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RAINBOW EVEN CYCLES∗

ZICHAO DONG† AND ZIJIAN XU‡

Abstract. We prove that every family of (not necessarily distinct) even cycles D1, . . . ,

D⌊1.2(n−1)⌋+1 on some fixed n-vertex set has a rainbow even cycle (that is, a set of edges from
distinct Di’s, forming an even cycle). This resolves an open problem of Aharoni, Briggs, Holzman
and Jiang. Moreover, the result is best possible for every positive integer n.
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1. Introduction. Let F be a set family. A rainbow set with respect to F is a
subset R (without repeated elements) of ∪F (i.e.,

⋃
F∈F F ) such that there exists an

injection σ : R → F with r ∈ σ(r) for all r ∈ R. In other words, each element r ∈ R
comes from a distinct F ∈F . We think about each set in F as a different color class,
and hence use the term “rainbow.” An important remark here is that a “family”
refers to a “multiset,” since an element in ∪F may appear with more than one color.

Suppose every F ∈ F satisfies property P. What is the minimum size of F such
that a rainbow subset of ∪F satisfying P always exists? One famous result of this
type is the colorful version of Carathéodory’s theorem due to Bárány [6], which asserts
that every family of n+1 subsets of Rn, each containing a point p in its convex hull,
has a rainbow subset whose convex hull contains p as well. Such problems are also
studied in graph theory. Aharoni and Berger [1] proved that any family of 2n − 1
matchings of size n in a bipartite graph contains a rainbow matching of size n. Other
results of this type on cycles and triangles can be found in [3, 9, 8].

There are studies of rainbow graphs in a different context: Given an edge-colored
graph, what conditions guarantee a certain subgraph whose edges have distinct colors?
Due to the relation with Latin squares, rainbow matchings have received extensive
attention. See [2, 7] for recent works. As a starting point for finding colorful variants
of Turán’s theorem, the existence of rainbow triangles is analyzed in [4, 5]. A rainbow
version of Dirac’s theorem on Hamiltonian cycles can be found in [10].

Throughout the paper, a graph, without further specification, refers to a simple
graph G which is a set of colored edges. Formally, G is a set of pairs e = (e,α),
where e’s are distinct edges (i.e., different pairs of two distinct vertices) and α’s are

(not necessarily distinct) colors. For e = (uv,α) ∈ G, where uv
def
= {u, v}, denote

V (e)
def
= {u, v}, χ(e) = α. Then write V (G)

def
=

⋃
e∈G

V (e), E(G)
def
= {V (e) : e ∈ G}, and

χ(G)
def
= {χ(e) : e ∈ G} for the vertex set, the (uncolored) edge set and the color set,

respectively.
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1270 ZICHAO DONG AND ZIJIAN XU
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Fig. 1. An example family D viewed as an edge-colored multigraph. (See electronic version for
color figures.)

Two edges e1, e2 are coincident if they are of different colors and are on the same
vertex set. That is, V (e1) = V (e2) yet χ(e1) 6= χ(e2). For two graphs G1,G2, we call
them coincident if there exists a bijection ϕ : G1 → G2 such that e is coincident to
ϕ(e) for all e ∈ G1. Note that coincident edges do not exist in a graph, since graphs
are assumed to be simple.

This paper is devoted to the existence of a rainbow even cycle in a family of even
cycles. A cycle is a graph C such that its edges E(C), viewed as an uncolored simple
graph, form a cycle. In other words, C = {(v1v2, α1), . . . , (vℓ−1vℓ, αℓ−1), (vℓv1, αℓ)},
where v1, . . . , vℓ are distinct and ℓ ≥ 3 is called the length of C. For any A ⊆
{3,4,5, . . .}, an A-cycle is a cycle whose length is some number from A. For ex-
ample, an odd cycle, a cycle of odd length, is a {3,5,7, . . .}-cycle. Similarly, an even
cycle, a cycle of even length, is a {4,6,8, . . .}-cycle. For any integer k ≥ 3, a k-cycle
refers to a {k}-cycle.

Hereafter a family F = {E1, . . . ,Em} is a family of cycles. We remark that F being
a family implicitly implies that χ(Ei) = {αi}, while α1, . . . , αm are distinct. Since each
Ei is a monochromatic cycle, we view F as an edge-colored multigraph (i.e., a set of
colored edges where coincident edges are allowed). A subgraph of F is then a graph
E, where E ⊆

⋃m
i=1 Ei. In Figure 1, the family D = {D1,D2,D3,D4} consists of four

4-cycles on seven vertices, where D2,D3 are coincident. Let χ(Di) = αi (i= 1,2,3,4).

Then D
def
= {(v0v1, α1), (v1v2, α2), (v2v3, α3), (v3v0, α4)} is a rainbow 4-cycle subgraph

of D.
We shall say that a family F contains a graph G if G is a subgraph of F .

Theorem 1 (see [3]). Every family of 2
⌈
n
2

⌉
−1 odd cycles on n vertices contains

a rainbow odd cycle.

The tightness of Theorem 1 is witnessed by a family of 2
(⌈

n
2

⌉
−1

)
many coincident

odd cycles on 2
⌈
n
2

⌉
−1 vertices. As for even cycles, Aharoni et al. also deduced in [3]

that the maximum size of a family on n vertices containing no rainbow even cycle is
between roughly 6

5n and 3
2n, and left the determination of the exact extremal number

as an open problem. We answer this question by proving the following result.

Theorem 2. Every family of
⌊ 6(n−1)

5

⌋
+ 1 even cycles on n vertices contains a

rainbow even cycle.

The tightness of Theorem 2 for each n ≥ 4 (no even cycle exists when n ≤ 3)
is seen as follows: The families D4,D5,D6,D7,D8 in Figure 2 are tight examples for
n= 4,5,6,7,8, respectively. For larger n, we observe that by gluing together Dn−5 (a
tight example for n− 5) and D6 at exactly one vertex (edge-disjoint henceforth) the
resulting family Dn is tight for n. We remark that the family D6 and the inductive
argument were already presented in [3].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RAINBOW EVEN CYCLES 1271

D4 D5 D6 D7 D8

Fig. 2. Tight examples of Theorem 2 for small n.

Proof strategy. To explain the strategy of our proof, we begin with a baby
version of Theorem 2 whose tightness is witnessed by, for example, a family of n− 1
coincident Hamiltonian cycles.

Theorem 3 (see [3, Proposition 3.2]). Every family of n cycles on n vertices
contains a rainbow cycle.

Proof. Let F be such a family and F be a maximal rainbow forest subgraph of
F . Then |F| ≤ n− 1, and so there is another edge e, not coincident to any edge of
F, whose color does not appear in F. The maximality of F implies that e completes a
rainbow cycle in the graph F∪ {e}.

All these proofs proceed by first finding a spanning structure S (the rainbow forest
F in the proof above) and then analyzing another edge with an absent color in S. The
proof of Theorem 1 also uses a maximal rainbow forest as S. However, to prove
Theorem 2 we need some new spanning structure.

It turns out that 5-cycles play a central role in the 6
5n upper bound. We thus call

a cycle long if its length is at least 6. In particular, a rainbow {7,9,11, . . .}-cycle is
a long rainbow odd cycle. Then our spanning structure, which we call Frankenstein
graphs, are (informally speaking) obtained by recursively, at single vertices, gluing
together a collection of long rainbow odd cycles, rainbow trees, and another class of
graphs named bad pieces.

We shall formally define and characterize bad pieces and Frankenstein graphs in
section 2. Then section 3 is devoted to the proof of Theorem 2.

2. Frankenstein graphs. A path graph of length k is a graph of the form

P= {(v0v1, α1), (v1v2, α2), . . . , (vk−1vk, αk)},

where v0, . . . , vk are distinct. A theta graph is a union of 3 paths that share exactly
their terminals. Formally, G is a theta graph if G= P1 ∪P2 ∪P3, where P1,P2,P3 are
paths with terminals s, t and

V (P1)∩ V (P2) = V (P2)∩ V (P3) = V (P3)∩ V (P1) = {s, t},

E(P1)∩E(P2) =E(P2)∩E(P3) =E(P3)∩E(P1) =∅.

We use the name “theta” because one natural drawing of such a graph looks exactly
like the Greek letter Θ. See Figure 3 below as an illustration.

Observation 4. Every rainbow theta graph has a rainbow even cycle subgraph.

Proof. Suppose P1∪P2∪P3 is a theta graph where P1,P2,P3 are paths of common
terminals. Then two of the paths, say P1 and P2, have lengths of the same parity,
and so P1 ∪ P2 is an even cycle.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/2

9
/2

5
 t

o
 1

2
8
.2

.1
1
5
.2

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



1272 ZICHAO DONG AND ZIJIAN XU

Fig. 3. A theta graph on paths of lengths 3,4,5, respectively.

Figure 4.A

v1 v3

v2

v4

a

cb

c d

v3 v4

v2 v5

v1
a

b

c

d

e

v6

a
g

Figure 4.B
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Figure 4.C

Fig. 4. One example and two non-examples of bad pieces.

We call a graph G almost rainbow if |χ(G)|= |G| − 1. That is, exactly two edges
receive a same color, and the color of every other edge is unique. We call B a bad
piece if B is an almost rainbow theta graph on 3 rainbow paths (sharing terminals)
such that |V (B)| ≥ 6.

For example, Figure 4.A is not a bad piece because it contains only 4 vertices;
Figure 4.B is a bad piece on 6 vertices and 7 edges consisting of rainbow paths v1v5,
v1v2v3v4v5 and v1v6v5; Figure 4.C is not a bad piece because v1v2v3v4v5 is not rainbow
(as witnessed by (v2v3, b) and (v4v5, b)).

Observation 5. If B is a bad piece, then |V (B)|= |χ(B)| ≤ 6
5 (|V (B)| − 1).

Proof. Since B is a theta graph, we have |V (B)|= |B| − 1. Notice that since B is

almost rainbow, we see that |χ(B)|= |B| − 1. It follows that n
def
= |χ(B)|= |V (B)| ≥ 6,

and hence |χ(B)|
|V (B)|−1 = n

n−1 ≤ 6
5 .

Observation 6. If B is a bad piece, then for any distinct v1, v2 ∈ V (B), there exists
in B a rainbow path subgraph whose terminals are v1 and v2.

Proof. Since |χ(B)|= |B| − 1, it suffices to show that v1, v2 are vertices of a cycle
in B. Suppose B consists of three rainbow paths P1,P2,P3. If v1 and v2 are on a same
path, say P1, then P1 ∪P2 is such a cycle. If v1 and v2 are on different paths, say P1

and P2, then P1 ∪ P2 is such a cycle.

Let G be a graph. We call P = {G1, . . . ,Gm} a partition if G =
⋃m

i=1Gi and
|V (Gi)∩V (Gj)| ≤ 1, χ(Gi)∩χ(Gj) =∅ for every distinct Gi,Gj . We shall often abuse
notation by writing P(G) =P. Indeed, P(G) is not a function of G, as the partition is
usually not unique. The notation emphasizes that the partition is of G. In this sense,
F is a Frankenstein graph if it admits a partition

P(F) = {C1, . . . ,Cc,B1, . . . ,Bb,T1, . . . ,Tt} (c≥ 0, b≥ 0, t≥ 0, c+ b+ t≥ 1),

where C’s are long rainbow odd cycles, B’s are bad pieces, and T’s are rainbow trees,
such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RAINBOW EVEN CYCLES 1273

(F1) V (Tp)∩ V (Tq) =∅ for any distinct p, q, and
(F2) no rainbow even cycle subgraph exists in F.

Theorem 7. For any Frankenstein graph F with P(F) = {G1, . . . ,Gm}, there

exists a permutation σ on [m] such that Fi
def
= Gσ(1) ∪ · · · ∪ Gσ(i) satisfies |V (Fi) ∩

V (Gσ(i+1))| ≤ 1 for each i∈ [m− 1].

Theorem 7 suggests the following way to think about a connected Frankenstein
graph F: Suppose the partition of F is P(F) = {G1, . . . ,Gm}. Then one can order the

parts as F1
def
= G′

1,G
′
2, . . . ,G

′
m and recursively glue together G′

i+1 and the ith graph Fi

at some single vertex to make the (i + 1)st graph Fi+1, such that eventually Fm is
exactly F. To prove Theorem 7, we need some preparations.

Lemma 8. Let C be a rainbow cycle. Assume X is a rainbow cycle or a bad piece
with X,C \ X being color-disjoint and E(C) \ E(X) 6= ∅. If |V (C) ∩ V (X)| ≥ 2, then
C∪X contains a rainbow even cycle.

Informally speaking, this technical result is helpful because it tells us that a
rainbow cycle is likely to form a rainbow even cycle together with a long rainbow odd
cycle or a bad piece.

Proof. Since E(C)\E(X) 6=∅, there exists an edge e∈ C that is not coincident to
any edge of X. Starting from e and moving along C in opposite directions, we define
the first vertices to meet on X as s0, t0, thanks to |V (C) ∩ V (X)| ≥ 2. Then there
exists a subpath P0 (i.e., a path subgraph) of C \ X satisfying e ∈ P0. Here s0, t0 are
terminals of P0, V (P0)∩ V (X) = {s0, t0} and χ(P0)∩ χ(X) =∅.

We claim the existence of a rainbow theta subgraph in X∪P0, and so Observation
4 guarantees a rainbow even cycle subgraph in X∪ C.

If X is a rainbow cycle, then X∪ P0 is a rainbow theta graph.
If X is a bad piece which consists of rainbow paths P1,P2,P3 that share terminals

s and t, then X ∪ P0 is almost rainbow. In fact, we can always remove a subpath
containing one of the repeated-color edges on one of P1,P2,P3 to get a rainbow theta
graph. To be more specific, we assume without loss that the repeated color happens
on P1 and P3. If x, y ∈ V (Pi) for some fixed i∈ [3], then there exists a unique subpath
of Pi with terminals x and y, and we denote by Px,y this subpath.

• If s0 and t0 lie on a same Pi, then one of V (P1) \ {s, t} and V (P3) \ {s, t} is
disjoint from V (P0), say V (P1)\{s, t}. This implies that (P2∪P3)∪P0 ⊆X∪C
is a rainbow theta graph.

• Otherwise, at least one of s0 and t0 lies on P1 ∪ P3, say s0 ∈ V (P1). We
further assume that the repeated-color edge (denoted by ∗) appears on Ps,s0

rather than Pt,s0 in P1. See Figure 5.
– If t0 ∈ V (P2), then by removing P3 from X ∪ P0 we are left with a
rainbow theta graph.

– If t0 ∈ V (P3), then by removing Ps,s0 from X ∪ P0 we are left with a
rainbow theta graph.

The casework above verifies our claim, and so the proof is complete.

Let F be a Frankenstein graph with P(F) = {G1, . . . ,Gm}. To understand its

structure better, we associate with it an auxiliary uncolored bipartite graph G(F)
def
=

(V1 ∪ V2,E), in which
• V1

def
= {G1, . . . ,Gm}, V2

def
= {the unique common vertex of some Gi,Gj (i 6= j)},

and
• E

def
= {(G, v)∈ V1 × V2 : v ∈ V (G)}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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s t
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P0

∗

∗

Fig. 5. Path-removal operations where ∗ indicates the repeated color.

Lemma 9. G(F) is acyclic for every Frankenstein graph F, and so is a forest.

Proof. Assume to the contrary that v1G1v2G2v3 · · ·vkGkv1 presents a cycle in
G(F), without loss of generality. Here the notation uGi and Gjv refers to edges of
G(F). From Observation 6 we deduce that there exists for each i ∈ [k] a rainbow
path Pi with terminals vi, vi+1 in Gi (vk+1 = v1). Since different parts in F are edge-

disjoint and color-disjoint, Q
def
= P1 ∪ · · · ∪ Pk is a rainbow circuit, and so there exists

a rainbow cycle C ⊆ Q. Since C cannot be a subgraph of any part of F, we can find
uv ∈ E(Gx) ∩ E(C) and vw ∈ E(Gy) ∩ E(C), where x 6= y. It follows from (F1) that
either Gx or Gy, say Gx, is not a rainbow tree. However, Lemma 8 then implies the
existence of a rainbow even cycle subgraph in C∪Gj , which contradicts (F2).

Lemmas 8 and 9 will be applied not only in the proof of Theorem 7, but also later
in many places.

Proof of Theorem 7. We induct on m. The theorem is vacuously true when m= 1.
Suppose m≥ 2 and let w be a leaf vertex of G(F). (If no leaf exists, then E =∅ and
any permutation σ satisfies the theorem.) It is easily seen from the definition that no
leaf exists in V2, and hence we assume without loss that w=Gm. Since the partition
{G1, . . . ,Gm−1} defines a Frankenstein graph as well, the inductive hypothesis onm−1
implies the existence of a permutation σ on [m−1] satisfying |V (Fi)∩V (Gσ(i+1))| ≤ 1
for all i∈ [m− 2]. Then Gm being a leaf implies that |V (Fm−1)∩ V (Gm)| ≤ 1. So, by

defining σ(m)
def
= m to extend the definition of σ, the inductive proof is complete.

The following corollaries of Theorem 7 will be useful in the proof of Theorem 2.

Corollary 10. If F is a Frankenstein graph, then |χ(F)| ≤ 6
5 (|V (F)| − 1).

Corollary 11. If F is a Frankenstein graph with P(F) = {G1, . . . ,Gm} and C⊆ F

is a cycle, then there exists i∈ [m] such that C⊆Gi.

Proof. Write V
def
= V (F). We prove Corollaries 10 and 11 by induction on m.

If m = 1, then Corollary 11 is trivially true. To see that Corollary 10 holds, we
need to check the cases when F is a long rainbow odd cycle or a bad piece or a rainbow
tree. Indeed, we have





|χ(F)|= |V |< 6
5 (|V | − 1) when F is a long rainbow odd cycle (hence |V | ≥ 7),

|χ(F)| ≤ 6
5 |(|V | − 1) when F is a bad piece (by Observation 5),

|χ(F)|= |V | − 1< 6
5 (|V | − 1) when F is a rainbow tree.

Suppose m≥ 2 then. Assume without loss of generality that the identity σ(i)
def
= i

satisfies Theorem 7. Then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RAINBOW EVEN CYCLES 1275

|χ(F)|= |χ(Fm−1 ∪Gm)|= |χ(Fm−1)|+ |χ(Gm)| ≤
6

5
(|V (Fm−1)|+ |V (Gm)| − 2)

≤
6

5
(|V | − 1)

by applying the inductive hypothesis to Fm−1 and noticing that |V (Fm−1)∩V (Gm)| ≤
1. Also, we have C⊆ Fm−1 or C⊆ Gm because the shared vertex of Fm−1 and Gm, if
it exists, is a cut vertex of F. By applying the inductive hypothesis to Fm−1, we can
find some i∈ [m] such that C⊆Gi.

To prove Theorem 2, we need another technical result on Frankenstein graphs.

Proposition 12. Suppose F is a Frankenstein graph and P ⊆ F is a path with
terminals s and t. Then there exists a rainbow path P′ ⊆ F with the same terminals s
and t.

Proof. The existence of P implies that s, t are in the same connected component
of F. We thus assume without loss of generality that F is connected. Then there
exists a path in the uncolored graph G(F) of the form Gi1v1Gi2v2 · · ·vℓ−1Giℓ such that
s∈ V (Gi1), t∈ V (Gi,ℓ) and ℓ≥ 1. It then follows from Observation 6 that there exists
a rainbow trail Q joining s and t. Obviously, any path P′ ⊆Q with terminals s and t
satisfies Proposition 12.

For a Frankenstein graph F given by the partition P(F) = {C1, . . . ,Cc,B1, . . . ,Bb,

T1, . . . ,Tt}, we associate with it counting parameters c(F)
def
= c and b(F)

def
= b. Notice

that c(F), b(F) depend not only on the graph F, but on the partition P(F) as well.
We still need another depth parameter.

For any tree T with V (T) ⊂ N+, let its root be r
def
= minV (T). For any vertex

v ∈ V (T), define its relative depth in T as depthT(v)
def
= distT(r, v), which is the length

of the unique path with terminals r and v. We henceforth define for any forest F with
V (F)⊂N+ its total depth as

Depth(F)
def
=

t∑

i=1

∑

v∈V (Ti)

depthTi
(v),

where T1, . . . ,Tt are the connected components of F. For any Frankenstein graph F

with V (F) ⊂ N+, we refer to its total depth as the total depth of its forest part, i.e.,

Depth(F)
def
= Depth(T1 ∪ · · · ∪Tt).

Later in practice, we shall often construct a Frankenstein graph by a “partition”

P(F) = {C1, . . . ,Cc,B1, . . . ,Bb,F},

where C’s are long rainbow odd cycles, B’s are bad pieces, and F=T1 ∪ · · · ∪Tt is the
union of vertex-disjoint and color-disjoint rainbow trees, such that χ(Gi)∩χ(Gj) =∅

for any distinct Gi,Gj ∈ P(F). Indeed, this P(F) is formally not a partition since
F and Ci or Bj may share more than one vertex. However, (F1) implies, up to a
relabeling of the rainbow tree parts of F, that there is no difference between exposing
the trees T1, . . . ,Tt and exposing the forest F.

3. Proof of Theorem 2. We prove Theorem 2 indirectly. Suppose D =

(D1, . . . ,Dm) is a family of m
def
=

⌊ 6(n−1)
5

⌋
+ 1 > 6(n−1)

5 even cycles on the ambient
vertex set [n] without any rainbow even cycle subgraph.

Let F∗ be a Frankenstein subgraph of the family D satisfying the following max-
imal conditions:
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1276 ZICHAO DONG AND ZIJIAN XU

(M1) The number of long rainbow odd cycles c(F∗) is maximized.
(M2) The number of bad pieces b(F∗) is maximized under (M1).
(M3) The number of edges |F∗| is maximized under (M2).
(M4) The total depth Depth(F∗) is minimized under (M3).

Suppose the partition of F∗ is

P(F∗) = {C1, . . . ,Cc,B1, . . . ,Bb,T1, . . . ,Tt} with F
def
= T1 ∪ · · · ∪Tt,

where C’s are long rainbow odd cycles, B’s are bad pieces, and T’s are vertex-disjoint
rainbow trees.

3.1. Outer edges and outer cycles. Let λ be the color of the even cycle

Dλ. From Corollary 10 we deduce that |χ(F∗)| ≤
6
5 (n − 1) < |D|, and hence Λ

def
=

[m]\χ(F∗) 6=∅. Indeed, every edge of the multigraph DΛ
def
=

⋃
λ∈ΛDλ is absent in F∗.

We call f in DΛ an outer edge if no coincident edge of f is in F∗. A rainbow
{3,5}-cycle containing an outer edge f in F∗+ f is called an outer cycle of f. Hereafter

G+ e denotes the graph generated by adding e to G (i.e., G+ e
def
= G∪{e}). Moreover,

whenever we write G+ e, we implicitly assume that e is not coincident to any edge of
G. Similarly, G− e (assuming e ∈ G) refers to the graph obtained by deleting e from

G (i.e., G− e
def
= G \ {e}). Recall that a (colored) graph is a set of colored edges.

The next propositions are devoted to the existence of outer edges and outer cycles.

Proposition 13. For any λ∈Λ, an outer edge exists in Dλ.

Proof. Assume for the sake of contradiction that Dλ is covered by F∗. That
is, each e ∈ Dλ has one coincident edge e∗ ∈ F∗. Indeed, this e∗ is unique because

no coincident edges exist in a Frankenstein graph. Define D∗
λ

def
= {e∗ : e ∈ Dλ} ⊆ F∗.

Since long rainbow odd cycles and rainbow trees contain no even cycle, it follows from
Corollary 11 that D∗

λ has to be contained in some bad piece Bj , and so |D∗
λ|−|χ(D∗

λ)| ∈
{0,1}. Since no rainbow even cycle exists in D, we obtain |D∗

λ| − |χ(D∗
λ)| = 1. So,

there exists a unique pair of distinct edges e∗1, e
∗
2 in D∗

λ such that χ(e∗1) = χ(e∗2). Thus,
D∗

λ − e∗1 + e1 is a rainbow even cycle in D, a contradiction.

Proposition 14. For any outer edge f, an outer cycle of f exists.

Proof. Let V (f)
def
= {u, v}. Observe that u, v are in a same connected component

of F∗, for otherwise

P(F∗ + f)
def
= {C1, . . . ,Cc,B1, . . . ,Bb,F+ f}

gives another Frankenstein subgraph of D with one more edge than F∗, which con-
tradicts (M3). It follows from Proposition 12 that f completes a rainbow (hence odd)
cycle Cf in F+ f.

It then suffices to disprove that Cf is long. Assume to the contrary that Cf is
long. Since f /∈ F∗, from Lemma 8 we deduce that |V (Cf) ∩ V (Ci)| ≤ 1 for every

i ∈ [c]. So, P(F+)
def
= {C1, . . . ,Cc,C

f} presents another Frankenstein subgraph of D
with c(F+)> c(F∗), which contradicts (M1).

For any tree T with v ∈ V (T)⊆ [n], we define

ChildT(v)
def
=

{
w ∈ V (T) : vw ∈E(T), depthT(w) = depthT(v) + 1

}
.

The following properties characterize behaviors of outer 3-cycles.
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RAINBOW EVEN CYCLES 1277

Proposition 15. Suppose f is an outer edge with V (f) = {u, v}, and C is an outer
3-cycle of f with V (C) = {u, v,w}. Then there exists k ∈ [t] such that u, v,w ∈ V (Tk)
and u, v ∈ChildTk

(w).

Proof. We show u, v,w ∈ V (Tk) for some k first. Since uw,vw ∈ E(F∗), we
may assume uw ∈ E(X1) and vw ∈ E(X2), where X1,X2 ∈ P(F∗). In fact, X• ∈
{T1, . . . ,Tt} (•= 1,2), for otherwise Lemma 8 implies the existence of a rainbow even
cycle in C∪X•. It follows from (F1) that X1 =X2 =Tk.

We prove u, v ∈ ChildTk
(w) then. Suppose e1

def
= (uw,α) and e2

def
= (vw,β) are

edges in Tk. The existence of e1, e2 tells us that |depthTk
(u)− depthTk

(v)| is either
0 or 2. It suffices to establish that depthTk

(u) = depthTk
(v). If not, then assume

without loss of generality that depthTk
(u) = depthTk

(v) + 2. Since depthT′

k

(u) <
depthTk

(u) and depthT′

k

(x)≤ depthTk
(x) for all x ∈ V (Tk) = V (T′

k), we deduce that

T′
k

def
= Tk + f − e1 is another tree with Depth(T′

k)<Depth(Tk). Then the partition

P(F′)
def
= P(F∗ + f − e2) = {C1, . . . ,Cc,B1, . . . ,Bb,T1, . . . ,T

′
k, . . . ,Tt}

gives a Frankenstein subgraph of D. However, this contradicts (M4) since Depth(F′)<
Depth(F∗). Therefore, depthTk

(u) = depthTk
(v), and so u, v ∈ChildTk

(w).

Proposition 16. Suppose no outer 5-cycle exists. If f = (uv,α) is an outer edge
with outer cycle C on vertices u, v,w ∈Tk (by Proposition 15), then Dα, the even cycle
of color α from D containing f, satisfies V (Dα)⊆ {w} ∪ChildTk

(w). (See Figure 6.)

Proof. We first show that V (Dα)⊆ V (Tk). Define τ : Dα →P(F∗) as follows: For
any edge e∈Dα,

• if e is an outer edge, then V (e)⊆ V (Tℓ) for some ℓ (by Proposition 15), and

we set τ(e)
def
= Tℓ;

• if e is coincident to e′ ∈ F∗, then we set τ(e)
def
= X, where X is the part of F∗

that contains e′.
By applying τ on Dα, we locate a closed walk Q⊆G(F∗) as follows:

a. Put the edges of Dα on a circle O in order. Replace e by τ(e) for each e∈Dα.
b. If two consecutive objects on O are the same, then remove one of them.

Repeat.
c. If Gi,Gj ∈P(F∗) are adjacent on O, then plug in vij ∈ V (Gi)∩V (Gj) between

them.
The resulting arrangement on O forms a closed walk Q ⊆ G(F∗), where each pair
of consecutive edges vijGj , Gjvjk in Q corresponds to a path with terminals vij , vjk
on Dα. Indeed, Q is a circuit because Dα passes through each vij exactly once. For
instance, if Dα consists of e1, . . . , e8 in order such that

u v

w

f

A−

A′

A+

A

Fig. 6. V (f)⊆ChildTk
(w) implies V (Dα)⊆A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/2

9
/2

5
 t

o
 1

2
8
.2

.1
1
5
.2

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



1278 ZICHAO DONG AND ZIJIAN XU

τ(e1, e2, e3, e4, e5, e6, e7, e8) = (G3,G3,G2,G2,G1,G3,G4,G5),

then the steps 1 through 3 generate

O

G3v23

G2

v12

G1

v13
G3

v34

G4

v45

G5

v35

G3

v13

v23

v34

v35

v12 v45

G2

G1

G5

G4

Q =

However, Lemma 9 asserts that F∗ is acyclic. So, Q is a single vertex, and hence
V (Dα)⊆ V (Tk).

Use abbreviations V
def
= V (Tk) and d(x)

def
= depthTk

(x). Partition V into A
def
=

{w} ∪ ChildTk
(w), A+ def

= {x ∈ V : d(x) > d(v)}, A− def
= {x ∈ V : d(x) < d(w)}, and

A′ def= V \ (A∪A+ ∪A−). Let Tk be the uncolored copy of Tk, which is the uncolored
graph on vertex set V = V (Tk) and edge set E(Tk). For all z ∈ V and all pairs of
distinct vertices x, y ∈ ChildTk

(z), we add the edges xy simultaneously into E(Tk)
to generate a new graph T k. The vertex set of T k is still V . Due to the absence of
outer 5-cycles, from Proposition 15 we deduce that Dα, the uncolored copy of Dα, is
a subgraph of T k.

Notice that any subpath of Tk with one terminal in A and the other in A′ must go
through A−. It then suffices to show that V (Dα) = V (Dα) and A− are disjoint. This
breaks down to exclude the situation d(z+)≥ d(z−) + 2 for some z+, z− ∈ V (Dα). If
such z+, z− exist, then Dα consists of two subpaths P1, P2 with terminals z+ and z−.
Let zi be the vertex on Pi with d(zi) = d(z+)− 1 that is nearest to z+. The crucial
observation is that zi is the parent of z+, which is the unique vertex in V such that
z+ ∈ChildTk

(zi). Indeed, this follows from the fact that zi is a cut vertex of T k which
separates z+ from all vertices of smaller depths. However, the observation implies
that z1 = z2, which is absurd. We conclude that V (Dα) = V (Dα)⊆A, and hence the
proof is complete.

3.2. Finishing the proof.

Lemma 17. There exists a Frankenstein subgraph F0 of D whose partition is given
by

P(F0) = {C1, . . . ,Cc,B1, . . . ,Bb,F0} with |F0|= |F|,

and an edge f0 in D such that χ(f0) /∈ χ(F0) and f0 completes a rainbow 5-cycle in
F0 + f0.

Proof. If there is an outer 5-cycle in F∗, say Cf of an outer edge f, then (F0, f0)
def
=

(F∗, f) with F0
def
= F satisfies Lemma 17. We assume no outer 5-cycle exists then. It

follows from Propositions 13 and 14 that an outer edge f and its outer cycle Cf exist.

Suppose f
def
= (uv,α) and Dα is the monochromatic even cycle from D that contains f.

Assume V (Cf)
def
= {u, v,w}. It follows from Proposition 15 that u, v,w all lie in a single

rainbow tree Tk ∈P(F∗) and u, v ∈ChildTk
(w). From Proposition 16 we deduce that

V (Dα) ⊆ {w} ∪ ChildTk
(w). Since Dα consists of at least 4 edges, at least 1 of the

two adjacent edges of f on Dα is not incident to the vertex w. Assume without loss

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RAINBOW EVEN CYCLES 1279

x0 = u

x2k+1 = w

v′ v

x1

x2k

· · ·

· · ·

xλ−1

xλ

ff ′

Dα

g kh

Dβ

Pw

Pu

Sw

Su

Fig. 7. An illustration of the proof of Lemma 17.

of generality that f ′
def
= (uv′, α) is such an edge, and hence v′ ∈ ChildTk

(w). Observe
that v and v′ are symmetric despite our definition.

Let g
def
= (uw,β)∈ F∗ be the edge with V (g) = {u,w}. Suppose

Dβ = g+ (x0x1, β) + (x1x2, β) + · · ·+ (x2kx2k+1, β) (x0
def
= u, x2k+1

def
= w, k ∈N+)

is the monochromatic even cycle from D containing g. From Lemma 9 we deduce
that there are two connected components Su and Sw in the graph F∗ − g such that
u ∈ V (Su) and w ∈ V (Sw). Define λ as the smallest index such that xλ /∈ V (Su) and

write h
def
= (xλ−1xλ, β). Then h /∈ F∗.

We claim that xλ ∈ Sw. If not, then h cannot complete any cycle in F̂
def
= F+f−g+h,

and so F̂ is a rainbow forest. Observe that the trees in F̂ containing f or h (they are
possibly the same) share at most one vertex with any of C1, . . . ,Cc,B1, . . . ,Bb. This
implies that the partition

P(F∗ + f − g+ h)
def
= {C1, . . . ,Cc,B1, . . . ,Bb, F̂}

presents another Frankenstein subgraph of D on |F∗| + 1 edges, which contradicts
(M3).

By Proposition 12, we can find a rainbow path Pu ⊆ Su with terminals u,xλ−1

and a rainbow path Pw ⊆ Sw with terminals w,xλ. Here we allow Pu to be empty if
x0 = xλ−1, and allow Pw to be empty if x2k+1 = xλ. Note that Pu = Pw =∅ cannot
happen, since |Dβ | ≥ 4. Assume further that the length of Pw is minimized, and so

v /∈ V (Pw) or v
′ /∈ V (Pw), say v /∈ V (Pw). Thus, C̃

def
= f +Pu + h+Pw + k is a rainbow

odd cycle with |C̃| ≥ 5. Here k denotes the edge of Tk with V (k) = {v,w}.

Since V (Tk + f− g) = V (Tk), we can define another Frankenstein subgraph F0
def
=

F∗ + f − g by

P(F0)
def
= {C1, . . . ,Cc,B1, . . . ,Bb,T1, . . . ,Tk + f − g, . . . ,Tt}.

We claim that f0
def
= h is as desired. It suffices to show that C̃ is a rainbow 5-cycle.

Since h ∈ C̃ and β /∈ χ(F0), Lemma 8 tells us that |V (C̃) ∩ V (Ci)| ≤ 1 (∀i ∈ [c]). Then

P(F′)
def
= {C1, . . . ,Cc, C̃} gives another Frankenstein subgraph of D with c(F′)> c if C̃

is long, which contradicts (M1). Thus, |C̃| ≥ 5 implies that C̃ is a rainbow 5-cycle in
F0 + h. The proof of Lemma 17 is complete.
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v3 v4

v2 v5

v1
a

b

c

d

e

Lemma 18

v3 v4

v2 v5

v1

v∗

a

b

c

d

e
e

a

b

c

d

a

Fig. 8. The “growth” of a rainbow 5-cycle.

Lemma 18. Suppose the rainbow 5-cycle found in Lemma 17 is C̃
def
= {(vivi+1, αi) :

i ∈ [5]}, with the convention vℓ+5 = vℓ. Write ei
def
= (vivi+1, αi). Then there exists a

shifting parameter j ∈ {0,1,2,3,4}, a set of five edges e′i
def
= (vivi+1, αi+j) from D, a

vertex v∗ ∈ [n] \ {v1, . . . , v5}, and an index k ∈ [5], such that at least one of the edges
(v∗vk, αk+j−1) and (v∗vk, αk+j) appears in D.

Informally speaking, Lemma 18 is dedicated to “grow” one more edge from the
5-cycle guaranteed by Lemma 17. That is, after a possible cyclic shift of the colors
on C̃, we would like to find out another edge on one of the monochromatic even
cycles in D “leaving” C̃ (i.e., incident to v∗ /∈ {v1, . . . , v5}). Such a configuration will
then help us to locate another bad piece in D, which contradicts (M2). For ease of

notation, we write (a, b, c, d, e)
def
= (α1, α2, α3, α4, α5) in the coming example and in the

proof of Lemma 18. Figure 8 illustrates one possible output of Lemma 18 in which
(j, k) = (4,3).

Proof of Lemma 18. Assume without loss of generality that ei ∈Di ∈D. Suppose
e+i and e−i are the edges in Di satisfying V (ei)∩V (e+i ) = {vi+1} and V (ei)∩V (e−i ) =
{vi}, respectively.

Write V
def
= {v1, . . . , v5} for brevity. If there exists v ∈ V (e•i ) \ V for some i ∈ [5]

and • ∈ {+,−}, say i = 1 and • = +, then by choosing v∗
def
= v and (j, k) = (0,1) the

proof is done.
We thus assume that V (e•i ) ⊆ V for any i ∈ [5] and • ∈ {+,−}, and claim that

this is impossible. To see this, we prove by contradiction. The following observation
is quite useful.

Fact. V (e−i ) = {vi−1, vi} or {vi, vi+3}, and V (e+i ) = {vi+1, vi+2} or {vi+1, vi+3}.

Proof of fact. Let V (e−i )
def
= {vi−1, v

′}. Then v′ ∈ {vi−1, vi+2, vi+3} is forced.
However, v′ 6= vi+2, for otherwise e

−
i , ei+2, ei+3, ei+4 form a rainbow 4-cycle in D. The

V (e+i ) case is similar.

If e+i and ei+1 are coincident for all i∈ [5], then we cyclically shift the vertices via
increasing j by 1 (note that the shift cannot happen indefinitely since the cycles Di

are even). This does not change the situation, and so we may assume without loss of
generality that V (e+1 ) 6= {v2, v3}. It follows from the above fact that V (e+1 ) = {v2, v4},
which forces V (e−1 ) = {v1, v5}, as shown in Figure 9.A.

We next look at e±2 . If V (e−2 ) = {v1, v2}, then e−2 , e
+
1 , e4, e5 form a rainbow even

cycle, a contradiction. So, V (e−2 ) = {v2, v5}, and hence V (e+2 ) = {v3, v4} by the fact,
as shown in Figure 9.B.
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v3 v4

v2 v5

v1
a

ab

c

d

ae

a

Figure 9.A

v3 v4

v2 v5

v1

ab

ab

bc

d

ae

a

b

Figure 9.B

v3 v4

v2 v5

v1
ae

bc

bc

d

ae

a

b
ce

Figure 9.C

v3 v4

v2 v5

v1
ae

bc

bc

cde

ae

a

b

c

e

Figure 9.D

Fig. 9. An illustration of the proof of Lemma 18.

We turn to e±3 and e±5 then. At this moment, we have a configuration that
is symmetric in (a, e) and (b, c) (as seen in Figure 9.B). If V (e−3 ) = {v1, v3}, then
e−3 , e

+
2 , e4, e5 form a rainbow even cycle, a contradiction. So, the above fact implies

V (e−3 ) = {v2, v3}. By symmetry, V (e+5 ) = {v1, v2}. We thus arrive at Figure 9.C. If
V (e+3 ) = {v1, v4}, then e1, e

−
2 , e4, e

+
3 form a rainbow 4-cycle, which is impossible. It

then follows from the fact and symmetry that V (e+3 ) = V (e−5 ) = {v4, v5}, as illustrated
in Figure 9.D.

Finally, we focus on e±4 . Indeed, we have V (e−4 ) = {v2, v4} or {v3, v4} by the fact.
Figure 9.D shows that the former case generates a rainbow 4-cycle on e1, e

−
4 , e

+
3 , e5,

while the latter generates a rainbow 4-cycle on e−2 , e
−
3 , e

−
4 , e

−
5 . We thus obtain the

desired contradiction.

Assume F0 and f0 satisfy Lemma 17. Let F0 be the forest part of F0. That is,

P(F0) = {C1, . . . ,Cc,B1, . . . ,Bb,F0} with |F0|= |F|.

From Lemma 18 we can find a subgraph of D on six vertices v1, . . . , v5 and v∗. After
some possible renaming of vertices, edges, and colors, we assume this subgraph consists
of the ingredients below:

• C̃
def
= {ei = (vivi+1, αi) : i ∈ [5]} is the rainbow 5-cycle in F0 + f0 located by

Lemma 17, and

• p
def
= (v∗v1, α1) is a pendant edge of color α1 on vertices v∗ and v1 located by

Lemma 18.
We first claim that C̃ − f0 ⊆ F0. Since f0 /∈ F0 and χ(f0) /∈ χ(F0), it follows

from Lemma 8 that C̃ is edge-disjoint from C1, . . . ,Cc and B1, . . . ,Bb. In particular,
C̃− f0 ⊆ F0.

We then claim that p /∈ F0. If f0 = e1, then χ(p) = χ(f0) /∈ χ(F0) follows from the
choice of f0 in Lemma 17, and so p /∈ F0. If f0 ∈ {e2, e3, e4, e5}, then e1 ∈ F0. This
implies p /∈ F0 since F0 is rainbow, and p /∈ Ci, p /∈ Bj since Ci,Bj are color-disjoint
from F0. We conclude that p /∈ F0.

Let C̃−f0 be a subgraph of Tk ∈P(F0). Set F
′
0
def
= F0+f0−e5 and F′

0
def
= F0+f0−e5.

Note that F′
0 differs from F0 only at T′

k, the rainbow tree from P(F′
0) containing C̃−e5.

Since V (T′
k) = V (Tk),

P(F′
0)

def
= {C1, . . . ,Cc,B1, . . . ,Bb,F

′
0}

shows that F′
0 is a Frankenstein subgraph of D with |F′

0|= |F0|= |F|. We remark that
p /∈ F′

0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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v3 v4

y1 = v2 v5

y2ℓ+2 = v1

e1

q

e5

e2

e3

e4

C̃

y2ℓ+1 = v∗

· · ·

· · ·

.

.

.

yµ

yµ−1

p

Dα1

P1

P2

S1

S2

Fig. 10. An illustration of the proof of Theorem 2.

Let Dα1
be the monochromatic even cycle from D that contains e1 and p. Then

Dα1

def
= e1 + (y1y2, α1) + · · ·+ (y2ℓ+1y2ℓ+2, α1)(

y1
def
= v2, y2ℓ+1

def
= v∗, y2ℓ+2

def
= v1, ℓ∈N+

)
.

By Lemma 9, there are two connected components S1 and S2 of F′
0 − e1 such that

v1 ∈ V (S1) and v2 ∈ V (S2). Define µ as the smallest index with yµ /∈ V (S2). For
reasons similar to “xλ−1 ∈ Su and xλ ∈ Sw” in the proof of Lemma 17, we have that
yµ−1 ∈ S2 and yµ ∈ S1. Indeed, if yµ /∈ S1, then

P(F′
0 + e5 − e1 + q)

def
= {C1, . . . ,Cc,B1, . . . ,Bb,F

′
0 + e5 − e1 + q},

where q
def
= (yµ−1yµ, α1), is another Frankenstein subgraph on |F∗| + 1 edges, which

contradicts (M3).
According to Proposition 12, we can find a rainbow path P1 ⊆ S1 with terminals

yµ and v1. We can also find a rainbow path P2 ⊆ S2 whose terminals are yµ−1 and
some vt ∈ {v2, v3, v4, v5}. Assume further that P2 is of minimum length. Note that
P1 =∅ if v1 = yµ, and P2 =∅ if vt = yµ−1.

Claim. P1,P2, C̃ are pairwise color-disjoint.

Proof of claim. Recall that C̃− e5 ⊆ T′
k. If P1,P2 intersect some same part G ∈

P(F′
0), then it follows from the definitions of S1,S2 that G=T′

k. Since T′
k is rainbow,

and different parts in P(F′
0) are color-disjoint, we conclude that χ(P1), χ(P2), χ(C̃)

are pairwise disjoint.

Decompose C̃ into two rainbow paths P̃1, P̃2 with terminals v1 and vt such that
e1 ∈ P̃1. For instance, in Figure 10 we have vt = v3, P̃1 = e1+ e2 and P̃2 = e3+ e4+ e5.

Set P̃
def
= P1 ∪P2 ∪{q}, and define B̃

def
= P̃∪ P̃1 ∪ P̃2. We are going to verify that B̃ is a

bad piece in three steps.
First, we show that B̃= P̃ ∪ P̃1 ∪ P̃2 is a theta graph with common terminals v1

and vt. Let C̃,P1, P2, q be the uncolored copies of C̃,P1,P2,q, respectively. It suffices
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to show that C̃,P1, P2,{q} are pairwise disjoint. The definitions of S1,S2 indicate
q /∈ P1, q /∈ P2 and P1 ∩ P2 =∅, P1 ∩ C̃ =∅. The minimum-length assumption on P2

implies P2∩C̃ =∅. To see that q /∈ C̃, we argue indirectly. If q ∈ C̃, then V (q)⊆ V (C̃)
and yµ = v1. This implies q= p, hence v∗ ∈ {v1, . . . , v5}, a contradiction.

Second, we prove that P̃, P̃1, P̃2 are all rainbow, and that B̃ is almost rainbow.
Indeed, P̃1, P̃2 are rainbow because C̃ is rainbow. Since χ(q) = χ(e1) = α1 and e1 ∈ C̃,
the claim then implies that P̃ is rainbow and B̃ is almost rainbow.

Third, we check that |B̃| ≥ 7. Since q ∈ B̃, C̃ ⊆ B̃, and q /∈ C̃, we obtain |B̃| ≥ 6.
If |B̃| = 6, then V (q) ⊆ {v1, . . . , v5} and hence yµ−1 = vt, yµ = v1, which contradicts

v∗ /∈ {v1, . . . , v5}. So, |B̃| ≥ 7.
If |V (B̃)∩ V (X)| ≤ 1 for all X∈ {C1, . . . ,Cc,B1, . . . ,Bb}, then the partition

P(F̃)
def
= {C1, . . . ,Cc,B1, . . . ,Bb, B̃}

exposes a Frankenstein subgraph of D with c(F̃) = c and b(F̃)> b, which contradicts
(M2). So, there exists X0 = Ci or Bj such that |V (B̃)∩ V (X0)| ≥ 2.

Consider the rainbow cycle Ĉ
def
= P̃∪ P̃2. We claim that χ(X0)∩χ(Ĉ\X0) =∅. To

see this, we begin by noticing that Ĉ is a disjoint union P1 ∪P2 ∪ P̃2 ∪{q}. The claim
is then verified by

• χ(X0)∩ χ(P1 ∪ P2 \X0) =∅ follows from X0 ∈P(F′
0) and P1 ∪ P2 ⊆ F′

0;
• χ(X0)∩ χ(P̃2 \X0) =∅ since X0 ∈P(F0), χ(f0) /∈ χ(F0), and P̃2 ⊆ F0 + f0;
• χ(q) /∈ χ(X0) because χ(q) = χ(e1)∈ χ(T′

k) and T′
k,X0 are color-disjoint.

It follows from yµ−1 ∈ S2 and yµ ∈ S1 that q /∈ F′
0, and hence q /∈X0. Since q∈ P̃ ⊆ Ĉ,

we locate an edge q ∈ Ĉ \ X0. Lemma 8 then tells us that |V (Ĉ) ∩ V (X0)| ≤ 1,
for otherwise a rainbow even cycle appears in D. Similarly, it follows from χ(X0) ∩
χ(C̃ \ X0) = ∅, e1 ∈ C̃ \ X0, and Lemma 8 that |V (C̃) ∩ V (X0)| ≤ 1. We thus obtain
|V (B̃)∩ V (X0)|= 2 and B̃∩X0 =∅ by noticing B̃= Ĉ∪ C̃.

Suppose V (B̃)∩ V (X0)
def
= {u,u1} with u∈ V (P̃) \ V (P̃2) and u1 ∈ V (P̃1) \ V (P̃2).

Denote by Pu,vt
the subpath of P̃ with terminals u, vt, and by Pu1,vt the subpath of

P̃1 with terminals u1, vt. Write P̂
def
= Pu,vt

∪Pu1,vt . Then P̂ is a rainbow path because

P̂⊆ B̃ and e1 /∈ P̂. Since B̃∩X0 =∅, from Lemma 8 we deduce that P̂∪X0 contains a
rainbow even cycle, a contradiction.

The proof of Theorem 2 is complete.

4. Concluding remarks. Write 〈n〉
def
= {3,4, . . . , n}. For any positive integer

n and any A ⊆ 〈n〉, let f(n,A) be the minimum positive integer N such that a
rainbow A-cycle is guaranteed in every family of N many A-cycles. It then follows
from Theorems 1 to 3 that

f(n,A) =





n when A= 〈n〉,

2
⌈
n
2

⌉
− 1 when A= 〈n〉 ∩ (2Z+ 1),⌊

6(n−1)
5

⌋
+ 1 when A= 〈n〉 ∩ 2Z.

We were unable to determine f(n,A) when A = 〈n〉 ∩ (aZ+ b) in general. Another
nice problem is to estimate f(n,{k}). It was proved independently by Győri [9] and

Goorevitch and Holzman [8] that f(n,{3})≈ n2

8 . In particular, the value of f(n,{n})
concerning Hamiltonian cycles seems mysterious.
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Erdős Center), and

• Extremal Combinatorics and Probability Group (ECOPRO), Institute for
Basic Science (IBS, Daejeon, South Korea) for hosting since Jan. 2024 (sup-
ported by IBS-R029-C4).

The second author would like to thank Peking University for a preadmission in his
tenth grade, and to thank Beijing National Day School (high school) for allowing him
to skip all regular classes in the academic year 2021–2022. These privileges resulted
in plenty of free time to study all kinds of exciting new mathematics, especially to
work on this problem on rainbow even cycles.

Both authors thank two anonymous referees for their valuable feedback on earlier
versions of this paper.

REFERENCES

[1] R. Aharoni and E. Berger, Rainbow matchings in r-partite r-graphs, Electron. J. Combin.,
16 (2009), 119, http://www.combinatorics.org/Volume 16/Abstracts/v16i1r119.html.

[2] R. Aharoni, E. Berger, M. Chudnovsky, and S. Zerbib, Rainbow paths and large rainbow
matchings, Electron. J. Combin., 29 (2022), 1.10, https://doi.org/10.37236/10173.

[3] R. Aharoni, J. Briggs, R. Holzman, and Z. Jiang, Rainbow odd cycles, SIAM J. Discrete
Math., 35 (2021), pp. 2293–2303, https://doi.org/10.1137/20M1380557.
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