzl, and vy ; is a neural network pa-
rameterized by 6. We use the same network 6 to predict
outputs for all modalities 1, 2../N. The outer expectation is
over some prior of paths encoding generation tasks which
we are interested in. The integral is calculated over a path
T(t) = (t1,...tp), and ds = %tti dt. Concretely, we consider
three modalities: image, text, audio in our experiments as
modalities: 1, 2 and 3 respectively. We consider the distribu-
tion of all possible linear paths 7(t) = (¢1,t2,t3) in [0,1]3
following the rectified flow formulation. They can encode a
diverse set of tasks such as text-to-image or text+image-to-
audio.

During training, we do not necessarily need all modalities
for each data point. For data points that only contain a subset
of three modalities (e.g. text-image pairs), we can set the
time step of remaining modalities (e.g. audio) to 1, which
corresponds to complete Gaussian noise. The full training
algorithm is given as follows:

At inference, we simply pick a path and use the network

prediction to solve for Eq. (5). Notably, for standard text-
to-image generation with (1, x2) pairs where z; is image
and x5 is text, and x3 is the missing audio modality, pick-
ing a linear path from (1,0,1) to (0,0, 1) is equivalent to
the standard single-modality rectified flow (Text—Image)
formulation used by Stable Diffusion 3 [11].

3.2. Multi-Modal Guidance

To flexibly control the multi-modal generation process, we
extend the classifier free guidance (CFG)[16] to multi-modal
rectified flow setting. Recall that CFG of single modalities
are formulated as follows:

vo(z", c) = vo(x', ) + (a0 — 1) (wg(z', ¢) —vo(x")) (8)

where ¢ is a condition and z' is the noised latent at
timestep ¢ of the single-modal output. We extend this
formulation to multi-modal setting by defining ;; =
vg(x}, x9) — vg(a}), which represents the influence of in-
put modality j to output modality <. In particular, we ob-
tain vg(x}, z%) and vg(z}) by setting inputs of modalities
not present in the formula to Gaussian noise. For example,
given three modalities 1, 72, T3, we can obtain vg(z}, z9)
by computing vp (2}, 23, 21) and obtain vy (z}) by comput-
ing vp(z}, z3, 21). Note that 21, z1 is just Gaussian noise.

Given the set of §;;, we can guide the output generation
of modality ¢ by the following formula:

f/g(z’il...zfl") = Ug(l‘ﬁl...l’;") + Z(a” T )
JFi

where «;; is the equivalent of « in a multi-modal set-
ting. This scheme allows the user to precisely control the
interaction between each of the input and output modali-
ties. When there are only two modalities, our multi-modal
guidance Eq. (9) is equivalent to the standard single-modal
classifier-free guidance Eq. (8).

3.3. Model Architecture

We propose OmniFlow, a modular, effective extension to
the MMDiT architecture used in Stable Diffusion 3. Con-
cretely, given multi-modal inputs that consist of text, image,
and audio, we first convert them to latents x1, 22, 3 using
modality-specific VAEs. We then add random Gaussian noise
to the latents following the forward process defined in Eq. (6).
We use the three sinusoidal embeddings to encode, ¢1, ¢, t3
which correlate to the noise scale for each modality. These
three timestep embeddings are passed to an MLP to obtain y,
a single embedding representing all modality-specific time
steps. The final input to OmniFlow are the unified timestep
embedding y, and noised latents (z1, 2, x3). These four in-
put vectors are passed to /N consecutive Omni-Transformer
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Figure 3. Architecture of OmniFlow. Left: We highlight the architecture of OmniFlow. Right: We show the design of an individual

Omni-Transformer Block.

blocks. The final hidden states of each modality, are then
processed by the linear output layer to obtain predictions of
.

Within each Omni-Transformer block, the inputs
r1,Ts,x3 are processed by modality-specific projec-
tions to obtain ¢, k1,v1,q2, k2, v2, g3, k3,v3. We then
concatenate the queries, keys, and values to obtain
@ = Concat(q,qo,q3), K = Concat(ky, ko, k3),V =
Concat(v1, v2, v3). The joint attention output for i*" modal-
ity out; is given by:

¢ K

Vd

where d is the dimension of each attention head. The out-
put is passed to a feed forward network (FFN) to get the final
output of the Omni-Transformer block. Following the design
of DiT [41], we use the unified time embedding to modulate
the gkv projection and FFN. We add skip connections after
the joint attention operation and after the FFN.

We illustrate the model architecture in Fig. 3. Notably,
different modalities are handled by different projection and
feed-forward layers with independent parameters. The only
multi-modal operation is the joint attention, with no trainable
parameters of its own. This allows us to pretrain layers of
different modalities individually and combine them for fine-

out; = SoftMax (

W (10)

tuning, which significantly improves the training efficiency.

4. Setup
4.1. Training Dataset

We use text-image pairs, text-audio pairs, and audio-image
pairs during training. We also make use of a small amount of
text-image-audio triplets. The text-image pairs include SM
images sampled from COYO-700M dataset [5], 2M images
sampled from LAION-Aesthetic-3M subset [25], 7M images
from LAION-COCO subset [26], the full CC12M dataset
[6], and 2M high-quality image dataset generated by flux-
dev and DALLE-3 [14]. We put high weights on images
from LAION-Aesthetic-3M and the 2M high-quality images
to maintain good aesthetic quality in the output. The text-
audio pairs include the full training set of AudioSet [12],
Audiocaps [21] and WavCaps [37]. The audio-image pairs
include the training data of VGGSound [7] and SoundNet
[2]. While SoundNet contains 2M images and is larger than
VGGSound, we set the sample weight of VGGSound and
SoundNet to 2:1 since SoundNet contains many improperly
resized images with bad aspect ratios.

To generate text-image-audio triplets, we use BLIP [28]
to generate synthetic captions for videos in VGGSound and
SoundNet. We provide further details of the dataset construc-
tion in the Appendix.



4.2. Training Recipe

At a high level, we initialize OmniFlow with the text and
image modules of Stable-Diffusion 3 (Model 1). We first
train a separate text-to-audio model with text-audio pairs
(Model 2). Then, we merge Model 1 and Model 2 to obtain
a combined model with text, image, and audio modules
(Model 3). Since Model 1 and Model 2 have separate text
modules, we average their weights during the merge process.
Finally, we fine-tune Model 3 on a diverse set of any-to-any
tasks using the methods described in Sec. 3.1.

Due to our modular design, we can initialize and pretrain
each module individually. This saves immense computa-
tional cost when compared to previous unified multi-modal
models (e.g. UniDiffuser [4]) which are trained from scratch.
We use a global batch size of 64 and train Model 2 and
Model 3 for 100k, and 150k steps each. We provide further
training and implementation details in the Appendix.

5. Main Results

5.1. Evaluation Metrics

We perform extensive experiments on paired generation (text-
to-image, text-to-audio) and generic any-to-any generation
such as text-to-audio+image (T—I+A), audio-to-text+image
(A—T+I). For text-to-image generation, we report FID [15]
and CLIP [43] scores on MSCOCO-30K benchmark [30].
Following the official implementation, the cosine similarities
between CLIP embeddings are multiplied by 100. We also
report results on the GenEval benchmark [13]. For audio
generation, we report FAD [20] and CLAP [10] score on
AudioCaps. Results are reported with a 16kHz sampling rate.
We also use CLAP scores for caption evaluations.

5.2. Text-to-Image Generation

Model Param | FID| | CLIP?
UniDiffuser 0.9B 9.71 30.93
CoDi 4.3B 11.26 | 30.69
UIO-2XXL 6.8B 13.39 -
SDv1.5 0.9B 11.12 | 30.63
SDXL* 2.6B 16.49 | 31.36
SD3-Medium* 2B 20.94 | 30.65
OmniFlow* 3.4B 13.40 | 31.54

Table 1. Text-to-Image Generation on MSCOCOQO-30K Bench-
mark. *Indicates models pretraining data consists of high quality
images and captions that do not follow the distribution of COCO
dataset, which can negatively affect FID scores.

We report results on MSCOCO-30k in Tab. 1, and results
on GenEval in table Tab. 2. On MSCOCO-30k, we achieve
a lower FID than state-of-the-art models such as SDXL and
SD3-Medium. While our FID number is higher than some

Model Param | Images \ Gen.T
Text-to-Image Specialist
SD1.5 0.9B 4.0B 43
SDv2.1 0.9B 2.3B .50
SDXL 2.6B 1.6B .55
DALL-E 2 4.2B 2.6B 52
SD3-Medium 2B 1B .62
SD3-Large 8B 2.0B .68
Generalist

CoDi 4.3B 400M* .38
UniDiff. 0.9B 2B 43
OmniFlow 3.4B 30M* .62
Chameleon 7B 3.5B .39
Transfusion 7B 3.5B .63

Table 2. Text-to-Image Generation on GenEval Benchmark. We
compare the model size, number of training images and GenEval
benmark Score. * Indicates fine-tuning dataset. CoDi and MMDiT-
O are both initialized with pretrained text-to-image diffusion mod-
els (SD and SD3).

previous models such as SDv1.5, it should be noted that
more recent models such as SDXL and SD3 tend to have
higher FID numbers because they are trained on high-quality
text-image pairs that do not match the distribution of COCO
images [42]. Notably, SD3 has a FID of 20.94 while SDv1.5
has 11.12, even though SD3 is considered a better model
according to human evaluations. SDXL, which is widely
recognized as the state-of-the-art open-source model before
the release of SD3, also has a higher FID than SDv1.5.

In terms of CLIP scores, OmniFlow significantly out-
performs previous models. In particular, when contrasted
with generalist models UniDiffuser and CoDi, we achieve a
gain of 4+-0.61 and +0.85 respectively, showing superior text-
to-image alignment. On GenEval Benchmark, which better
measures the text-to-image capabilities, OmniFlow achieves
a score of 0.62, a competitive score even when compared
to the state-of-the-art specialist SD3-Medium. In addition,
OmniFlow significantly outperforms previous any-to-any
baselines at the same scale, such as CoDi (+.24) and UniDif-
fuser (+.19). Compared with larger models trained on a lot
more images, OmniFlow outperforms Chameleon-7B and
achieves competitive performance as Transfusion-7B.

Notably, unlike Chameleon, Transfusion, and UniDiffser
which need to be trained from scratch, OmniFlow achieves
high performance with only 30M training images, highlight-
ing the effectiveness of our modular design. While the design
of CoDi also allows it to make use of pretrained text-to-
image model as its initialization, it is trained with consider-
ably more images than OmniFlow while performing worse.



Model | Param | FAD| | CLAP?
Text-to-Audio Specialist

AudioGen-L[24] 1B 1.82 | -

Make-an-Audio[ 19] 0.4B 2.66 | -

AudioLDM-L[32] 0.7B 1.96 | .141

Make-an-Audio 2[18] 0.9B 205 | .173

AudioLDM 2-Full-L[33] 0.7B 1.86 | .182

Generalist

CoDi 3.4B 1.80 | .053*

OmniFlow 3.4B 1.75 | .183

UIO-2XXL 6.7B 2.64 | -

Table 3. Text-to-Audio Generation on AudioCaps Evaluation Set.
Comparison of FAD and CLAP scores for various audio generators.
*Reproduced from official checkpoint, see Appendix for details.

5.3. Text-to-Audio Generation

We report text-to-audio generation results on AudioCaps
in Tab. 3. Compared with previous state-of-the-art, Omni-
Flow achieves strong performance on FAD and CLAP scores.
It outperforms AudioLDM?2 on FAD (-0.11) and achieves
equivalent performance on CLAP (+0.001). When compared
with generalist models, OmniFlow significantly outperforms
CoDi on both FAD (-0.05) and CLAP (+.13) metrics.

5.4. Recipes for Audio and Text Diffusions

Audio Gen. | Text Gen.
FAD| CLAPT
Continuous Flow Matching
eps/linear 2.08 141
v/cos 2.01 203
v/linear 1.86 126
rf/uniform 1.82 2217
rf/lognorm 1.79 254
Discrete Text Diffusion
SEDD[35] - 180
MDLM[45] - 163

Table 4. Various Formulations for Audio and Text Generation.
We report FAD for audio generation and CLAP for text generation
on AudioCaps dataset.

We explore various recipes for training audio and text
diffusion transformers for multi-modal generation, which is
a relatively under-explored area. Concretely, we explored
five formulations mentioned in the section Sec. 2.1. For these
experiments, we used a model with only audio and text mod-
ules (Model 2 in Sec. 4.2) and trained for 50k steps. We
report FAD score for text-to-audio generation and CLAP
score for audio-to-text generation. Amongst all five formu-
lations, rf/lognorm performs the best with the lowest FAD
(1.79) and highest CLAP score (.254). We also explored two

discrete space diffusion models, SEDD [35] and MDLM
[45] which showed advantages over continuous-space dif-
fusion models in recent literature. Specifically, we use the
absorbing state version of SEDD. For these experiments,
the text-vae encoder is replaced with a token-embedding
layer, and, text-vae decoder is replaced with a simple lin-
ear output layer to predict token logits. We also replace the
flow-matching loss on the text-embedding with the loss func-
tion of SEDD and MDLM respectively, which operates on
token logits instead of continuous embeddings. We report
the CLAP score on audio-to-text generation. We do not see
considerable advantages over continuous alternatives.

6. Sampling

On the sampling side, we explored the effect of guidance
and timestep shift. The timestep shift was originally intro-
duced by SD3 to balance the sampling process of images at
different resolutions. Concretely, it augments the inference
schedule as:

vt
1+ (1 =)t

where v = \/% , with m being the target sample resolu-
tion and n being a reference resolution. For audio and text
generation, there is no concept of varying resolution, as the
input audio spectrogram and text embedding have fixed res-
olutions. However, we empirically observe applying a shift
can improve the generation quality. Concretely, incorporat-
ing the shift term v > 1 will lead to a concave schedule,
where the denoising process progresses slowly at the be-
ginning and accelerates towards the end. We find that this
improves sample quality for text-to-audio and audio-to-text
generation tasks.

We employ the multi-modal guidance mentioned in
Sec. 3.2. For simple audio-to-text and text-to-audio gen-
eration, our formulation is reduced to standard classifier-
free guidance. We show the effect of guidance and timestep
shift in Fig. 4. Generally, we find that shift=3.0 works well
for both tasks. For audio generation, a guidance scale of
8 achieves the highest performance. For text generation, a
guidance scale of 4 achieves the best result.

To explore the effect of multi-modal guidance in Sec. 3.2,
we provide qualitative results for audio+image-to-text
(A+I—T) task. Recall that we use x1, z3, x3 to denote im-
age, text, and audio modalities. The multi-modal guidance
for this task can be controlled by as; and a3 where o
controls text-image alignment and a3 controls text-audio
alignment. For simplicity, we denote o1 as ayp and aog as
Qry. We vary cim, oy between the interval [1.0,2.0] such
that o + i = 3.0. We show the results in Fig. 5. Quali-
tatively, higher a,, will make the model’s output resemble
more the audio captions, and «;, will make the model’s
output resembles more the image captions. Interestingly,
we observe that it also reflects the subtle differences in the

t= (1)
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(a) Text-to-Audio Generation. (b) Audio-to-Text Generation.

Figure 4. Effect of CFG and Shift for audio and text generation.
We evaluate the impact of guidance and timestep shift on text-to-
audio and audio-to-text tasks.

a group of race cars lined up
on a track.

a group of high-performance

race cars driving down a race
track.

a futuristic race car speeding

down a winding road.

Arace car is accelerating
then it throttles down a gear.

Arace car is revving its
engine.

Figure 5. Effect of Multi-Modal Guidance. In this example, the
user can flexibly control the alignment between output text and
input image, audio independently by varying o, and aim. Higher
aim Will make the output texts resemble image captions, with visual
descriptions such as lined up, driving down. Higher o, will make
the output texts resemble audio captions, with descriptions such as
accelerating, revving.

style of audio and image captions in the training data (e.g.
whether the first letter is capitalized). By varying these two
parameters, users can achieve flexible control of generation.

6.1. Qualitative Comparison

We directly compare OmniFlow with two recent any-to-any
generation methods: CoDi [46] and UniDiffuser [4]. In addi-
tion to the quantitative results, we present qualitative text-to-
image comparisons in Fig. 6. These examples demonstrate
that OmniFlow achieves a significant improvement in gen-
eration quality compared to previous any-to-any models.
Specifically, in the first example (top), our model success-
fully follows the prompt while maintaining high aesthetic
quality, accurately capturing both the cat’s features and its
mirrored reflection. In contrast, CoDi is unable to change
the cat’s eyes, and UniDiffuser fails to depict the cat looking
at the mirror. A similar trend is evident in the third exam-
ple: OmniFlow correctly positions lanterns tied to a rope,

UniDiffuser

“Side view of
ragdoll cat with
blue eyes looking
at itself in the
mirror.”

“Portrait of a
cyberpunk girl
with neon tattoos
and a visor,
staring
intensely.”

“Painting of a
cherry blossom

park at night, 8

with lanterns
lighting the path,
peaceful scene.”

“Portrait of a
small owl nestled &
in a tree hollow
with curious
eyes.”

“A serene scene
of a lighthouse
on a rocky
island, with
seagulls flying
overhead and
gentle waves.”

Figure 6. Qualitative Comparison with baselines on text-to-
image generation. OmniFlow achieves better image quality and
prompt alignment when compared to previous generalist models.

while UniDiffuser places them on the river. Finally, in the
lighthouse example, CoDi fails to incorporate seagulls, and
UniDiffuser ignores the adjective “gentle,” instead producing
an image with rough waves and an out-of-focus lighthouse.

Our results show that OmniFlow achieves a much higher
generation quality compared with previous any-to-any mod-
els, both in terms of image-text alignment and image fidelity.

7. Conclusion

We present OmniFlow, a unified early-fusion multi-modal
generative model for any-to-any generation tasks. Omni-
Flow adapts a modular design that enables individual com-
ponents to be pretrained separately, while allowing features
from different modalities to directly interact with each other,
through a joint attention mechanism. We conduct extensive
experiments to show that OmniFlow outperforms previous
any-to-any models on a wide range of challenging generation
tasks, including text-to-image and text-to-audio generation.
We provide further analysis on the limitation of OmniFlow in
the Appendix.
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Size  Modality

LAION-Aesthetics-3M | 2M* T,I
CCI2M 12M T,I
COYO-700M(Subset) M T,I
LAION-COCO ™ T,I

SoundNet 2M T,A, It

VGGSound 0.2M T,A It
T2I-2M M T,I
AudioSet 2M T,A
AudioCaps 46K T,A
WavCaps 0.4M T.A

Table 5. List of all datasets used in training. *Some image URLs
are no longer accessible. f We generate synthetic captions using
BLIP.

A. Implementation Details
A.1. Dataset

In Tab. 5, we list the size of all datasets used in training.
We filter out all images whose shortest side is less than
256 pixels. To obtain data with all modalities (image, audio,
text), we use BLIP to generate synthetic captions for images
in the SoundNet[2] and VGGSound|[7] dataset, which are
extracted from videos. Since AudioSet only comes with
class labels, we use synthetic captions generated by audio-
language models provided by AudioSetCaps[3].

A.2. Schedules

Recall from Section 3 that we can represent different tasks
with different paths in [0, 1]3. We visualize this in Fig. 7. We
adopted simple linear tasks for any-to-any generation tasks
so that for simple cases like text-to-image and text-to-audio,
our formulation matches the standard rectified flow.

A.3. Training Pipeline

We initialize our model with SD3 (Model 1 in Fig. 8). We
first train the model on text-audio pairs to obtain Model 2.
The text branch of Model 2 is initialized with weights of
SD3, while the audio branch is randomly initialized. After
the training, we merge Model 1, which contains a text branch
and an image branch, and Model 2, which contains a text
branch and an audio branch, to Model 3, which contains text,
image, and audio branches. The text branch of Model 3 is
obtained by averaging the weights of the text branches from
Model 1 and 2. Finally, we train the Model 3 on all datasets
mentioned in Suppl. A.1. This training pipeline is illustrated
in Fig. 8.

0,0,1)

Text—Image

0,1,1)

(1,0,1)

Audio—Image
Text—Audi

(0,1,0)

(1,0,0)

(1,1,0)

Figure 7. Paths encoding different any-to-any generation tasks.
(t1,t2,t3) represents the “noise level” of image, text and audio
modalities. (0, 0, 0) represents clean (image, text, audio) triplets,
and (1,1, 1) represents pure Gaussian noise.

Model 1(SD3) ,,'\,A,‘,",jf", »3>” erj[\jfjg\{{ -
I I Anyto Any D D
”””””””” Merge Training 1 D D
Text-Audio Merge
Training

’ D D D Text Modules
IDID I ] Audio Modules

”””””””” D Image Modules

Figure 8. Training Pipeline of OmniFlow. We initialize our model
with SD3 (Model 1). We then train the model on text-audio pairs to
obtain Model 2. We merge Model 1 and Model 2 to obtain Model
3. The final model is obtained by further training Model 3 on any-
to-any generation tasks.

We train Model 2 for 100k steps and Model 3 for 150k
steps. We use 8 A6000 GPUs with a per GPU batch size of
8. We use AdamW optimizer with a learning rate of le-5
for Model 2 and 5e-6 for Model 3. The learning rate under-
goes a linear warmup in the first 1000 steps and a cosine
decay throughout the rest of the training. We adopt exponen-
tial moving average (EMA), which are updated every 100
training steps with a decay factor of 0.999.
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Figure 9. Architecture of Text VAE and Text Encoders in Omni-
Flow. SD3 (Top) uses three text encoders: CLIP-L, CLIP-G, and
T5-XXL. OmniFlow (Middile) replaces the 4.7B T5-XXL with a
VAE encoder based on Flan-T5-L. CLIP encoders become optional
and are not used for tasks without clean text inputs. The decoder of
VAE (Bottom) is based on TinyLlama-1.1B. The VAE embedding
is used as the prefix for decoding.

A 4. Text VAE

We train a text VAE on caption data using Flan-T5-L [9]. Re-
call that SD3[11] makes use of three text encoders: CLIP-L,
CLIP-G and T5-XXL. We replace the 4.7B T5-XXL with
Flan-T5-L [27] to save computation cost and use it as part
of a text VAE. Specifically, given an input caption of length
L, it is first encoded by Flan-T5-L to obtain a vector of size
L x 1024. We then pass it to a QFormer[29] and obtain an
output vector of size 32 x 64. This vector is used as the VAE
embedding. In the decoding process, the VAE embedding is
first processed by a linear projection layer to obtain a vec-
tor of size 32 x 2048. This is used as the prefix embedding
for a TinyLlama-1.1B decoder [51]. These architecture de-
signs are shown in Fig. 9. Note that while we introduced
a 1.1B text-decoder, the overall system actually has fewer
parameters since we replaced the 4.7B T5-XXL with a 783M
Flan-T5-L.

We employ the auto-encoding training objective of OPTI-
MUS [27]. We freeze the Flan-T5-L encoder and fine-tune
the QFormer and TinyLlama decoder end-to-end. We train
the text VAE on all caption data mentioned in Suppl. A.1 for
2 epochs, with a learning rate of le-5, a global batch size of
256 using AdamW optimizer.

When using the VAE encoder as the text encoder of Omni-
Flow, we pad the embedding to 4096 with zeros to maintain
the input dimension of SD3. Additionally, we also incorpo-
rate the CLIP-L and CLIP-G encoders of SD3 as auxiliary
text encoders to stabilize the training. We apply random
dropout to these encoders during the training. During the
inference, the CLIP encoders are not used if the input does
not contain clean texts (e.g. Image-to-Text task).

A.S. Audio VAE

We directly adapt the audio VAE used by AudioLDM [32].
In particular,we adopt the same vocoder and preprocessing
pipeline as AudioLDM2. We use HiFiGen as VAE, which is
used in AudioLDM and AudioLDM?2. We use AudioLDM2’s
checkpoint. We also explored AudioMAE, but found it to
perform significantly worse as measured by FAD (2.03 vs
1.79).

A.6. Omni-Transformer

We followed the architectural design of SD3 for image and
text modules and initialize them with SD3 weights. The
audio modules are initialized with identical setup to the
image modules. Specifically, it has 24 layers and a hidden
size of 1536. The positional embedding layer has a patch
size of 2. Since the audio VAE outputs a feature map of
dimension 256 x 16, the positional embedding layer will
convert each audio to a sequence of length 128 x 8 = 1024.

A.7. Pooled Conditional Embeddings

SD3 makes use of additional pooled embeddings from CLIP-
ViT-L/14 and CLIP-ViT-G/14 in addition to the sequence
embeddings. We maintain them as is, with additional dropout
during the training. We additionally incorporate an Audio
Encoder to create pooled embeddings for audio inputs [53].
These embeddings are not used when clean data of respective
modality is not available.

A.8. Baselines

In this section, we describe the specific variants studied in
Tab. 4. Except for the discrete text diffusions (SEDD and
MDLM), these variants fit into the unified formulation of
Eq. (3) by varying its parameters.

linear is a variant of DDPM used in LDM [44]. It dis-
cretizes the timesteps to 0,1...7" — 1 and uses the formu-

lation b; = /1 — a2, where a; = H;O(l — B;), and
B = (VBo + 75(/Br—1 — vBo))?. We explored e-

prediction and v-prediction objectives for this variant.
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Figure 10. Discrete Diffusion Variant of OmniFlow. In this setup,
we remove the text VAE and directly pass token embedding to the
Omni-Transformer layers. “[m]” indicates a mask token.

cosine is defined by the forward process
xt = cos(gt)x0+ = sin(gt)xl (12)

The weighting function is w; = e~*¢/2 for v-prediction
objectives[17].

SEDD and MDLM are recently proposed discrete text-
diffusion models. We consider MDLM[45] and the absorbing
state variants of SEDD[35] in our experiments.' These mod-
els directly define a forward process in the discrete token
space, where clean text tokens are progressively replaced
with a special “[MASK]” token. We adapt our implemen-
tation for these methods by removing the text VAE and
introducing a token embedding layer. This design is shown
in Fig. 10.

ISEDD also has a uniform variant, where the tokens are not replaced with a
”[MASK]” token, but a randomly token sampled from the vocabulary.

1 modality

2 modalities
(Pairs)

Data 3 modalities
Distribution (Triplets)

Figure 11. Synthetic Experiments on three 1D-modalities. We
consider the joint distribution of three toy modalities (z1, z2, z3),
each represented by a vector of dimension 1. Hence, a triplet consist-
ing of three modalities be represented by a point in R®> We assume
the joint distribution is a uniform distribution in the neighborhood
of tetrahedron (Left). We experiment with training OmniFlowusing
triplets, pairs, and only individual modalities. Models trained with
triplets of three modalities best represent the original distribution.

B. Additional Discussions

B.1. Sampling

OmniFlow does not directly model the marginals of
two modalities. For example, given three modalities
(w1, 2, 23), it does not directly model p(z{|z) =
fx§eRds p(z9, x1|29)dA, where d3 is the dimension of
x3. Integrating over x1 is infeasible. Instead, we sample
p(29, 23|29) by first sample z3 ~ q(xi]29) = N(0,I) and
sample p(x?|z3, x9) using path from (1,0,1) to (0,0,1).

B.2. Necessity of text, image, audio triplets.

Compared with previous works such as CoDi[46] which
uses weighted average of embeddings to mix multiple input
modalities, OmniFlow requires directly training on triplets
consisting of all modalities (image, text, audio). To study the
necessity of this requirement, we conduct synthetic toy ex-
amples on three modalities (1, 22, x3), each represented
by a one-dimensional vector. A triplet of three modali-
ties can then be represented by a point (X,Y, Z) in 3D
space. We show this experiments in Fig. 11. We assume
the ground truth data distribution follows a uniform distri-
bution in a small neighborhood adjacent to a tetrahedron
(Leftmost Figure). We experiment with training an 8-layer
MLP with triplets (1, 22, x3) (Second-Left Figure), pairs of
(z1,22),(x1,x3),(x2, x3) (Second-Right Figure), and only
individual modalities (x1), (x2), (z3) (Rightmost Figure).
For each model, we plot 50k samples generated by the model.
Qualitatively, models trained on triplets best represent the
data distribution. This makes sense as pairs are essentially
projections on XY, XZ, YZ planes and individual modalities
are projections on X, Y, Z axis. These projections are not
sufficient to recover the original distribution represented in
this 3D space.



AudioCaps COCO-Karpathy
Images Parms. | CLAPt CIDErt | CLIPt CIDErt
Specialist
BLIP-2[29] 129M 2.7B - - - 1458 1
SLAM-AACI8] - 7B - 84.1% - -
Generalist
OmniFlow 30M 3.4B 0.254 48.0 26.8 47.3
CoDi T 400M 4.3B 0.206 7.9 25.9 17.2
Unidiffuser { 2B 0.9B - - 29.3 20.5
UIO2-XXL 1B* 6.8B - 48.9 - 125.4%
Transfusion 3.5B 7B - - - 35.2

Table 6. X-to-Text Performance comparison on AudioCaps and COCO Captions. * UIO2’s training data includes COCO. The fine-tuning
dataset also includes 53M image understanding data, including 14 image captioning datasets. { evaluated with official checkpoints. {

fine-tuned on respective datasets (COCO and Audiocaps).

C. Quantative Text Evaluation

We report quantitative results of image captioning on COCO-
Karpathy-Test dataset and audio captioning on Audiocaps
dataset. We report CLIP score, CLAP score, and CIDEr[49]
on these two benchmarks. We compare against generalist
models such as CoDi and Uni-Diffuser. Uni-Diffuser, re-
leased two checkpoints v0 and v1, where vl is fine-tuned
on internal data. We compare against vO for a fairness. Om-
niFlow outperforms CoDi on both tasks, and outperforms
UniDiffuser in CIDEr score (+26.8). It has a lower CLIP
score (-2.5). We consider the performance of OmniFlow as
competitive, considering OmniFlow is trained on signifi-
cantly less data than UniDiffuser and can also perform audio
captioning task. We note that the performance of general-
ist models significantly lags behind specialist models that
are fine-tuned of respective datasets, suggesting rooms for
further improvements. We provide further discussion in the
limitation section.

D. Benefits of Multi-Task Training

In this section, we discuss if joint training on multiple modal-
ities benefit single-task performance. We provide additional
results in Tab. 7 by comparing a model trained on all tasks
with a model only trained on a subset of tasks. We show that
Omniflow was able to leverage the training data of related
tasks (e.g. T2A, 12A) and boost individual performance. In
additional to results presented in Tab.R1, we also observe
improvements in image generation, where OmniFlow gen-
erate high fidelity A2l outputs even though A2I datasets
consist of low-res videos (+1.22 Aesthetic score), thanks to
high-fidelity T2I data.

Training Data FAD |
OmniFlow 1.83
12A,A21, T2A,A2T | 1.89
12A,A21 2.03
12A-Only 2.05

Table 7. Performance of Various Training Data Compositions.
We compare FAD scores for Image to Audio (I2A) under different
setup on VGGSound.

E. Additional Qualitative Results
E.1. Text-to-Image

Fig. 14 demonstrates a range of qualitative text-to-image
examples for OmniFlow. We depict a wide variety of people,
scenes and objects to demonstrate the robustness of our
approach.

E.2. Image-to-Text

We provide a side-by-side image-to-text comparison be-
tween OmniFlow , CoDi [46] and UniDiffuser [4] using
synthetic high quality images from the Midjourney Explore
page [38]in Fig. 12.

E.3. Audio-to-Text

In Tab. 8, we show qualitative results on Audiocaps audio-
to-text task. OmniFlow can generation captions that match
the ground truth. While CoDi can correctly grasp the main
objects in the audio such as “car”, “bird”, “sheep”, “com-
puter”, it struggles with generating captions that accurately

reflect the scene.

E.4. Text-VAE AutoEncoding

In Tab. 9, we show reconstruction examples of Text VAE.
The reconstruction mostly adheres to the semantics of the
ground truth, with minor differences. For example, it may
change “well-furnished” to “well-decorated”.



ID

CoDi

OmniFlow

GT

yVjivgsU2aA

Four car driver trying forcoming
for a speeding car.

A race car engine revs and tires
squeal.

An engine running followed by
the engine revving and tires
screeching.

8F-ndyrEWJ8

Fire police cars stop and red traf-
fic on different highway.

A fire siren goes off loudly as a
man shouts and a low hum of an
engine is running throughout the
whole time.

A distant police siren, then rac-
ing car engine noise, and a man
calling in police code over his ra-
dio.

Three cars coming for a blue car
coming down a road after the
highway.

3500Cezayrk | Four motor car driving for com- | A vehicle engine is revving and | A motor vehicle engine starter
pleting an automobile service. idling. grinds, and a mid-size engine
starts up and idles smoothly.
LCwSUVuTyvg | Door, a blue hat and winter | A door is being slammed. Glass doors slamming and slid-
jacket. ing shut.
7XUt6sQS7nM | The sheep of the woman are the | Multiple sheep bleat nearby. A sheep is bleating and a crowd
sheep of the sheep. is murmuring.
PVvi2SDOjVc | Car going for a car coming home. | A car horn beeps. A car engine idles and then the

horn blows.

Z_smJ66Tb3c

Men in the bird while the man in
the boat.

Two men talk over blowing wind
and bird chirps.

A man is speaking with bird
sounds in the background fol-
lowed by a whistling sound.

mal chewing.

CMNIIW6Lkwc | Two men in the fire and two men | A man speaks, followed by a | A man talking as a camera muf-
are coming towards the other | loud bang and people laughing. | fles followed by a loud explosion
man in the game. then a group of people laughing

and talking.

JQz40TkjymY | Writing computers for people in | Typing on a computer keyboard. | Typing on a computer keyboard.
writing.

U90e2P9jy30 A man shouts the word to the | Basketballs being dribbled and | Several basketballs bouncing
person on the sidewalk to walk | people talking. and shoes squeaking on a hard-
to get him to the door the hand wood surface as a man yells in
to fall down on the sidewalk in. the distance.

SI8ImN8rwDM | Stationary fire drill technician | A drill runs continuously. Drilling noise loud and contin-
drilling down a hose pipe while ues.
wearing safety gear. Railroad
safety drill for motorcycle with
hose or oil checking equipment.

NIKIRKz8OKI | Birds on blue birds. A woman talks and then an ani- | A woman speaks with flapping

wings and chirping birds.

Table 8. Qualitative comparisons of CoDi and OmniFlow on Audiocaps audio captioning task. Audios are randomly sampled. Audiocaps
provide five ground truth captions per audio. For better presentation, we only list one in this table.

F. Limitations

On text generation tasks, our model’s performance is not
state-of-the-art and has considerable room for improvements.
We believe this is the side effect of incorporating large-scale
data with many noisy texts of different styles (e.g. alt texts,
human written prompts) that differs from the distribution
of standard benchmark datasets such as MSCOCO. Addi-
tionaly, for image-to-text task specifically, OmniFlow is ex-
posed to considerably less image-text pairs (30M) during the

training compared with previous generalist models such as
CoDi(400M) and UniDiffuser(2B). There is also the question
of balancing datasets of different caption qualities. For exam-
ple, WavCaps is a weakly-labeled dataset, but is 10x larger
than higher quality AudioCaps. Additional consideration is
required in order to generate captions that can achieve high
scores on audiocaps benchmark. Despite these limitations,
we show that OmniFlow can generate reasonable image and
audio captions through quantitative and qualitative experi-



Reconstruction

GT

Crispy chicken tenders alongside a portion of a bbq sauce.

Crispy chicken tenders alongside a portion of bbq sauce.

A well-furnished living room with a patterned curtain
rod, a small white side table holding a vase of flowers,
and a tufted gray sofa.

A well-decorated living room with a patterned curtain
panel hanging from the window, a small white side table
holding a vase of flowers, and a tufted gray sofa.

A young man wearing a black shirt and holding an Amer-
ican flag.

A young man wearing a black shirt and holding an Amer-
ican flag.

An artistic painting of a futuristic city by the water.

An artistic painting of a futuristic city by the water.

Cozy and well-designed living room with a green velvet
sofa, glass coffee table displaying potted plants, and a
large skylight overhead.

Cozy and stylish living room with a green velvet sofa,
glass coffee table displaying potted plants, and a large
skylight overhead.

A silver Audi Rs4 sedan driving on the passenger side
near a mountainous coastline.

A silver Acura RLX sedan driving on the passenger side
near a mountainous coastline.

Table 9. Text VAE reconstruction results. We show reconstruction results (Left) and the ground truth text (Right).The reconstruction
mostly adheres to the semantics of the ground truth, with minor differences.

OmniFlow (Ours): “A building with lots of plants
and trees surrounding it, and a small pond in the
& 9 middle of the building.”

CoDi: “Beautiful evening villas and small country
ornate gardens.”

UniDiffuser: “Beautiful chinese gardens in
mountains.”

OmniFlow (Ours): “Watercolor painting of a cat
lounging in the water under the sunshine.”

"4 CoDi: “A cat sleepy on beautiful day in the
" swimming pool.”

-

.
UniDiffuser: “Cute cat swimming on water
wallpaper.”

) OmniFlow (Ours): “A girl in futuristic looking
"« gear is standing in a video game store.”

& CoDi: “A woman wearing glasses and observing
4 images.”

UniDiffuser: “Anime girl with gaming headset”

Figure 12. Qualitative comparison of OmniFlow with baselines
on image-to-text generation. Images are provided from the Mid-
journey Explore page [38].

ments. Our work focuses on develop an effective recipe for
any-to-any generalist models. We leave optimizing for text
generations to future works.

On Image generation tasks, while OmniFlow can generate
high quality images, it has the same limitations as any text-to-
image models. For example, it may inherit unintended biases
from the training dataset. It may also struggle in prompts
that the vanilla SD3 model also struggles with.

"A magical snow globe serene Japanese garden
containing a tiny dragon perched featuring a koi pond surrounded
on a castle tower, surrounded by by meticulously raked gravel,
swirling embers instead of bonsai trees, and a small
snowflakes, ultra HD, wooden bridge under soft
fantastical." morning light."

"A bustling cyberpunk market
filled with vendors selling
gadgets and steaming bowls of
noodles with rain softly falling
under vibrant neon lights, ultra

HD, lively atmosphere."

"A portrait of a Bollywood dancer
mid-spin, wearing a brightly
colored lehenga with
embroidery, her movements
blurred with motion."

Figure 13. Examples of failure cases encountered during the
text-to-image generation process of OmniFlow.



G. Miscellaneous
G.1. Reproducibility of CoDi

To accurately reproduce the results of CoDi [46], we follow
the weights and instructions as indicated in the i-Code-V3
GitHub repository >. However, we encounter reproducibility
issues, similar to open issues reported by others, which have
remained unresolved .

H. Reproducibility Statement

All dataset used in this work are public and accessible from
the Internet, except for synthetic captions of SoundNet and
VGGSound we generated. We have release the code, check-
points, and generated captions for these two dataset.

I. Failure Cases

In Fig. 13 we present several failure cases of Omni-
Flow when performing text-to-image generation. In the
snow globe example, the model fails to interpret the prompt
specifying “swirling embers instead of snowflakes,” mistak-
enly generating snow instead. Another issue arises with the
dancer, where the prompt “movements blurred with motion’
is inaccurately represented as an additional arm. Lastly, the
Koi pond and ramen examples highlight unnatural outputs,
with the former resembling a poorly edited image of a fish
in a pond and the latter depicting oversized bowls of noodles
placed unnaturally on the street.

il

Zhttps://github.com/microsoft/i-Code/tree/main/i-Code-V3
3https://github.com/microsoft/i-Code/issues/134



" . "A bustling Tokyo street at night, "A vibrant autumn forest where
A portrait of a young woman

. - "Close-up of a kitten with playful with neon signs glowing in sunlight filters through the red
with striking green eyes and . ) f
- ) eyes, wicker basket in Japanese characters and people and orange leaves, casting
freckles, wearing a flowing " R | ™
. . " background, ultra HD. with umbrellas walking under the ~ warm shadows on a winding
green scarf in a windy meadow. N o . -
soft drizzle. path, photorealistic detail.

"A peaceful countryside inn with
timber framing and blooming
flower beds, nestled in a small
village surrounded by hills,
inviting and nostalgic."

"A rugged canyon landscape
with red rock formations glowing
under the setting sun, and a
winding river cutting through the
valley."

"An astronaut standing at the
base of a towering ice cliff on an
alien world, with the aurora
reflecting off their helmet visor."

"A close-up of Christmas
cookies shaped like stars,
resting on a plate beside a

steaming mug of cocoa."

-

|||
"A portrait of a snow globe "A serene scene of a Vulpix A I|ghthous_e perghed ona A tradltlc_mal pagoda standing
. L . rocky coastline, with waves tall against a backdrop of a
resting on a wooden table, playing in freshly fallen snow, its : ] .
) L . : . ) crashing against the cliffs and golden sunset, surrounded by
featuring a miniature winter fur shimmering under the bright L
. . L " e the beacon casting its light lush greenery and sakura
village with glowing lights. sunlight.

across the sea." blossoms."

"A close-up portrait of an elderly "A scene of Mount Fuji reflected

"A vibrant close-up of a

"Portrait of a robotic lion with African man with a wise in the still waters of Lake !
. : . L . dreamcatcher hanging by a
metallic fur and fierce red eyes, expression, wearing a traditional Kawaguchi, surrounded by ) ; )
. X " window, glowing softly in the
roaring fiercely. Kente cloth, ultra HD, cherry blossoms under a clear i, "
S w " golden afternoon light.
photorealistic. blue sky.

Figure 14. Qualitative examples of the text-to-image capability of OmniFlow.
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