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Abstract. We prove that every family of (not necessarily distinct) even cycles Dq,...,
D|1.2(n—1)]+1 on some fixed n-vertex set has a rainbow even cycle (that is, a set of edges from
distinct D;’s, forming an even cycle). This resolves an open problem of Aharoni, Briggs, Holzman
and Jiang. Moreover, the result is best possible for every positive integer n.
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1. Introduction. Let F be a set family. A rainbow set with respect to F is a
subset R (without repeated elements) of UF (i.e., [Jpc » F) such that there exists an
injection o: R — F with r € o(r) for all r € R. In other words, each element r € R
comes from a distinct F' € F. We think about each set in F as a different color class,
and hence use the term “rainbow.” An important remark here is that a “family”
refers to a “multiset,” since an element in UF may appear with more than one color.

Suppose every F € F satisfies property P. What is the minimum size of F such
that a rainbow subset of UF satisfying P always exists? One famous result of this
type is the colorful version of Carathéodory’s theorem due to Bardny [6], which asserts
that every family of n + 1 subsets of R", each containing a point p in its convex hull,
has a rainbow subset whose convex hull contains p as well. Such problems are also
studied in graph theory. Aharoni and Berger [1] proved that any family of 2n — 1
matchings of size n in a bipartite graph contains a rainbow matching of size n. Other
results of this type on cycles and triangles can be found in [3, 9, 8].

There are studies of rainbow graphs in a different context: Given an edge-colored
graph, what conditions guarantee a certain subgraph whose edges have distinct colors?
Due to the relation with Latin squares, rainbow matchings have received extensive
attention. See [2, 7] for recent works. As a starting point for finding colorful variants
of Turdn’s theorem, the existence of rainbow triangles is analyzed in [4, 5]. A rainbow
version of Dirac’s theorem on Hamiltonian cycles can be found in [10].

Throughout the paper, a graph, without further specification, refers to a simple
graph G which is a set of colored edges. Formally, G is a set of pairs e = (e, ),

where e’s are distinct edges (i.e., different pairs of two distinct vertices) and o’s are

(not necessarily distinct) colors. For e = (uv,a) € G, where uv def {u,v}, denote

V(e) %€ {u, v}, x(e) = a. Then write V(G) %', V(e), E(G) € {V(e):e G}, and

x(G) ef {x(e) : e € G} for the vertex set, the (uncolored) edge set and the color set,
respectively.
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FI1G. 1. An example family D viewed as an edge-colored multigraph. (See electronic version for
color figures.)

Two edges e1,ey are coincident if they are of different colors and are on the same
vertex set. That is, V(e1) = V(ez) yet x(e1) # x(e2). For two graphs Gy, Ga, we call
them coincident if there exists a bijection ¢: Gy — Gg such that e is coincident to
©(e) for all e € G;. Note that coincident edges do not exist in a graph, since graphs
are assumed to be simple.

This paper is devoted to the existence of a rainbow even cycle in a family of even
cycles. A cycle is a graph C such that its edges F(C), viewed as an uncolored simple
graph, form a cycle. In other words, C = {(vive,1),...,(vi—1ve, ap—1), (Vev1, )},
where wvy,...,vs are distinct and ¢ > 3 is called the length of C. For any A C
{3,4,5,...}, an A-cycle is a cycle whose length is some number from A. For ex-
ample, an odd cycle, a cycle of odd length, is a {3,5,7,... }-cycle. Similarly, an even
cycle, a cycle of even length, is a {4,6,8, ... }-cycle. For any integer k > 3, a k-cycle
refers to a {k}-cycle.

Hereafter a family 7 = {E;,...,E,,} is a family of cycles. We remark that F being
a family implicitly implies that x(E;) = {«;}, while a1, ..., o, are distinct. Since each
E; is a monochromatic cycle, we view F as an edge-colored multigraph (i.e., a set of
colored edges where coincident edges are allowed). A subgraph of F is then a graph
E, where E C |J!", E;. In Figure 1, the family D = {D;,D2,D3,D4} consists of four
4-cycles on seven vertices, where Do, D3 are coincident. Let x(D;) =«; (i=1,2,3,4).
Then D d:ef{(vovl,al), (v1v2, a2), (v2v3, a3), (V3Vg, ag) } is a rainbow 4-cycle subgraph
of D.

We shall say that a family F contains a graph G if G is a subgraph of F.

THEOREM 1 (see [3]). Every family of 2 [%] —1 odd cycles on n vertices contains
a rainbow odd cycle.

The tightness of Theorem 1 is witnessed by a family of 2( [%W — 1) many coincident
odd cycles on 2[ 2] — 1 vertices. As for even cycles, Aharoni et al. also deduced in [3]
that the maximum size of a family on n vertices containing no rainbow even cycle is
between roughly gn and %n, and left the determination of the exact extremal number
as an open problem. We answer this question by proving the following result.

THEOREM 2. Fvery family of L@J + 1 even cycles on n vertices contains a
rainbow even cycle.

The tightness of Theorem 2 for each n > 4 (no even cycle exists when n < 3)
is seen as follows: The families Dy, D5, Dg, D7, Dg in Figure 2 are tight examples for
n=4,5,6,7,8, respectively. For larger n, we observe that by gluing together D,,_5 (a
tight example for n — 5) and Dg at exactly one vertex (edge-disjoint henceforth) the
resulting family D, is tight for n. We remark that the family Dg and the inductive
argument were already presented in [3].
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Fic. 2. Tight examples of Theorem 2 for small n.
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Proof strategy. To explain the strategy of our proof, we begin with a baby
version of Theorem 2 whose tightness is witnessed by, for example, a family of n — 1
coincident Hamiltonian cycles.

THEOREM 3 (see [3, Proposition 3.2]). FEwvery family of n cycles on n vertices
contains a rainbow cycle.

Proof. Let F be such a family and F be a maximal rainbow forest subgraph of
F. Then |F| <n —1, and so there is another edge e, not coincident to any edge of
F, whose color does not appear in F. The maximality of F implies that e completes a
rainbow cycle in the graph F U {e}. d

All these proofs proceed by first finding a spanning structure S (the rainbow forest
F in the proof above) and then analyzing another edge with an absent color in .S. The
proof of Theorem 1 also uses a maximal rainbow forest as S. However, to prove
Theorem 2 we need some new spanning structure.

It turns out that 5-cycles play a central role in the gn upper bound. We thus call
a cycle long if its length is at least 6. In particular, a rainbow {7,9,11,... }-cycle is
a long rainbow odd cycle. Then our spanning structure, which we call Frankenstein
graphs, are (informally speaking) obtained by recursively, at single vertices, gluing
together a collection of long rainbow odd cycles, rainbow trees, and another class of
graphs named bad pieces.

We shall formally define and characterize bad pieces and Frankenstein graphs in
section 2. Then section 3 is devoted to the proof of Theorem 2.

2. Frankenstein graphs. A path graph of length k is a graph of the form

P ={(vov1, 1), (v1v2,2), ..., (Vk—1Vk, &)},

where vy, ...,v are distinct. A theta graph is a union of 3 paths that share exactly
their terminals. Formally, G is a theta graph if G=P; UPyUP3, where Py,P5, P53 are
paths with terminals s,t and

V(P1)NV(P3) =V (P2) NV (P3)
E(P1) NE(P2) = E(P2) N E(P3)

V(P3) NV (Py) = {s,t},
E(Ps)NE(P,) = 2.

We use the name “theta” because one natural drawing of such a graph looks exactly
like the Greek letter ©. See Figure 3 below as an illustration.

Observation 4. Every rainbow theta graph has a rainbow even cycle subgraph.

Proof. Suppose P;UP2UP3 is a theta graph where Py, Po, P3 are paths of common
terminals. Then two of the paths, say P; and Ps, have lengths of the same parity,
and so P; U P is an even cycle. 0

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/29/25 to 128.2.115.22 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1272 ZICHAO DONG AND ZIJIAN XU

F1a. 3. A theta graph on paths of lengths 3,4,5, respectively.

Figure 4.A Figure 4.B Figure 4.C

FiG. 4. One example and two non-examples of bad pieces.

We call a graph G almost rainbow if |x(G)| = |G| — 1. That is, exactly two edges
receive a same color, and the color of every other edge is unique. We call B a bad
piece if B is an almost rainbow theta graph on 3 rainbow paths (sharing terminals)
such that [V(B)| > 6.

For example, Figure 4.A is not a bad piece because it contains only 4 vertices;
Figure 4.B is a bad piece on 6 vertices and 7 edges consisting of rainbow paths vy vs,
V12030405 and v1vgvs; Figure 4.C is not a bad piece because v1v3v3v4v5 is not rainbow
(as witnessed by (vqvs,b) and (v4vs,b)).

Observation 5. If B is a bad piece, then |V (B)| = |x(B)| < (|V(B)| - 1).

Proof. Since B is a theta graph, we have |V (B)| = |B| — 1. Notice that since B is
almost rainbow, we see that |x(B)| =|B| — 1. It follows that nt Ix(B)|=|V(B)| >6,

B) —__n 6
and hence ‘V‘-éﬁ—ﬁgg 0

Observation 6. If B is a bad piece, then for any distinct vy, ve € V(B), there exists
in B a rainbow path subgraph whose terminals are v; and vs.

Proof. Since |x(B)| =|B| — 1, it suffices to show that v, ve are vertices of a cycle
in B. Suppose B consists of three rainbow paths P, P, P3. If v; and v, are on a same
path, say Py, then P; UP5 is such a cycle. If v; and v, are on different paths, say P
and Ps, then P; UP5 is such a cycle. O

Let G be a graph. We call P = {Gy,...,G,,} a partition if G = |J*; G; and
[V(G)NV(G;)| <1, x(G;) Nx(G;) = @ for every distinct G;,G;. We shall often abuse
notation by writing P(G) =P. Indeed, P(G) is not a function of G, as the partition is
usually not unique. The notation emphasizes that the partition is of G. In this sense,
§ is a Frankenstein graph if it admits a partition

P(S):{C17"'7CC7Bla"'aBbaTla-“th} (8207b207t2070+b+t21),

where C’s are long rainbow odd cycles, B’s are bad pieces, and T’s are rainbow trees,
such that
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(F1) V(T,)NV(T,) =@ for any distinct p,q, and
(F2) no rainbow even cycle subgraph exists in §.

THEOREM 7. For any Frankenstein graph § with P(§) = {Gi,...,Gnn}, there

exists a permutation o on [m] such that §; def Go(1) U -+ UG, satisfies |V (F;) N
V(Go(i+1))| <1 for each i € [m —1].

Theorem 7 suggests the following way to think about a connected Frankenstein
graph §: Suppose the partition of § is P(F) ={Gi,...,Gn}. Then one can order the
parts as §1 d:(afG’l, 9.+, Gy, and recursively glue together Gj,, and the ith graph §;
at some single vertex to make the (i + 1)st graph §;4+1, such that eventually §,, is

exactly §. To prove Theorem 7, we need some preparations.

LEMMA 8. Let C be a rainbow cycle. Assume X is a rainbow cycle or a bad piece
with X, C\ X being color-disjoint and E(C)\ E(X) # @. If [V(C)NV(X)| > 2, then
CUX contains a rainbow even cycle.

Informally speaking, this techmnical result is helpful because it tells us that a
rainbow cycle is likely to form a rainbow even cycle together with a long rainbow odd
cycle or a bad piece.

Proof. Since E(C)\ E(X) # @, there exists an edge e € C that is not coincident to
any edge of X. Starting from e and moving along C in opposite directions, we define
the first vertices to meet on X as sg, %o, thanks to |[V(C) N V(X)| > 2. Then there
exists a subpath Pg (i.e., a path subgraph) of C\ X satisfying e € Py. Here sg,t, are
terminals of Pg, V/(Po) NV (X) ={sp,t0} and x(Po) N x(X) =@.

We claim the existence of a rainbow theta subgraph in XUPy, and so Observation
4 guarantees a rainbow even cycle subgraph in XU C.

If X is a rainbow cycle, then XU Py is a rainbow theta graph.

If X is a bad piece which consists of rainbow paths Py, Po, P3 that share terminals
s and t, then X U Pq is almost rainbow. In fact, we can always remove a subpath
containing one of the repeated-color edges on one of Py, Ps, P3 to get a rainbow theta
graph. To be more specific, we assume without loss that the repeated color happens
on Py and Ps. If z,y € V/(P;) for some fixed i € [3], then there exists a unique subpath
of P; with terminals x and y, and we denote by P, , this subpath.

e If sg and ty lie on a same P;, then one of V(P1) \ {s,t} and V(P3) \ {s,t} is
disjoint from V' (Pg), say V(P1)\{s,t}. This implies that (P2UP5)UPy C XUC
is a rainbow theta graph.

e Otherwise, at least one of sy and ¢ty lies on P; U P3, say so € V(P1). We
further assume that the repeated-color edge (denoted by *) appears on Pg g,
rather than P, ;, in P;. See Figure 5.

~1If to € V(P3), then by removing P3 from X U Py we are left with a
rainbow theta graph.

—If tg € V(P3), then by removing Py 4, from XU Py we are left with a
rainbow theta graph.

The casework above verifies our claim, and so the proof is complete. O

Let § be a Frankenstein graph with P(F) = {G1,...,G,n}. To understand its

structure better, we associate with it an auxiliary uncolored bipartite graph G(F) def

(W u ‘/Q,E)Cf %n which .
e V1 ={Gy,....G,}, Vs e {the unique common vertex of some G;, G; (i # j)},
and

o EY{(G,0) eV x Va:veV(G)}.
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Fic. 5. Path-removal operations where x indicates the repeated color.

LEMMA 9. G(F) is acyclic for every Frankenstein graph §, and so is a forest.

Proof. Assume to the contrary that viGiveGovs---vpGrv1 presents a cycle in
G(F), without loss of generality. Here the notation uG; and Gjv refers to edges of
G(F). From Observation 6 we deduce that there exists for each ¢ € [k] a rainbow
path P; with terminals v;,v;41 in G; (Vg1 =wv1). Since different parts in § are edge-
disjoint and color-disjoint, Q def P U---UPyg is a rainbow circuit, and so there exists
a rainbow cycle C C Q. Since C cannot be a subgraph of any part of §, we can find
w € E(G;) N E(C) and vw € E(G,) N E(C), where z # y. It follows from (F1) that
either G, or Gy, say G, is not a rainbow tree. However, Lemma 8 then implies the
existence of a rainbow even cycle subgraph in CU G;, which contradicts (F2). O

Lemmas 8 and 9 will be applied not only in the proof of Theorem 7, but also later
in many places.

Proof of Theorem 7. We induct on m. The theorem is vacuously true when m = 1.
Suppose m > 2 and let w be a leaf vertex of G(F). (If no leaf exists, then £ =@ and
any permutation o satisfies the theorem.) It is easily seen from the definition that no
leaf exists in V5, and hence we assume without loss that w = G,,,. Since the partition
{Gi,...,Gy—1} defines a Frankenstein graph as well, the inductive hypothesis on m—1
implies the existence of a permutation o on [m — 1] satisfying |V (§:) NV (Gy(i41))| < 1
for all ¢ € [m —2]. Then G, being a leaf implies that |V (F,—1) NV (Gy,)| <1. So, by

defining o(m) 4f 11 to extend the definition of o, the inductive proof is complete. 0O
The following corollaries of Theorem 7 will be useful in the proof of Theorem 2.
COROLLARY 10. If § is a Frankenstein graph, then |x()| < S(|V(F)| —1).

COROLLARY 11. If§ is a Frankenstein graph with P(§F) ={G1,...,Gn} and CCF
is a cycle, then there exists i € [m] such that C C G;.

Proof. Write V d:er(g). We prove Corollaries 10 and 11 by induction on m.

If m =1, then Corollary 11 is trivially true. To see that Corollary 10 holds, we
need to check the cases when § is a long rainbow odd cycle or a bad piece or a rainbow
tree. Indeed, we have

IX@®|=IVI<i(v|-1) when § is a long rainbow odd cycle (hence |V|>7),
IX@)|<g|(V]-1) when § is a bad piece (by Observation 5),
IX(B)|=IV|-1<$(]V]—1) when § is a rainbow tree.

Suppose m > 2 then. Assume without loss of generality that the identity o (4) &ef

satisfies Theorem 7. Then
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|X(8)| = |X(%m—1 U Gm)| = |X(sm—1)| + |X(Gm)|
<E(VI-1)

(IVEm-1)| +V(Gm)| = 2)

O‘l\@

by applying the inductive hypothesis to §,,—1 and noticing that |V (Fn—1)NV(G)| <
1. Also, we have CC §,,_1 or CC G,,, because the shared vertex of §,,_1 and G,,, if
it exists, is a cut vertex of §. By applying the inductive hypothesis to §,,_1, we can
find some ¢ € [m] such that CC G;. O

To prove Theorem 2, we need another technical result on Frankenstein graphs.

PROPOSITION 12. Suppose § is a Frankenstein graph and P C § is a path with
terminals s and t. Then there exists a rainbow path P’ C§ with the same terminals s
and t.

Proof. The existence of P implies that s,t are in the same connected component
of §. We thus assume without loss of generality that § is connected. Then there
exists a path in the uncolored graph G(F) of the form G;, v1G;,vs - - vp—1G;, such that
s€V(G;,),teV(G;y) and £ > 1. It then follows from Observation 6 that there exists
a rainbow trail Q joining s and ¢. Obviously, any path P’ C Q with terminals s and ¢

satisfies Proposition 12. 0
For a Frankenstein graph § given by the partition P(§) ={C4,...,C¢,B1,...,Bs,
Ty,..., T}, we associate with it counting parameters ¢(F) e and b(F) 4. Notice

that ¢(F),b(F) depend not only on the graph §, but on the partition P(§F) as well.
We still need another depth parameter.

For any tree T with V(T) C Ny, let its root be r 4 hin V(T). For any vertex
v € V(T), define its relative depth in T as depthy(v) e distt(r,v), which is the length
of the unique path with terminals  and v. We henceforth define for any forest F with
V(F) C Ny its total depth as

Depth(F defz 3" depthy, (v

i=1veV(T;)

where T1q,..., T; are the connected components of F. For any Frankenstein graph §
with V(§) C N4, we refer to its total depth as the total depth of its forest part, i.e.,
Depth(§) & Depth(T; U--- U Ty).

Later in practice, we shall often construct a Frankenstein graph by a “partition”

PE)={Cs,...,C¢By,..., By, F},

where C’s are long rainbow odd cycles, B’s are bad pieces, and F=T;U---UT,; is the
union of vertex-disjoint and color-disjoint rainbow trees, such that x(G;) N x(G;) =@
for any distinct G;,G; € P(F). Indeed, this P(F) is formally not a partition since
F and C; or B; may share more than one vertex. However, (F1) implies, up to a
relabeling of the rainbow tree parts of §, that there is no difference between exposing
the trees Tq,...,T; and exposing the forest F.

3. Proof of Theorem 2. We prove Theorem 2 indirectly. Suppose D =
(D4,...,D,) is a family of m f {@J +1> 6(” D even cycles on the ambient
vertex set [n] without any rainbow even cycle subgraph

Let §. be a Frankenstein subgraph of the family D satisfying the following max-
imal conditions:
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(M1) The number of long rainbow odd cycles ¢(F.) is maximized.
(M2) The number of bad pieces b(F.) is maximized under (M1).
(M3) The number of edges |§.| is maximized under (M2).
(M4) The total depth Depth(§F,) is minimized under (M3).
Suppose the partition of §, is

P(F)={C1,....Ce,B1,...,By, T1,...,Te} with FET,U--.UT,,

where C’s are long rainbow odd cycles, B’s are bad pieces, and T’s are vertex-disjoint
rainbow trees.

3.1. Outer edges and outer cycles. Let A\ be the color of the even cycle
Dx. From Corollary 10 we deduce that [x(§.)| < £(n —1) < |D|, and hence A &f

[m]\ x(T+) # . Indeed, every edge of the multigraph Dy ef Uxca Da is absent in §..
We call f in Dy an outer edge if no coincident edge of f is in F.. A rainbow

{3,5}-cycle containing an outer edge f in F, +f is called an outer cycle of f. Hereafter

G + e denotes the graph generated by adding e to G (i.e., G+e LGu {e}). Moreover,

whenever we write G 4 e, we implicitly assume that e is not coincident to any edge of
G. Similarly, G — e (assuming e € G) refers to the graph obtained by deleting e from
G (ie., G— e G \ {e}). Recall that a (colored) graph is a set of colored edges.

The next propositions are devoted to the existence of outer edges and outer cycles.

PROPOSITION 13. For any A € A, an outer edge exists in Dy .

Proof. Assume for the sake of contradiction that Dy is covered by §.. That
is, each e € D) has one coincident edge e* € §.. Indeed, this e* is unique because
no coincident edges exist in a Frankenstein graph. Define D} & {e*:e € D,} C3..
Since long rainbow odd cycles and rainbow trees contain no even cycle, it follows from
Corollary 11 that D} has to be contained in some bad piece B;, and so |D}|—|x(D3)| €

{0,1}. Since no rainbow even cycle exists in D, we obtain |D}| — |x(D3})] = 1. So,
there exists a unique pair of distinct edges e}, e in D} such that x(e}) = x(e3). Thus,
D} — e + ey is a rainbow even cycle in D, a contradiction. O

PROPOSITION 14. For any outer edge f, an outer cycle of f exists.

Proof. Let V(f) &ef {u,v}. Observe that u,v are in a same connected component

of §., for otherwise

PF. +f) {Cy,...,C0iBy,..., By, F+

gives another Frankenstein subgraph of D with one more edge than §,, which con-
tradicts (M3). It follows from Proposition 12 that f completes a rainbow (hence odd)
cycle Cfin F+f.

It then suffices to disprove that Cf is long. Assume to the contrary that C is

long. Since f ¢ F., from Lemma 8 we deduce that [V(CH) N V(C;)| < 1 for every
def

i €[c]. So, P(F+) = {Cy,...,C., C'} presents another Frankenstein subgraph of D
with ¢(F+) > ¢(F+), which contradicts (M1). O
For any tree T with v € V(T) C [n], we define

def

Childr(v) = {w € V(T) : vw € E(T), depth(w) = depth(v) +1}.

The following properties characterize behaviors of outer 3-cycles.
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PROPOSITION 15. Suppose f is an outer edge with V (f) = {u,v}, and C is an outer
3-cycle of f with V(C) ={u,v,w}. Then there exists k € [t] such that u,v,w € V(T})
and u,v € Childr, (w).

Proof. We show wu,v,w € V(Ty) for some k first. Since vw,vw € E(F.), we
may assume uw € F(Xi) and vw € E(Xg), where X1,X2 € P(F.). In fact, Xo €
{T1,..., T} (e=1,2), for otherwise Lemma 8 implies the existence of a rainbow even
cycle in CUX,. It follows from (F1) that X; =Xo = Tk.

We prove u,v € Childr, (w) then. Suppose ey def (uw, ) and eg def (vw, B) are
edges in Ty. The existence of e;, ey tells us that |depthy, (u) — depthy, (v)] is either
0 or 2. It suffices to establish that depthy, (u) = depthy, (v). If not, then assume
without loss of generality that depthy, (u) = depthy, (v) + 2. Since depthy (u) <
depthy, (v) and depthy, (z) < depthy, () for all z € V(Ty) = V(T},), we deduce that

T &f Ty +f —eq is another tree with Depth(T}) < Depth(T). Then the partition

PE)EPE. +f—e)={Ci,....Co,Br,oe By T Tho o T
gives a Frankenstein subgraph of D. However, this contradicts (M4) since Depth(F') <
Depth(§.). Therefore, depthy, (u) = depthy, (v), and so u,v € Childr, (w). |

PROPOSITION 16. Suppose no outer 5-cycle exists. If f = (uv,a) is an outer edge
with outer cycle C on vertices u,v,w € Ty, (by Proposition 15), then D, the even cycle
of color a from D containing f, satisfies V(Dg,) C {w} U ChildT, (w). (See Figure 6.)

Proof. We first show that V(D,) C V(Ty). Define 7: D, — P(F.) as follows: For
any edge e€ D,
e if e is an outer edge, then V(e) C V(T,) for some ¢ (by Proposition 15), and
we set 7(e) L,
e if e is coincident to € € F., then we set 7(e) d:efX, where X is the part of §.
that contains e’.
By applying 7 on D,,, we locate a closed walk @ C G(F.) as follows:
a. Put the edges of D, on a circle O in order. Replace e by 7(e) for each e € D,,.
b. If two consecutive objects on O are the same, then remove one of them.
Repeat.
c. If G;,G; € P(§+) are adjacent on O, then plug in v;; € V(G;) NV (G;) between
them.
The resulting arrangement on O forms a closed walk @ C G(F.), where each pair
of consecutive edges v;;G;, G;jv;i in () corresponds to a path with terminals v;j, v
on D,. Indeed, @ is a circuit because D, passes through each v;; exactly once. For
instance, if D, consists of eq,...,eg in order such that

FiG. 6. V(f) C Childy, (w) implies V(Do) C A.
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T(e1,e2,€3,€e4,€5,€6,€7,e3) = (G3, G3, Ga, G2, Gy, G3, Gy, Gs),

then the steps 1 through 3 generate

V23 G3 V35 GQ V23 U35 G5
Go Gs
V12 Vs — Q= V45
Gl G4
v13 Gy U3t G, viz vz Gy

However, Lemma 9 asserts that §. is acyclic. So, @ is a single vertex, and hence
V(Do) CV(Ty).
def

Use abbreviations V & V(Tk) and d(z) %ef depthy, (x). Partition V' into A =

{w} U Childr, (w), A* € {z eV :d(x) >dw)}, A~ ¥ {z eV d(x) < dw)}, and

Ay \(AUATUA™). Let Ty, be the uncolored copy of Ty, which is the uncolored
graph on vertex set V = V(Ty) and edge set E(Tg). For all z € V and all pairs of
distinct vertices x,y € Childy, (z), we add the edges zy simultaneously into E(T})
to generate a new graph 7. The vertex set of T is still V. Due to the absence of
outer 5-cycles, from Proposition 15 we deduce that D, the uncolored copy of D, is
a subgraph of T,.

Notice that any subpath of T} with one terminal in A and the other in A’ must go
through A~. It then suffices to show that V(D,)=V(D,) and A~ are disjoint. This
breaks down to exclude the situation d(z4) > d(z_) + 2 for some zy,z_ € V(D,,). If
such 2z, z_ exist, then D, consists of two subpaths Py, P, with terminals z; and z_.
Let z; be the vertex on P; with d(z;) =d(z4) — 1 that is nearest to z. The crucial
observation is that z; is the parent of z,, which is the unique vertex in V' such that
2, € Childr, (2;). Indeed, this follows from the fact that z; is a cut vertex of T, which
separates z; from all vertices of smaller depths. However, the observation implies
that z; = 23, which is absurd. We conclude that V(D,) =V (D,) C A, and hence the
proof is complete. 0

3.2. Finishing the proof.
LEMMA 17. There exists a Frankenstein subgraph §o of D whose partition is given

by
'P(So):{Cl,...,CC,Bl,...,Bb,FQ} with |F0‘ = “:|7

and an edge fo in D such that x(fo) ¢ x(Fo) and fo completes a rainbow 5-cycle in
So + fo.
def

Proof. If there is an outer 5-cycle in §., say C' of an outer edge f, then (Fo,fo) =
(T, ) with Fo L'F satisfies Lemma 17. We assume no outer 5-cycle exists then. It
follows from Propositions 13 and 14 that an outer edge f and its outer cycle C© exist.
Suppose f def (uv, @) and D,, is the monochromatic even cycle from D that contains f.
Assume V(CF) f {u,v,w}. It follows from Proposition 15 that u,v,w all lie in a single
rainbow tree Ty € P(F.) and u,v € Childrt, (w). From Proposition 16 we deduce that
V(Dq) C {w} U Childr, (w). Since D, consists of at least 4 edges, at least 1 of the
two adjacent edges of f on D, is not incident to the vertex w. Assume without loss
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Tk

Fic. 7. An illustration of the proof of Lemma 17.

of generality that f/ & (uwv', @) is such an edge, and hence v’ € Childr, (w). Observe

that v and v" are symmetric despite our definition.
Let gd:ef (uw, B) € §« be the edge with V(g) = {u,w}. Suppose

def def
Ds =g+ (zox1,B) + (122, 8) + - - - + (x2rZok+1, ) (o = u, Topt1 = w, kENY)

is the monochromatic even cycle from D containing g. From Lemma 9 we deduce
that there are two connected components S,, and S,, in the graph §. — g such that
u € V(S,) and w € V(S,). Define A as the smallest index such that z, ¢ V(S,,) and
write h %' (xa—12x,08). Then h ¢ 5..

We claim that ) € S,,. If not, then h cannot complete any cycle in Fdef F+f—g+h,
and so F is a rainbow forest. Observe that the trees in F containing f or h (they are
possibly the same) share at most one vertex with any of Cq,...,C.,By,...,B;. This
implies that the partition

PE. +f—g+h) ¥{Cy,...,C.,By,....By, F}

presents another Frankenstein subgraph of D on |§.| + 1 edges, which contradicts
(M3).

By Proposition 12, we can find a rainbow path P, C S, with terminals u,x_1
and a rainbow path P, CS,, with terminals w,z). Here we allow P, to be empty if
xg = xx—1, and allow P, to be empty if zox11 = x. Note that P, =P, = & cannot

happen, since |Dg| > 4. Assume further that the length of P,, is minimized, and so

vg V(Py) orv' ¢ V(Py), say v¢ V(P,). Thus, CLf 4P, +h+P, +kis a rainbow

odd cycle with |C| > 5. Here k denotes the edge of Ty, with V' (k) = {v,w}.
Since V(Ty +f—g) =V (Ty), we can define another Frankenstein subgraph §o def

P(Fo) ¥ {Cy,...,Co,B1, ..., By, T, T+ f—g, ..., Teh

We claim that fj 21} is as desired. It suffices to show that C is a rainbow 5-cycle.

Since h € C and 8 ¢ x(3o), Lemma 8 tells us that [V(C)NV(C;)| <1(Vi € [c]). Then
P d:ef{Cl, ..., C¢, C} gives another Frankenstein subgraph of D with ¢(§') > c if C
is long, which contradicts (M1). Thus, |C| > 5 implies that C is a rainbow 5-cycle in

$o + h. The proof of Lemma 17 is complete. 0
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Fic. 8. The “growth” of a rainbow 5-cycle.

LEMMA 18. Suppose the rainbow 5-cycle found in Lemma 17 is C d:ef{(vivi+17ai) :
i € [5]}, with the convention veys = v,. Write e; o (vivit1,;). Then there exists a
shifting parameter j € {0,1,2,3,4}, a set of five edges €} & (viVig1, Qvigj) from D, a
vertex v* € [n] \ {v1,...,v5}, and an index k € [5], such that at least one of the edges
(v*k, Qpqj—1) and (v, agy ;) appears in D.

Informally speaking, Lemma 18 is dedicated to “grow” one more edge from the
5-cycle guaranteed by Lemma 17. That is, after a possible cyclic shift of the colors
on C, we would like to find out another edge on one of the monochromatic even
cycles in D “leaving” C (i.e., incident to v* ¢ {v1,...,v5}). Such a configuration will

then help us to locate another bad piece in D, which contradicts (M2). For ease of

. . def . . .
notation, we write (a,b,c,d,e) = (a1, a9, a3, a4, as) in the coming example and in the

proof of Lemma 18. Figure 8 illustrates one possible output of Lemma 18 in which

Proof of Lemma 18. Assume without loss of generality that e; € D; € D. Suppose
e/ and e; are the edges in D; satisfying V(e;) NV (el) = {viy1} and V(e;) NV (e; ) =
{v;}, respectively.

Write V &' {v1,...,vs} for brevity. If there exists v € V(ef)\ V for some i € [5]
and e € {+,—}, say ¢ =1 and e = +, then by choosing v* 4t and (4,k) = (0,1) the
proof is done.

We thus assume that V(e?) CV for any i € [5] and e € {+,—}, and claim that
this is impossible. To see this, we prove by contradiction. The following observation
is quite useful.

Facr. V(el_) = {1}2‘_1,1}1‘} or {1}1‘,1]2‘4_3}, and V(ej) = {vi+1,vi+2} or {U,’+1,’UZ‘+3}.

Proof of fact. Let V(e]) def {vi—1,v'}. Then v/ € {v;_1,v;42,v;43} is forced.
However, v # v;49, for otherwise e; ,e;19,€;43,€;4+4 form a rainbow 4-cycle in D. The
V(e case is similar. d

If e and e; 1, are coincident for all i € [5], then we cyclically shift the vertices via
increasing j by 1 (note that the shift cannot happen indefinitely since the cycles D;
are even). This does not change the situation, and so we may assume without loss of
generality that V(e]) # {va,v3}. Tt follows from the above fact that V (e]) = {v2,v4},
which forces V(e] ) = {v1,vs}, as shown in Figure 9.A.

We next look at egi. If V(ey) = {v1,v2}, then e, , el eq,e5 form a rainbow even
cycle, a contradiction. So, V(e;) = {v2,vs5}, and hence V(e ) = {vs,v4} by the fact,
as shown in Figure 9.B.
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V1 V1 V1 V1

alf ae ae ' ae ae \ ae
1 \
Vg V5 b V5 U b V5 b V5
\ g
@ »
0 \ -
¢b a d be [ d be a /:0[\\ cde
/
1 - \
! - - \
VU3 C U4 Vs be U4 Vs be U4 Vs be U4
Figure 9.A Figure 9.B Figure 9.C Figure 9.D

Fic. 9. An illustration of the proof of Lemma 18.

We turn to e and eZ then. At this moment, we have a configuration that
is symmetric in (a,e) and (b,¢) (as seen in Figure 9.B). If V(e;) = {v1,v3}, then
es ,e;' ,€e4,€5 form a rainbow even cycle, a contradiction. So, the above fact implies
V(e;) = {v2,v3}. By symmetry, V(ef) = {vi,v2}. We thus arrive at Figure 9.C. If
V(ed) = {v1,v4}, then e;,e; ,e4,e5 form a rainbow 4-cycle, which is impossible. It
then follows from the fact and symmetry that V(ej) =V (es ) = {v4,v5}, as illustrated
in Figure 9.D.

Finally, we focus on ef. Indeed, we have V (e; ) = {va,v4} or {vs,vs4} by the fact.
Figure 9.D shows that the former case generates a rainbow 4-cycle on e1,eZ,e5f,e57
while the latter generates a rainbow 4-cycle on e, ,e;,e;,e;. We thus obtain the
desired contradiction. ]

Assume §o and fy satisfy Lemma 17. Let Fy be the forest part of §y. That is,
73(&0) = {Ch. . .,Cc, B1, .. .,Bb, FO} With ‘F0| = |F‘

From Lemma 18 we can find a subgraph of D on six vertices vy, ...,v5 and v,. After

some possible renaming of vertices, edges, and colors, we assume this subgraph consists
of the ingredients below:

o CLf {e; = (Viviy1, ;) : @ € [5]} is the rainbow 5-cycle in Fo + fo located by
Lemma 17, and

e p def (v*v1, ) is a pendant edge of color « on vertices v* and vy located by

Lemma 18. _
We first claim that C —fy C Fo. Since fg ¢ Fo and x(fo) ¢ x(Fo), it follows
from Lemma 8 that C is edge-disjoint from Cy,...,C. and By,...,By. In particular,
C—fy CFy.

We then claim that p ¢ Fo. If fo =eq, then x(p) = x(fo) ¢ x(Fo) follows from the
choice of fp in Lemma 17, and so p ¢ Fo. If fp € {e2,e3,e4,e5}, then e; € Fg. This
implies p ¢ Fy since Fy is rainbow, and p ¢ C;, p ¢ B, since C;,B; are color-disjoint
from Fy. We conclude that p ¢ §o.

Let foo be a subgraph of Ty, € P(Fo). Set § d:efSOwaofeg, and F{, def Fo+fo—es.
Note that F, differs from Fg only at T}, the rainbow tree from P(§,) containing C—es.
Since V(T},) =V (Tg),

def

P(3,) = {C4,...,C.,By,..., By, Fi}

shows that §, is a Frankenstein subgraph of D with |Fj| = |Fo| = |F|. We remark that
p &S0
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Fic. 10. An illustration of the proof of Theorem 2.

Let D, be the monochromatic even cycle from D that contains e; and p. Then

def

Do, =< e1 + (1y2, 1) + - + (Yae1Y2042,01)
def def def

(3/1 = V2, Y2041 = U, Yoz = v1, LE N+) :

By Lemma 9, there are two connected components S; and S of §), — e; such that
v1 € V(S1) and vy € V(Sz2). Define v as the smallest index with y, ¢ V(S2). For
reasons similar to “xry_1 €S, and x, € S,,” in the proof of Lemma 17, we have that
Yu—1 €S and y, € S1. Indeed, if y,, ¢ S1, then

P(S/0+e5_el+q)d:ef{cla"'7C07Blv~"aBb7F/O+e5_e1+q}7

where q def (Yu—1Yu, 1), is another Frankenstein subgraph on |§.| + 1 edges, which
contradicts (M3).

According to Proposition 12, we can find a rainbow path P; CS; with terminals
Y, and v;. We can also find a rainbow path P, C S, whose terminals are y,,_; and
some v; € {v2,v3,v4,05}. Assume further that Py is of minimum length. Note that
Pi=gifvy=y,, and Po=0 if v, =y, 1.

CLAIM. Pq,Ps,C are pairwise color-disjoint.

Proof of claim. Recall that C— es C T}. If Py, Py intersect some same part G €
P(30), then it follows from the definitions of S;,Ss that G=Tj. Since T}, is rainbow,
and different parts in P(F}) are color-disjoint, we conclude that x(P1), x(P2), x(C)
are pairwise disjoint. O

Decompose C into two rainbow paths ﬁl,ﬁQ with terminals v; and vy such that
e € P1 For instance, in Figure 10 we have v = U3, P1 =e1+eyand Py =e3+ey +e5
Set P2 P, UP2U{q}, and define BLPU P, UP,. We are going to verify that Bisa
bad piece in three steps.

First, we show that B=PU P1 U P2 is a theta graph with common terminals v,

and vy. Let C Py, P>, q be the uncolored copies of C,P1,Ps,q, respectively. It suffices
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to show that 6’, Py, Py, {q} are pairwise disjoint. The definitions of S;,S, indicate
q¢ P, q¢ P, and PN P, =@, P, NC =@. The minimum-length assumption on P
implies P,NC = @. To see that ¢ ¢ C, we argue indirectly. If ¢ € C, then V(q) C V(E)
and y,, = v1. This implies g = p, hence v* € {v1,...,v5}, a contradiction.

Second, we prove that '|5 ﬁl, ﬁg are all rainbow, and that B is almost rainbow.
Indeed, Pl, P2 are rainbow because C is rainbow. Since x(q) =x(e1) =a; and e; € C,
the claim then implies that P is rainbow and B is almost rainbow. _

_Third, we check that IB| > 7. Since q € B, CC B, and q ¢ C, we obtain |B| > 6.
If |B| =6, then V(q) C {v1,...,v5} and hence y,_1 = v, ¥, = v1, which contradicts
v* ¢ {v,...,v5}. So, |B|>7.
If |V(B ) V(X)| <1 for all Xe {Cy,...,C¢,By,...,Bp}, then the partition
PE) L{Cy,...,C,By,..., By, B}
exposes a Frankenstein subgraph of D with ¢(g) = c and b(3) > b, which contradicts
(M2). So, there exists Xo = C; or B; such that |[V(B) NV (Xq)| > 2.

Consider the rainbow cycle C (i:ifﬁ UP,. We claim that x(Xo) N X(G \ Xg)=2. To
see this, we begin by noticing that C is a disjoint union Py UP3UPyU{q}. The claim
is then verified by

e Xx(Xo) Nx(P1UP2\ Xo) =@ follows from X € P(3() and Py UP2 CF;
e X(Xo) Nx(P2\ Xo) =@ since Xo € P(Fo), Xx(fo) & (o), and P2 C Fo + fo;
x(a) ¢ x(Xo) because x(q) = x(e1) € x(T}) and T}, X, are color-disjoint.
It follows from y,—1 €Sy and y,, €Sy that q & §, and hence q ¢ Xo. Since q € PCC,
we locate an edge q € C \ Xo. Lemma 8 then tells us that |V( YNV (Xo)| <1,
for otherwise a rainbow even cycle appears in D. Similarly, it follows from x(Xo) N
x(C \Xo) =9, e € C\ Xo, and Lemma 8 that |V(C) N V(Xo)| < 1. We thus obtain
[V(B) NV (Xo)| =2 and BN X, =@ by noticing B=CUC.

Suppose V(B) NV (Xo) & {u,u1} with we V(P)\ V(P2) and us € V(P1)\ V(P2).
Denote by P, ., the subpath of P Wlth terminals u,v¢, and by P,, ., the subpath of
P1 with termmals uy,ve. Write p Pu vy UPy 4, Then Pisa ralnbow path because
3 - B and e1 ¢ P. Since BN Xo =, from Lemma 8 we deduce that PU Xo contains a
rainbow even cycle, a contradiction.

The proof of Theorem 2 is complete.

4. Concluding remarks. Write (n) def {3,4,...,n}. For any positive integer
n and any A C (n), let f(n,A) be the minimum positive integer N such that a
rainbow A-cycle is guaranteed in every family of N many A-cycles. It then follows
from Theorems 1 to 3 that

n when A= (n),
F(n,A) =142 [2]-1 when A= (n)N(2Z + 1),
{6(71 1)J +1 when A= (n)N2Z.

We were unable to determine f(n, A) when A = (n) N (aZ + b) in general. Another
nice problem is to estimate f(n,{k}). It was proved independently by Gyéri [9] and
Goorevitch and Holzman [8] that f(n,{3})~ . In particular, the value of f(n,{n})
concerning Hamiltonian cycles seems mysterlous
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